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Abstract
The beam equation describes the deflection of a beam sub-
ject to point loads and / or distributed loads, while being
supported at both ends. The beam equation is commonly
derived in the scientific literature using force- and moment
balances, which lead to a boundary value problem. The
present paper derives the beam equation using the mini-
mum total potential energy principle and solves the op-
timization problem numerically. The motivation behind
this work is to ease future extensions of the beam equa-
tion into larger deflections and nonlinear materials. These
future extensions are necessary to model subsea power ca-
bles and umbilicals during bending stiffness tests which is
the author’s final goal.
Keywords: Beam Equation, Bending Stiffness Test, Mini-
mum Total Potential Energy Principle, Numerical Analy-
sis, Subsea Power Cable, Umbilical.

1 Introduction
The offshore oil and gas industry, as well as power grid
companies, require increasingly accurate analyses and
physical testing of subsea power cables and umbilicals to
be able to install them in deeper waters, in colder envi-
ronments, and during harsher weather conditions. This
challenges engineers, scientists, and software developers
working in the cable manufacturing industry and among
service- and software providers.

Subsea power cables and umbilicals are complex struc-
tures consisting of a large number of individual elements,
such as the umbilical shown in Figure 1. For some cable
designs the number of individual elements exceeds 200.
The relative displacements between these elements and
complex nonlinear material characteristics are among the
main challenges in modeling cables’ mechanical proper-
ties. As both the cable geometry and the material proper-
ties are highly complex, there will inherently be uncertain-
ties in the cable models. It is therefore essential to validate
the models through physical testing.

The scientific literature on physical bending stiffness
tests of cables is very sparse. Hence, there is very lim-
ited information on various test rig designs; Maioli (2015)
and Tarnowski (2015) both present results based on rigs
with a design as sketched in Figure 2. In Maioli (2015)
the arrangement is horizontal, i.e. the force is applied in
the horizontal plane, while in Tarnowski (2015) the force

Figure 1. Umbilical with steel tubes, electric- and fiber optic
signal cables, and armor wires.

is applied vertically.
The author and his colleagues have developed a bending

stiffness rig which is also based on the principle illustrated
in Figure 2. This work is presented in Jordal et al. (2017)
and Komperød et al. (2017). The rig is vertical and the
force can be applied in both directions, i.e. up and down,
in a sinusoidal manner, making the cable oscillate.

In Komperød et al. (2017) the beam equation is used
to calculate the cable’s bending stiffness based on mea-
surements of the cable’s deflection and the force required
to achieve this deflection. This equation is derived for
beams under the assumptions of small deflections and lin-
ear, elastic material in the beam. The exact same equation
is also used in Maioli (2015). Tarnowski (2015) presents
another model that intends to handle larger deformations.
However, also this approach considers the cable as one
solid object, rather than a compound object consisting of
a large number of individual cable elements.

When cables are bent, there are relative displacements
between the cable elements. A large number of scientific
publications consider the effect of shear forces between
cable elements due to friction, for example Lutchansky
(1969) and Kebadze (2000), and show that this effect has
major impact on the cables’ bending stiffness. Over the
last few years, also shear forces due to bitumen-coating
on the armor wires have got attention in the scientific lit-
erature. Among the publications on this topic are Hedlund
(2015), Komperød (2016a,b), and Martindale et al. (2017).

Analyses of cables’ mechanical properties are com-
monly (i) assuming constant cable bending curvature
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Figure 2. Sketch of bending stiffness rig. Illustration from
www.wikimedia.org.

along the cable’s length direction and (ii) neglecting the
boundary conditions at the cable ends. However, to the au-
thor’s knowledge, it is not possible to perform a physical
bending stiffness test of a cable in such a way that the ca-
ble’s physical boundary conditions will not influence the
test results. Also, the condition of constant bending cur-
vature is challenging to meet in real-life test rigs. Hence,
the bending stiffness calculated in analyses and the bend-
ing stiffness identified from physical tests are not directly
comparable because they are based on different assump-
tions.

To close the gap between analyses and physical testing,
the author develops models of cables subject to the loads
and the boundary conditions of the bending stiffness rig.
These models can then be directly compared to, and hence
validated against, the results of the physical tests. When
the models have been validated, changing their loads and
boundary conditions allows the same models to be used
in the case of constant curvature and no boundary condi-
tions as discussed above. This way the author intends to
bridge the differences between analyses and physical test-
ing which are currently preventing the analyses from being
verified against physical testing in a consistent way. Due
to the high complexity of the overall problem, the work
will be split into 4-6 milestones.

