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Abstract
The present study conceives a numerical model for phase
change materials following the apparent heat capacity
method where the phase change occurs within a chosen
temperature interval. A multiphysical modeling approach
to satisfy the coupled momentum, energy and continuity
conservation equations whilst avoiding numerical singu-
larities is applied. By means of a 2D test-case geome-
try with variable boundary heating the influence of nat-
ural convection within the melted liquid zone is visual-
ized. Corresponding non-dimensional governing equa-
tions are analysed to quantify the dominant contributing
terms. It turns out that for sufficiently small Grashof num-
ber, or consequently small Rayleigh numbers the influence
of natural convection can be neglected, thus simplyfing the
problem substantially. The modeling approach has been
adapted to a 2D-axisymmetric geometry within the scope
of experimental validation. The simulation results and ex-
perimental data show reasonably good agreement.
The model is numerically stable and suitable to facilitate
design of latent heat storage systems.
Keywords: Phase Change Materials, Fluid Flow, Heat
Transfer, Phase Transition, Natural Convection, Melting,
Latent Heat Storage

1 Introduction
Phase change material (PCM) finds an increasingly wide
range of applications in thermal energy management due
to their energy storage capabilities. The choice of a suit-
able PCM should satisfy physical, technical and economic
requirements. In essence, these consist of materials with
a characteristically large enthalpy of fusion in a temper-
ature range smeared over a phase transition region. In
order to appropriately design latent heat storage applica-
tions using PCMs, it is important to predict the complex
behavior of the materials well enough. In the present
study, a numerical model for implementation in COM-
SOL MultiphysicsTM is conceived. Natural convection is
accounted for by the Boussinesq approximation which al-
lows the fluid to be treated as incompressible for inertial
forces and compressible for buoyancy forces. The cho-
sen material in this study is n-eicosane as specified in ta-
ble 1, whose thermophysical properties come with great
deal of experimental coverage (Muhammad et al., 2015;

Jones et al., 2006; Sparrow and Broadbent, 1982).

2 Physical Model
To model the physical nature of PCMs it is necessary to
consider the disciplines of heat transfer and fluid flow.
The strong coupling occurs due to natural convection and
phase change effects constrained by the PCM container
geometry as illustrated by figure 1.
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Figure 1. Coupled Physics.

The chosen geometry is a 2D square enclosure with 1
cm side-length (H). Figure 2 shows the computational
setup. On the right wall a Dirichlet boundary condition for
three different temperatures is applied: TR = 40/50/70◦C.
The three remaining boundaries represent thermal insula-
tion. Boundaries are also prescribed as no-slip walls wher-
ever applicable.
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Figure 2. Geometry of the 2D model.

The melting process occurs within a time-range of
0 < t < 1000 s for all temperatures.
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NOMENCLATURE

Am mushy zone coefficient kgm−3 s−1

Cp specific heat capacity at con-
stant pressure

Jkg−1 K−1

D Gaussian distribution -
F volumetric force on fluid Nm−3

g gravitational acceleration ms−2

H domain length m
k thermal conductivity Wm−1 K−1

L latent heat / heat of fusion Jkg−1

p pressure Pa
R radius m
r radial coordinate m
T temperature K
∆T phase transition temperature

range
K

Tm melting temperature K
TR wall temperature K
t time s
u velocity ms−1

u0 characteristic velocity ms−1

x x-coordinate m
y y-coordinate m
z z-coordinate m

α thermal diffusivity m2 s−1

β thermal expansion coefficient K−1

ε Carman-Kozeny constant -
µ dynamic viscosity Pas
ν kinematic viscosity m2 s−1

Φv dissipation function s−2

ρ density kgm−3

θ melt fraction -

Br Brinkman number -
Gr Grashof number -
Pr Prandtl number -
Ra Rayleigh number -
Re Reynolds number -

Super- and subscripts

l liquid
re f reference quantity
s solid
∼ dimensionless quantity

Table 1. Properties of n-eicosane

Solid Liquid

ρ 910 769
k 0.423 0.146
Cp 1926 2400
β - 8.161 × 10−4

Tm 36.4 -
L 248000 -

3 Numerical Model
Modeling of phase change phenomena can be achieved
by splitting the computation domain Ω into a subdomain
for the solid fraction and a subdomain for the liquid frac-
tion. A major numerical drawback hereof is the difficulty
of tracking the solid/liquid interface which require deli-
cate adaptive meshing methods to guarantee both conver-
gence and reasonable representation of the physical pro-
cesses (Lewis et al., 2004). The predominant state-of-art
approach for the modeling of phase change materials is
based on enthalphy methods, i.e. the enthalphy-porosity
formulation (Dutil et al., 2011). The enthalphy-porosity
formulation requires only one mathematical model. By
means of temperature-dependent material laws the mate-
rial is considered both as solid and liquid while the phase
transition region is denoted as mushy region.

