
Machine Learning in Python for Weather Forecast based on Freely
Available Weather Data

E. B. Abrahamsen, O. M. Brastein, B. Lie∗

Department of Electrical Engineering, Information Technology and Cybernetics
University of South-Eastern Norway, N-3918 Porsgrunn,

*(Bernt.Lie@usn.no)

Abstract
Forecasting weather conditions is important for, e.g., op-
eration of hydro power plants and for flood management.
Mechanistic models are known to be computationally
demanding. Hence, it is of interest to develop models
that can predict weather conditions faster than traditional
meteorological models. The field of machine learning
has received much interest from the scientific community.
Due to its applicability in a variety of fields, it is of
interest to study whether an artificial neural network can
be a good candidate for prediction of weather conditions
in combination with large data sets. The availability
of meteorological data from multiple online sources
is an advantage. In order to simplify the retrieval of
data, a Python API to read meteorological data has been
developed, and ANN models have been developed using
TensorFlow.

Keywords: Weather prediction, Auto-regressive neural
networks, Meteorological data

1 Introduction
1.1 Background
The forecasting of weather conditions and in particular the
prediction of precipitation is important for hydro-power
operation and flood management. Mechanistic meteorol-
ogy prediction models based on 3D CFD/Navier Stokes
equations (Thibault and Senocak, 2009) is extremely de-
manding wrt. computing power. Generating a 14 day
weather forecast can easily take 12 hours even on fast
computers. Machine Learning (ML), Big Data, and use
of Internet of Things (IoT) are receiving increased interest
from the industry. It is well known that large amounts of
data coupled with novel ML methods can produce results
on par with traditional physics based models.

Due to an interest in weather monitoring in the gen-
eral public, today a large number of weather stations are
connected to the internet, and are thus available as cheap,
distributed sensors. Additionally, several organizations
that are involved in collection of meteorological data offer
online data servers with accessible Application Program-
ming Interfaces (API) such as the HTTP based GET/REST
protocols. In order to simplify experimentation with sev-

eral sources of meteorological data it is of interest to de-
velop a unified API, hence facilitating the extraction of
data from different sources. With large quantities of data,
both historical and current measurements, it is an attrac-
tive solution to use machine learning in order to predict
weather conditions based on these relatively simple data
sources. Using a large amount of data together with novel
machine learning algorithms can then compensate for lack
of complex meteorological models and yield usable fore-
casts with less computing time.

Simple ML models would base predictions on auto re-
gressive (AR) structures, where, say the current temper-
ature in a location is correlated with several past temper-
atures in the same location. In a slightly more advanced
auto regressive structure, a set of properties, e.g., the tuple
(temperature, humidity, and precipitation) could be corre-
lated with several past values of the same tuple. An even
more advanced structure is the auto regressive structure
with exogenous input (ARX). In such a model, the current
(local) set of properties is correlated with both past values
of the same (local) set, but also with other values from the
same location or values of the same properties from other
locations at current time. Finally, in ARMAX structures,
exogenous inputs at different times (= moving average) are
used in the correlation.

1.2 Previous Work
(Hayati and Mohebi, 2007) studied multi layer perceptron
(MLP) neural networks trained and tested on ten years of
meteorological data (1996-2006). The network structure
consisted of three layers with a logistic sigmoid activation
function in hidden layers and linear functions in the output
layer. Seven weather variables were used in the study: dry
temperature, wet temperature, wind speed, humidity, pres-
sure, sunshine, and radiation. The inputs were normalized
and used to predict dry air temperature in intervals of 3
hours for a total of 8 predictions pr day. The error was
calculated using mean absolute error (MAE). In (Smith
et al., 2006), the authors focused on developing artificial
neural network (ANN) models to forecast air temperature
at hourly intervals from one to 12 hours ahead. Thirty
models were calibrated for each interval, in order to study
the effect of randomized initial weights on test set predic-
tion accuracy. The network structure consisted of three

https://doi.org/10.3384/ecp18153169 169 Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

fully connected hidden layers that used Gaussian, Gaus-
sian complement, and hyperbolic tangent activation func-
tions. The input data was linearly transformed to the range
[0.1,0.9] and consisted of five weather variables: temper-
ature, relative humidity, wind speed, solar radiation and
rainfall. Later, seasonal variables were introduced as in-
puts which improved model accuracy. A recent machine
learning (ML) approach, based on a hybrid model includ-
ing both ANNs, decision trees (DT), and Gaussian process
modeling (GP) is presented in (Grover et al., 2015). They
concluded that while previous attempts at weather model-
ing using ML have had limited success, their hybrid model
approach surpasses the NOAA1 benchmarks. A review on
the use of machine learning methods for weather predic-
tion is presented in (Chauhan and Thakur, 2014).

