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Abstract
This study conceives a FVM-based model for ioniza-
tion processes coupling the incompressible Navier-Stokes
equations to Maxwell’s equations adjusted for electrostat-
ics. Modeling instructions for the opensource tool Open-
FOAM™ are presented within the scope of defining a cus-
tomized solver which calculates the distortion of electrical
current by an external fluid flow.
By means of a simplified test-case the neglegibile im-
pact of external convection on the distribution of space
charge for many engineering applications is confirmed
while pointing out the limitations of negligible convec-
tion. The study shows that peak velocities beyond 100
ms−1 within the flow field might have an impact on the
current distribution, thus requiring careful evaluation of
the modeling assumptions.
The approach described in the modeling guide proves to
be numerically stable. The results for the electric field
distribution have been analytically verified.
Keywords: Corona Discharge, Fluid Flow, Electrodynam-
ics, Space Charge Density, Convection

1 Introduction
Corona discharge describes the effect where a non-
conducting gaseous carrier such as air is ionized in prox-
imity of an electrode with strong electrical field. On
molecular level the air molecule receives electrons from
the electrode (negative polarity) or loses electrons to
the electrode (positive polarity). In either case the ion-
ized molecule is accelerated away from the electrode to-
wards the grounded electrode. The sum of all ionized
molecules traveling approximately on electric field lines
are described as a continuum and as such it is subject to
macroscopic transport phenomena. Ionization processes
are widely used i.e. to reduce the environmental impact
of combustion-based pollution. To assist the design of
such applications numerical models prove to be a cost-
effective and powerful tool. Among numerous considera-
tions for the numerical modeling of Corona discharge and
ionization processes as such, the assumption of negligible
external convection is prevalent. This study tackles the
widespread convention of excluding convection by means
of a geometrically simplified test-case run by a customized
solver which includes fluid dynamics and electrostatics in
a coupled way.

NOMENCLATURE

b ion mobility m2 V−1 s−1

E0 Corona onset field strength Vm−1

Ê dimensionless electric field -
fr fatigue factor -
g gravitational acceleration ms−2

I electric current per unit length Am−1

Î dimensionless electric current -
j current density Am−2

ms relative gas density -
r radius m
r1 charging electrode radius m
r2 ground electrode radius m
p pressure Pa
p0 standard pressure Pa
T0 standard temperature K
u fluid velocity field ms−1

ur radial fluid velocity ms−1

V volumetric flow per unit length m2 s−1

V̂ dimensionless volumetric flow -

δ boundary cell layer height m
ε0 vacuum permittivity Fm−1

εr relative permittivity -
ν kinematic viscosity m2 s−1

φ electric potential kV
ρel space charge density Cm−3

https://doi.org/10.3384/ecp18153126 126 Proceedings of The 59th Conference on Simulation 
and Modelling (SIMS 59), 26-28 September 2018, 

Oslo Metropolitan University, Norway



2 Physical Model
The physical nature of electrical charge in a gaseous en-
vironment is best explained by electrostatic precipitation -
a widely used application area for the control of airborne
particle emissions. In practice, a high-voltage electrode
(typically 10-50 kV) is immersed in exhaust gases from
i.e. cement plants. By ionizing the surrounding air, soot
particles are being electrically charged and accelerated out
of the main exhaust gas flow. Thus, cleaning the gas from
toxic components. Figure 1 illustrates the multiphysical
coupling of such systems.
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Figure 1. Multiphysics coupling of electrostatic precipiators
(Rubinetti et al., 2017)

In this study the interdependence of flow field and elec-
tric field is studied. The production and acceleration of air
molecules leads to a strong influence of the electric field
onto the flow field via Corona wind. Hereby, an initially
stagnating fluid (u = 0 m/s) undergoes an acceleration it-
self. The reverse effect, when the flow field distorts the
propagation of ions, is often neglected due to its assumed
weak influence (Rubinetti et al., 2015). As a characteris-
tic scale on molecular level it can be stated that ions move
with a velocity of ∼1000 ms−1 on electric field lines while
the surrounding fluid in most applications has a signifi-
cantly lower characteristic velocity.

The study is carried out with two coaxially arranged
cylinders of r1 = 0.002 m and r2 = 0.2 m as shown in fig-
ure 2. Hereby the inner cylinder represents the wire as the
charging electrode and the outer cylinder is the grounded
electrode. The coaxial geometry is reduced to a quarter of
a cylinder slice with one mesh cell in axial direction, thus
scaling the problem from 3D to 2D suppressing alterations
in axial direction.

