
Proceedings of the 1st Conference on Historical Cryptology, pages 39– 46,
Uppsala, Sweden, 18-20 June, 2018

Hidden Markov Models for Vigenère Cryptanalysis

Mark Stamp∗ Fabio Di Troia†

Department of Computer Science
San Jose State University

San Jose, California
∗mark.stamp@sjsu.edu

†fabioditroia@msn.com

Miles Stamp
Los Gatos High School
Los Gatos, California

milez000782@gmail.com

Jasper Huang
Lynbrook High School

San Jose, California
jhuang821@student.fuhsd.org

Abstract

Previous work has shown that hidden
Markov models (HMM) can be effective
for the cryptanalysis of simple substitu-
tion and homophonic substitution ciphers.
Although computationally expensive, an
HMM-based attack that employs multiple
random restarts can offer a significant im-
provement over classic cryptanalysis tech-
niques, in the sense of requiring less ci-
phertext to recover the key. In this pa-
per, we show that HMMs are also applica-
ble to the cryptanalysis of the well-known
Vigenère cipher. We compare and contrast
our HMM-based approach to recent re-
search that uses Vigenère cryptanalysis to
supposedly illustrate the strength of a type
of neural network known as a generative
adversarial network (GAN). In the context
of Vigenère cryptanalysis, we show that an
HMM can succeed with much less cipher-
text than a GAN, and we argue that the
model generated by an HMM is consider-
ably more informative than that produced
by a GAN.

1 Introduction

Hidden Markov models (HMMs) are a class of
machine learning techniques that have proved use-
ful in a wide variety of applications, ranging from
speech analysis (Rabiner, 1989) to malware detec-
tion (Wong and Stamp, 2006). In the realm of
classic ciphers, HMMs have been shown to per-
form well in the cryptanalysis of monoalphabetic
substitution ciphers (Berg-Kirkpatrick and Klein,
2013; Lee, 2002; Vobbilisetty et al., 2017).

In this paper, we build on the work in (Vob-
bilisetty et al., 2017) to show that an HMM is a
powerful and practical tool for the cryptanalysis
of a Vigenère cipher. Furthermore, we show that

an HMM trained on Vigenère ciphertext is infor-
mative, in the sense that the model enables us to
clearly see which features contribute to the suc-
cess of the technique. We compare our results to
recent work in (Gomez et al., 2018), where a neu-
ral network is used to break Vigenère ciphertext
messages.

The remainder of this paper is organized as fol-
lows. In Section 2, we discuss relevant back-
ground topics, with the emphasis on hidden
Markov models. Experimental results obtain by
applying HMMs to Vigenère ciphertexts are given
in Section 3. Finally, in Section 4 we give our con-
clusions and briefly consider future work.

2 Background

2.1 Vigenère Cipher

A simple substitution cipher uses a fixed one-to-
one mapping of the alphabet. It is a standard text-
book exercise to break a simple substitution using
frequency analysis. A homophonic substitution
can be viewed as a generalization of a simple sub-
stitution, where a fixed many-to-one mapping is
used. That is, in a homophonic substitution, more
than one ciphertext symbol can map to a single
plaintext letter. In contrast, for a polyalphabetic
substitution, the “alphabet” (i.e., the mapping be-
tween plaintext and ciphertext) changes. As com-
pared to a simple substitution, a homophonic sub-
stitution tends to flatten the ciphertext statistics,
thereby making frequency analysis more difficult.

A Vigenère cipher is a simple polyalphabetic
scheme, where a keyword is specified, and each
letter of the keyword represents a shift of the al-
phabet. For example, suppose that the keyword
is CAT and we want to encrypt attackatdawn.
Then we have

keyword: CATCATCATCAT

plaintext: attackatdawn

ciphertext: ctmccdctwcwg



Letter a b c d e f g h i j k l m
Frequency .082 .015 .028 .043 .127 .022 .020 .061 .070 .002 .008 .040 .024

Letter n o p q r s t u v w x y z
Frequency .067 .075 .019 .001 .060 .063 .091 .028 .010 .023 .001 .020 .001

Table 1: English monograph statistics

That is, each C in the keyword specifies a shift
by 3, each A represents a shift by 0, and each T

is a shift by 19, and the keyword is repeated as
many times as needed. Of course, if the keyword
is known, it is trivial to decrypt a Vigenère cipher-
text.