Meteorological data from a number of sources are avail-
able today, e.g., from the Norwegian Meteorological In-
stitute data service frost.met.no, and from Netatmo2.
These and others are potential “Big Data” sources.

A number of high quality ML tools have become avail-
able the last decade, also as packages in free computer
languages such as Python. One possible ML tool which
runs in Python is Google’s TensorFlow. AR, ARX, and
ARMAX models for linear systems are routinely used in
system identification, e.g. (Ljung, 2002, 1999; Johansson,
1993).

1.3 Overview of Paper
Weather prediction is a convenient case for studying
machine learning. By developing APIs for accessing
available data from meteorological institutes and other
weather stations, this gives access to an abundance of data.
Weather data is something that most people can relate to
in their daily life, but is also important for energy systems,
flood prediction, etc. Good physical based meteorologi-
cal models are available, which makes it easy to compare
the quality of machine learning models. In this paper, we
have focused on a new Python API for collecting weather
data, and given simple, introductory examples of how such
data can be used in machine learning. Weather data from
frost.met.no have been collected using a newly de-
veloped Python API. These data have been used to train
and tune several auto-regressive artificial neural networks
(AR-ANN) by using TensorFlow from Python. The re-
sulting models have been used to predict the temperature
in Porsgrunn with prediction horizons of 1, 3, 6, and 12
hours. The example ANN is then extended with precipita-
tion data and compared to the initial AR-ANN..

This paper is organized as follows; Section 1 provides
the necessary background information, and a short review
of previous work relevant to the project. Section 2 gives
some theoretical details regarding ANNs and the devel-
oped APIs for collection of weather data. Section 3 dis-
cusses the obtained results, before the work is concluded

1National Oceanic and Atmospheric Administration, http://
www.noaa.gov

2https://www.netatmo.com

Figure 1. Illustration of a single neuron (left) and an example of
an artificial neural network (right).

in Section 4 together with suggestions for future work.

2 Materials and Methods
2.1 Artificial Neural Networks
Artificial neural networks (ANN) have existed in various
forms since the 1940s (McCulloch and Pitts, 1943; Good-
fellow et al., 2016), but have received renewed interest in
recent years (Goodfellow et al., 2016). An ANN is a col-
lection of neurons, which are small computational units
that superficially mimic the way neurons work in nature.
A single neuron is simply a weighted sum of a set of in-
puts, plus a bias, with an applied activation function, Fig.
1 (left).

A non-linear activation function fact (·) is important for
success in applying ANNs, otherwise the resulting model
output is simply a linear combination of the inputs. The
equation for a single neuron can be written as:

yk = fact (b+ xiwi) (1)

The power of ANNs comes from connecting many neu-
rons together in a network. The simplest network structure
is a feed forward network, as shown in Figure 1 (right).
Neurons are connected in simple layered structures where
the inputs of each neuron are connected to all the outputs
of the previous layer. If we describe the inputs xi and
weights wi in matrix form, we can write a whole layer
of neurons as:

y = fact (Wx) (2)

where the bias is included as w0 = b by adding an artificial
constant input x0 = 1,.

A feed forward ANN is built by connecting multiple
layers together. The inputs to the network are connected to
the inputs of the first hidden layer. The first hidden layer
can then be connected to more hidden layers. The last
hidden layer connects to the output layer. The output of
the ANN is given by this output layer. We can then write a
single non-linear matrix equation for the whole network.
An example equation for an ANN with three hidden layers
is:

https://doi.org/10.3384/ecp18153169 170 Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

Figure 2. Typical activation functions used in ANNs.

yout = f out
act

(
W out f (2)act

(
W (2) f (1)act

(
W (1)x

)))
(3)

Equation (3) shows that an ANN is simply a non-linear
matrix equation with a large number of coefficients. Each
W (j) matrix can be large, thus allowing the ANN model
to fit complex non-linear systems. The descriptive power
that comes from this complexity is the reason why ANN
models is able to adapt to such a large variety of systems.

