
AUTOMATED TEST OF CVT CONTROL SOFTWARE, USING FMI AND

MODELICA MODELS

2Zeng, Weihua 1Liu Fei 1Belmon, Lionel
1Global Crown Technology Co. Limited, China

2Hunan Jianglu & Rongda Vehicle Transmission Ltd., China
 {lionel.belmon,feil}@globalcrown.com.cn

Abstract
Hunan Jianglu & Rongda Vehicle Transmission Ltd.,

Co. has recently completed the development of a

Continuously Variable Transmission (CVT). The

transmission and the control software must be fitted to

various vehicle platforms and must suit various driving

conditions and driver requests. Because of the

complexity of the system and due to the large number of

driving conditions, systematic tests and validation

methods are required. These methods should guarantee

correctness and quality of the software and system

behavior. For the test of the control software, Jianglu

Rongda used an innovative test method based on

automatic test scenario generation, Software in the Loop

(SiL) simulation, and finally Hardware in the Loop

(HiL) tests. The CVT control software is executed with

a vehicle simulation model developed with

SimulationX/Modelica, which is used both for the SiL

and the HiL tests. The model accurately represents the

CVT transmission including mechanical and hydraulic

systems based on mechanical and physical parameters.

In this paper, we describe the corresponding test process

and tool chain along with the model validation. We also

discuss the advantages and costs of this approach.

Keywords: embedded software, automotive,

transmission, testing

1 Introduction

Transmission systems are continuously improved with

respect to efficiency, robustness, costs and comfort.

Most of these requirements have direct relationship with

the transmission control software, which is becoming

more and more intelligent and complex. Many situations

have to be detected rapidly and reliably. Testing the

controller, by covering all relevant driving situations

and faults, repeatedly during the development cycle can

be very time consuming and ineffective. Traditional

methods based on hand-written test scripts do not

perform well for validation and test of transmission

controllers.

In this paper, we present a method based on automated

scenario generation, execution and evaluation of useful

test cases. We explain how the corresponding tools have

been used to validate and to iteratively improve the

control software of the CVT for a minivan, the

Dongfeng Xiaokang.

The development environment for the CVT software

integrates the following components:

 ETAS ASCET is used for model-based

development of the CVT control software and for

turning the model into production embedded C

code for the Transmission Control Unit (TCU).

 A high-precision simulation model of the Xiaokang

and of the CVT hardware. The model has been

developed using SimulationX, based on Modelica.

 QTronic Silver is a tool for building virtual ECUs,

used in Software-in-the-loop simulation. Silver

imports both the vehicle model exported from

SimulationX as FMUs and the TCU embedded

software. Silver executes both in a co-simulation

on a normal Windows PC. Furthermore, Silver

provides interfaces to automated system level tests,

the A2L/dcm database to integrate production

calibration data into the simulation. Silver also

supports various methods for stimulating sensor

and actuator faults by modifying signals between

plant and controller.

 QTronic TestWeaver, a coverage-driven test case

generator, automatically generates, runs and

evaluates thousands of different driving scenarios

for system level tests during the development of the

CVT control software.

By using this tool chain, we achieved the following

main benefits:

 Accelerating the development process: Shortening

development time is partly credited to the

simulation-based tool chain sketched above.

Furthermore, simulation lets the developers

perform more engineering and test tasks on their

PCs, and avoids blocking of rare resources like

__

DOI
10.3384/ecp18148155

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

155

such as real ECUs, HiL (Hardware-in-the-Loop)

test benches or prototype vehicles.

 Increased robustness: The automated generation of

high-quality test cases enabled us to perform a

much higher number of test cases than possible

with the same effort using traditional test methods.

Especially for extreme driving conditions and fault

insertion tests the new methods we apply here

found many problems that would have been

difficult to find on the vehicle.

2 Virtual integration of the CVT software

and of the plant model

The development environment for the CVT software

contains a build system used to integrate and build the

control software into a binary file for the TCU hardware.

We extend this build system by adding a SiL target to it,

so that developers can execute their code directly on PC

first.

The developer can compile the module that he is

currently developing, link it with all the other modules’

object files and run the resulting, integrated control

software as a DLL file on his PC immediately, to test the

relative effects of his last modifications in a closed loop

environment. The system is described in Figure 1. This

compilation and build process takes less than a few

minutes normally. The SiL setup can also provide access

to thousands of variables of the control software that are

listed in the A2L file, and also to every variable of the

simulation model. The Silver simulation can also be

attached to a debugger for step-by-step C code

execution, and for injecting faults through changing

values of variables. In addition, the simulation can be

driven by a measurement MDF/CSV file, from vehicle

test drive, or by Python scripts in order to trigger a

specific driving condition of interest. Besides, the

calibration data (DCM file for this project) can be

‘flashed’ into the controller of the simulation. This

means we can perform some pre-calibration work based

the accurate plant model.