2.2 Friedman Test

When attempting to break a Vigenère ciphertext,
the first step is to determine the length of the key-
word. The Friedman test (Friedman, 1987), which
is based on the index of coincidence (IC), is a
well-known method for determining the length of
the keyword, provided that sufficient ciphertext is
available. An alternative method of finding the
keyword length is the Kasiski test (Kasiski, 1863);
here we focus on the Friedman test. In any case,
once the keyword is known, the Vigenère cipher
consists of a sequence of shift ciphers, and the
shifts can be determined by a variety of means.

The IC measures the “repeat rate,” i.e., the prob-
ability that two randomly selected letters from a
given string are identical. This test relies on the
non-uniformity of letter frequencies in the under-
lying plaintext.

Suppose that we have a string of text of length N
with na > 0 occurrences of A and nb > 0 occur-
rences of B, and so on. If we randomly select two
letters (without replacement) from this string, the
probability that the letters match is given by

na(na−1)
N(N−1)

+
nb(nb−1)
N(N−1)

+ · · ·+
nz(nz−1)
N(N−1)

In general, the repeat rate, or IC, which we denote
as κ , is given by

κ =
1

N(N−1)

c−1

∑
i=0

ni(ni−1) (1)

where c is the size of the alphabet, ni is the fre-
quency of the ith symbol, and N is the length of the
string. For English text (without spaces, punctua-
tion, or case), we have c= 26, and the the expected
frequency of each ni is known from the language

monograph statistics. The monograph statistics
for standard English appear in Table 1.

Let κe denote the IC for English text. If we com-
pute the IC for a large selection of English text,
then based on Table 1, we would expect to find

κe = 0.0822 +0.0152 +0.0282

+ · · ·+0.0202 +0.0012 ≈ 0.0656.

On the other hand, if we have random text drawn
from the 26 letter English alphabet, we would ex-
pect to find that the IC is

κr = (1/26)2+(1/26)2+ · · ·+(1/26)2 ≈ 0.0385.

For a simple substitution cipher, we relabel the
letters, which has no effect on the IC. That is,
when a monoalphabetic substitution is applied to
English plaintext, the IC of the ciphertext is the
same as that of the plaintext. Friedman noted that
for a polyalphabetic substitution, the larger the
number of alphabets, the closer the IC is to κr.
Hence, for a polyalphabetic substitution, we can
use the observed IC to estimate the number of al-
phabets and, in particular, the length of the key-
word in a Vigenère cipher.

Let L be the length of the Vigenère keyword,
and assume that the ciphertext is of length N. Then
we have L Caesar’s ciphers. To simplify the nota-
tion, we assume that each of these L ciphers has
exactly N/L letters. Under this assumption, the
probability of selecting two letters from the same
Caesar’s cipher is given by

N(N/L−1)
N(N−1)

=
N/L−1

N−1
.

Similarly, the probability of selecting two letters
from different alphabets is

N−N/L

N−1
.

In the former case, the letters are derived from the
same simple substitution (in fact, Caesar’s cipher),
so the chance that they match is κe, while in the

40



latter case, the letters are from different Caesar’s
ciphers, so the chance that they match is about κr.

Let κc be the computed IC for a given Vigenère
ciphertext. Then κc is the probability of selecting
two letters at random that match and, evidently,
this probability is given by

κc = κe
N/L−1

N−1
+κr

N−N/L

N−1
. (2)

Solving equation (2) for L, we obtain

L =
N(κe−κr)

N(κc−κr)− (κe−κr)
.

