
Using the concept of data enclosing tunnel as an online feedback 

tool for simulator training 

Laura Marcano1,2     Anis Yazidi 3     Davide Manca 4     Tiina Komulainen 1 

1 Department of Electronic Engineering, OsloMet – Oslo Metropolitan University, Norway 
2 Department of Electrical Engineering, University College of Southeast Norway (USN), Norway 

3 Department of Computer Science, OsloMet – Oslo Metropolitan University, Norway 
4 Department of Chemical Engineering, Politecnico di Milano, Italy 

{Laura.Marcano,Anis.Yazidi,Tiina.Komulainen}@oslomet.no 

davide.manca@polimi.it 

Abstract 
Feedback is one of the key factors that makes industrial 

simulator training an effective learning tool. Usually, 

the trainees receive feedback from the instructor, who 

guides them through the simulation tasks. However, 

nowadays the availability of expert instructors is scarce 

while the training demand is increasing. Therefore, there 

is a need for new simulator training practices that could 

allow the trainees to be more independent and decrease 

the need to rely so often on the instructor. This could be 

achieved by offering the trainees online automated 

feedback. This article presents a method for developing 

a tool meeting those requirements is presented. 

Simulation data were gathered representing different 

execution paths of the same scenario. Data were then 

analyzed and clustered using different clustering 

techniques. Interestingly, “good” and “bad” 

performances are shown to be separable using different 

techniques for clustering multivariate time series. 

Furthermore, we introduce the concept of enclosing data 

tunnel representing the trajectory of well-behaving 

execution paths in a reduced dimensional space. By 

conditioning the mal-behaving performances to be less 

than 20 % of the total simulation time inside the tunnel, 

an accuracy on 68 % was obtained. Being more flexible 

and allowing the mal-behaving performances to be 

inside the tunnel for a maximum of 35 % of the total 

simulation time, the accuracy of the enclosing tunnel 

was increased to 84 %. 

Keywords: simulator training, online feedback, data 

clustering, enclosing tunnel, execution path 

1 Introduction 

A number of studies point out the importance of 

feedback during simulator training (Darken, 2009, 

Dozortsev, 2013, Håvold et al., 2015, Kluge et al., 2014, 

Kluge et al., 2009, Salas et al., 2012, Tichon and Diver, 

2010). Feedback is a very effective learning mechanism 

that can be used to guide the trainees towards the 
development of a better performance. According to 

Salas et al. (2012) “Practice is most powerful when 

combined with timely, constructive, and diagnostic 

feedback”. Usually, trainees receive feedback from an 

expert instructor who guides them through the 

simulation scenarios. Commonly, expert instructors are 

experienced operators who have accumulated a great 

knowledge of the system through years. This 

dependency on expert instructors has raised concern in 

different industrial sectors given that many of the 

experienced operators have retired or will retire in the 

near future (Alamo and Ross, 2017, Dozortsev, 2013, 

Manca et al., 2012). Consequently, the availability of 

expert instructors is continuously decreasing while the 

demand for operator training continues increasing. 

Therefore, there is need for new (tutoring) methods and 

techniques that could help the current instructors to cope 

with the training demands by allowing the trainees to be 

more independent. One way trainees can be more 

independent is by offering them online automated 

feedback about their performance during the training 

scenarios.  

The topic of automated feedback for simulator 

training has been mentioned in several studies, some of 

them indicate that the use of instructional tools 

embedded in the simulator can improve the efficiency of 

training (Bell et al., 2008, Malakis and Kontogiannis, 

2012). Further, there are studies that present a method 

(Manca et al., 2014) or an already developed tool 

(Dozortsev, 2013) to give automated feedback. 

In this work, a procedure for developing an 

automated feedback tool for a simulator training is 

presented. The procedure developed is based on the 

analysis of the data collected from different variations 

of the same training scenario. The analysis of the data 

allows defining a good performance reference. This 

work builds on previous ideas from our position paper 

(Marcano et al., 2017b). 

In order to be able to provide online automated 

feedback, it is necessary to know the state of the system 

at all times. The state of the system can be determined 

based on some key variables that together give a suitable 

overview of the process. These variables can be 

compared to the defined good performance reference. 
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Based on the results of the comparison the trainees can 

be informed whether they should reconsider the actions 

taken and try a different approach to solving the training 

task.  