Figure 1 : Virtual integration of TCU and plant model

We execute the tasks for initialization as well as periodic

tasks generated in the fixed-point C code of the CVT

control software. We also configure inputs and outputs

variables needed for simulation and interaction between

ASW (application software) and BSW (basic software).

The original BSW is not included in the closed-loop

simulation, it is emulated by SBS (Silver Basic

Software). SBS emulates features such as task

scheduling and non-volatile memory.

3 Vehicle model development and

validation

3.1 Model development

To build a closed loop simulation environment, we need

a vehicle model to match the CVT control software. For

better simulation quality, we need a well calibrated

simulation model, that can reproduce the vehicle

behavior well, both in terms of logic, input/outputs

dynamics and performances. Here the required vehicle

model of the Xiaokang van was developed by Global

Crown using SimulationX. It models the longitudinal

dynamics of the vehicle and the following components

are included (see Figure 2): a model of the combustion

engine with engine maps, start/stop control logic and

CAN, a torque converter based on a SimulationX

library, a DNR clutch, a detailed CVT model with

hydraulic and solenoid systems based on real parameters

and diagrams, drive shafts and differential with

stiffness, left/right tires model with slip characteristics,

a car body with given air and driving resistance, a road

model with different surface properties, a simple ABS

model which can simulate blocking sequences with

ABS control of the wheel speed. Detailed attention was

paid to the push-belt and hydraulic models. The belt

models can simulate slipping if the pressure of primary

and secondary pulleys are not suitable with the respect

to the input drive torque.

The model was also required to run on a HiL system,

which means it had to satisfy real-time performance and

uses a fixed-step solver.

Figure 2 : Vehicle plant model schematic

The hydraulic system of the CVT has been modeled as

detailed as possible based on real parameters and

mechanical diagrams for every solenoid valves and oil

channel. However, some high frequency physical

effects are neglected because they are assumed to not

influence the TCU. Such an assumption is also required

__
156 Proceedings of the 2nd Japanese Modelica Conference

May 17-18, 2018, Tokyo, Japan
DOI

10.3384/ecp18148155

because the model must be solved with a fixed-step

solver. The neglected high frequency effects include

pressure dynamics inside feedback volumes of spool

valves, pressure dynamics inside solenoid valves. The

resulting model has 65 states.

One difficulty in running Modelica models for real-time

application lies in the event management and the

Differential Algebraic Equation (DAE) formulation of

the models. Such DAE with events usually require

solvers with iterative methods, which is in conflict with

real-time requirement of predictable execution time for

one time step. For real-time applications, explicit fixed-

time step integration is commonly used in the industry

for many years. SimulationX can generate a ODE

system from the DAE system and a classical explicit

fixed-step solver method can thus be applied.

Concerning events, most of them are removed during

the modeling, using Modelica NoEvent() function. Most

of events indicators are not meaningful for a fixed-step

solver and are only meaningful for zero-crossing finding

algorithms of variable step solvers. Such events can thus

be safely removed of the model.

Concerning the time step selection, the TCU having a

10ms sampling rate, a 1ms step or smaller was defined

as a ‘higher limit’ on the time step. The ‘lower limit’

time step depends on the model execution time and

simulator CPU speed. In the present case, the model

could run fast enough to execute real-time with 0.25ms

step. Finally a 0.5ms time step was used.

3.2 Model open-loop validation

Model open-loop validation is done to verify some

properties such as hydraulic pressure control. In the

model it is possible to directly control solenoid input

currents and measure hydraulic output pressure on

primary and secondary pulleys of the CVT. It is then

possible to compare to measurements on the vehicle or

on a hydraulic test bench. Some calibration of pressure-

current (I-P) characteristics of solenoid valves is done.

3.3 Model export to FMI and integration

For integration within the Silver co-simulation, to

achieve a closed-loop system with the TCU embedded

software, we used the Functional Mock-Up Interface

and exported the model as a FMU2.0 for co-simulation.

Using “co-simulation” or “model exchange” should not

make a significant difference in our case since both the

TCU embedded software and the plant models are using

fixed step methods. The TCU software is updated every

10ms, the plant model is computed every 0.5ms with a

fixed step solver. All required inputs/outputs are

configured and mapped to the TCU software inside

Silver. Some debugging work is usually needed to make

the system works properly. Once debugging is done and

the simulation works (engine start-up, ratio control,

RND control, etc.), we proceed to closed-loop

validation.

