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Abstract 
Hunan Jianglu & Rongda Vehicle Transmission Ltd., 

Co. has recently completed the development of a 

Continuously Variable Transmission (CVT). The 

transmission and the control software must be fitted to 

various vehicle platforms and must suit various driving 

conditions and driver requests. Because of the 

complexity of the system and due to the large number of 

driving conditions, systematic tests and validation 

methods are required. These methods should guarantee 

correctness and quality of the software and system 

behavior. For the test of the control software, Jianglu 

Rongda used an innovative test method based on 

automatic test scenario generation, Software in the Loop 

(SiL) simulation, and finally Hardware in the Loop 

(HiL) tests. The CVT control software is executed with 

a vehicle simulation model developed with 

SimulationX/Modelica, which is used both for the SiL 

and the HiL tests. The model accurately represents the 

CVT transmission including mechanical and hydraulic 

systems based on mechanical and physical parameters. 

In this paper, we describe the corresponding test process 

and tool chain along with the model validation. We also 

discuss the advantages and costs of this approach. 

Keywords:            embedded software, automotive, 

transmission, testing  

1 Introduction 

Transmission systems are continuously improved with 

respect to efficiency, robustness, costs and comfort. 

Most of these requirements have direct relationship with 

the transmission control software, which is becoming 

more and more intelligent and complex. Many situations 

have to be detected rapidly and reliably. Testing the 

controller, by covering all relevant driving situations 

and faults, repeatedly during the development cycle can 

be very time consuming and ineffective. Traditional 

methods based on hand-written test scripts do not 

perform well for validation and test of transmission 

controllers. 

In this paper, we present a method based on automated 

scenario generation, execution and evaluation of useful 

test cases. We explain how the corresponding tools have 

been used to validate and to iteratively improve the 

control software of the CVT for a minivan, the 

Dongfeng Xiaokang. 

The development environment for the CVT software 

integrates the following components: 

 ETAS ASCET is used for model-based 

development of the CVT control software and for 

turning the model into production embedded C 

code for the Transmission Control Unit (TCU). 

 A high-precision simulation model of the Xiaokang 

and of the CVT hardware. The model has been 

developed using SimulationX, based on Modelica.  

 QTronic Silver is a tool for building virtual ECUs, 

used in Software-in-the-loop simulation. Silver 

imports both the vehicle model exported from 

SimulationX as FMUs and the TCU embedded 

software. Silver executes both in a co-simulation 

on a normal Windows PC. Furthermore, Silver 

provides interfaces to automated system level tests, 

the A2L/dcm database to integrate production 

calibration data into the simulation. Silver also 

supports various methods for stimulating sensor 

and actuator faults by modifying signals between 

plant and controller. 

 QTronic TestWeaver, a coverage-driven test case 

generator, automatically generates, runs and 

evaluates thousands of different driving scenarios 

for system level tests during the development of the 

CVT control software. 

By using this tool chain, we achieved the following 

main benefits: 

 Accelerating the development process: Shortening 

development time is partly credited to the 

simulation-based tool chain sketched above. 

Furthermore, simulation lets the developers 

perform more engineering and test tasks on their 

PCs, and avoids blocking of rare resources like 
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such as real ECUs, HiL (Hardware-in-the-Loop) 

test benches or prototype vehicles. 

 Increased robustness: The automated generation of 

high-quality test cases enabled us to perform a 

much higher number of test cases than possible 

with the same effort using traditional test methods. 

Especially for extreme driving conditions and fault 

insertion tests the new methods we apply here 

found many problems that would have been 

difficult to find on the vehicle. 

2 Virtual integration of the CVT software 

and of the plant model 

The development environment for the CVT software 

contains a build system used to integrate and build the 

control software into a binary file for the TCU hardware. 

We extend this build system by adding a SiL target to it, 

so that developers can execute their code directly on PC 

first. 