The case study we considered is a training scenario 

developed in K-Spice, a dynamic process simulation 

tool from Kongsberg Oil and Gas Technologies 

(Kongsberg, 2009). K-Spice resorts to a generic oil and 

gas production model. The goal of the studied training 

scenario is to increase the overall oil production flow 

with respect to the starting point.  

In the next section, the procedure followed for 

developing the online feedback tool is described in 

detail, then the results obtained are presented, followed 

by the discussion, and finally some conclusions are 

drawn. 

2 Methodology 

The case study consists of a training scenario developed 

with the generic oil and gas production model integrated 

into the simulation tool K-Spice. Aim of the training 

scenario is to increase, in 30 min, the oil production flow 

with respect to the one given in the initial conditions of 

the simulation. The trainee must fulfill the goal without 

compromising the correct functioning of the process. In 

order to develop an online feedback tool for the case 

study, the following steps were followed. 

2.1 Selection of variables 

Figure 1 shows an overview of the generic oil and gas 

production model. The sections with the most relevant 

information of the process are the wells, the high-

pressure separator (HP-separator), the export pump and 

the gas export compressor, the oil and gas export 

sections, and the high pressure flare (HP-flare). The 

variables studied were taken from these sections, being: 

1) The total sum of outlet flows from the wells; 2) Inlet 

flow of the HP-separator; 3) Pump power consumption; 

4) Compressor power consumption; 5) Oil export flow; 

6) Gas export flow; and 7) HP-flare flow. 

 

 

Figure 1. Overview of the generic oil and gas production 

process. 

2.2 Data generation 

In order to gather relevant data, a method to generate 

variations of the case study was developed. Each 

process variation was a random selection of five 

possible actions. The actions were defined based on the 

observations and results gathered from the simulator 

training sessions mentioned in Marcano et al. (2017a). 

During the development of the research (Marcano et al., 

2017a), it was possible to extract knowledge about the 

students’ understanding of the process and the probable 

actions they could execute. Based on this distilled 

knowledge, it was decided that a maximum of three 

actions could take place per variation of the case study, 

with a certain delay between them. The delay was set to 

15 s, 45 s, 60 s, 120 s, and 180 s. These delays were 

chosen because during the simulator training sessions 

(Marcano et al. (2017a) we noticed that the trainees 

usually did not wait longer than 3 min to make changes 

in the simulation. The construction of one variation 

occurs as follows; first, a random action is chosen, and 

then, depending on the chosen first action there are some 

conditions that will determine the following random 

actions to choose among if any. The defined actions and 

the conditions triggering them are explained below. 

1. Opening the choke valve from a well. 

Opening a choke valve is the right execution path to 

follow when trying to increase the oil production in the 

process. Therefore, it is assumed that if the first decision 

of the trainee is to open a choke valve, then, if there are 

possible following actions, these will also be opening a 

choke valve. How much the choke is going to be opened 

is decided randomly between two options, being 85 % 

and 100 %. All choke valves in the simulation that are 

predetermined open, are open up to 75 %. 

2. Closing the choke valve of a well. 

Closing a choke valve is a wrong action to execute if the 

oil production needs to be increased. If the trainee is 

confused and closes a valve by mistake, then the next 

actions could, unfortunately, be to close even more 

valves. However, it could also happen that the student 

notices the mistake and tries to fix it by reopening the 

closed valve and opening an extra one. Then we 

randomly decide whether we will perform a sequence of 

1 or 2 next actions. In case of choosing only one 

subsequent action, that second action could be either 

closing another valve or reopening the one closed. In 

case we choose two subsequent actions, then, the 

following two actions are to reopen the closed valve and 

open an extra one. How much the choke is going to be 

closed is decided randomly between two options, being 

0 % and 65 %. For the opening, the same conditions 

explained in the first action are applied. 

3. Opening the pulse-controlled valve to the test 

separator. 

During the simulator training sessions carried out in 

Marcano et al. (2017a), it was noticed that few students 
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opened a pulse-controlled valve thinking that it was a 

choke valve. This mistake was also noticed during the 

simulator training sessions performed later in 2017. 

There were just a few students who made the mistake 

but it seems to be common to happen. Consequently, it 

was decided to take it into account. However, given that 

opening a pulse-controlled valve is a rare mistake if this 

action takes place first, then, it will be the only action to 

be executed and there will be no subsequent actions.  