This paper presents the results of the first milestone,
which is to derive the beam equation using the minimum
total potential energy principle and to solve this equation
numerically. Using the minimum total potential energy
principle, rather than force- and moment balances, is be-
lieved to simplify future extensions of the beam equa-
tion into large deflections, nonlinear materials, and cor-
rect modeling of shear forces between the cable elements.
It is further believed that it will be impossible to reach an
analytical solution to the overall problem. It is therefore
desirable to develop a numerical solution during the first
milestone which can later be extended when working to-
wards future milestones.

2 Nomenclature
Table 1 presents the main nomenclature used in this paper.
Variables without a specific physical meaning are defined
in the main text where they first appear. Vectors are de-
noted with lower case, bold font. Matrices are denoted
with upper case, bold font. Square bracket are used to de-
note parts of a vector or a matrix. For example A[1 : 4,3]
means the first four rows of the third column of A. Ex-
ponent notation applied to vectors, for example x2, means
element-by-element exponent.

Table 1. Nomenclature.

c̄ Vector with Clenshaw-Curtis quadrature
weights.

D1 Chebyshev first-derivative matrix.
D2 Chebyshev second-derivative matrix.
EI Bending stiffness [Nm/(m−1)].
g Acceleration of gravity [m/s2].
L Length between beam supports [m].
M Bending moment [Nm].
m̃ Mass per unit length [kg/m].
N Number of discretization points [-].
N̄ Number of discretization points over a

half beam [-].
P Total potential energy [J].
Pg Gravitational energy [J].
Ps Strain energy [J].
s Beam length parameter [m].
u Vertical deflection of beam [m].
up Vertical deflection of piston [m].
u Vector containing discrete points of u.
x Coordinate along x-axis [m].
κ Bending curvature [m−1].
λi Lagrange multiplier no. i.

Figure 3 shows the Cartesian coordinate system used in
this paper.

3 Assumptions and Simplifications
The mathematical derivation in this paper is subject to the
following assumptions and simplifications:

1. The beam is subject to infinitesimal deflections only.

2. The beam is made of a linear, elastic material and has
identical cross section over its entire length.

3. Only the beam length between the supports shown in
Figure 2 is considered. That is, possible beam length
outside these supports is disregarded.
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Figure 3. The Cartesian coordinate system used in this paper.
Based on illustration from www.wikimedia.org.

4. The beam is assumed not to move horizontally at the
center of its length, i.e. where the F arrow points in
Figure 2.

5. The developed model is quasi-static, i.e. inertia and
kinetic energy are disregarded.

6. The beam’s height is much smaller than the length
between the supports, L.

4 Mathematical Model
This section derives the mathematical model of the total
potential energy of the beam, as well as the constraints
that follow from the physical test rig and the beam’s phys-
ical properties. How to formulate the model and the con-
straints numerically, and how to numerically solve for the
minimum total potential energy are derived in Section 5.

4.1 Strain Energy in the Beam
The bending stiffness of the beam, EI, is by definition

EI def
=

M
κ
. (1)

Solving Eq. 1 for the moment, M, and integrating w.r.t.
the curvature, κ , gives the beam’s strain energy, Ps, per
unit length, i.e.

∂Ps

∂ s
=

κ∫
0

M dκ (2)

=
1
2

EI κ
2.

Hence, the total strain energy in the beam is

Ps =
∫

beam length

1
2

EI κ
2 ds (3)

=
1
2

EI
∫

beam length

κ
2 ds,

where κ = κ(s). The integration limits will be discussed
in more detail in Section 5.

4.2 Gravitational Energy
When choosing u = 0 as the reference level for calculating
the gravitational energy, Pg, the gravitational energy per
unit length is

∂Pg

∂ s
= m̃gu. (4)

Hence, the gravitational energy over the entire beam is

Pg =
∫

beam length

m̃gu ds (5)

= m̃g
∫

beam length

u ds,

where u = u(s).

4.3 Total Potential Energy
The beam’s total potential energy, P, is the sum of the
strain energy and the gravitational energy, i.e.