3.4 Closed-loop vehicle level validation

The closed-loop vehicle level validation is done by

comparing simulation and prototype vehicle results for

around 20 different drive situations, at various speeds,

with various maneuvers. The maneuvers are selected so

that we know the functional coverage of the model is

good enough (DNR clutch, torque converter, hydraulic

control, brakes, engine torque requests…).

When comparing vehicle results and simulation results,

we must first make sure that TCU versions are close

enough and that calibration parameters are the same,

otherwise we might have very different behavior

between vehicle and simulation. The simulation is

executed in Silver with the plant model FMU, the TCU

embedded software, calibration parameters and test

sequences inputs read from measurements data files.

We give in Figure 3 an example of validation results

obtained during the project. The key control variables

are in good agreement between real vehicle and

simulation. Such qualitative validation is done for the 20

drive test cases selected before. The time of building the

initial vehicle model took about 6 weeks, the hydraulic

system being the complex part of the model, and another

4 weeks for debugging and validation.

Figure 3 : Example of vehicle validation results

4 Automated testing for the CVT control

software

It is possible to manually run tests in Silver, but this

lacks the test automation and test reporting. Many

simulations were done manually in Silver during

debugging phases and for experimentation. For test

automation and software validation, we applied

TestWeaver, a test case generator, driving the SiL

simulation through a sequence of inputs like

acceleration and brake pedals, shift lever, road

conditions, and fault insertions. As system states and

system variables for monitoring, we selected

meaningful signals, like engine speed, vehicle speed and

__

DOI
10.3384/ecp18148155

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

157

the current of solenoids. All these variables will be

recorded during each test case generation and stored in

a test database. TestWeaver tries to drive the vehicle to

new states and new driving conditions not reached

before, trying to maximize coverage of requirements

system states and also executed code.

As shown in Fig. 5, the state space is made up by all

inputs and outputs that connect the system for the test

with TestWeaver. For example, TestWeaver cannot set

the vehicle speed (a reporter/output here), but it can

learn that pushing the acceleration pedal (a

input/chooser here) for a given amount of time then the

system gets a higher vehicle speed. And then

TestWeaver stores this behavior in a test database for

later tests. This way, TestWeaver successively learns

how to ‘drive’ the vehicle to any specific condition.

Figure 4 : Automated test of CVT control software

by TestWeaver

Before we start automated system testing with

TestWeaver, a test or development engineer will do the

following work:

 Configuration of input signals choosers, partitions,

occurrence definition for each partition. Fault

injection variables are choosers too.

 Configuration of output signals reporters,

partitions, severity definition for each partition, to

support automated evaluation of generated

scenarios during testing.

 Defining requirements monitoring using

TestWeaver “watcher” instruments. Here complex

logical requirements can be defined and

TestWeaver can automatically report if the

requirements have been tested, with success or

failure.

 Defining report templates for the variables we are

interested in state coverage or code coverage or

other specific testing results.

 General experiment configuration, such as the

maximal duration of each scenario, maximal

number for fault insertion per scenario, etc.

For testing the CVT control software, we need pay

close attention to the following subjects:

 Ratio control of CVT: we need to monitor the

difference between the actual ratio and target ratio

to see if the CVT control software could control the

ratio smoothly and precisely. Also if there are any

oscillations in the ratio change, then there are

probably issues on the ratio control.

 Diagnostic Trouble Code: for this part of the

control code, we systematically check, using

requirement watchers, that for a given fault

condition the TCU executes a suitable fault

reaction.

 Belt slip monitoring: for CVT, if belt slipping

occurs, the lifetime would be shortened

dramatically, even to the point of destroying the

CVT. Therefore, we need monitor the slipping to

analyze why this condition occurs.

 Code coverage: here the code coverage tool

integrated in TestWeaver, was used. This feature is

achieved by compiling the CVT control software

with a special flag that tracks the C code coverage

during execution in the Silver simulation.

In Figure 5, we show a report generated by TestWeaver

that summarizes fault insertions on a solenoid and the

monitoring of the fault reaction Watcher_ffs_sesl.

TestWeaver detected several scenarios in which the

TCU fails to apply a suitable fault reaction to the

solenoid fault, which might lead to a dangerous situation

for the CVT with a loss of transmission ratio control.

__
158 Proceedings of the 2nd Japanese Modelica Conference

May 17-18, 2018, Tokyo, Japan
DOI

10.3384/ecp18148155

Figure 5: Fault reaction table for Solenoid Short

In the first column of the above table, we have the

“state” of the “requirement watcher”.

Failed: the requirement has been “violated”.

Waiting_condition: requirement does not apply yet.

Success: the requirement has been tested and results are

success.

The second column shows the injected faults.

At last for the state column, it lists some of the scenarios

relevant to the state of the requirement watcher.