4. Opening the outlet control valve of the HP-

separator. 

Opening the outlet valve of the HP-separator might 

occur due to the misconception that by increasing the 

outlet flow from the HP-separator the oil production 

would increase as well. The next step is to choose 

whether to proceed with a sequence of one subsequent 

action or two subsequent actions. If we randomly chose 

to follow with two actions, then, these were set to be the 

opening of choke valves. If only one action is following, 

then, this could be either opening a choke valve or a 

pulse-controlled valve. 

5. Increasing the pressure set point of the HP-

separator. 

Increasing the pressure of the HP-separator leads the 

system to switch on the high-pressure flare. This action 

was defined to ensure the possibility of analyzing 

execution paths with a negative environmental impact. 

If only one more action follows this one, then, it could 

be either opening a choke valve or a pulse-controlled 

valve. If two actions follow, then, both will be to open a 

choke valve. 

2.3 Data clustering 

The data gathered in this work consists of multivariate 

time series. It is necessary to identify from the data what 

corresponds to well-behaving performances and what 

corresponds to mal-behaving performances. This way it 

is possible to make balanced groups for training and 

validation. In order to cluster the data, it is necessary to 

use a notion of similarity. This can be done by 

calculating the distance between every possible 

combination of pairs of execution paths. In this work, 

three methods for distance calculation were evaluated 

namely: Euclidean distance, dynamic time warping 

(DTW), and symbolic aggregate approximation (SAX). 

This was done in order to determine and select the most 

accurate method among such distances. 

Euclidean distance 

Given two time series X and Y of the same length N, (1) 

defines the Euclidean distance between them. Figure 2a 

shows an intuitive representation of the Euclidean 

distance (Lin et al., 2003). 

𝐷(𝑋, 𝑌) ≡ √∑(𝑥𝑖 − 𝑦𝑖)2
𝑁

𝑖=1

 (1) 

Dynamic Time Warping (DTW) 

The objective of DTW is to compare two (time-

dependent) sequences X := (x1, x2,...,xN) of length N ∈ ℕ 

and Y := (y1,y2,...,yM) of length M ∈ ℕ. These sequences 

may be discrete signals (time-series) or, more generally, 

feature sequences sampled at equidistant points in time 

(Müller, 2007). Being ℱ a feature space, xn, ym ∈ ℱ for 

n ∈ [1:N] and m ∈ [1:M]. To compare two different 

features x, y ∈ ℱ, a local cost measure is needed, also 

referred to as local distance measure, which is defined 

to be a function 𝑐:ℱ × ℱ → ℝ≥0 (Müller, 2007). 

Typically, c(x, y) is small (low cost) if x and y are 

similar to each other, and otherwise c(x, y) is large (high 

cost). Evaluating the local cost measure for each pair of 

elements of the sequences X and Y , the cost matrix C ∈ 

ℝN×M defined by C(n, m) := c(xn, ym) is obtained. Then 

the goal is to find an alignment between X and Y having 

minimal overall cost (Müller, 2007). Each matrix 

element (i, j) corresponds to the alignment between the 

points xi and yj. A warping path is created, which 

consists of a contiguous set of matrix elements that 

defines a mapping between X and Y (Keogh and 

Ratanamahatana, 2005). The signal with an original set 

of points X(original), Y(original) is transformed to 

X(warped), Y(original). However, even though DTW 

measures a distance-like quantity between two given 

sequences, it does not guarantee the triangle inequality 

to hold (Müller, 2007). 

SAX (Symbolic Aggregate approXimation) 

SAX allows a time series of arbitrary length N to be 

reduced to a string of arbitrary length w, (w < N, 

typically w << N). The alphabet size is also an arbitrary 

integer a, where a > 2. SAX uses an intermediate 

representation between the raw time series and the 

symbolic strings. First, the data is transformed into the 

Piecewise Aggregate Approximation (PAA) 

representation and then symbolize the PAA 

representation into a discrete string (Lin et al., 2003).  