P =Ps +Pg (6)

=
1
2

EI
∫

beam length

κ
2 ds

+ m̃g
∫

beam length

u ds.

4.4 Constraints
The purpose of finding the total potential energy in Eq. 6
is to minimize this expression w.r.t. the beam’s deflection
u(s) over its length, s, which will give its total potential
energy and its deflection profile. However, the beam is
not completely free to move and deform; it is constrained
by the test rig and by its own physical properties. In math-
ematical terms this translates into constraints that apply
when minimizing Eq. 6 w.r.t. u(s).

The bending stiffness rig developed by the author and
his colleagues is as sketched in Figure 2. As the rig is
designed to oscillate between positive and negative values
of u (i.e. up and down), the supports are made to both
prevent the beam from being pushed down and from being
lifted up. Similarly, the force F is generated by a piston
which can both push the beam down and lift it up. Hence,
the constraints are
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u(left end) = 0, (7)

u(center) = up, (8)

u(right end) = 0, (9)

where up is the piston’s position.
From beam theory it follows that the function u(s) and

its first- and second derivatives are continuous. This is
also a constraint which can mathematically be expressed
as

u(s) ∈C2, (10)

where C2 is the set all functions which are continuous and
have continuous first- and second derivatives (and possi-
bly continuous higher order derivatives). The mathemat-
ical importance of the latter constraint will be further ex-
plained in Section 5.

5 Numerical Solution
Section 4 derives a mathematical model of the total po-
tential energy in the beam, as well as the associated con-
straints. The present section solves the constrained opti-
mization problem, i.e. finds the minimum total potential
energy, using numerical mathematics.

5.1 Implications of Assumptions and Simplifi-
cations

Assumptions 1 of Section 3 implies that the beam’s length
parameter s will be identical to the x coordinate. Assump-
tions 1 and 4 combined mean that the beam will not move
horizontally at any point. Hence, the beam’s length ex-
actly spans the interval

[
−L

2 ,
L
2

]
. It is then convenient to

replace s by x, and consider the beam over x ∈
[
−L

2 ,
L
2

]
.

It then follows that the integration limits of Eqs. 3, 5, and
6 are −L

2 and L
2 .

From the mathematical literature, the curvature of a
graph u(x) is known to be

κ =
d2u
dx2(

1+
( du

dx

)2
) 3

2
. (11)

Under assumption 1, du
dx is very small compared to unity.

Eq. 11 can then be approximated by

κ =
d2u
dx2 . (12)

5.2 Calculating the Strain Energy
The overall purpose of the numerical solution of the beam
equation is to find the u(s) that minimizes the total po-
tential energy subject to the constraints. To the author’s
knowledge, numerical methods are not able to find the ex-
act function u(s). What these methods instead do is (i) to
find u(s) at discrete points which allows subsequent inter-
polation, as well as numerical differentiation and quadra-
ture (numerical integration), or (ii) to find the coefficients
of a polynomial or a series, for example a Fourier series
or a Chebyshev series, which then serves as an approxi-
mation to u(s). In this paper it has been chosen to base
the calculations on discrete points that are Chebyshev-
distributed along x, because this distribution gives excel-
lent convergence properties both in interpolation, differ-
entiation, and quadrature.

The constraint of Eq. 10 requires u(s) to be continu-
ous and to have continuous first- and second derivatives.
However, u(s) does not have continuous third derivative
at the point where the piston, i.e. the force F , pushes or
pulls the beam. This is because the force gives an abrupt
change in the beam’s shear force. To prevent the abrupt
third derivative from disturbing the excellent convergence
properties of Chebyshev series for smooth functions, the
function u(s) is split in two halves; one half to the left
of the force F , i.e. in the interval

[
−L

2 , 0
〉
, and one half

to the right of the force, i.e. the interval
〈

0 , L
2

]
. Eq. 10

then imposes constraints on how the two halves should be
connected.

The numbers of Chebyshev nodes over the left half and
the right half are the same, namely N̄. Then the total num-
ber of nodes is

N = 2N̄−1, (13)

because the center node is common for both halves. The
nodes are organized in a column vector u ∈ RN .

The following text explains how to calculate the strain
energy in the left half of the beam as function of the
discrete-point deflections of the vector u. Let ū be the
first N̄ nodes of u, i.e.

