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Abstract
This work presents a numerical analysis of a planar mo-
ving shock wave with Mach number Ms = 1.3, travel-
ling through a square cavity geometry with rigid boun-
daries. A high-order artificial viscosity based Disconti-
nuous Spectral Element Method (DSEM) is used for this
purpose. The explicit numerical scheme utilizes entropy
generation based transport coefficients to solve the conser-
vative form of the viscous compressible fluid flow equati-
ons. Numerical prediction of the shock propagation and
diffraction is found to be in excellent agreement with the
experimental results of the literature. The stable numerical
scheme resolves the detail of the complex flow dynamics
for varying reference Reynolds number (Ref). The range
of values of the artificial coefficients and the relative con-
tribution of the components of the artificial energy dissipa-
tion rate are investigated and compared for different cases.
Artificial energy dissipation is less for low Ref. The dila-
tational dissipation dominates over other components till
the incident shock wave resides in the flow domain.
Keywords: shock propagation, shock diffraction, shock re-
flection, DSEM, artificial viscosity

1 Introduction
Shock/Blast wave mitigation is an important research
domain for disaster management. Shock wave propa-
gation through solid structures are associated with com-
plex shock-shock/shock-vortex/shock-boundary layer in-
teractions. Understanding the fundamental features of
shock wave propagation and diffraction is important for
design of suitable mechanism for shock wave/ blast wave
attenuation. Attenuation can be achieved by various me-
ans, e.g. utilising solid obstacles, foams, textiles, porous
materials, granular filters, metallic grids, perforated pla-
tes, branched/bend duct, duct with rough walls, etc. Inves-
tigation related to shock/blast wave interaction with vari-
ous configurations is consequently remaining as an active
research field.

Apart from the experimental measurements, numerical
approach can predict much more detailed flow evolution
of such applications. Igra et al. summarizes both expe-
rimental and numerical works for many of these approa-
ches (Igra et al., 2013). A detailed computational study
of shock wave attenuation through solid obstacles are pre-
sented in (Chaudhuri et al., 2013). Application of abrupt
changes in tunnel geometry is shown in (Igra et al., 1996,

1998, 2001). Most of the numerical simulations of shock
diffraction problems of literature relied on inviscid simu-
lations. However, viscous interactions become significant
for shock-boundary layer/boundary layer-shear layer inte-
ractions and for long term shock-vortex dynamics. For ex-
ample, the classical shock diffraction over 90◦ sharp cor-
ner requires the consideration of no-slip walls in numeri-
cal approach to predict the secondary vortex and long-time
evolution of flow dynamics (Sun and Takayama, 2003;
Skews et al., 2012; Law et al., 2014; Chaudhuri and Ja-
cobs, 2017).

It is desirable to use high-order numerical schemes to-
gether with stable shock capturing property to resolve
the shocked flow dynamics. Numerical studies exploiting
high-order schemes successfully reveal the general wave
characteristics and complex flow dynamics of various phe-
nomena associated with shock wave interaction with rigid
bodies/boundaries like shock diffraction, reflection, focu-
sing etc. (Chaudhuri et al., 2012; Glazer et al., 2011; Shad-
loo et al., 2014; Soni et al., 2017). The present work is
aimed to perform viscous simulations and detailed analy-
sis of shock propagation through the cavity like geome-
tries/bend duct with cavities. A numerical analysis of a
planar shock (Ms = 1.3) travelling through a two dimen-
sional square cavity is carried out. A high-order artificial
viscosity based DSEM is used for this purpose (Chaudhuri
et al., 2017). A particular focus on the estimation of en-
tropy generation based artificial viscosity coefficients and
artificial viscous energy dissipation for various flow Rey-
nolds number has been made.

The paper is organized as follows. A brief description
of the governing equations is given in section 2. The over-
all numerical approach is presented in section 3. In section
4, the problem setup for the present study is illustrated.
Comparison of the findings with experimental results and
flow analysis are discussed in section 5. Finally, conclusi-
ons are drawn in section 6.