3.1 Material description
The enthalpy-porosity method bases all material proper-
ties such as melt fraction, heat capacity, density and ther-
mal conductivity to the current temperature T of the ma-
terial. The enthalpy-porosity formulation quantifies the
melt fraction θ(T ) in terms of a temperature-dependent
ramp function from 0 to 1 over a chosen phase transition
temperature interval ∆T . It is centered around the melting
threshold temperature Tm (Kheirabadi and Groulx, 2015)
as,

θ(T )=


0, for T < Tm −∆T/2
T−(Tm−∆T/2)

∆T , for Tm −∆T/2 < T < Tm +∆T/2
1, for T > Tm +∆T/2.

(1)
A graphical representation of the melt fraction function

is shown in figure 3a. To account for the contribution of
latent heat over the phase transition region, a Gaussian dis-
tribution function D(T ) ensures energy conservation over
the chosen temperature interval as illustrated in figure 3b.
D(T ) is given by,

D(T ) =
e
− (T−Tm)2

(∆T/4)2√
π(∆T/4)2

. (2)

The definitions according to equation (1) and (2) allow
the modification of the heat capacity Cp of the PCM as,

Cp(T ) =Cp,s +θ(T )(Cp,l −Cp,s)+D(T )L. (3)

Note that, the heat capacity increases notably in the
mushy region due to the latent heat contribution as seen
in figure 3c. Temperature-dependent thermal conductivity
and density are defined analogously like the heat capacity
without latent heat contribution term.
In numerical point of view, the choice of the temperature
transition range ∆T requires careful consideration. The
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sharp gradients of the modified heat capacity may lead
to convergence issues if ∆T is small (i.e. ∼ 0.1 K) and
the mesh resolution at the interface does not cover the im-
posed range. A small ∆T means greater accuracy com-
ing with greater computational effort. A qualitative ini-
tial choice in the range of 5 K may be used (Murray and
Groulx, 2011). A reasonable trade-off between accuracy
and computational effort in the test-cases of the present
study is the chosen value of 2 K. The work is carried
out with the commercial tool COMSOL MultiphysicsTM

which offers a suitable user-input environment for imple-
menting the enthalpy-porosity method.

3.2 Governing Equations
The governing equations to describe the physics include
the laminar Navier-Stokes equations, the continuity equa-
tion and the energy conservation equation. Here the set of
equations for a successful implementation in COMSOL
MultiphysicsTM is presented.

3.2.1 Continuity equation
The continuity equation assuming constant density is de-
fined as follows

∇ ·uuu = 0. (4)

3.2.2 Momentum equation
The incompressible momentum equation assumes con-
stant density yielding

ρ
∂uuu
∂ t

+ρ(uuu ·∇)uuu =−∇p+∇ · (µ(T )∇uuu)+S(T )uuu+FFF ,

(5)
where S(T )uuu is an additional modeling term to account

for the flow within the mushy zone. Its component S(T )
is described by the Carman-Kozeny equation as

S(T ) = Am
(1−θ(T ))2

θ(T )3 + ε
, (6)

with the modeling constants Am = 106 kgm−3 s−1 and
ε = 10−3 (Samara et al., 2012; Kheirabadi and Groulx,
2015). The function S(T ) forms a sink-term in the mo-
mentum equation. For the solid fraction, the momentum
equation (5) shall return the trivial uuu = 0 solution to en-
sure immobility. As illustrated in figure 3d, the S(T )
affects the solid fraction as well as the solid-dominated
part of the mushy zone (T < Tm). The modeling term
S(T ) overrides every other terms in the momentum equa-
tion in the solid region. To achieve convergence in the
model, however, it is recommended to additionally modify
the viscosity (Kheirabadi and Groulx, 2015) in COMSOL
MultiphysicsTM as below