Since N is large relative to κe, κr, and κc, we can
approximate the keyword length by

L =
κe−κr

κc−κr
(3)

For the case of English text, the expected IC
is κe ≈ 0.0656, while for the random case (and
under the assumption that we have 26 symbols),
the IC is κr ≈ 0.0385. Recall that κc is the IC for
the ciphertext, which is computed as in (1). Thus,
we can approximate the Vigenère keyword length
using (3). In practice, when attempting to break
a Vigenère ciphertext message, we would need to
test various keyword lengths near the value given
by (3).

In Section 3, we compare an HMM-based tech-
nique to the results obtained using the standard ap-
proach to Vigenère cryptanalysis, as discussed in
this section. For our test cases, we find that the
HMM outperforms the Friedman test, in the sense
of giving us a more precise result for the keyword
length. In addition, the HMM simultaneously re-
covers the shifts, so that the entire Vigenère key is
determined.

2.3 Hidden Markov Models

True to its name, a hidden Markov model (HMM)
includes a Markov process that is “hidden,” in the
sense that it is not directly observable. Along with
this hidden Markov process, an HMM includes a
sequence of observations that are probabilistically
related to the (hidden) states. An HMM can be
viewed as a machine learning technique that relies
on a discrete hill climb algorithm for training.

A generic HMM is illustrated in Figure 1,
where A is an N×N matrix that defines the state
transitions in the underlying (hidden) Markov pro-
cess, and the matrix B contains discrete probabil-
ity distributions that relate each hidden state Xi to

the corresponding observation Oi. That is, row i
of the B matrix contains a discrete probability dis-
tribution that gives the probabilities of the vari-
ous observation symbols when the hidden Markov
process is in state i. As we show below, the com-
ponent matrices of an HMM can reveal informa-
tion about the underlying data that is not otherwise
readily apparent to a human analyst. This could be
considered an advantage of an HMM over other
more opaque forms of machine learning, such as
neural networks.

The following notation (Stamp, 2004) is com-
monly used for HMMs:

T = length of the observation sequence
N = number of states in the model
M = number of observation symbols
Q = {q0,q1, . . . ,qN−1}

= distinct states of the Markov process
V = {0,1, . . . ,M−1}

= set of possible observations
A = state transition probabilities
B = observation probability matrix
π = initial state distribution
O = (O0,O1, . . . ,OT−1)

= observation sequence.

Note that the observations are associated with the
integers 0,1, . . . ,M − 1, since this simplifies the
notation with no loss of generality. Consequently,
we have Oi ∈V for i = 0,1, . . . ,T −1.

If we are given a sequence of observations of
length T , denoted (O1,O2, . . . ,OT ), we can train
an HMM, that is, we can determine matrices A
and B in Figure 1 that maximize the probabil-
ity of this training sequence. The HMM train-
ing process can be viewed as a discrete hill climb
on the high dimensional parameter space of the
matrices A and B, and an initial state distribu-
tion matrix that is denoted as π . Once we have
trained an HMM, we can use the resulting model,
denoted λ = (A,B,π), to compute a score for a
given observation sequence—the higher the score,
the more closely the scored sequence matches the
training sequence.

The HMM matrix A is N×N, while B is N×M
and π is 1×N. Here, N is the number of hid-
den states and M is the number of distinct obser-
vation symbols. All three of these matrices are row
stochastic, that is, each row satisfies the conditions
of a discrete probability distribution. To train an
HMM, we specify N, the number of hidden states,

41



O0 O1 O2 · · · OT−1

X0 X1 X2 · · · XT−1
A A A A

B B B B

Figure 1: Hidden Markov model

while M, the number of distinct observation sym-
bols, is determined from the data.