Table 1 lists the assumptions and definitions used in the
study. In this theoretical case the charging electrode ∂Ω1
is assumed to carry a given space charge density for the
electrostatic part and simultaneously act as inlet for the
fluid flow part with a velocity of w = 100 ms−1 radially
distributed.
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Figure 2. Simplified coaxial geometry

The Corona onset field strength in [Vm−1] is given by
the empirical correlation (White, 1963)

E0 = 3×106 fr

(
ms +0.03

√
ms

r1/1[m]

)
(1)

with the fatigue factor fr being a measure for the usage
of the electrode ( fr = 0.6 for practical use, fr = 1 for a new
electrode). The relative gas density takes into account the
surrounding fluid, which, at standard conditions (T0, p0)
has the value of ms = 1.

3 Numerical Model
The numerical model considers the incompressible
Navier-Stokes equations and Maxwells equations for elec-
trostatic applications without magnetic influence. A mod-
elling approach for the definition of a customized solver
for OpenFOAM® is given.

3.1 Governing equations
For the fluid flow part the continuity equation yields

∇ ·uuu = 0 (2)

while the incompressible Navier-Stokes equation writes

∂uuu
∂ t

+(uuu ·∇)uuu−ν∇
2uuu =− 1

ρ
∇p+ggg. (3)

As for the electrostatics part, neglecting magnetic in-
fluences in Maxwells equations, the electric field can be
expressed in terms of the gradient of the electric potential

EEE =−∇φ (4)

which leads us to the Poisson equation for electric po-
tential with a source term including the space charge den-
sity ρel

∇
2
φ =−ρel

ε0
. (5)

Equations (4) and (5) are subject to the conservation of
electrical chargs such that



Table 1. Definition of model parameters

Charging Electrode Grounded Electrode Domain
∂Ω1 ∂Ω2 Ω

Radius r [m] 0.002 0.2
Electric potential φ [kV] 50 0
Space charge density ρel [Cm−3] 0.001 -
Fluid velocity ur [ms−1] 50 -
Corona onset field strength E0 [Vm−1] 5.01 × 106

Fatigue factor fr 1
Relative gas density ms [-] 1
Ion mobility b [m2 V−1 s−1] 0.001
Vacuum permittivity ε0 [Fm−1] 8.85 × 10−12

Relative permittivity εr [-] 1
Standard temperature T0 [K] 298.15
Standard pressure p0 [atm] 1

∂ρel

∂ t
+∇ · jjj = 0. (6)

While the current density jjj is given by

jjj = ρel(uuu+bEEE) (7)

which forms the core of the present investigation due to
its convective part ρeluuu which is often neglected alongside
with diffusion.

3.2 Implementation
The following description points at implementing electro-
statics into OpenFOAM® syntax. The costumization of
the solver can be achieved by compiling the built-in ico-
Foam structure with additional lines of code for the elec-
trostatics part. Firstly, the governing equation for Poissons
equation (5)

solve
(

fvm::laplacian(phie) + rho/epsilon0
);

with a newly defined variable phie for the electric po-
tential. Second point in the iteration procedure is the con-
vective transport of the space charge, as bEEE +uuu as seen in
equation (7)

rhoFlux = -b*mesh.magSf()*fvc::snGrad(phie)
+phi;

where phi accounts for the fluid-flow velocity field uuu.
The variable phi is pre-defined by icoFoam and shall not
be confused with the newly defined variable for the elec-
tric field phie. Finally, to ensure charge conservation as
given by equation (6) the following step shall be added as

solve
(

fvm:ddt(rho)+fvm::div(rhoFlux, rho)
);

For postprocessing purposes it proves useful to include
an optional command which writes a separate solution file
for the electric field, that is

Efield == -fvc::grad(phie);

To write out an additional solution file to the electric
field changes must be included also in the createFields.H
file. Moreover, in the "0" folder an Efield file must be
specified. Because the value of the electric field is deter-
mined by the solution variable for the electric potential,
it is recommended not to override the value of the electric
field at the boundaries of the electrode. Instead, the bound-
ary condition extrapolatedCalculated in the electri-
cal field file for both electrode boundaries shall be used
to ensure that the electrical field variable is written out af-
ter and based on the electric potential variable during each
iteration taken by the solver.