Many choices for activation function are possible, as
shown in Figure 2. Initially in the history of ANNs, a
simple sign operator y = sgn(x) was often used as the ac-
tivation function. These simple neurons were called per-
ceptrons. The perceptron term survives to this day in the
ANN community; indeed, a deep learning network is of-
ten referred to as a Multi Layer Perceptron (MLP). In this
work, both tanh and logistic sigmoid 1

1+exp(−x) activation
functions (Goodfellow et al., 2016) are used. Training of
an ANN is essentially a parameter optimization of the net-
work weights such that the output of the network mini-
mizes a chosen loss function. However, since an ANN
model has a high number of parameters to optimize, there
are a large number of local solutions. The optimization of
the training weights is performed iteratively, where each
training iteration is called an epoch (Goodfellow et al.,
2016).

Globally optimal solutions for ANN training are in gen-
eral considered very hard to find (Goodfellow et al., 2016;
Bishop, 2013). Instead, the focus is on finding a solution
that is “good enough”. During training, there is always a
risk that a particular training session can get stuck in a lo-
cal minimum which is far from optimal. If the same ANN
hyper-parameter configuration is trained multiple times, it
is usually clear if one or more iterations are indeed giving
sub-optimal performance due to this local minima prob-
lem. It is also important to note that there has been much
research in improving training performance in the pres-
ence of local minima. Hence, there exists a large number
of training algorithms which seek to improve ANN train-
ing performance. For more details on the development of
ANNs see, e.g., (Goodfellow et al., 2016).

A model with high descriptive power is prone to over-
fitting. The term over-fitting is used in empirical mod-
eling to describe what happens when a model adapts to
random variations in the training set which does not gen-
eralize well to new data. This effect is apparent in all
forms of empirical modeling, from simple curve fitting to
complex ANNs. Since the ANNs have such a large num-

ber of coefficients, the over-fitting problem is particularly
important. The simplest way to reduce the risk of over-
fitting is to increase the amount of training data, either by
collecting more data or artificially creating more training
data through some form of transformation on the origi-
nal data (Ciresan et al., 2010). Another way to reduce
the risk of over-fitting is to apply a regularization method
(Goodfellow et al., 2016; Kuhn and Johnson, 2013). The
subject of regularization is a research field in itself, which
involves methods that prevents the training algorithms for
ANNs from adapting to random variations in the training
data. The simplest form of regularization is to have a large
amount of data. Since this work is based on retrieving
weather data from online databases, the cost of obtaining
data is relatively low, hence a large amount of training data
is readily available. One common regularization method is
the use of weight decay (Goodfellow et al., 2016). Weight
decay adds a penalty to the loss function which is propor-
tional to the training weights wi themselves. This forces
the weights to stay “small” (Goodfellow et al., 2016):

Jmin = α
1
N

N

∑
i=1

(ŷi − yi)
2 +(1−α)

M

∑
i=1

wT
i wi (4)

In Eq. (4) the loss measure is the mean square error
(mse) between the predictions ŷi and the references/obser-
vations yi. The L2 (2-norm) weight decay penalty is the
last term in the Jmin loss function. A hyper parameter α is
used to decide how strong the weight decay regularization
should be.

2.2 Timeseries modeling
A common method for modeling discrete timeseries data
is the use of auto-regressive models with exogenous in-
puts (ARX). Using the time-shift operator q−k to indicate
a quantity being shifted k time-steps back in time, these
models can be expressed on the form

yk
(
1+a1q−1 + · · ·+anq−n)= uk

(
b1q−1 + · · ·+bmq−m)

(5)
That is, the output at time k is a function of both the in-
puts and the output at previous times. If all bi coefficients
are zero, e.g., there are no exogenous inputs, the model
is called an AR model (Ljung, 1999). A nonlinear ARX
model can be formulated as

yk = f (yk−1, . . . ,yk−n,uk−1, . . . ,uk−m) (6)

Traditional ARX models are linear models as illustrated
in Eq. (5) , thus f (·) in Eq. (6) forms a linear combination
of past inputs and outputs. When ANNs are applied to
timeseries modeling, function f (·) in Eq. (6) is replaced
by the ANN, such that:

yk = ANN(yk−1, . . . ,yk−n,uk−1, . . . ,uk−m) (7)

https://doi.org/10.3384/ecp18153169 171 Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

Hence, the term auto-regressive neural network (AR-
ANN) is used to denote an ANN which predicts a time-
series variable based on previous measurements of the
same variable, e.g. the inputs and outputs to the network
are the same variables but at different times. Similarly,
an ARX-NN is a network which in addition to previous
measurements of the output variable also has additional
measurements as its inputs.