2 Governing equations
Shock wave propagation through a gaseous medium is go-
verned by the compressible Navier-Stokes (NS) system of
equations. The non-dimensional form of the governing
equations with artificial transfer coefficients is given by,

∂Q
∂ t

+∇ ·F a(Q)− 1
Ref

∇ ·F v(Q) = 0, (1)
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and

Q =

 ρ

ρv
ρEt

 , F a(Q) =

 ρv
ρvv+ pδ

(ρEt + pδ )v

 ,

F v(Q) =

 0
τ

τv+ κeff
(γ−1)M2

f Prf
∇T

 ,

where Q is the conservative solution vector, F a and F v

are the inviscid and viscous flux respectively. ρ is the den-
sity, v is the velocity vector, and Et is the total internal
energy. p is the static pressure and T is the temperature. γ

is the ratio of specific heats. δ is the Kronecker delta ten-
sor. Here, Mf,Ref and Prf are the reference Mach number,
Reynolds number, and Prandtl number, respectively.

Assuming Stokes’ hypothesis with zero bulk visco-
sity the viscous shear stress tensor can be written as,

τ = 2µeffS−
2
3

µeff(∇ ·v)δ , where µeff = µhRef +µ is the

effective dynamic viscosity and S =
1
2
[
(∇v)T +∇v

]
is

the symmetric part of the velocity gradient tensor. The
superscript “T” designate a transpose. Similarly, κeff =
κhRef +κ is the effective thermal conductivity. Note that,
µh and κh are yet to be determined artificial transfer coef-
ficients. For NS system of equations µ = κ = 1. In this
study, γ=1.4, Mf = 1 and Prf = 0.72 are prescribed. The
ideal gas equation of state, p = ρT/(γM2

f ), closes Eqn. 1.

3 Numerical approach
The staggered Chebyshev collocation method is used to
approximate the compressible NS system of equations
with explicit time marching algorithms. In the nodal col-
location formulation of the DSEM, the physical domain
is subdivided with hexahedral physical elements. Each
physical element is then mapped to a unit cubic compu-
tational element in the computational domain by an iso-
parametric transformation.The solution vector is colloca-
ted at the Chebyshev-Gauss quadrature points while the
fluxes are collocated at the Chebyshev-Lobatto quadrature
points. The detail of the discretization procedure can be
found in (Kopriva, 1998; Jacobs et al., 2005).

The numerical scheme utilizes entropy generation ba-
sed artificial transport coefficients to address Gibb’s oscil-
lation. Artificial viscosity coefficients are scaled with vis-
cous and thermal entropy generation terms of the entropy
transport equation. A shock sensor based switch is used to
optimize the artificial coefficients. Also, the upper bound
of artificial coefficients ensures that the inviscid time step
remains smaller than the viscous time step. The basic idea
of an artificial viscosity method is to explicitly add even-
order dissipation term to stabilize the scheme. However,
artificial viscosity methods require arbitrary model con-
stants as flow-dependent tuning parameters for the opti-
mal solution. A brief description of the method of cal-
culation of the artificial viscosity coefficients is presented

here again for better clarity. The artificial momentum and
thermal conductivity are linked with the viscous and con-
ductive, entropy generating terms Φ and Γ respectively. In
non dimensional form this yields the following expression
for the artificial viscosity coefficients: (Spurk and Aksel,
2008)

µh =Cµ

ρ(∆h)2

||ρ s−ρ s||∞

[
Φ

T

]
, (2)

and

κh =Cκ

ρ(∆h)2

||ρ s−ρ s||∞

[
1

Prf,(γ−1)M2
f

Γ

T

]
, (3)

where Cµ and Cκ are model parameters, ∆h is the mesh

size, ρ s =
ρ

γ(γ−1)M2
f

ln
(

p
ργ

)
and ρ s is the spatial

average of ρ s. Here ||ρ s−ρ s||∞ is the globally computed
supremum based on the global average entropy. The arti-
ficial viscosity coefficients defined above ensure the posi-
tivity (thus dissipative behavior) and µh and κh scale with
the grid spacing and vanish as ∆h→ 0.

