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Abstract 
The digital twin offers a potentially powerful way of 

using simulation to support business and change the 

way industrial operations are done. The idea of the 

digital twin is not new but recent changes in 

information technology make implementation of 

digital twins a natural next step in the application of 

simulation technologies. Simulation practitioners will 

find that their models are increasingly embedded in 

complex systems that combine simulations with 

operational data to solve a business problem. 

However, the successful adoption of this approach is 

challenging. This paper asks the question: “How can 

digital twins be made sustainable, maintainable and 

useful?”. We focus primarily on the development of 

twins in the oil and gas industry. Most academic work 

in this area has been done in the manufacturing 

industries. We review this literature and propose a 

simple model of digital twins. This allows us to 

identify challenges with current implementations and 

propose a research agenda that will allow future twins 

to be sustainable, maintainable and usable. 

Keywords:  digital twin, semantics, integration, on-

line simulation, Industrie 4.0, hybrid analytics. 

1 Introduction 

The digital twin is one of the buzzwords of the last 

year. For example, Gartner group identified digital 

twins as one of the top ten strategic technology trends 

for 2017 (Panetta, 2016) and 2018 (Panetta, 2017). As 

Gartner themselves note, the idea of a digital twin is 

not new, as the discipline of engineering simulation is 

at least thirty years old. Klostermeier, Haag & Benlian 

(2018) attribute the twin concept to researchers in 

NASA, with roots back into the Apollo program. They 

also note that the digital twin may be seen as a fourth 

milestone in the application of simulation technology, 

as shown in Figure 1. This model is useful, but it 

obscures work done in the last decades where 

simulations were aligned with operational data to 

solve localized control and monitoring tasks. 

Figure 1. Milestones in simulator application (from 

Klostermeier et al. (2018)) 

 For example. in the oil and gas sector, it is now 

twenty years since the first implementation of an on-line 

flow assurance system (Hyllseth & Cameron, 2003). 

This provided a digital twin of a multiphase pipeline 

from the Oseberg field in the North Sea.  

As simulation and automation engineers, we should 

welcome this new, high level focus on using simulation 

to support operational decisions. However, we see that 

there are important issues related to sustainability, 

maintainability and usability that must be addressed if 

digital twins are to realize their potential in industrial 

operations. This paper presents these challenges and 

proposes a program of research, standardization and 

best practice that addresses them.  

We propose the idea of a semantic backbone that 

supports the integration of several different types of 

digital twin application around a shared understanding 

of a facilities design. To be successful, this backbone 

will need to find a pragmatic balance between 

comprehensiveness and maintainability. It will also 

need to build on standards in a way that prevents 

reinvention of the wheel and allows modular 

construction of semantic models.  

A successful digital twin also requires the correlation 

of structured data from designs, measurements and 

simulations with unstructured data from logs and 

documents. In addition, there remain many issues to be 

resolved around hybrid modelling: the linkage between 

data science - applied statistics and empirical modelling 

- and physical and engineering simulations. Our

conclusion is that useful digital twins require the

building of an interdisciplinary collaboration between

computer scientists, data scientists and their engineering

and operational colleagues.
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2 Materials and Methods 

This paper builds on the authors’ own and diverse 

experiences in the field of integration of complex 

technical systems and online simulation. Each author 

brings a different perspective to the problem. One of 

us is a computer scientist, while the other two are 

chemical engineers with experience from developing 

and implementing on-line simulation systems. The 

analysis is supported by a literature search performed 

around Industrie 4.0 and digital twins (in English and 

German) using ScienceDirect, OnePetro and Web of 

Science, with a focus on recent papers. 

Digital twins have been identified as a core research 

topic by the SIRIUS Centre for Research-Based 

Innovation. This centre held a workshop on digital 

twins, with participants from oil companies, system 

vendors and consultancies on 20th March 2018. This 

paper is a partial summary of discussions at this 

meeting. 