In dimensionality reduction via PAA a time series X of 

length N can be represented in a w-dimensional space by 

a vector �̅� = �̅�1, … , �̅�𝑤. The ith element of �̅� is 

calculated as follows (Lin et al., 2003): 

 

�̅�𝑖 =
𝑤

𝑁
∑ 𝑥𝑗

𝑁
𝑤
𝑖

𝑗=
𝑁
𝑤
(𝑖−1)+1

 (2) 

 

Having transformed a time series database into PAA, a 

further transformation to obtain a discrete representation 

can be applied. SAX uses a discretization technique that 

produces symbols with equiprobability (Lin et al., 

2003). If the original subsequences in the Euclidean 

distance are transformed into PAA representations, �̅� 

and �̅�, using (2), then a lower bounding approximation 

of the Euclidean distance between the original 
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subsequences can be obtained (3), this is illustrated in 

Figure 2b (Lin et al., 2003). 

𝐷𝑅(�̅�, �̅�) ≡ √
𝑁

𝑤
√∑(�̅�𝑖 − �̅�𝑖)

2

𝑤

𝑖=1

 (3) 

 

If the data is further transformed into the symbolic 

representation, a MINDIST function that returns the 

minimum distance between the original time series of 

two words can be defined by (4), which is illustrated in 

Figure 2c (Lin et al., 2003). 

 

𝑀𝐼𝑁𝐷𝐼𝑆𝑇(�̂�, �̂�) ≡ √
𝑁

𝑤
√∑(𝑑𝑖𝑠𝑡(�̂�𝑖 , �̂�𝑖))

2

𝑤

𝑖=1

 (4) 

 

The dist() function can be implemented using a table 

lookup as shown in Table 1 . Table 1 is for an alphabet 

of cardinality 4. The distance between two symbols can 

be read off by checking the corresponding row and 

column. For example, dist(a,c) = 0.67 (Lin et al., 2003). 

Table 1. A lookup table used by the MINDIST function. 

This table was taken from Lin et al. (2003). 

 a b c d 

a 0 0 0.67 1.34 

b 0 0 0 0.67 

c 0.67 0 0 0 

d 1.34 0.67 0 0 

 

Hierarchical clustering 

Hierarchical clustering groups data over a variety of 

scales by creating a cluster tree. The tree is not a single 

set of clusters, but rather a multilevel hierarchy, where 

clusters at one level are joined as clusters at the next 

level. This allows deciding the level or scale of 

clustering that is most appropriate for the application 

required (MathWorks, 2018). 

2.4 Samples selection 

For this study, 75 out of 1145 possible variations were 

generated the way described in Section 2.2, this 

represents 6.5 % of all the possible combinations. The 

data were classified using the methods described in 

Section 2.3. Of the 75 variations, 2/3 of the data 

corresponding to the well-behaving execution paths, and 

2/3 of the data corresponding to the mal-behaving 

execution paths were used for training i.e. 50 variations 

in total. The rest of the data was used for validation i.e. 

25 variations (1/3 of the good performances, and 1/3 of 

the bad performances). For each time series, one sample 

was taken every 12 s during 30 min i.e. 150 data points, 

plus one additional point at time zero. 

 

 

Figure 2. a) Euclidean distance between two time series. 

b) Distance measure defined for the PAA. c) SAX 

representations of two time series. This figure was taken 

from Lin et al. (2003). 

2.5 Introducing the concept of enclosing 

tunnel 

2.5.1 Data processing and dimensionality reduction 

The training data was processed using PCA. In order to 

compare with each other all the variations in the training 

data, a PCA analysis was done for different time slots of 

the time series. For each time slot, the average of the 

data within the range was taken. The time moving 

average was calculated using the sliding window 

algorithm, with a window size of 35 samples. Which 

means that the first PCA calculated describes all the 

variations in the time span between the first and the 35th 

sample. The second PCA describes all the variations in 

the time span between the second and the 36th sample, 

and so forth until the entire time-range of 30 min (151 

samples) is covered. After testing different sizes for the 

sliding window algorithm, a size of 35 samples was 

selected given that it was the one that resulted in the 

smoothest graphical representation of the data. The 

variance results show that the first and second principal 

components (PC1 and PC2, respectively) are the most 

representative, as shown in Figure 3. Figure 3a shows 
the first 19 sliding windows, it can be seen that the first 

two principal components describe approximately 70 to 

 
(a) 

 

 
(b) 

 

 
(c) 

X

Y

�̅�

�̅�

�̂�

�̂�
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80 % of the data. Further, Figure 3b and Figure 3c show 

that the first two principal components describe 

approximately 90% of the data. Therefore, all analyses 

made are based on the first two principal components. 