Typically, the matrices that define the HMM,
i.e., λ = (A,B,π), are initialized so that they are
approximately uniform. That is, each element
of A and π is initialized to approximately 1/N,
while each element of B is initialized to approx-
imately 1/M. In addition, each row is subject to
the row stochastic condition. Also, we cannot use
an exact uniform initialization as this represents a
peak in the hill climb from which the model is un-
able to climb.

On the other hand, if we know something spe-
cific about the problem, we can sometimes use this
knowledge when initializing the matrices, which
can serve to speed convergence and reduce the
data requirements. For example, in (Vobbilisetty
et al., 2017) it is shown that an HMM can be used
to recover the key in a simple substitution cipher-
text, where the underlying language is English.
In this case, the A matrix corresponds to English
language digraph statistics, and hence we can ini-
tialize the A matrix based on such statistics, and
there is no need to re-estimate A when training the
model.

An HMM is a machine learning technique in the
sense that very little is required of the human an-
alyst. Specifically, we need to specify the number
of hidden states N, but all other initial parameters
are derived from the data, or can be generated at
random. During training, we rely entirely on the
“machine” (specifically, the HMM training algo-
rithm) to generate the model. Surprisingly often,
the HMM training algorithm succeeds in automat-
ically extracting relevant and useful information
from the data.

For additional information on HMMs, the stan-
dard reference is (Rabiner, 1989). The notation

and description here closely follows that in the tu-
torial (Stamp, 2004).

In a classic illustration of the strengths of
the HMM technique, (Cave and Neuwirth, 1980)
show that HMMs can be successfully applied to
English text analysis. In (Stamp, 2004), the spe-
cific English text example in Table 2 is given. In
this case, the observations consist of the 26 letters
and word space, for a total of M = 27 symbols,
and the analyst chose to use N = 2 hidden states.
The B matrix is initialized so that each element is
approximately 1/27, subject to the row stochas-
tic condition—the precise initial values used in
this example are given in first 2 columns in Ta-
ble 2. After training the HMM using 50,000 ob-
servations, the resulting transpose of the B matrix
is given in the final 2 columns of Table 2.

From the example in Table 2, we see that when
the Markov process is in (hidden) state 1, the prob-
ability that the observed symbol is a is 0.13845,
the probability that the observed symbol is b

is 0.00000, the the probability that the observed
symbol is c is 0.00062, the the probability that the
observed symbol is d is 0.00000, the probability
that the observed symbol is e is 0.21404, and so
on. On the other hand, if the model is in (hid-
den) state 2, then the probability that the observed
symbol is a is 0.00075, the probability that the ob-
served symbol is b is 0.02311, the probability that
the observed symbol is c is 0.05614, the proba-
bility that the observed symbol is d is 0.06937,
the probability that the observed symbol is e

is 0.00000, and so on. In this case, we can clearly
see that the 2 hidden states correspond to conso-
nants and vowels. Since no a priori assumption
was made about the letters, this simple example
nicely illustrates the “machine learning” aspect of
an HMM.

42



Initial Final
a 0.03735 0.03909 0.13845 0.00075
b 0.03408 0.03537 0.00000 0.02311
c 0.03455 0.03537 0.00062 0.05614
d 0.03828 0.03909 0.00000 0.06937
e 0.03782 0.03583 0.21404 0.00000
f 0.03922 0.03630 0.00000 0.03559
g 0.03688 0.04048 0.00081 0.02724
h 0.03408 0.03537 0.00066 0.07278
i 0.03875 0.03816 0.12275 0.00000
j 0.04062 0.03909 0.00000 0.00365
k 0.03735 0.03490 0.00182 0.00703
l 0.03968 0.03723 0.00049 0.07231
m 0.03548 0.03537 0.00000 0.03889
n 0.03735 0.03909 0.00000 0.11461
o 0.04062 0.03397 0.13156 0.00000
p 0.03595 0.03397 0.00040 0.03674
q 0.03641 0.03816 0.00000 0.00153
r 0.03408 0.03676 0.00000 0.10225
s 0.04062 0.04048 0.00000 0.11042
t 0.03548 0.03443 0.01102 0.14392
u 0.03922 0.03537 0.04508 0.00000
v 0.04062 0.03955 0.00000 0.01621
w 0.03455 0.03816 0.00000 0.02303
x 0.03595 0.03723 0.00000 0.00447
y 0.03408 0.03769 0.00019 0.02587
z 0.03408 0.03955 0.00000 0.00110