3 What is a Digital Twin? 

3.1 Defining a Digital Twin 

As noted above, the digital twin term had its origin 

in the American aerospace industry. Thus, the Defense 

Acquisition University defines a digital twin to be “An 

integrated multi-physics, multi-scale, probabilistic 

simulation of an as-built system, enabled by Digital 

Thread that uses the best available models, sensor 

information, and input data to mirror and predict 

activities/performance over the life of its 

corresponding physical twin.” (DAU, 2018a). This 

definition references another concept, namely the 

digital thread. This is defined as “An extensible, 

configurable and component enterprise-level 

analytical framework that seamlessly expedites the 

controlled interplay of authoritative technical data, 

software, information, and knowledge in the enterprise 

data-information-knowledge systems, based on the 

Digital System Model template, to inform decision 

makers throughout a system's life cycle by providing 

the capability to access, integrate and transform 

disparate data into actionable information.” (DAU, 

2018b). This definition then points to a specific data 

model., namely the Digital System Model, which is “A 

digital representation of a ... system, generated by all 

stakeholders that integrates the authoritative technical 

data and associated artefacts which define all aspects 

of the system for the specific activities throughout the 

system lifecycle” (DAU, 2018c).  

We can work this definition into the framework 

shown in Figure 2. In this figure we use concepts from 

the oil and gas industry to identify the parts of a twin.  

Figure 2. A conceptual framework for a digital twin, with 

concepts from the process industries. 

Three types of data must be coordinated in a digital 

twin: (1) measurements of a system and its 

surroundings, (2) a description of the system’s 

configuration and construction (the asset configuration) 

and (3) simulations and analyses of the system. We 

combine these three data sources to produce information 

about the system state that is useful for one or more 

users of the system. 

For an oil platform or process plant, the asset 

configuration is contained in a Life-cycle Information 

(LCI) system. This allows a digital twin to exploit the 

virtual reality possibilities of a detailed 3D geometric 

model. Measurements come from the facility’s control 

and automation system, specialized monitoring systems 

and the laboratory information management system. 

Many types of simulation and analysis are possible. We 

need to ask, what are we simulating? Are we interested 

in structural integrity? Then we need a structural 

simulation. Are we interested in process behaviour? 

Then we need a dynamic process simulator. Are we 

interested in the state of rotating equipment? Then we 

need an analysis tool that finds events in vibrational, 

temperature and tribology data.  

3.2 Digital Twins in Oil and Gas 

Explicit references to digital twins in the oil and gas 

industry are few and are often high-level, non-technical 

presentations. This may be due to the term only having 

come into use in the last few years, as a commercial term 

used to transfer technology from the “digital sector”. 

Poddar (2018) defines a twin as a “virtual and simulated 

model or a true replica of a physical asset”. What a true 

replica is, is left undefined. A list of design, operations 

and optimisation applications is given without examples 

and commercial integration platforms are listed. Sharma 

et al. (2017) give a longer but similar presentation. They 
describe a twin of a supply boat that can be used to 

optimise operations and maintenance. They also note 

Asset 
Configuration

(LCI)
Measurements

Simulations and 
Analyses

Best estimate of system state

Users with diverse roles and interests
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that a twin can support real-time barrier analysis for 

risk assessment.  

A recent textbook on digital oil and gas 

technologies (Carvajal et al., 2018) does not mention 

digital twins. However, the concept is implicit in the 

on-line use and updating of an integrated asset model 

(p236ff) and in introducing the not-yet-realized 

concept of a closed loop asset model (p336). They 

point out challenges in implementing such a 

framework. We will return to this in section 4. 

An early description of on-line integrated asset 

surveillance is given by Deaton et al. (2007). Their list 

of challenges is still valid: disparate data sources, non-

integrated and unfiltered data. They note that data 

problems can be overcome, but a successful system 

requires embedding in the operators work processes.  

Ten years later, Sankaran et al. (2017) describe 

Anardarko Petroleum’s implementation of an 

integrated performance and optimization system that 

integrates control data and telemetry with simulation 

and optimization to support operational decisions. 

They noted that care and system design was needed to 

ensure that the application remained scalable and 

maintainable.  

 Digital twins for specific disciplines, such as 

structural and marine performance of floating 

platforms (Renzi et. al., 2017), drilling fluids in a well 

(Mayani et al., 2017) and flow assurance in a gas 

pipeline (Lunde et al., 2013) emphasise further that the 

idea of the digital twin is not new. What is new is the 

idea of the comprehensive, interdisciplinary twin.  