ū def
= u[1 : N̄] ∈ RN̄ . (14)

Let k̄ be the vector with curvature values, κ , at the
Chebyshev nodes. The curvature can be approximated by
the second derivative as stated in Eq. 12. Hence, the cur-
vatures can be calculated as

k̄ = D2 ū, (15)

where D2 is the Chebyshev second-derivative matrix of
dimension N̄× N̄. The structure of this matrix is derived
in Reid (2014).
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From Eq. 3 and the reasoning of Section 5.1, the strain
energy in the left half of the beam can be approximated by

Ps (left half) =
1
2

EI
0∫

−L/2

κ
2dx. (16)

Eq. 15 gives that the strain energy per unit length at
the Chebyshev nodes is 1

2 EI(D2ū)2, where the superscript
means element-by-element exponent. The strain energy in
the left half of the beam is then given by Clenshaw-Curtis
quadrature, i.e.

Ps (left half) =
(

L
4

c̄
)T (1

2
EI (D2ū)2

)
, (17)

where c̄ is the vector containing the Chenshaw-Curtis
quadrature weights for the standard quadrature interval
[−1 , 1 ]. In the first parenthesis of Eq. 17, a factor L

2 is
the quadrature interval width, while a factor 1

2 is to can-
cel the width 2 of the standard interval. Clenshaw-Curtis
quadrature is explained in Reid (2014).

Eq. 17 can be rewritten to

Ps (left half) =
EI L

8
ūT D2

T diag(c̄)D2 ū, (18)

where the operator diag(·) returns a diagonal matrix with
the argument vector’s elements on the diagonal. It is now
convenient to define the symmetric matrix W̄ as

W̄ def
=

EI L
4

D2
T diag(c̄)D2 ∈ RN̄×N̄ . (19)

Eq. 18 can then be written as

Ps (left half) =
1
2

ūT W̄ū. (20)

Eq. 20 gives an expression for the strain energy in the
left half of the beam which is easy to handle, and in partic-
ular easy to differentiate. Differentiation is important for
later finding the minimum. However, it is not straight for-
ward how to extend the equation to also include the right
half of the beam, while keeping it easy to differentiate,
because the center node is included in the calculations of
both halves. The following presents a simple solution. A
block matrix WL is defined as

WL
def
=

[
W̄ 0N̄×(N̄−1)

0(N̄−1)×N̄ 0(N̄−1)×(N̄−1)

]
, (21)

where the subscript L means left, and 0 means the zero
matrix of the dimension indicated by the subscripts. The

strain energy in the left half of the beam can then be writ-
ten as

Ps (left half) =
1
2

uT WLu. (22)

Please note that u, rather than ū, is used in Eq. 22.
Making a similar reasoning as Eqs. 14-22 for the strain

energy of the right half of the beam gives

Ps (right half) =
1
2

uT WRu, (23)

where

WR
def
=

[
0(N̄−1)×(N̄−1) 0(N̄−1)×N̄

0N̄×(N̄−1) W̄

]
. (24)

In Eq. 24 the subscript R means right, and W̄ is the matrix
defined in Eq. 19.

The strain energy over the entire beam is found by
adding the two halves, i.e.

Ps =
1
2

uT WLu+
1
2

uT WRu (25)

=
1
2

uT (WL +WR)u

=
1
2

uT Wu,

where

W def
= WL +WR. (26)

Eq. 25 gives an expression for the strain energy in the en-
tire beam which is easy to differentiate w.r.t. u.

5.3 Calculating the Gravitational Energy
Numerical calculation of the gravitational energy resem-
bles numerical calculation of the strain energy, but it is
simpler, partly because it depends on u(s) rather than its
second derivative, and partly because it is linear rather
than quadratic.

Using Eq. 5 and Clenshaw-Curtis quadrature, the grav-
itational energy of the left half of the beam can be approx-
imated by

Pg(left half) =
(

L
4

c̄
)T

(m̃g ū), (27)

where ū is as defined in Eq. 14, and c̄ is the vector which
elements are the Clenshaw-Curtis quadrature weights.
Eq. 27 can be rewritten to
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Pg(left half) = qL
T u, (28)

for the vector qL defined as

qL
def
=

m̃gL
4

[
c̄

0(N̄−1)×1

]
. (29)

Similarly, the gravitational energy of the right half of the
beam can be expressed as

Pg(right half) = qR
T u, (30)

for

qR
def
=

m̃gL
4

[
0(N̄−1)×1

c̄

]
. (31)

The gravitational energy over the entire beam is then given
by adding Eq. 28 and Eq. 30, i.e.