space 0.03688 0.03397 0.33211 0.01298
sum 1.00000 1.00000 1.00000 1.00000

Table 2: Initial and final BT for English plaintext

For the example in Table 2, the converged A ma-
trix as given in (Stamp, 2004) is

A =

(

0.25596 0.74404
0.71571 0.28429

)

This A matrix tells us that when the Markov pro-
cess is in (hidden) state 1, the probability that it
transitions to state 1 is 0.25596, while the proba-
bility that it transitions to state 2 is 0.74404. Sim-
ilarly, if the Markov process is in state 2, it next
transitions to state 1 with probability 0.71571, and
it stays in state 2 with probability 0.28429. In this
case, the A matrix is not particularly interesting, as
this matrix simply gives the probability of transi-
tioning from a consonant to a vowel, a vowel to a
consonant, and so on.

As mentioned above, an HMM also includes an
initial state distribution denoted as π , which for
the example above converges (Stamp, 2004) to

π =
(

0.00000 1.00000
)

This tells us that the model started in the second
hidden state which, according to the converged B
matrix, corresponds to the vowel state. Again, this
is not particularly enlightening. For this English

text example, we see that the B matrix contains
the interesting information.

Again, an HMM is defined by the 3 matrices, A,
B and π , and it is standard practice to denote an
HMM as λ = (A,B,π). We also want to empha-
size that each of these matrices is row stochastic,
with each row representing a discrete probability
distribution.

Now, suppose that we train an HMM with 2 hid-
den states on simple substitution ciphertext, where
the plaintext is English. The resulting model will
partition the ciphertext letters into those corre-
sponding to consonants and vowels. On the other
hand, if we set the number of hidden states N to
equal the number of symbols (i.e., either N = 26
or N = 27, depending on whether we include word
spaces), the simple substitution key can be eas-
ily determined from a converged B matrix of an
HMM (Vobbilisetty et al., 2017). Furthermore, in
this latter case, the A matrix contains digraph prob-
abilities of the English plaintext.

An analogous HMM-based attack applies to ho-
mophonic substitution ciphers. However, in the
homophonic substitution case, the key recovery
from the B matrix is slightly more complex as the
number of symbols mapping to each plaintext let-
ter is typically unknown (Vobbilisetty et al., 2017).

For these HMM-based cryptanalytic models to
converge, we generally require large amounts of
ciphertext, making such attacks impractical for
most classic cryptanalysis problems. However,
since HMM training is a hill climb technique, ran-
dom restarts can be used in an attempt to gener-
ate an improved solution. It is shown in (Berg-
Kirkpatrick and Klein, 2013), and from a slightly
different perspective in (Vobbilisetty et al., 2017),
that by using large numbers of random restarts, the
performance of HMM-based attacks can surpass
other techniques, in the sense of requiring less ci-
phertext. For example, it is shown in (Vobbilisetty
et al., 2017) that HMMs can outperform Jakob-
sen’s algorithm (Jakobsen, 1995), which is a well-
known general-purpose simple substitution solv-
ing technique that is based on digraph statistics.

In this paper, we consider HMM-based crypt-
analysis of the classic Vigenère cipher. For the
Vigenère cryptanalysis problem considered here,
we will train an HMM, then we show that by
examining the resulting matrices A, B, and π of
a converged model, we can easily determine the
Vigenère key.