3.3 Digital twins in manufacturing 

As noted above, the digital twin had its origin in 

manufacturing, in particular aerospace. It is therefore 

worth looking at the literature from this domain in 

considering how digital twins can work in the oil and 

gas domain. Digital twins in manufacturing focus on a 

product and its lifecycle, from concept generation and 

to recycling or disposal (Tao et al. 2017). A digital 

twin can make a product smart, personalized, 

sustainable, green, and service-oriented in an 

interconnected and interactive way (Tao and Zhang 

2017). In oil and gas, we rather focus on the asset and 

its lifecycle, from concept through engineering, 

procurement and construction to operations and, 

eventually decommissioning. 

The data for a product twin comes from the design 

and from the production process. Production data 

includes equipment states, materials and work-in-

process. It is collected in real-time from RFID tags, 

sensors, actuators, controllers, lasers, vision systems, 

scanning systems and coordinate measuring machines. 

(Tao and Zhang 2017, Grieves 2014). 

This product focus is supported by product life 

cycle management (PLM) systems. This approach was 

first proposed by Grieves in 2003 (Mayani et al., 2018; 

Grieves 2014; Grieves and Vickers 2017). 

Industrie 4.0 is a German initiative in developing and 

applying cyber-physical systems in manufacturing (Lu 

2017, Trappey et al. 2017). The digital twin is a core 

component in these systems (Uhlmann, Hohwieler, and 

Geisert 2017, Parrott and Warshaw 2017). These 

authors note that two types of twins can be built: a 

product twin, that simulates the product´s form and 

function, and a process twin that simulates how a 

product is made. These twins converge for the digital 

twin or an oil and gas platform.  

According to Tao et al. (2017), a digital twin is a real-

time reflection of a physical system in virtual space, as 

per the DAU definition above. It can interact and 

converge with historical data, interacts seamlessly with 

real-time data and updates its models continuously (self-

evolution). In the conceptual design phase, a digital twin 

can give quick overview of the different product-related 

data and customer’s feedback, enable communication 

between customers and designers, and thereby, help the 

designers to determine the product functionalities. At 

the detailed design phase, the digital twin enables 

repeated simulation tests and ensure that the desired 

performance is achieved for the product design scheme 

and the production line. At the verification stage the 

digital twin allows virtual verification of the different 

aspects of the product, and thereby cut costs for 

extensive physical verification and testing. 

A wide variety of architectures have been proposed 

for digital twins (Tao and Zhang 2017, Alam and Saddik 

2017, Uhlemann, Lehmann, and Steinhilper 2017, Yun, 

Park, and Kim 2017, Rosen et al. 2015, Parrott and 

Warshaw 2017). It is difficult to find a consensus 

architecture, but we can see that digital twin is placed in 

the automation hierarchy between level 3 and 4, as 

shown in Figure 3. 

 

Figure 3: Digital twins in the automation hierarchy. 

 The digital twin acquires physical plant data through 

the SCADA system or the process database: what is now 

the Industrial Internet of Things (IIoT). This data is 
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compared with design data and is used to drive 

simulations of product and process behaviour. Results 

from these analyses are sent to the information and 

data analysis system of the manufacturing process to 

provide recommendations to operators and 

management.  

Peer-reviewed papers on digital twins seem to focus 

on the mechanical behaviour of single products. Thus, 

Schroeder et al. (2016) report a very simple digital 

twin for a valve. The different components of the valve 

including sensors and actuator, were modelled using 

an AutomationML tool. The data was made available 

for the user applications via FIWARE middleware. 

Cai et al. (2017) presented a digital twin for a CNC 

machine. The graphical simulation of the machine was 

CAD modelled in SolidWorks software, transferred 

into STL format and the graphical simulation was 

created with OpenGL library. The manufacturing data 

and sensory data were stored in a PostgreSQL 

database. Analytical tools were used to monitor the 

operation conditions, extract machining features and 

to predict product characteristics. 