2.5.2 Data delimitation using an enclosing tunnel 

The structure of the enclosing data tunnel is based on 

five main circles. The enclosing circles were calculated 

based on the data projected on the 2D plane formed by 

the data scores from PC1 vs the scores from PC2. In 

order to frame the data projected on this plane we resort 

to the minimal enclosing circle problem. The minimal 

enclosing circle problem consists of finding the circle of 

smallest radius that contains a given set of points in its 

interior or on its boundary. Jung’s theorem states that 

every finite set of points with geometric span d has an 

enclosing circle with radius no greater than d/√3 

(Weisstein, 2018). Each circle is located in a moment in 

time in which the well-behaving execution paths show a 

significant tendency of change. The data enclosing 

tunnel was constructed by creating a surface that 

connects each of the sections formed between the 

minimal circles. 

3 Results 

 We started by clustering the raw data to separate the 

well-behaving and mal-behaving performances. The 

data clustering was carried out implementing the three 

methods described in the methodology. Once the 

distances were calculated with the three methods, they 

were clustered using hierarchical clustering. Figure 4 

shows the three clustering trees obtained with each of 

the methods. In general, it can be seen that there are 

three main clusters formed by the data, given that three 

main groups (green, red and blue) were obtained with 

each method. However, the two main branches of the 

cluster tree obtained with the SAX method (Figure 4c) 

are more noticeable than the two main branches of the 

other two methods, Euclidean and DTW (Figure 4a, 

Figure 4b), which indicates that the clusters formed by 

the SAX method are defined more clearly. Numerically 

this is checked with the cophenetic correlation 

coefficient, which resulted to be 0.9347 for the 

clustering tree calculated with the Euclidean distances, 

0.8769 for the clustering tree calculated with the method 

DTW, and 0.9392 for the clustering tree calculated with 

the method SAX. Therefore, the results obtained with 

SAX were the one used for classifying the data as good 

and bad performances. 

Figure 6 shows the results of the data processing 

using PCA. Figure 6a depicts a 3D representation of the 

variation along time, of the scores obtained with the first 

two principal components. It can be noticed that there 

are three different patterns in the data. Figure 6b 

corresponds to an upper view of the previous one. It 

 
(a)            (b)       (c) 

Figure 3. Variances. a) Variances of the first 19 sliding windows. b) Variances from the 20th to the 30th sliding window. 

c) Variances from the 31st to the 117th sliding window. 

 
(a)            (b)     (c) 

Figure 4. Hierarchical clustering based on time series distances. a) Euclidean b) DTW c) SAX. 
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shows the variation of scores obtained with the first 

principal component versus time, and three different 

tendencies of the data can also be appreciated. 

Figure 5 shows a 3D and 2D view of the tunnel 

enclosing the data that correspond to the good 

performances. The tunnel consists of five different 

circular sections that correspond to the minimal 

enclosing circle of the well-behaving execution paths in 

each section. All data that do not fall inside the tunnel 

corresponds to a bad performance. The trends that start 

being inside the tunnel but then go totally outside 

correspond to those actions where the outlet controlled 

valve of the HP-separator is opened. The trends that are 

above the tunnel correspond to those actions were the 

pressure set point of the HP-separator was increased. 

In order to test the accuracy of the tunnel, the data left 

aside for validation was used. First, the validation data 

was projected on the PCA space calculated with the 

training data. Next, the processed validation data was 

plotted with the tunnel, as shown in Figure 7. Finally, 

the accuracy of the tunnel was determined by calculating 

the total amount of time that each good and bad 

performance spent inside the tunnel. In the case of the 

well-behaving execution paths, it was expected that they 

would be inside the tunnel at least 80 % of the total 

simulation time. While in the case of the mal-behaving 

execution paths, it is expected that they wouldn't be 

inside of the tunnel more than 20 % of the total 

simulation time. Based on these limits the accuracy 

calculated for the tunnel resulted to be 68 %, as shown 

in the confusion matrix presented in Figure 8a. The 

diagonal of the confusion matrix (green squares) 

represents the correct classifications. Figure 8a shows 

that 12 execution paths were correctly classified as 

“good”, and 5 execution paths were correctly classified 

as “bad”. On the other hand, the red squares show the 

incorrect classifications, and it can be seen that 8 

execution paths were wrongly classified as “good”, 

these are false positives.  In order to improve the 

accuracy of the tunnel, the tolerance of the bad 

performances inside of the tunnel was increased to 35 % 

of the total simulation time. This way the false positives 

were reduced from 8 to 4, given as a result an improved 

accuracy of 84 % as can be seen from Figure 8b. 