µ(T ) = µl(1+S(T )), (7)

with the empirical viscosity-temperature relation
(Muhammad et al., 2015) for n-eicosane,

µl = (9×10−4T 2 −0.6529T +119.94)×10−3. (8)

where T is given in [K] and the dynamic viscosity µl in
[Pa s]. Consequently the dissipation term in the momen-
tum equation overrides the other terms within the solid
regime. That way it is guaranteed that flow is induced only
in the liquid fraction within the computational domain de-
spite of solving the momentum equation for both solid and
liquid fraction.
The force term accounting for gravity and natural convec-
tion is given by the Boussinesq approximation. This is
implemented as (Bird et al., 2007),

FFF = ρl(1−β (T −Tm))ggg. (9)

3.2.3 Energy equation
The energy equation in terms of the temperature distribu-
tion T is defined by

ρ(T )Cp(T )
∂T
∂ t

+ρ(T )Cp(T )uuu ·∇T = ∇ · (k(T )∇T ).
(10)

3.3 Mesh
The mesh for the test-case geometry is a mapped mesh
with 40000 quadrilateral elements. The mesh is strategi-
cally refined towards the heated right boundary and on the
top boundary to tackle potential complications with no-
slip walls during early stages of melting when the veloci-
tites within the fluid fraction are close to zero.

On a high-performance cluster with 16 CPUs and 94
GB RAM the computational runtime amounts to approxi-
mately 7.5 hours for a simulation time of t = 1000s. To en-
sure convergence it is recommended to use a fully coupled
direct solver configured for the Newton nonlinear method.

4 Results
The results for all test cases are summarized in figure 4. It
appears that the melt fraction has a strong dependence on
temperature, indicating that the natural convection plays
an important role. To quantify the importance of natu-
ral convection the non-dimensional forms of the govern-
ing equations for non-isothermal flow are investigated. A
temperature-independent liquid viscosity of µl = 0.008
Pas (Kheirabadi and Groulx, 2015) in the simulation and
the following non-dimensional variables are used (Bird
et al., 2007)

x̃ =
x
H

ỹ =
y
H

p̃ =
p− pre f

ρu02

t̃ =
u0t
H

ũuu =
uuu
u0

T̃ =
T −Tre f

TR −Tre f

Φ̃v =

(
H
u0

)2

Φv ∇̃ = H∇
D
Dt̃

=

(
H
u0

)
D
Dt

.
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(a) Melt fraction function θ(T ), implemented as piecewise
function.
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0e
+

00
4e

+
08

8e
+

08

Temperature T [°C]

C
ar

m
an

−
K

oz
en

y 
F

un
ct

io
n 

S
(T

)

Mushy Zone

35.4 36.4 37.4

Tm

Tm + 
1

2
 ∆T

Tm − 
1

2
 ∆T

(d) Carman-Kozeny function to model the sink-term and vis-
cosity of the solid fraction.

Figure 3. Temperature-dependent modeling functions as presented by (Kheirabadi and Groulx, 2015) for the chosen PCM n-
eicosane.
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with u0 = ν/H being the characteristic velocity. Thus
the continuity equation yields

∇̃ · ũ̃ũu = 0.

The momentum equation is expressed in terms of the
total derivative and contains two dimensionless groups

Dũ̃ũu
Dt̃

=− ∇̃p̃+
[

µ

u0ρH

]
∇̃

2ũuu

−
[

gβ (TR −Tm)H
u02

](
ggg
g

)
(T̃ − T̃m),

whereas the energy equation features a dissipation term
and writes

DT̃
Dt̃

=

[
k

u0ρHCp

]
∇̃

2T̃ +

[
µu0

ρHCp(TR −Tm)

]
Φ̃v.

The values of the four dimensionless groups for the
present test-case are summarized in table 2 with the fol-
lowing relevant dimensionless numbers

Brinkman Br =
µu0

2

k∆T
,

Grashof Gr =
gβ∆T H3

ν2 ,

Prandtl Pr =
ν

α
,

Rayleigh Ra =
gβ∆T H3

αν
= GrPr,

Reynolds Re =
ρu0H

µ
.

As can be seen from the evaluation the sharpest increase
with temperature is the buoyancy term in the momentum
equation. Comparing with the simulation results in fig-
ure 4, it is safe to assume that natural convection can be ne-
glected for Gr/Re2 < 266 which reduces the model com-
plexity substantially as the energy equation alone is suf-
ficient to investigate the phase change without CFD cou-
pling.