The developer can compile the module that he is 

currently developing, link it with all the other modules’ 

object files and run the resulting, integrated control 

software as a DLL file on his PC immediately, to test the 

relative effects of his last modifications in a closed loop 

environment. The system is described in Figure 1. This 

compilation and build process takes less than a few 

minutes normally. The SiL setup can also provide access 

to thousands of variables of the control software that are 

listed in the A2L file, and also to every variable of the 

simulation model. The Silver simulation can also be 

attached to a debugger for step-by-step C code 

execution, and for injecting faults through changing 

values of variables. In addition, the simulation can be 

driven by a measurement MDF/CSV file, from vehicle 

test drive, or by Python scripts in order to trigger a 

specific driving condition of interest. Besides, the 

calibration data (DCM file for this project) can be 

‘flashed’ into the controller of the simulation. This 

means we can perform some pre-calibration work based 

the accurate plant model.  

 

Figure 1 : Virtual integration of TCU and plant model 

We execute the tasks for initialization as well as periodic 

tasks generated in the fixed-point C code of the CVT 

control software. We also configure inputs and outputs 

variables needed for simulation and interaction between 

ASW (application software) and BSW (basic software). 

The original BSW is not included in the closed-loop 

simulation, it is emulated by SBS (Silver Basic 

Software). SBS emulates features such as task 

scheduling and non-volatile memory. 

3 Vehicle model development and 

validation 

3.1 Model development 

To build a closed loop simulation environment, we need 

a vehicle model to match the CVT control software. For 

better simulation quality, we need a well calibrated 

simulation model, that can reproduce the vehicle 

behavior well, both in terms of logic, input/outputs 

dynamics and performances. Here the required vehicle 

model of the Xiaokang van was developed by Global 

Crown using SimulationX. It models the longitudinal 

dynamics of the vehicle and the following components 

are included (see  Figure 2): a model of  the combustion 

engine with engine maps, start/stop control logic and 

CAN, a torque converter based on a SimulationX 

library, a DNR clutch, a detailed CVT model with 

hydraulic and solenoid systems based on real parameters 

and diagrams, drive shafts and differential with 

stiffness,  left/right tires model with slip characteristics, 

a car body with given air and driving resistance, a road 

model with different surface properties, a simple ABS 

model which can simulate blocking sequences with 

ABS control of the wheel speed. Detailed attention was 

paid to the push-belt and hydraulic models. The belt 

models can simulate slipping if the pressure of primary 

and secondary pulleys are not suitable with the respect 

to the input drive torque.  

The model was also required to run on a HiL system, 

which means it had to satisfy real-time performance and 

uses a fixed-step solver.  

 

Figure 2 : Vehicle plant model schematic 

 

The hydraulic system of the CVT has been modeled as 

detailed as possible based on real parameters and 

mechanical diagrams for every solenoid valves and oil 

channel. However, some high frequency physical 

effects are neglected because they are assumed to not 

influence the TCU.  Such an assumption is also required 
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because the model must be solved with a fixed-step 

solver. The neglected high frequency effects include 

pressure dynamics inside feedback volumes of spool 

valves, pressure dynamics inside solenoid valves. The 

resulting model has 65 states. 

 

One difficulty in running Modelica models for real-time 

application lies in the event management and the 

Differential Algebraic Equation (DAE) formulation of 

the models. Such DAE with events usually require 

solvers with iterative methods, which is in conflict with 

real-time requirement of predictable execution time for 

one time step. For real-time applications, explicit fixed-

time step integration is commonly used in the industry 

for many years. SimulationX can generate a ODE 

system from the DAE system and a classical explicit 

fixed-step solver method can thus be applied. 

Concerning events, most of them are removed during 

the modeling, using Modelica NoEvent() function. Most 

of events indicators are not meaningful for a fixed-step 

solver and are only meaningful for zero-crossing finding 

algorithms of variable step solvers. Such events can thus 

be safely removed of the model. 

 

Concerning the time step selection, the TCU having a 

10ms sampling rate, a 1ms step or smaller was defined 

as a ‘higher limit’ on the time step. The ‘lower limit’ 

time step depends on the model execution time and 

simulator CPU speed. In the present case, the model 

could run fast enough to execute real-time with 0.25ms 

step. Finally a 0.5ms time step was used.  

3.2 Model open-loop validation 

Model open-loop validation is done to verify some 

properties such as hydraulic pressure control. In the 

model it is possible to directly control solenoid input 

currents and measure hydraulic output pressure on 

primary and secondary pulleys of the CVT. It is then 

possible to compare to measurements on the vehicle or 

on a hydraulic test bench. Some calibration of pressure-

current (I-P) characteristics of solenoid valves is done.  