A shock sensor θ (Ducros et al., 1999) is used to con-
trol the artificial viscosity coefficients as µhθH (−∇ ·v),
and κhθ . This in turn reduces the dissipation in rotation-
dominated regions. The purpose of the Heaviside function
H (−∇ ·v) is to ensure that the dissipation is small in regi-
ons of isentropic expansion fans and contact discontinui-
ties. The coefficients are controlled so that the inviscid
time step ∆tinv =CFLinv∆h/(|v|+

√
T ), is smaller than the

viscous time step. Here, CFLinv is the corresponding CFL
number for the inviscid time step. The upper limit of the
artificial coefficient becomes µh,m = Cmρ∆h(|v|+

√
T ),

where Cm ∝ CFLvis/CFLinv represents another model pa-
rameter for the upper bound of µh. Note that, κh is also
bounded by the µh,m. The complete description of the
scheme is reported in (Chaudhuri et al., 2017).

4 Problem setup
The geometry of the cavity flow configuration is taken si-
milar to that presented in the experimental and the invis-

-Ms

state (1)state (2)

Figure 1. Schematic description of the cavity.
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Figure 2. Density contours for Ref = 106, top left: t = 1.0, top right: t = 1.5, bottom left: t = 2.0, and bottom right: t = 2.5.

cid study of (Igra et al., 1996). Figure 1 shows the se-
tup for the non-dimensional physical domain in the two-
dimensional (2D) x− y plane. A shock wave with a Mach
number Ms = 1.3 is allowed to pass through the cavity ge-
ometry. The initial shock location is at xs = 0.8 and the
conditions are prescribed using the Rankine-Hugoniot re-
lations for stagnant state (1) and shocked gas state (2). The
left and right boundaries are set by the initial states. The
other boundaries (top and bottom) are assigned with no-
slip wall conditions. The reference state φf, is taken as
the stagnant state conditions φ1, to satisfy Mf = 1 and the
reference length is taken as the height of the shock-tube
of the experiment (Igra et al., 1996) Lf = 60mm. 50,000
P3 (fourth order) elements with a total of 0.8× 106 de-
grees of freedom are considered in the domain. In the pre-
sent study, the value of the CFL number is taken as 0.9
and the model constants for artificial viscosity are set as:
(Cµ ,Cκ ,Cm) = (0.5,0.25,0.15) like our previous studies.
A very weak filter is used, filter order of 64 (Chaudhuri
et al., 2017) to enhance the stability of the method. The si-
mulations are performed on Supermicro X9DRT compute
nodes (dual Intel E5-2670). A typical test case utilizes 12
nodes consuming about 860 CPU hours.

5 Results and Discussion
In subsection 5.1, first a discussion the flow evolution
associated with the shock propagation and diffraction
through the cavity geometry will be given. The analysis
of artificial viscosity based DSEM methodology in light
of the artificial dissipation will be given in the following
subsection 5.2. Simulations are carried out with varying
Ref, namely 106, 105, and 104. The same mesh in all ca-
ses has been used.