The opposite extreme of a manufacturing digital 

twin is the F35 digital twin. West and Blackburn 

(2017) describe the ambitions of Lockheed and the US 

government to build an on-line structural and 

functional model of each F35 fighter and its 

components. West and Blackburn’s analysis is deeply 

sceptical to the feasibility of this approach. It is simply 

too complex and too computationally intensive. We 

will return to these challenges in the next section. 

So, what can we learn from the manufacturing 

industry? Manufacturers of the components in and oil 

and gas platform – instruments, valves, pumps, 

compressors, transformers – will offer twins of these 

components that will support capture of operation data 

for improving designs and optimising maintenance. 

These individual product twins will need to be 

incorporated into the oil company’s facility or process 

twin. The facility twin, on the other hand is more than 

the sum of its components. It will need to simulate the 

processing of oil and gas, the electrical, mechanical 

and structural behaviour of the facility. This 

integration of diverse and complex components into a 

complex system is difficult.  

4 Challenges in digital twins 

We noted above West and Blackburn’s justified but 

slightly polemic scepticism to the F35 digital twin. We 

share some of their fears. A digital twin of an oil and 

gas facility is a complex system. It requires the 

integration of a patchwork of different solutions from 

multiple vendors. 

In this section we will describe eight challenges that 

need to be addressed to allow digital twins to fulfil 

their promised potential. 

1. Business Models, Security and Confidentiality. 

The first challenge is to find a business model that is 

sustainable. Who benefits from a digital twin? We 

believe that all participants in the supply chain can 

benefit from digital twins. However, this requires clarity 

in the sharing of data and new models for procurement 

of facilities and services. An operator has a strong 

incentive to have a comprehensive twin for monitoring 

and optimization. It is linked to their license to operate. 

They are responsible for the asset and its data. Vendors 

can benefit from using operational data in their product 

twins. This sharing and collaboration for simulation and 

analytics is a good thing. However, mechanisms must 

be found for fair rewards, allocating responsibility, 

ensuring secure access and protecting IPR. 

2. Work practices. The digital twin can change work 

practices, but only if it offers the users tangible and 

measurable benefits. The user must be convinced that 

the system gives benefits, is safe and is usable. The twin 

must help, not hinder. Carvajal et al. (2018, p236) also 

pointed to this challenge: the digital twin must support 

the engineering and management organization. 

3. Scope. A digital twin that aims to do everything is 

likely to do nothing well. We need to use fit for purpose 

modelling, and the principle of parsimony (i.e. just 

enough for functionality, but no more). However, we 

cannot do this at the cost of capturing necessary 

interactions and interdisciplinary effects. We need to 

support models with different granularity, that allow a 

user zoom in our out on the digital twin as needed. We 

also need different, but consistent models for processes 

with widely varying time constants, e.g. compressors 

(milliseconds) compared with a multiphase pipeline 

(days) or a reservoir (weeks).  

4. Usability. How do I, as a user, get the information 

I need without being distracted by the information I do 

not need? How can I do this quickly and easily? A 

comprehensive digital twin has multiple concerns and 

can produce massive amounts of data.  A specialized 

user must be able to find the information she needs 

quickly, easily and without distraction.  

5. Integration. A digital twin will consist of many 

data sources and simulation models. How can we 

connect different models together without creating a 

“point-to-point nightmare”? Many vendors are offering 

platforms for data integration (Poddar, 2018). 

Commercial platforms are offered by vendors as diverse 

as GE, SAP, Siemens, Kongsberg, DNV GL, 

Schlumberger and Cognite (just to focus on the 

Norwegian market).  An operating company will have 

to cope with several vendor platforms, both proprietary 

and open access, in addition to their own, internal 

platform. Carvajal et al. (ibid.) note that data is stored in 

“disparate locations, are in structured and unstructured 

formats, are not linked to a common data base, span long 
production and acquisition times, and have not been 

adequately and consistently quality checked”. 
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6. Maintenance. A digital twin is a complicated 

software and hardware system. How can the 

maintenance of the necessary data, software and 

hardware be cost-effective? As noted above, a twin 

combines life-cycle information, measurements of the 

assert state and simulations. All these must be 

maintained so that they reflect the as-built state of the 

facility. They must be included in the facility´s 

management of change. 