3.3 Model export to FMI and integration 

For integration within the Silver co-simulation, to 

achieve a closed-loop system with the TCU embedded 

software, we used the Functional Mock-Up Interface 

and exported the model as a FMU2.0 for co-simulation. 

Using “co-simulation” or “model exchange” should not 

make a significant difference in our case since both the 

TCU embedded software and the plant models are using 

fixed step methods. The TCU software is updated every 

10ms, the plant model is computed every 0.5ms with a 

fixed step solver. All required inputs/outputs are 

configured and mapped to the TCU software inside 

Silver. Some debugging work is usually needed to make 

the system works properly. Once debugging is done and 

the simulation works (engine start-up, ratio control, 

RND control, etc.), we proceed to closed-loop 

validation. 

3.4 Closed-loop vehicle level validation 

The closed-loop vehicle level validation is done by 

comparing simulation and prototype vehicle results for 

around 20 different drive situations, at various speeds, 

with various maneuvers. The maneuvers are selected so 

that we know the functional coverage of the model is 

good enough (DNR clutch, torque converter, hydraulic 

control, brakes, engine torque requests…). 

When comparing vehicle results and simulation results, 

we must first make sure that TCU versions are close 

enough and that calibration parameters are the same, 

otherwise we might have very different behavior 

between vehicle and simulation. The simulation is 

executed in Silver with the plant model FMU, the TCU 

embedded software, calibration parameters and test 

sequences inputs read from measurements data files. 

We give in Figure 3 an example of validation results 

obtained during the project. The key control variables 

are in good agreement between real vehicle and 

simulation. Such qualitative validation is done for the 20 

drive test cases selected before. The time of building the 

initial vehicle model took about 6 weeks, the hydraulic 

system being the complex part of the model, and another 

4 weeks for debugging and validation.  

 

Figure 3 : Example of vehicle validation results 

4 Automated testing for the CVT control 

software 

It is possible to manually run tests in Silver, but this 

lacks the test automation and test reporting. Many 

simulations were done manually in Silver during 

debugging phases and for experimentation. For test 

automation and software validation, we applied 

TestWeaver, a test case generator, driving the SiL 

simulation through a sequence of inputs like 

acceleration and brake pedals, shift lever, road 

conditions, and fault insertions. As system states and 

system variables for monitoring, we selected 

meaningful signals, like engine speed, vehicle speed and 
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the current of solenoids. All these variables will be 

recorded during each test case generation and stored in 

a test database. TestWeaver tries to drive the vehicle to 

new states and new driving conditions not reached 

before, trying to maximize coverage of requirements 

system states and also executed code.  

As shown in Fig. 5, the state space is made up by all 

inputs and outputs that connect the system for the test 

with TestWeaver. For example, TestWeaver cannot set 

the vehicle speed (a reporter/output here), but it can 

learn that pushing the acceleration pedal (a 

input/chooser here) for a given amount of time then the 

system gets a higher vehicle speed. And then 

TestWeaver stores this behavior in a test database for 

later tests. This way, TestWeaver successively learns 

how to ‘drive’ the vehicle to any specific condition. 

 

Figure 4 : Automated test of CVT control software 

by TestWeaver 

Before we start automated system testing with 

TestWeaver, a test or development engineer will do the 

following work: 

 Configuration of input signals choosers, partitions, 

occurrence definition for each partition. Fault 

injection variables are choosers too. 

 Configuration of output signals reporters, 

partitions, severity definition for each partition, to 

support automated evaluation of generated 

scenarios during testing. 

 Defining requirements monitoring using 

TestWeaver “watcher” instruments. Here complex 

logical requirements can be defined and 

TestWeaver can automatically report if the 

requirements have been tested, with success or 

failure. 

 Defining report templates for the variables we are 

interested in state coverage or code coverage or 

other specific testing results. 

 General experiment configuration, such as the 

maximal duration of each scenario, maximal 

number for fault insertion per scenario, etc. 

For testing the CVT control software, we need pay 

close attention to the following subjects: 

 Ratio control of CVT: we need to monitor the 

difference between the actual ratio and target ratio 

to see if the CVT control software could control the 

ratio smoothly and precisely. Also if there are any 

oscillations in the ratio change, then there are 

probably issues on the ratio control. 