5.1 General flow evolution

Figure 2 shows the density contours for Ref = 106 at diffe-
rent time instants. The incident shock (IS) is first gets dif-
fracted in the left corner of the cavity. Subsequently, the
corner primary vortex and shear layer instability evolves
while incident shock propagates further downstream. The
primary vortex grows and moves away from the corner of
the cavity. The secondary vortices arising due to viscous
effects on the no-slip wall, interact with shear layer and
influence in the evolution of the unstable shear layer. This
secondary vortex interaction is similar in nature to those
reported for classical Ms = 1.5 flow over 90◦ diffraction
corner, see e.g. (Sun and Takayama, 2003; Skews et al.,
2012; Law et al., 2014; Chaudhuri and Jacobs, 2017). The
incident shock further gets diffracted in the right corner of
the cavity and produces the reflected wave which rebounds
back and forth in the cavity section and intensely perturbs
the growing primary vortex and the shear layer. Several
transverse waves arise from the multiple reflections/dif-
fractions within the cavity and the top wall of the flow
configuration. The incident shock leaves the domain at
t ≈ 2.1. Note that, the present viscous simulations capture
the viscous effects of no-slip boundary interaction, toget-
her with the complex shock dynamics. To resolve these,
refined elements are generated using standard stretching
functions (Chung, 2010) near the wall regions. Artificial
viscosity based DSEM scheme is capable of resolving all
the features of the complex flow dynamics.

Figure 3a shows the evolution of the pressure profile al-
ong the flow direction at y= 0.5. The initial pressure jump
associated with Ms = 1.3 is P2/P1 = 1.805. Incident shock
propagates with inviscid speed while leaving the domain
boundary with a little lower intensity of P/P1 ≈ 1.68. The
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Figure 3. (a): Pressure evolution for Ref = 106 at y = 0.5, (b) and (c): probe signals for different cases.

(Igra et al., 1996)

at 340 µs

Ref = 106 Ref = 105 Ref = 104

Figure 4. Comparison of experimental Shadowgraph (Igra et al., 1996) with numerical Schlieren at t = 1.9.

propagation and diffraction through the cavity geometry
exhibit an attenuation effect. Flow quantities are recorded
at a probe location situated at the middle of the bottom
wall of the cavity. Figures 3b and 3c show the pressure
and density evolution at this probe location. The signa-
ture of the reflected waves passing through this probe is
clearly seen in this figure. The signals show the incident
shock and several reflected shocks (RS’s).The RS1 from
the right wall of the cavity bounces between the cavity
walls and produces the subsequent RS’s. The pressure
peaks agree very well with the experimental and the in-
viscid numerical work of (Igra et al., 1996; Igra and Igra,
2016). Note that, this shock dynamics remains essentially
similar irrespective of the Ref. This is expected, as the
shock dynamics is very fast compare to the slow viscous
effects. Only little variations are observed once the inci-
dent shock is out of the domain. The overall shock dyna-
mics are found to be in excellent agreement with the expe-
rimental (Igra et al., 1996) results (see Figure 4). Based on
reference length Lf = 60mm, the Ref for the experimental
setup of (Igra et al., 1996) lies in the range of 106. Fi-
gure 4 clearly depicts that the experimental shadowgraph
is essentially similar to the numerical Schlieren pictures.
The resemblance is most for Ref = 106. For lower Ref
viscous effects stabilize the shear layer and the secondary
vortex interaction is less dramatic compared to the cases
with higher Ref. Evidently, the shock structures are much
thicker for Ref = 104.

5.2 Artificial dissipation of DSEM
In the artificial viscosity based DSEM formulation µh and
κh are calculated explicitly (see section 3). These are de-
signed to achieve optimal dissipation in shock dominated
regions of the flow-field by the use of a shock sensor and
the Heaviside function (see section 3). Figure 5 shows