 7. Computational overload, edge and cloud. A 

comprehensive digital twin will require extensive 

computational resources. These resources will likely 

be distributed over a hybrid cloud that combines 

private clouds with vendor platforms and HPC 

resources. This system needs good design and 

operation to work. This design will need to carefully 

define what should be done at the edge of the system 

and what is done in the cloud.  

8. Uncertainty, Validation and Data Science. 
Finally, a digital twin is only as good as the data and 

models used in the system. Data must be cleaned and 

reconciled. Models must be validated and tuned to 

ensure that they follow the state of the facility. Even 

“first principles” models must be tuned. Setting up 

effective methods for tackling uncertainty and model 

alignment should be a fruitful area for collaboration 

between control and process engineers and the data 

science community.  

5 A research program for digital 

twins 

How can digital twins be made sustainable, 

maintainable and useful despite these challenges? We 

believe that a solution will collaboration between 

computer scientists, control and simulation engineers, 

data scientists and end-user technical specialists. Here 

we will present the computer science and data science 

parts of solution. This research program combines the 

sub-disciplines of knowledge representation, natural 

language technologies, formal methods, scalable 

computing and data science. This knowledge of 

technologies must be informed by the deep domain 

knowledge that is embedded in the digital twins’ 

simulation models and is owned by the facility’s 

engineers – chemical, petroleum, mechanical, 

electrical and control – and managers. 

Challenges related to scope, usability, integration 

and maintenance can be addressed if we adopt a 

semantic backbone that supports the integration of 

several different types of digital twin application 

around a shared understanding of a facility’s design. 

To be successful, this backbone will need to find a 

pragmatic balance between comprehensiveness and 

maintainability. It will also need to build on standards 

in a way that prevents reinvention of the wheel and 

allows modular construction of semantic models. 

Recent advances in the construction of ontologies using 

templates (Forsell, 2017) promise to allow this.  

Simulation providers can use these ontologies to 

allow exchange of model configurations with 

engineering databases and the exchange of calculated 

results with the monitoring and optimization layers of 

the digital twins. Point-to-point connections through tag 

cross-reference lists can be replaced with declarative 

mappings – where data in the simulation results or 

configuration is mapped to items in the semantic 

backbone.  

Pragmatic standards are needed. Unfortunately, 

semantic standards such as ISO15926 have not lived up 

to their promise as tools for integration and data 

exchange. This is partly due to a lack of tool support and 

to a choice of technology, Express, that became dated 

and hampered progress. We also believe that the 

standard development attempted to be comprehensive at 

the expense of solving smaller, realistic problems along 

the way. Semantic models used by our group aim to take 

the best from ISO15926 where it is possible. We also 

will take account of the industry initiatives in DEXPI 

(www.dexpi.org) and CFIHOS (http://uspi-global.org/). 

Good semantic models can also address the usability 

problem. Mapping data to concepts that are used by the 

end-user allows automatic generation of graphical 

interfaces that meet a specific user’s needs. The 

OptiqueVQS (Soylu et al., 2018) framework is just such 

a tool. Our research group is working further with this 

approach to implement faceted search (Klungre & 

Giese, 2017).  

A successful digital twin also requires the correlation 

of structured data from designs, measurements and 

simulations with unstructured data from logs and 

documents. This requires the structured data to be 

interpreted and transformed into structured data in the 

process model. There are now many commercial and 

academic tools for parsing and processing text. The IBM 

Watson framework is one such commercial offering 

(Chen et al. 2016) and can be used to parse and process 

texts. However, language algorithms that are trained on 

general data sets do not perform well when confronted 

with oil and gas terminology. A process of domain 

adaption is needed to improve performance. This 

process is made difficult by the smaller corpuses of data 

that are available for training. The SIRIUS centre is 

working on this domain adaption challenge, with 

promising results and good performance in solving 

standard challenge problems (Nooralahzadeh, Øvrelid 

and Lønning, 2018). 

The challenges of maintenance and computational 

overload can also be addressed through using formal 

methods to design and monitor the deployment of a 

digital twin. As we noted above, a digital twin is a 

collection of interacting computational components, 
deployed across one or more cloud platforms and 

including edge devices. The behaviour of this system is 
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difficult to predict, especially at design time. 