 Diagnostic Trouble Code: for this part of the 

control code, we systematically check, using 

requirement watchers, that  for a given fault 

condition the TCU executes a suitable fault 

reaction. 

 Belt slip monitoring: for CVT, if belt slipping 

occurs, the lifetime would be shortened 

dramatically, even to the point of destroying the 

CVT. Therefore, we need monitor the slipping to 

analyze why this condition occurs. 

 Code coverage: here the code coverage tool 

integrated in TestWeaver, was used. This feature is 

achieved by compiling the CVT control software 

with a special flag that tracks the C code coverage 

during execution in the Silver simulation. 

In Figure 5, we show a report generated by TestWeaver 

that summarizes fault insertions on a solenoid and the 

monitoring of the fault reaction Watcher_ffs_sesl. 

TestWeaver detected several scenarios in which the 

TCU fails to apply a suitable fault reaction to the 

solenoid fault, which might lead to a dangerous situation 

for the CVT with a loss of transmission ratio control. 
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Figure 5: Fault reaction table for Solenoid Short 

In the first column of the above table, we have the 

“state” of the “requirement watcher”. 

Failed: the requirement has been “violated”. 

Waiting_condition: requirement does not apply yet. 

Success: the requirement has been tested and results are 

success. 

The second column shows the injected faults.  

At last for the state column, it lists some of the scenarios 

relevant to the state of the requirement watcher. 

A scenario (s38 3.33s for example) listed in the table can 

be inspected in TestWeaver and replayed in Silver for 

detailed debugging by clicking on it. 

After several test cycles, engineers removed most of the 

problems in the control software. For each cycle, there 

are thousands of test cases for different driving 

conditions, many usual but also many unusual 

conditions are included. This systematic analysis 

through Silver/TestWeaver is an important complement 

to other test methods, such as HIL tests, test benches and 

real vehicle tests. 

5 Plant model for Hardware in the loop 

simulation 

Since the plant model was developed from the beginning 

with the objective of satisfying real-time requirements, 

and was using a fixed-step solver, the adaptation to the 

HiL was rather straightforward.  

The HiL system used in this project is an ETAS LabCar. 

The system was purchased several years ago and is an 

older version that does not support the FMI interface yet. 

To port the plant model on the HiL, we thus used the 

ETAS Labcar ‘export format’ of the SimulationX code 

export. SimulationX can generate the model c-code 

according to the ETAS LabCar module format. The 

SimulationX model can then be added to the Labcar 

project and compiled for its Linux real-time operating 

system. With newer ETAS Labcar versions, we could 

probably use directly the FMU generated for the SiL 

since it also contains the model c-code and can be 

recompiled for the ETAS Labcar target. The FMI 

standard would simplify interfacing of tools. 

The model itself does not need to be changed from the 

SiL to the HiL, it was developed so that it can satisfy 

both cases, with a fixed-step solver. We only had to 

modify the code generation target from FMU to Labcar. 

During this process, we found some minor bugs and 

compilation issues that were solved thanks to ESI/ITI 

SimulationX technical support.  

6 Conclusion and future work 

We presented an approach for an automated test of 

transmission control software based on SiL simulation 

(Silver) on standard PC and intelligent generation of test 

scenarios (TestWeaver) and how this testing method can 

be applied to the development of a CVT control 

software. For most of the state coverage, the intelligent 

automated test could generate thousands of scenarios, 

each scenario executing a 60 second drive maneuver. 

We also added specific test cases and test scripts to 

execute directly various standard maneuvers and fault 

injection. 

To summarize, through the above approach of testing, 

we speed up the development cycle time for the CVT 

control software, and simulated most of the extreme 

driving conditions on a PC which is much safer than 

testing these conditions in real vehicles. After we solve 

most of the problems in the model/C code we found 

using SiL tests, then we move onto HiL tests and real 

vehicle tests using a more mature control software 

quality, reducing test time for the later, more expensive 

and less available platforms. 

As future work, we plan to re-use TestWeaver 

“requirements watchers” and TestWeaver generated 

scenario database from SiL and port them on the ETAS 

HiL. 
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