that the range of values of µh (see left column) remains
similar in all cases. The contribution of µh and κh pre-
dominantly lie in the regions with shocks/shocklets. The
contours are in accordance with the shock structure of the
flow-field. For higher Ref, one can notice shock thicknes-
ses are much less (in accordance with Figure 4). The
contours of the local mesh Reynolds number, Reh (de-
fined as Reh = ∆h|v|ρ Ref) are also shown in Figure 5.
Note that, here the mesh remains the same for three ca-
ses. These contours look very similar in nature with ex-
pected difference in order of magnitude. For Ref = 106,
the Reh . 2800, for Ref = 105, the Reh . 280 and for
Ref = 104, the Reh . 26. As mentioned in (Chaudhuri
et al., 2017; Chaudhuri and Jacobs, 2017), the inverse of
the µh is a measure of the local effective Reynolds num-
ber. In previous studies, it is observed that, for high Ref
the maximum of the added artificial viscosity lies in the
order of the inverse of the local Reh. This is being illus-
trated in the contours of µhReh in Figure 5. For cases with
lower Ref the maximum of the µhReh gets reduced. This
clearly depicts the fact that the added dissipation is opti-
mal in all cases. The relative contribution of artificial dis-
sipation is less for low Ref. Note that the range of values
of κh always remains smaller than µh (not shown). The
artificial viscosity based DSEM is thus capable of adding
a controllable amount of dissipation for capturing shocks
and yields stable solutions.

A further investigatation of the components of the arti-
ficial energy dissipation rate associated with the transport
equation of the instantaneous kinetic energy. The energy
dissipation rate E associated with µh consists of rotatio-
nal Er, non-homogeneous Enh and dilatation dissipations
Ed as:

E = Er +Enh +Ed. (4)
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Figure 5. Contours of µh, Reh and µhReh at t = 2, top row: Ref = 104, middle row: Ref = 105 and bottom row: Ref = 106.
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Figure 6. Components of the artificial energy dissipation rate.

where, Er = µhΩ, Enh = 2µh
[
(∇v)T∇v− (∇ ·v)2], and

Ed =
4
3 µh(∇ ·v)2. Here, Ω is the enstrophy. Figure 6 shows

the area-weighted (entire domain) dissipation rates as a
function of time. For any property φ , the area weighting
is defined as 〈φ〉=

∫
φdA∫
dA . It can be seen that 〈E 〉 is lower

for lower Ref. Each contributing term follows the same
behavior. Clearly, the dominant contributing term for total
kinetic energy dissipation rate is Ed till the incident shock
remains in the flow domain i.e., t . 2.1. Evidently, the
component terms become comparable for t > 2.1 (see Fi-
gure 7 for different Ref). One can notice that the, 〈Enh〉
becomes significant in all cases ≈ 30%−50%. On the ot-
her hand, Er remains . 20% in all cases. Note that, the va-
lues of 〈E 〉 remain typically two-order of magnitude lower
than the pressure dilatational term as found in (Chaudhuri
and Jacobs, 2017).

6 Conclusions
In this work a study of shock propagation and diffraction
of a planar shock (Ms = 1.3) travelling through a square
cavity is performed. The geometry is taken similar to a

previous literature. An artificial viscosity based DSEM is
used for this purpose. The findings can be summarized as:

• The study with 50,000 P3 (fourth order) elements
resolved all flow features well. The results are in ex-
cellent agreement with experimental results of lite-
rature. Accounting the viscous effects, the boundary
and shear layer interaction with shock wave is well
predicted by the present simulations. The pressure
signal at the mid location of the bottom wall of the
cavity shows multiple shock reflections on the cavity
walls. The signals are similar irrespective of Ref.
The pressure peaks agree very well with (Igra et al.,
1996) and the recent work (Igra and Igra, 2016).

• Estimation of artificial viscosity coefficients for vari-
ous Ref reveals the consistency of the entropy gene-
ration based formulation. The time evolutions of area
weighted average quantities of the components of the
artificial energy dissipation rate are in accordance of
the shocked flow physics.

Dissipations dictated by entropy generation in the pre-
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Figure 7. Normalized components of the artificial energy dissipation rate, left: Ref = 106, middle: Ref = 105, right: Ref = 104.

sent artificial viscosity based methodology in a way ac-
count the effects of turbulence models. In the future, stu-
dies with 3D Large eddy simulations will be performed for
further, deeper analysis related to the role of the artificial
viscosity coefficients.
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