4.1 Validation
The implemented model is validated using experimental
data of (Jones et al., 2006). Their experimental setup with
n-eicosane in a cylindrical enclosure as illustrated in fig-
ure 5 with the wall temperature TR = 45 ◦C and simulation
time t = 18000 s. Additionally we set a subcooling wall
at the bottom with TB = 32 ◦C with the effect that a part of
the enclosure shall remain solid according to (Jones et al.,
2006).

z

r

!" = 45 °C

n-eicosane

$ = 59.8 mm

%" = 63.8 mm

!& = 32 °C

Figure 5. 2D axisymmetric geometry for experimental valida-
tion

The computational cost on the same high-performance
cluster increases for the validation case to approximately
25 hours.

Figure 6. Melt fraction at t = 6964 s with temperature labels.

The evolution of the melting front show reasonably
good agreement with the experimental results as shown
in figure 7.

4.2 Discussion
The dimensionless estimation of the terms as indicated in
table 2 can be of useful guidance when setting up a phase
change related model. In fact, for low Gr and Ra numbers,
the model might deliver acceptable results solving the en-
ergy equation only. Low Gr and Ra numbers are achieved
when the temperature difference TR − Tm has approxi-
mately the same order of magnitude as the phase tran-
sition temperature range ∆T . The analysis with dimen-
sionless numbers presented here targets the liquid fraction
only. Within the mushy zone a different behavior can be
expected, i.e. the dissipation term in the energy equation
will override the other terms due to a sharp increase in vis-
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Table 2. Dimensionless groups in non-isothermal flow equations

Dimensionless group TR

40 ◦C 55 ◦C 70 ◦C[
µ

u0ρH

]
=

1
Re

1 1 1

[
gβ (TR −Tm)H

u02

]
=

Gr
Re2 =

Ra
PrRe2 266 1376 2486

[
k

u0ρHCp

]
=

1
RePr

0.008 0.008 0.008

[
µu0

ρHCp(TR −Tm)

]
=

Br
RePr

1.25 × 10−10 2.42 × 10−11 1.34 × 10−11

cosity due to the Carman-Kozeny porosity function S(T )
as seen in equation (7).

Nonetheless, the modeling approach can seamlessly be
adapted to other materials. The validation case shows rea-
sonably good agreement between simulation and experi-
mental results. The deviations can be explained by uncer-
tainties in the retrieval of experimental data (Jones et al.,
2006) and in the choice of modeling parameters, e.g. ∆T .
Smearing out the phase transition over a temperature range
∆T is questionable in terms of physical accuracy as its pur-
pose and necessity is the handling of numerical singular-
ities. Further points to consider for model improvement
include

• mesh independence study

• quantification of viscous dissipation in the mushy
zone

• volumetric expansion during melting

• aging of the material.

5 Conclusion
This work provides a modeling guideline for computing
phase change phenomena on a stationary grid, coupling
heat transfer and fluid dynamics. From the results it can
be seen that the increasing influence of natural convection
also increases to the amount of molten material. While the
dimensionless estimation delivers reliable reference val-
ues for an estimation, the simulation provides visuals to
spot further design improvements. Of particular interest
are the local (grid) Gr resp. Ra numbers which indicate
the exact region of influence within the geometry.

The presented model for the implementation of phase
change phenomena in COMSOL MultiphysicsTM is nu-
merically stable and physically accurate enough to facili-
tate the design of latent heat storage systems.
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Figure 4. Simulation result of the grid Grashof number with white isoline tracking the melting front. As expected from the
computed values in table 2, Gr increases strongly with temperature. Due to the constant viscosity µl and thermal diffusivity α

the Gr number is directly linked to Rayleigh number by a scaling factor of 1/Pr = αρl/µl . Thus, values of Gr can be used as
reference to measure the intensity of buoyancy resp. driving force of natural convection. The simulation results visualize the main
regions of influence of the convective flow; for TR = 40 ◦C the front moves parallel away from the heated boundary insinuating no
contribution from the momentum equation. On the other extreme, the TR = 70 ◦C case clearly shows how the phase interface bends
under influence of convection.
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Figure 7. Comparison of simulation results with experimental data (Jones et al., 2006).
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