43



2.4 Related Work

In (Berg-Kirkpatrick and Klein, 2013) an expec-
tation maximization (EM) technique is applied to
homophonic substitutions, with the goal of ana-
lyzing the unsolved Zodiac 340 cipher. The EM
technique in (Berg-Kirkpatrick and Klein, 2013)
is analogous to the HMM process discussed in the
previous section. A novelty of this work is the use
of an extremely large number of random restarts
to improve on the hill climb results.

The paper (Lee, 2002) appears to be the first
to explicitly apply HMMs (or similar) to substi-
tution ciphers. However, the work in (Cave and
Neuwirth, 1980), which focused on English text
analysis, anticipates later cipher-based studies.

In (Vobbilisetty et al., 2017), HMMs are ap-
plied to simple and homophonic substitutions, and
a careful comparison is made to other automated
cryptanalysis techniques. This work shows that
HMMs can achieve superior results in many cases,
although the computational expense can also be
quite high.

The work presented here is motivated in part
by the recent paper (Gomez et al., 2018), where
it is shown that a generative adversarial network
(GAN), which is a type of neural network, can
be used to successfully break a Vigenère cipher.
However, this GAN-based Vigenère attack as-
sumes unlimited ciphertext, which is unrealistic
in any classic cryptanalysis context. In addi-
tion, in (Gomez et al., 2018) it is claimed that a
strength of the GAN technique is its ability to han-
dle a large vocabulary (up to 200 symbols), which
seems to be of somewhat dubious value in the con-
text of Vigenère cryptanalysis. Finally, as is gen-
erally true of neural networks, the resulting GAN
is opaque, leaving the authors to make statements
such as the following (Gomez et al., 2018):

For both ciphers, the first mappings to
be correctly determined were those of
the most frequently occurring vocabu-
lary elements, suggesting that the net-
work does indeed perform some form of
frequency analysis to distinguish outlier
frequencies in the two banks of text.

The implication here is that the authors are forced
to conjecture as to the relative importance of the
various features in the GAN, since such basic in-
formation is not at all clear from an examination
of the model itself.

In the next section, we give experimental results
for an HMM-based attack on a Vigenère cipher.
We also provide some discussion of our results,
and we compare our technique to the GAN-based
approach mentioned above.

3 Experimental Results

First, we train an HMM with N = 3 hidden states
on a Vigenère ciphertext that was generated us-
ing the keyword CAT. Note that in this experiment
we have selected the number of hidden states N
to be equal to the keyword length. Also, we have
used an observation sequence (i.e., English text)
of length 1,000 extracted from the Brown Cor-
pus (Francis and Kucera, 1969). In all of our ex-
periments, we have removed all special charac-
ters and word space, and all letters have been con-
verted to lower case, resulting in M = 26 distinct
observation symbols.

For this experiment, the converged A matrix is
give by

A =





0.00000 0.00000 1.00000
1.00000 0.00000 0.00000
0.00000 1.00000 0.00000





In contrast to the English text and simple sub-
stitution examples discussed in Section 2, here
the A matrix is very informative—for one thing,
this A matrix tells us that the transition between
the N = 3 hidden states is actually deterministic.
From the nature of the Vigenère cipher, it is clear
that these states correspond to individual column
shifts, and hence this is a result that we would ex-
pect for a keyword of length 3.

The corresponding B matrix appears in Table 3,
which reveals that the first hidden state corre-
sponds to a shift of 0 (i.e., keyword letter A),
as the probabilities approximately match the ex-
pected letter frequencies of English. We also see
that the second hidden state corresponds to a shift
by 2 (i.e., keyword letter C) since the letter fre-
quencies in this column are offset by 2 from those
of English, while the final column corresponds to
a shift by 19 (i.e., keyword letter T).