2.3 Python API for Data Collection
A Python API wrapper is an easy way to obtain free
weather data from APIs and open data. A wrapper was
designed to support multiple weather data suppliers, so it
is possible to add more suppliers in the future. The API
does not support the use of multiple suppliers at the same
time. Currently the Norwegian Meteorological Institute
data service frost.met.no and Netatmo are supported.
The API will request hourly data for a given date, either at
the station nearest to the specified latitude and longitude
coordinate or within a specified rectangle as specified in
kilometers centered on a given latitude and longitude co-
ordinate. The wrapper uses HTTP GET requests to obtain
the data from the data suppliers and returns a list where
each element is a 3 item list with stationID, timestamp,
and measured value. The returned data can then be saved
to a file or database.

2.4 Experimental Data
The data used in this work was collected from
frost.met.no using the mentioned Python API. The
data consists of hourly temperature and precipitation
measurements in the period 01.01.2016 T00:00 to
31.12.2017 T23:00 from weather station SN30255 at
latitude: 59.091 and longitude: 9.66 in Porsgrunn, Nor-
way. Due to downtime on the station the first month of
2017, data starts at 01.02 in the 2017 part of the data set,
hence for consistency the first month of 2016 was also re-
moved. For the first experiment only temperature data was
used. In the second experiment, temperature data and pre-
cipitation data was used. For all experiments, the data was
split into three independent sets: 60% used for training,
20% for hyper parameter tuning (validation), and 20% for
testing the prediction accuracy of the models.

3 Results and Discussion
The goal of this work is to predict the temperature using
an artificial neural network (ANN). Four cases have been
studied in both experiments, using prediction horizons of
1, 3, 6 and 12 hours. In each experiment, four separate
models were created, one for each case. The input data
was normalized, and the output was denormalized to get
predictions in degrees Celsius. To test the different mod-
els, 48 consecutive hours is set to be predicted by the dif-
ferent models.

All ANNs use rectified linear unit (ReLU) as the acti-
vation function in the hidden layers and a linear activation
function in the output layer.

3.1 Experiment 1 - AR Neural Network

The first experiment used only temperature data. This
constitutes an auto-regressive neural network (AR-NN)
model. Figure 3 shows the results of predicting the test
set using each of the four models, together with the refer-
ence measurements.

There is a sudden change in measured temperature in
the time interval 36 to 42 in the test set. The models with
prediction horizons 1 and 3 hours show an oscillating re-
sponse to this rapid change. However, they are still closer
to measured data than the models with longer prediction
horizons. At time 8 to 20, the 12 hour model is signifi-
cantly poorer than the 1, 3, and 6 hour models. A plau-
sible reason for this might be that the models respond to
data given and the 12 hour model uses data that is 12 hours
prior to the measurement. So, at time 7 the 12 hour model
started increasing, and at time 15 it flattens out, probably
because the algorithm used the data at time 3 and mea-
sured that the data started to turn, thus a prediction model
should “slow down”. All the models show significant de-
terioration in predictions when the temperature changes
rapidly.

Table 1 shows the hyper-parameters with test error sum-
marized. The error is calculated from normalized test data,
hence the error is not presented in units of Celsius. The
number of layers for the 12 hour prediction model is two
times that in the other models. Further, the regression
horizon (i.e., the amount of past data points used in the
predictions) is 169 hours (7 days) for the 12 hour model.
Compared to a regression horizon of 48 hours for the 6
hour prediction model, this is a significant difference. The
learning rate is also significantly lower for the 12 hour pre-
diction model. The low number of epochs and low learn-
ing rate was found necessary for the 6 and 12 hour predic-
tion models to generalize properly and avoid over-fitting.
With these hyper-parameters, training is slowed down.

Figure 4 shows the errors in degree Celsius for the pre-
dictions on the test set. These results are calculated as the
difference between measured value and predicted value.
Hence, the error that is negative is overshooting and error
that is positive is undershooting. Observe from Figure 4,
that due to the rapid change in measured data in time in-
terval 36 to 42, the error is significantly higher for all the
models.