3.3 Mesh
For the calculations a blockmesh is used with 150 cells in
radial direction and 80 cells in azimutal direction, while
one cell is present in axial direction. The radial distri-
bution of the cells is set with simpleGrading(400), re-
sulting in a first cell width to radius ratio of 0.02 according
to figure 3. The high resolution of the radial component
in proximity of the charging electrode is needed to ensure
the correct solution of high gradients of the electric field.

The total number of cells amounts to 12’000 Finite Vo-
lumina which on a 2.6 GHz CPU with 8 GB RAM require
244 seconds of CPU runtime. The simulation time goes
from 0 s to 0.05 s with a timestep of 5×10−6 s.

4 Analytical Verification
The coaxial cylinder test-case geometry allows the formu-
lation of an analytical solution for the electric field. As
no changes in axial direction are expected, the volumetric
flow per unit length can be expressed in terms of the radial
velocity as:
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Figure 3. Cutout of the mesh used in the calculations with focus
on the charging electrode

V = 2πrur (8)

whereas the electric current is quantified in a similar
way including the current density in radial direction

I = 2πr jr = 2πr (ρel(ur +bEr)) (9)

To work around integration constants, the volumetric
flow and electric current are non-dimensionalized using
the quantities listed in table 1 as

V̂ =
V

2πbr1E0
(10)

Î =
I

2πε0εrbE0
2 (11)

With the non-dimensional radius r̂ = r/r1 the dimen-
sionless electric field takes the form

Ê =
−V̂ ±

√
Î (r̂2 −1)

(
V̂ +1

)2

r̂
(12)

for the case of positive convection, that is, when the
electric current and fluid flow have the same direction. In
countercurrent the term

(
V̂ +1

)2 becomes
(
V̂ −1

)2.

5 Results
5.1 Velocity field
The velocity field is shown in figure 4 with unscaled ve-
locity vectors. As expected, the flow starts from the elec-
trode with an intensity of 50 ms−1. Radially, the velocity
decreases rapidly, due to large spatial increase and disper-
sion.

5.2 Electric field
The resulting electric field is shown in figure 5 and fig-
ure 6. It can be seen that a fine mesh resolution around the
charging electrode is necessary to reliably represent the
sharp gradients of the electric field.

Figure 4. Visualization of the velocity field

Figure 5. Close-up view of the electric field

Figure 6. Global view of the electric field
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For the given setup the solution for the radial distri-
bution of the coaxial geometry is analytically verified as
shown in figure 7.
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Figure 7. Verification of the electrical field along the radius

5.3 Discussion

In this hypothetical test-case the results for the electrostat-
ics are analytically verified which consequently confirms
the validity of the presented modeling procedure. For this
geometry with the given model parameters for air there is
no noticeable influence of convection. In many engineer-
ing applications where ionization processes are part of a
larger construct the assumption of negligible convection
holds.

However, as illustrated by the sensitivity analysis in fig-
ure 8 under certain flow patterns and regimes the influence
of convection might be of considerable importance, i.e.
for supersonic velocities the electric field experiences an
increase further away from the electrode. In practice, this
effect can be understood as deviation of current, where to
the most extreme extent it could be possible to reverse the
direction of electrical current flow merely by external con-
vection.
For the test-case and the verification of the modeling strat-
egy a constant value for the initial space charge density
ρel is appropriate. Future work will target a more com-
plex FVM modeling methodology aiming at dynamically
computing the value of the space charge density within the
interations taken by the solver. The interested reader may
be referred to (Rubinetti et al., 2017) for an FEM-based
approach.
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Figure 8. Sensitivity analysis for the electric field with different
velocities assuming ion mobility b = 10−6m2 V−1 s−1

6 Conclusion
The presented test-case and the corresponding modeling
methodology for OpenFOAM® is numerically stable
and shows the suitability of FVM for the multiphysical
coupling of electrostatics and fluid dynamics. For the
case of air ionization and an overlaying velocity field
with 50 ms−1 peak velocity convection has no noticeable
influence - thus confirming the wide-spread modeling
assumption of negligible external convection for most
engineering applications involving Corona discharge.
The results have been analytically verified including a
sensitivity analysis showing that for certain flow regimes
convection might need to be considered to ensure physical
accuracy.
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