From the converged B matrix and the state tran-
sitions in the converged A matrix, we deduce that
the keyword must be either ATC, TCA, or CAT. In
this specific example, we also find that the initial
state distribution matrix π converges to

π =
(

0.00000 1.00000 0.00000
)

44



a 0.08761 0.01290 0.04950
b 0.01560 0.00000 0.06811
c 0.03540 0.07411 0.00480
d 0.04290 0.01470 0.00450
e 0.13171 0.03030 0.04320
f 0.02100 0.04740 0.02520
g 0.02190 0.12181 0.06661
h 0.04170 0.02160 0.07291
i 0.06841 0.01470 0.02610
j 0.00180 0.04470 0.00060
k 0.00600 0.08101 0.06541
l 0.04080 0.00360 0.06541
m 0.02340 0.00300 0.09871
n 0.06001 0.04800 0.02520
o 0.08131 0.02280 0.01050
p 0.02430 0.06721 0.01680
q 0.00090 0.07711 0.00300
r 0.06601 0.02160 0.02130
s 0.06151 0.00090 0.00030
t 0.09481 0.06451 0.07951
u 0.02910 0.06541 0.01500
v 0.01020 0.09781 0.03090
w 0.01500 0.03180 0.03870
x 0.00180 0.00960 0.13171
y 0.01590 0.02040 0.02310
z 0.00090 0.00300 0.01290

Table 3: Final BT for Vigenère ciphertext with
keyword CAT

This implies that we start in the second hidden
state, which corresponds to C, and hence we have
determined that the keyword is CAT.

Suppose that instead of using N = 3 hidden
states, we train an HMM with N = 2 hidden states
using the same Vigenère encrypted data as in the
previous example. In this case, we find that the A
matrix converges to

A =

(

0.75236 0.24764
0.34235 0.65765

)

which tells us that we do not have deterministic
transitions between the states, and hence the key-
word length is greater than 2.

If, on the other hand, we attempt to train a
model with N = 4 hidden states, we obtain

A=









0.00000 1.00000 0.00000 0.00000
0.00000 0.00000 0.99884 0.00116
1.00000 0.00000 0.00000 0.00000
0.00000 0.15595 0.00000 0.84405









Since some state transitions are deterministic, we
suspect that the keyword length is less than 4 in
this case. Similarly, an HMM with N = 5 hidden
states yields

A =













0.00 0.00 0.00 1.00 0.00
0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.47 0.00 0.00 0.53
1.00 0.00 0.00 0.00 0.00













which, again, implies that the keyword length is
likely less than 5. Finally, we point out that multi-
ples of the keyword length behave similarly—for
this example, with N = 6 hidden states we obtain

A =

















0.00 0.00 0.54 0.00 0.46 0.00
0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 1.00 0.00 0.00
0.49 0.51 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00

















From these results, we conclude that the A ma-
trix in a converged HMM will enable us to pre-
cisely determine the keyword length used to en-
crypt a Vigenère ciphertext. Furthermore, if suf-
ficient ciphertext is available so that English letter
distributions are (roughly) apparent, the B matrix,
together with the initial state matrix π , will com-
pletely determine the keyword. That is, we simply
train HMMs with different values of N until we
obtain a deterministic A matrix, and then we use
the corresponding B and π matrices to determine
the Vigenère key. Due to the fact that an HMM is a
hill climb, to obtain a converged model, we might
need to train each HMM multiple times with dif-
ferent randomly-selected starting values.

Next, we consider the amount of ciphertext
needed to determine the Vigenère key using this
HMM-based attack. Of course, the amount of ci-
phertext will depend on the length of the keyword.

We tested a few small keyword lengths until
we found an initialization that yielded a solution.
Then we reduced the amount of ciphertext until the
HMM was unable to solve the problem. This gives
us an upper bound on the amount of ciphertext
needed, at least in these selected cases. In these
experiments, we define a “solution” as a trained
HMM where the average of the maximum value
in each row of the A matrix is at least 0.99. Our
results are given in Table 4, based on 100 random
restarts of the HMM for each test case.