However, simulation tools for the computer systems 

themselves can be used to test different deployment 

plans and resolve challenges. The same model can also 

be used as a monitoring tool for the deployed system 

– a digital twin of the digital twin (Johnsen, Lin & Yu, 

2016).  

Finally, there remains the challenge of uncertainty, 

validation and data science. The digital twin is built on 

models. To quote George Box (Box, 1979), all these 

models are wrong, but some are useful. A digital twin 

will contain many models. Some will be based on 

physical principles: structural, geometrical and 

process simulations. Others will be purely empirical, 

based on machine learning. These models must be 

validated against observed facility behaviour and 

aligned so that they mirror observed normal 

behaviour. Aligning models to observed data is 

difficult and remains an art. Finding out whether a 

discrepancy is due to an error in data, a wrong 

parameter, poor model structure or an actual 

malfunction in the facility requires a good 

understanding of the facility and well-developed 

judgment. This is true whether the models a rigorous 

physical model or a machine-learnt empirical 

representation.  

 

 

Figure 4. A research agenda for digital twins in the oil 

and gas industry. 

 
A maintainable digital twin will contain structured 

tools that allow validation and tuning of all the models 

in the system. We believe that hybrid analytics – the 

combination of data science with physical and 

engineering simulations – is a valuable and fruitful 

area of research. Machine learning can benefit from 

being constrained by the laws of physics, while the 

laws of physics contain parameters that are uncertain 

or expensive to measure. Good statistical practice is 

needed in the engineering communities and 

engineering knowledge is needed among data 

scientists. 

We are working on two problems related to data 

science for digital twins. The first of these is related to 

data access. Data science projects in industry are 

currently not scalable. Each new implementation 

needs to start from scratch, finding data, checking it 
and making it available. Our proposed semantic 

backbone will allow data science solutions to be 

rapidly transferred to similar sites in an organization 

(Kharmalov et al., 2017).  

The second area of research is related to the use of 

sensor data in data science. When a data scientist talks 

about streaming data, they usually mean a sequence of 

discrete event records – like tweets or sales transactions. 

The stream of data from analogue sensors is subtly 

different. The underlying signal from a sensor is 

continuous. The process of digitization itself introduces 

uncertainty and error in the calculation. Filtering and 

data compression provide further sources for error. 

Common data science frameworks expect data in 

vectors at common times. Production of this from a time 

series data base requires interpolation. All these details 

increase the cost and decrease the usefulness of data 

science work. A well-defined semantics and query tool 

for time-series data from sensors could solve many of 

these challenges. 

Companies in the oil and gas sector are installing 

digital twins now, using commercially available 

platforms and siloed applications. This provides 

academics with an opportunity to engage with the 

observed problems of our colleagues in operations and 

maintenance. This means that we need a research 

program that engages with operations and today’s 

digital twins through pilots. 

Each pilot has a narrow enough focus to be tractable. 

The companies we are collaborating with have linked 

these installations to a well-defined business case. 

Current pilots are ambitious: if successful they will 

bring previously unachieved levels of 

interdisciplinarity, effectiveness and access to data in 

design, operation and maintenance. At the same time, 

the pilots are focused on one specific business problem. 

By working with existing pilots and proposing new 

pilots we plan to establish a virtuous cycle, where 

shortcomings in today’s technology and methods can be 

filled with research-driven innovations.    

6 Conclusion 

This paper has attempted to give a synthetic overview 

of an important, if hyped, element of today’s 

digitalization landscape. The digital twin is, in many 

ways a rebranding of several generations of on-line 

systems for simulation and decision support.  

Marketing and vendor communication is raising 

expectations about digital twins. We welcome this 

interest and believe that it gives an opportunity to 

integrate operations technology and information 

technology. However, we also believe that 

implementing digital twins is inherently difficult. 

Solving the challenges that we have identified will 

require the best efforts of many computer scientists, data 

scientists, engineers and managers. The role and 

importance of simulation can only be expected to grow 

in the next decade. Our research agenda can help ensure 

that we do not disappoint our managers.  
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