 
(a)       (b) 

Figure 6. a) Data scores from PC2 vs Data scores from PC1 vs Time. b) Data scores from PC1 vs Time. 

 
(a)       (b) 

Figure 5. a) 3D view of the enclosing tunnel. b) 2D view of the enclosing tunnel. 
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4 Discussion 

In this work, the construction of the online feedback tool 

was based on the well-behaving execution paths. 

Consequently, it was necessary to find methods that 

could ease the laborious task of clustering data and 

identifying their typology. The results obtained with the 

data clustering techniques show that these are effective 

methods for finding similarities among data. Which is 

very useful when handling a large amount of data, such 

as those produced from simulator training scenarios. 

The proposed enclosing tunnel could be used as an 

effective tool for generating online feedback. The data 

of a new trainee could be monitored, for instance, every 

two minutes. The first set of data should be projected on 

the PCA space, and later compared with the tunnel, if it 

is observed that the execution path is outside the tunnel 

a warning can be given to the trainee. If the execution 

path is inside the tunnel no warning should be generated. 
Later, in the next two minutes, the data of the last four 

minutes could be analyzed, and once again depending 

on the data trend it is decided if a warning should be 

given to the operator or not. This sequence should be 

repeated online over the total duration of the simulation 

scenario. Further, depending on the data behavior we 

could also determine the type of mistake made by the 

trainee, and more detailed feedback could be generated. 

This refers particularly to the cases in which the outlet 

valve of the HP-Separator is opened, and when the 

pressure set point of the HP-Separator is increased. 

These two cases present a very differentiated behavior 

around the tunnel, therefore it could be easy to identify 

them. However, the trends for the cases where the outlet 

control valve of the HP-Separator is opened may take 

several minutes before leaving the tunnel. These are the 

cases that were classified correctly by allowing them to 

be inside the tunnel 35 % of the total time.  

In general, this method could be used for different 

training scenarios. This procedure shows that an 

enclosing tunnel, based on good performances, can be 

designed for any kind of scenario, thus online feedback 

can be offered to the operators, giving them more 

training independence. 

 
(a)       (b) 

Figure 7. a) Validation data and 3D view of the enclosing tunnel. b) Validation data and 2D view of the enclosing tunnel. 

 
 

           (a)          (b) Figure 8. a) Confusion matrix: mal-behaving execution paths inside of the tunnel for 20 % of the total simulation time. b) 

Confusion matrix: mal-behaving execution paths inside of the tunnel for 35 % of the total simulation time. 
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5 Conclusion and future work 

The data clustering methods implemented, Euclidean 

distance, DTW, and SAX showed to be effective for 

finding similarities among data. Of the three methods, 

SAX is shown to be the most effective of all with a 

cophenetic correlation coefficient of 0.9392. The 

clustering of the data helped to identify among the entire 

data set the well-behaving execution paths, which were 

used to design the online feedback tool for simulator 

training. The online feedback tool designed consists of 

an enclosing data tunnel. The tunnel developed has in 

principle an accuracy of 68 %. This value was calculated 

by allowing the mal-behaving execution paths to be 

inside the tunnel no more than 20 % of the total 

simulation time. However, with a more flexible 

tolerance (bad performances allowed to be inside the 

tunnel 35 % of the total simulation time) the total 

accuracy of the tunnel could be increased up to 84 %. It 

was demonstrated that it is possible to develop a method 

that can be used to generate automated online feedback, 

thus opening the possibility of more independent 

simulator training sessions. 

Future work includes improving the accuracy of the 

tunnel without increasing the tolerance for mal-

behaving execution paths. This could be done by 

increasing the amount of training data, so more 

differences can be noticed among the time series. 

Additionally, the method should also be improved so 

that it can detect if more specific requirements have 

been fulfilled by the operator. Furthermore, enclosing 

tunnels constructed for different training scenarios 

should be compared to each other in order to determine 

if a single generic tunnel could be designed to be used 

for different training scenarios. 
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