A scenario (s38 3.33s for example) listed in the table can

be inspected in TestWeaver and replayed in Silver for

detailed debugging by clicking on it.

After several test cycles, engineers removed most of the

problems in the control software. For each cycle, there

are thousands of test cases for different driving

conditions, many usual but also many unusual

conditions are included. This systematic analysis

through Silver/TestWeaver is an important complement

to other test methods, such as HIL tests, test benches and

real vehicle tests.

5 Plant model for Hardware in the loop

simulation

Since the plant model was developed from the beginning

with the objective of satisfying real-time requirements,

and was using a fixed-step solver, the adaptation to the

HiL was rather straightforward.

The HiL system used in this project is an ETAS LabCar.

The system was purchased several years ago and is an

older version that does not support the FMI interface yet.

To port the plant model on the HiL, we thus used the

ETAS Labcar ‘export format’ of the SimulationX code

export. SimulationX can generate the model c-code

according to the ETAS LabCar module format. The

SimulationX model can then be added to the Labcar

project and compiled for its Linux real-time operating

system. With newer ETAS Labcar versions, we could

probably use directly the FMU generated for the SiL

since it also contains the model c-code and can be

recompiled for the ETAS Labcar target. The FMI

standard would simplify interfacing of tools.

The model itself does not need to be changed from the

SiL to the HiL, it was developed so that it can satisfy

both cases, with a fixed-step solver. We only had to

modify the code generation target from FMU to Labcar.

During this process, we found some minor bugs and

compilation issues that were solved thanks to ESI/ITI

SimulationX technical support.

6 Conclusion and future work

We presented an approach for an automated test of

transmission control software based on SiL simulation

(Silver) on standard PC and intelligent generation of test

scenarios (TestWeaver) and how this testing method can

be applied to the development of a CVT control

software. For most of the state coverage, the intelligent

automated test could generate thousands of scenarios,

each scenario executing a 60 second drive maneuver.

We also added specific test cases and test scripts to

execute directly various standard maneuvers and fault

injection.

To summarize, through the above approach of testing,

we speed up the development cycle time for the CVT

control software, and simulated most of the extreme

driving conditions on a PC which is much safer than

testing these conditions in real vehicles. After we solve

most of the problems in the model/C code we found

using SiL tests, then we move onto HiL tests and real

vehicle tests using a more mature control software

quality, reducing test time for the later, more expensive

and less available platforms.

As future work, we plan to re-use TestWeaver

“requirements watchers” and TestWeaver generated

scenario database from SiL and port them on the ETAS

HiL.

References

[1] http://www.fmi-standard.org/

[2] A.Abel, T.Blochwitz, A.Eichberger et al.

Functional Mock-up Interface in Mechatronic

gearshift simulation for commercial vehicles, 9th

International Modelica Conference, 2012, Munich.

[3] A.Junghanns, R.Serway, T.Liebezeit, M.Bonin.

Building virtual ECUs quickly and economically.

ATZ Elektronik, 03/2012, Volume7.

[4] E.Chrisofakis, A.Junghanns. Simulation-based

development of automotive control

software with Modelica. Dresden: Modelica

international conference, 2011.

[5] M.Tatar, Schaich, Breitinger. Automated test of the

AMG speedshift DCT control software. Berlin: 9th

CTI Innovative Automotive Transmissions

Symposium, 2010.

[6] J.Mauss, M.Simons. Chip simulation of

automotive ECUs. 9th symposium

__

DOI
10.3384/ecp18148155

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

159

Steuerungssysteme fur automobile Antriebe,

2012, Berlin

[7] N.Papakonstantinou, S.Klinger, M.Tatar. Test-

driven development of DCT Control Software. 8th

International CTI Symposium Innovative

Automotive Transmissions, 2009, Berlin.

[8] M.Neumann,M.Nass,M.Tatar. Absicherung von

Steuerungssoftware fur Hybridsysteme, Autoreg

2011, Friedrichshafen.

[9] L.Belmon, J.Yan. Modeling and simulation of

DCT gearshifting for real-time and high-fidelity

analysis. SAE China-FISITA conference, F2012-

C04-014, 2012

[10] A.Abel, U.Schreiber, Valsania, Fornelli.

Simulation based design of gearboxes for high-

performance sports cars. Modena: 11th HTCES

conference, 2005.

[11] L.Belmon, Y.Geng, H.Qian, Virtual integration for

hybrid powertrain development, using FMI and

Modelica models, Lund, Modelica international

conference, 2014

__
160 Proceedings of the 2nd Japanese Modelica Conference

May 17-18, 2018, Tokyo, Japan
DOI

10.3384/ecp18148155