Pg = qL
T u+qR

T u (32)

= (qL +qR)
T u

= qT u,

where

q def
= qL +qR. (33)

5.4 Calculating the Total Potential Energy
The total potential energy is calculated by adding Eq. 25
and Eq. 32. Hence the total potential energy is

P =
1
2

uT Wu+qT u. (34)

5.5 Constraints
The constraints of Eqs. 7-9 are straight forward to convert
to the vector notation used in the numerical calculation.
The constraints become

u[1] = 0, (35)

u[N̄] = up, (36)

u[N] = 0. (37)

The constraint of Eq. 10 must be handled carefully: In
the open intervals

(
−L

2 , 0
)

and
(

0 , L
2

)
, u(x) is described

by the polynomials which interpolates {u[0], . . . ,u[N̄]}
and {u[N̄], . . . ,u[N]}, respectively. Please recall that the
corresponding x-values are Chebyshev-distributed, which
means that the interpolating polynomials are guaranteed
to converge to the true u(x) as N̄ and N− N̄ increase. As
u(x) is described by polynomials in these open intervals,
it meets C∞, and hence also C2, in the intervals.

At the left endpoint, u
(
−L

2

)
and its right-sided limit

will be equal, because the limit is given by a polyno-
mial which interpolates through the point

(
−L

2 , u(−L
2 )
)
.

Hence, u(x) is at least C0 at the left endpoint. As u(x) is
not defined for x <−L

2 , derivatives of any order only ex-
ist on the right side of x = −L

2 , where they are given by
the polynomial interpolation. Hence, u(x) is C∞ at the left
endpoint. A similar reasoning applies for the right end-
point as well, which concludes that also this endpoint is
C∞.

At x = 0, two polynomials that both interpolates
through the point (0 , u(0) ) meet. Hence, u(0) and the
limits from both sides will be equal, which means that
u(x) is C0 at x = 0. However, there is no inherent effect
that forces the two interpolating polynomials to have the
same derivatives at x = 0. This is true for derivatives of
any orders. Therefore, for u(x) to be C2 at x = 0, equal
first- and second derivatives at both sides of x = 0 must be
explicitly enforced as constraints, i.e.

lim
x→0−

∂u
∂x

= lim
x→0+

∂u
∂x

. (38)

lim
x→0−

∂ 2u
∂x2 = lim

x→0+

∂ 2u
∂x2 . (39)

In terms of the discrete-point representation of u(x),
Eq. 38 can be approximated by

D1[N̄, :]u[1 : N̄] = D1[1, :]u[N̄ : N], (40)

where D1 is the Chebyshev first-derivative matrix of di-
mension N̄× N̄. Eq. 40 can be written as

pT u = 0, (41)

where the vector p is defined by

pL
def
=
[
D1[N̄, :] 01×(N̄−1)

]T
, (42)

pR
def
=
[
01×(N̄−1) D1[1, :]

]T
, (43)

p def
= pL−pR. (44)

A similar reasoning for the second derivatives gives
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rT u = 0, (45)

where

rL
def
=
[
D2[N̄, :] 01×(N̄−1)

]T
, (46)

rR
def
=
[
01×(N̄−1) D2[1, :]

]T
, (47)

r def
= rL− rR. (48)

5.6 Minimization subject to Constraints
The total potential energy given by Eq. 34 should be min-
imized w.r.t. u subject to the constraints given in Eqs. 35,
36, 37, 41, and 45. An intuitive approach is to use the five
constraints to eliminate five elements from the vector u,
and then minimize for the remaining N−5 elements of u.
This is indeed a decent and feasible approach. However,
the elimination process will disturb the simple formulation
of Eq. 34 and complicate the solution process somewhat.
From the author’s point of view, implementing the con-
straints using Lagrange multipliers is a simpler and more
elegant approach that does not obscure the formulation of
Eq. 34. Also, the Lagrange multipliers are themselves in-
teresting variables, many with physical interpretations.

The Lagrange function of the constrained optimization
problem is

L(u,λ1,λ2,λ3,λ4,λ5) =
1
2

uT Wu+qT u (49)

−λ1 u[1]
−λ2 (u[N̄]−up)

−λ3 u[N]

−λ4 pT u

−λ5 rT u.