45



Keyword
Keyword Minimum Friedman

length ciphertext test
IT 2 175 1.4235
DOG 3 250 3.7209
MORE 4 450 3.8208

NEVER 5 1200 3.6467
SECURE 6 1400 4.5545
ZOMBIES 7 1300 9.9334

Table 4: HMM attack (100 random restarts)

From the results in Table 4, it seems likely that
with a large number or random restarts, we can
significantly reduce the required length of the ci-
phertext. In any case, even the ciphertext lengths
in Table 4 are far from the “unlimited” ciphertext
that is assumed for the GANs training discussed
in (Gomez et al., 2018). It is also interesting that
our HMM result is accurate, even in cases where
the Friedman test gives an incorrect result.

4 Conclusion

In this paper, we showed that a hidden Markov
model (HMM) is a powerful and effective tool for
the cryptanalysis of Vigenère ciphertext messages.
We also showed that a trained HMM is informa-
tive in this context, in particular when compared
to the neural network (GAN) based Vigenère at-
tack discussed in (Gomez et al., 2018). Undoubt-
edly, GANs are powerful and useful tools for many
types of problems. However, it appears that the
Vigenère cipher may not be an ideal test case to il-
lustrate the strengths of this particular type of neu-
ral network.

For future work, it would be interesting to test
an HMM-based Vigenère attack with large num-
bers (i.e., millions) of random restarts to deter-
mine the minimum amount of ciphertext needed.
It would also be interesting to test similar HMM
based attacks on other more complex polyalpha-
betic substitutions. Various combinations of clas-
sic substitution and, perhaps, elementary trans-
position ciphers are also possibly amenable to
HMM-based analysis. Due to their general ap-
plicability to classic substitution ciphers, HMMs
might be useful as a first line of analysis in cases
where a (classic) encryption technique is not com-
pletely known.

References

Taylor Berg-Kirkpatrick and Dan Klein. 2013. De-
cipherment with a million random restarts. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 874–878.

Robert L. Cave and Lee P. Neuwirth. 1980. Hid-
den Markov models for English. In J. D. Fergu-
son, editor, Hidden Markov Models for Speech,
IDA-CRD, Princeton, NJ, October 1980, pages 16–
56. https://www.cs.sjsu.edu/~stamp/RUA/
CaveNeuwirth/index.html.

W. Nelson Francis and Henry Kucera. 1969. The
Brown Corpus: A standard corpus of present-day
edited American English. http://www.nltk.
org/nltk_data/.

William F. Friedman. 1987. The Index of Coincidence
and Its Applications in Cryptography. Aegean Park
Press.

Aidan N. Gomez, Sicong Huang, Ivan Zhang,
Bryan M. Li, Muhammad Osama, and Lukasz
Kaiser. 2018. Unsupervised cipher cracking using
discrete GANs. https://arxiv.org/abs/1801.
04883.

Thomas Jakobsen. 1995. A fast method for the
cryptanalysis of substitution ciphers. Cryptologia,
19:265–274.

Friedrich W. Kasiski. 1863. Die Geheim-
schriften und die Dechiffrirkunst (Cryptography
and the Art of Decryption). Mittler und
Sohn, Berlin. http://pages.mtu.edu/~shene/
NSF-4/Tutorial/VIG/Vig-Kasiski.html.

Dar-Shyang Lee. 2002. Substitution decipher-
ing based on HMMs with applications to com-
pressed document processing. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
24(12):1661–1666, December.

Lawrence R. Rabiner. 1989. A tutorial on hidden
Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–
286.

Mark Stamp. 2004. A revealing introduction to
hidden Markov models. https://www.cs.sjsu.
edu/~stamp/RUA/HMM.pdf.

Rohit Vobbilisetty, Fabio Di Troia, Richard M. Low,
Corrado Aaron Visaggio, and Mark Stamp. 2017.
Classic cryptanalysis using hidden Markov models.
Cryptologia, 41(1):1–28.

Wing Wong and Mark Stamp. 2006. Hunting for meta-
morphic engines. Journal in Computer Virology,
2(3):211–229.

46