Table 2 shows a selection of tuning of the ANN hyper-
parameters for 1 hour prediction. At first, a 3 hour regres-
sion horizon was used on the assumption that a human ob-
server would likely be able to predict the temperature one
hour ahead of time based on a small amount of data. Later,
a 24 hour regression horizon was tested against the same
structure. The longer regression horizon was found to im-
prove prediction performance on the validation set. Se-
lecting a good neural network structure is important. The
choice of network structure depends on the type of appli-
cation. According to (Heaton, 2017), one hidden layer can
approximate any continuous function, while two hidden

https://doi.org/10.3384/ecp18153169 172 Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

Figure 3. Shows the measurements and outputs of the 4 different models.

Table 1. Hyper-parameters for each model.

Model Test error Epochs Layer structure Regression horizon Learning rate
1 hour 0.0101 810 17, 12 24 0.01
3 hour 0.0318 150 30, 20 48 0.01
6 hour 0.0608 1000 38, 24 48 0.001
12 hour 0.0894 500 112, 75, 50, 34 169 0.0001

Figure 4. Deviation in degrees Celsius each point for each AR model was off for the 48 hours predicted. The deviation is calculated
as the difference between measured value and predicted value, thus a negative error implies overshooting and a positive error implies
undershooting.

https://doi.org/10.3384/ecp18153169 173 Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

layers can approximate any arbitrary function. Due to hav-
ing more descriptive power, the two layer networks also
tends to adapt faster to the patterns in the training data,
thus learning the input-output relationships faster. Hence,
from one to three hidden layers were tested as shown in
Table 2. Three layers give approximately the same loss as
two layers, hence a two-layer model is chosen. The width
of each layer was chosen according to the following three
rules suggested by (Heaton, 2017):

1. The number of hidden units in each layer should be
between the number of inputs and number of outputs.

2. The number of hidden units in each layer should be
2
3×(number of inputs + number of outputs).

3. The total number of hidden neurons in all layers
should be less than 2× (number of inputs).

3.2 Experiment 2 - ARX Neural Network
In Experiment 2, the neural network input is extended to
include precipitation data. Observe that the error in the
time interval 36 to 42 is reduced for the shorter models (1
and 3 hour). The 1 hour model predicts the test set with
satisfactory accuracy. However the 3 hour model still has
significant prediction errors, in particular at higher tem-
peratures. Observe that, as expected, the prediction ac-
curacy of each model deteriorates with longer prediction
horizons. This is particularly apparent in the time interval
8 to 20.

Table 3 shows the hyper-parameters with test set predic-
tion errors. The test errors on the ARX models are higher
than on the AR models. This is unexpected and the rea-
son is most likely poor tuning of the models. Two hid-
den layers were used for all four models, as suggested by
(Heaton, 2017). The hidden structures depend largely on
the choice of regression horizon, hence the structures for
each model is similar, except for the 6 hour model, which
achieved better tuning with hidden layer structure (33,12)
instead of (17,12).

The error for each model predicted on the 48 hour test
set is shown in Figure 5. Observe that the error due to the
mentioned rapid change in measured data at time 36 to 42
in the 1 hour prediction model is reduced.

4 Conclusions and Future Work
In this work, artificial neural networks are used to predict
temperature. Four separate models were trained to pre-
dict the temperature 1, 3, 6, and 12 hours ahead. In the
first experiment, only temperature was used as input to the
networks. This constitutes an auto-regressive neural net-
work (AR-NN). In the second experiment, precipitation
data was introduced into the network, forming an auto-
regressive neural network with exogenous input (ARX-
NN). After extensive tuning of hyper parameters for all
eight models, the prediction results of the models were
compared. Introducing precipitation as an input in the

ARX model was shown to slightly improve the predic-
tion performance. Hence, it may be interesting to extend
the model with other inputs. Mainly, it is of interest to
study whether introduction of data from other geographi-
cal locations can improve the prediction results. Based on
knowledge of how the jet stream moves and influences the
weather, together with local pressure variations, it would
be natural to add weather information from, e.g., Kris-
tiansand, Oslo, etc. as exogenous inputs. This will be a
topic for future research.

References
C.M. Bishop. Pattern Recognition and Machine Learning: All

"just the Facts 101" Material. Information science and statis-
tics. Springer, 2013. ISBN 9788132209065. URL https:
//books.google.no/books?id=HL4HrgEACAAJ.

Divya Chauhan and Jawahar Thakur. Data mining techniques
for weather prediction: A review. International Journal on
Recent and Innovation Trends in Computing and Communi-
cation, 2(8):2184–2189, 2014.

Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and
Jürgen Schmidhuber. Deep big simple neural nets excel on
handwritten digit recognition, 2010. Cited on, 80, 2010.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua
Bengio. Deep learning, volume 1. MIT press Cambridge,
2016.

Aditya Grover, Ashish Kapoor, and Eric Horvitz. A deep hy-
brid model for weather forecasting. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 379–386. ACM, 2015.

Mohsen Hayati and Zahra Mohebi. Application of artificial neu-
ral networks for temperature forecasting. World Academy of
Science, Engineering and Technology, 28(2):275–279, 2007.

Jeff Heaton. The number of hidden layers, 2017. URL
http://www.heatonresearch.com/2017/06/
01/hidden-layers.html.

R. Johansson. System Modeling and Identification. Informa-
tion and system sciences series. Prentice Hall, 1993. ISBN
9780134823089. URL https://books.google.no/
books?id=FZ7gAAAAMAAJ.

Max Kuhn and Kjell Johnson. Applied predictive modeling, vol-
ume 26. Springer, 2013.

L. Ljung. System Identification: Theory for the User. Pren-
tice Hall information and system sciences series. Prentice
Hall PTR, 1999. ISBN 9780136566953. URL https:
//books.google.no/books?id=nHFoQgAACAAJ.

Lennart Ljung. Prediction error estimation methods. Cir-
cuits, Systems and Signal Processing, 21(1):11–21, Jan 2002.
ISSN 1531-5878. doi:10.1007/BF01211648. URL https:
//doi.org/10.1007/BF01211648.

Warren S McCulloch and Walter Pitts. A logical calculus of the
ideas immanent in nervous activity. The bulletin of mathe-
matical biophysics, 5(4):115–133, 1943.

https://doi.org/10.3384/ecp18153169 174 Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

https://books.google.no/books?id=HL4HrgEACAAJ
https://books.google.no/books?id=HL4HrgEACAAJ
http://www.heatonresearch.com/2017/06/01/hidden-layers.html
http://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://books.google.no/books?id=FZ7gAAAAMAAJ
https://books.google.no/books?id=FZ7gAAAAMAAJ
https://books.google.no/books?id=nHFoQgAACAAJ
https://books.google.no/books?id=nHFoQgAACAAJ
http://dx.doi.org/10.1007/BF01211648
https://doi.org/10.1007/BF01211648
https://doi.org/10.1007/BF01211648

Table 2. 1 hour prediction, selected hyper-parameter search.

Exp. No. Epochs Regression horizon Layer structure Learning rate Training set loss Validation set loss
1 1000 3 3 0.001 0.0144 0.0109
2 1000 24 3 0.001 0.0125 0.0105
3 1000 24 17 0.01 0.0116 0.0101
4 1000 24 17,12 0.01 0.0113 0.0100
5 1000 24 17,12,9 0.01 0.0113 0.0101
6 810 24 17,12 0.01 0.0113 0.0100

Figure 5. Measured value and the outputs of 4 different ARX models.

Table 3. Hyper-parameters for each ARX model.

Model Test error Epochs Layer structure Regression horizon Learning rate
1 hour 0.0133 500 17, 12 24 0.01
3 hour 0.0653 500 33, 23 48 0.001
6 hour 0.0946 500 17, 12 48 0.01
12 hour 0.0991 500 17, 12 24 0.001

https://doi.org/10.3384/ecp18153169 175 Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

Figure 6. Error in Celsius for the ARX model over the 48 hour test set. The error is calculated as the difference between measured
value and predicted value.

Brian A Smith, Ronald W McClendon, and Gerrit Hoogen-
boom. Improving air temperature prediction with artificial
neural networks. International Journal of Computational In-
telligence, 3(3):179–186, 2006.

Julien Thibault and Inanc Senocak. Cuda implementation of a
navier-stokes solver on multi-gpu desktop platforms for in-
compressible flows. In 47th AIAA aerospace sciences meet-
ing including the new horizons forum and aerospace exposi-
tion, page 758, 2009.

https://doi.org/10.3384/ecp18153169 176 Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

	Introduction
	Background
	Previous Work
	Overview of Paper

	Materials and Methods
	Artificial Neural Networks
	Timeseries modeling
	Python API for Data Collection
	Experimental Data

	Results and Discussion
	Experiment 1 - AR Neural Network
	Experiment 2 - ARX Neural Network

	Conclusions and Future Work