The expression of Eq. 49 is quadratic. Hence, it can be
written on the form

L(v) =
1
2

vT Av+bT v, (50)

where the vector v is the vector u augmented with the five
Lagrange multipliers, i.e.

v def
=



u
λ1
λ2
λ3
λ4
λ5

 ∈ RN+5. (51)

Further, the matrix A of Eq. 50 is the block matrix

Adef
=


W −i1 −iN̄ −iN −p −r
−i1T 0 0 0 0 0
−iN̄

T 0 0 0 0 0
−iNT 0 0 0 0 0
−pT 0 0 0 0 0
−rT 0 0 0 0 0

 (52)

∈ R[(N+5)×(N+5)],

where i j is the jth column of the N×N identity matrix.
The vector b of Eq. 50 is

b def
=



q
0
up
0
0
0

 ∈ RN+5. (53)

The solution of the constrained optimization problem is
the v vector that gives a stationary point to the Lagrange
function. The derivative of the Lagrange function is

dL
dv

= Av+b. (54)

Hence, the solution of the constrained optimization prob-
lem is the solution of the linear system with N + 5 equa-
tions and N +5 unknowns

Av =−b. (55)

6 Results and Interpretations
The numerical calculations derived in this paper, which
are based on the minimum total potential energy princi-
ple, have been compared to the formulas based on force-
and moment balances. The two approaches give identi-
cal results for N̄ ≥ 5, while they differ for lower values
of N̄. This conclusion is to be expected because the force-
and-moment-balances approach gives u(x) as a forth order
polynomial, and it requires five interpolation points from
the numerical calculations to give a forth order polyno-
mial.

Figure 4 presents a comparison of the two approaches
for a steel tube with bending stiffness 124.1 kNm2 and
specific mass 8.257 kg/m. The length between the sup-
ports is 3.000 m and the vertical deflection of the piston
is up = −3.200× 10−2 m. These input values are from a
steel tube tested in the physical bending stiffness rig. The
physical test is presented in Jordal et al. (2017).

The first N elements of the v vector found from Eq. 55
is u, i.e. the nodes shown in Figure 4. The latter five
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Minimum Total Potential Energy
Force- and Moment Balance

Figure 4. Comparison of u(s) found from (i) the minimum to-
tal potential energy principle as derived in this paper, and (ii)
from the approach based on force- and moment balances. The
blue dots represent the values calculated by the former method,
and the blue, solid line represents the polynomial interpolations
between these points. N̄ = 5 is used in the example.

elements of v are the five Lagrange multipliers defined
in Eq. 49. The physical interpretation of each Lagrange
multiplier is the derivative of the total potential energy, P,
w.r.t. the constraint associated with the multiplier. Hence,
λ1 and λ3 are the forces from the left and right beam sup-
ports, respectively, toward the beam, as shown in Figure 2.
Similarly, λ2 is the force from the piston toward the beam,
i.e. the force F in the figure. Multiplier λ4 can be shown
to be the beam’s bending moment at x = 0.

The last multiplier, λ5, expresses the total potential en-
ergy’s sensitivity to discontinuities in the bending curva-
ture at x = 0. To the author’s knowledge, this formulation
does not correspond to a well-known physical variable.
λ5 is a factor 1016 smaller than the other multipliers, mea-
sured in absolute value. Hence, λ5 is assumed to be zero in
the case of infinite arithmetic precision, which means that
the corresponding constraint would have been met even if
it was not enforced.

7 Conclusions and Further Work
The present paper derives numerical calculation of the
beam equation based on the minimum total potential en-
ergy principle under the assumptions of linear material
and small deflections. The calculation gives identical re-
sults as the derivation based on force- and moment bal-
ances which is commonly presented in the literature.

The work presented in this paper is the first milestone
towards the author’s final goal of modeling subsea power
cables and umbilicals during bending stiffness tests. The
future milestones are to include the effects of large deflec-
tions, nonlinear materials, and shear forces between the
cable elements.

It is believed that the minimum total potential energy
principle is more suitable for the future extensions than

force- and moment balances. It is further believed that it
will be impossible to reach an analytical solution of the
overall problem due to its complexity, which is the reason
for using numerical mathematics.
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