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Abstract
Many industrially important reactors are operated over a
regime where they exhibit nonlinear behavior. Exother-
mal reactors are often open-loop unstable. For such reac-
tors, safe operation with good performance requires good
control. We have considered linear controllers and tested
these on a simple chemical engineering non-linear, open
loop unstable model and an extension of the model in or-
der to do a basic test of model uncertainty. Specifically,
a PI controller has been tuned and tested, the operation
of an Extended Kalman Filter (EKF, KF) has been tuned
and tested. Based on feedback from estimated states in
the EKF, a linear quadratic controller with integral ac-
tion (LQG+I) has been tuned and tested; the study has
been carried out using MATLAB for KF and LQG+I tun-
ing; the remaining study has been carried out in a Jupyter
Notebook using Python in tandem with Modelica. The
PI controller lead to negative cooling water temperature
upon a step change in temperature reference. When con-
straining the input to liquid water with anti-windup, PI
control gives considerable undesirable overshoot in the re-
actor temperature. The LQG+I controller performs much
better wrt. temperature overshoot. Overall, the reported
work has demonstrated how a modern simulation set-up
(OpenModelica + Python) can be used for model based
control analysis and design.

Keywords: nonlinear reactor, model uncertainty, control
design, PI control, LQG control

1 Introduction
1.1 Background
Many industrially important reactors are operated over a
regime where they exhibit nonlinear behavior. Exother-
mal reactors are often open-loop unstable. For such reac-
tors, safe operation with good performance requires good
control.

It is of interest to compare how how modern tools can
be used to efficiently and accurately assess the perfor-
mance of both standard PI controllers and more advanced
multivariable controllers. In the simplest case, classical
output feedback linear quadratic reactors with state es-
timation (LQG) could be considered, possibly extended
with constraint handling as in linear model predictive con-
trol (MPC). A further extension could involve nonlinear
MPC and nonlinear state estimation, but also nonlinear

feedback controllers such as passivity based controllers
and nonlinear observers.

To make the comparison concrete, it is useful to intro-
duce a representative model which is nonlinear and open
loop unstable, with constraints in inputs and outputs. It is
also of interest to consider systems which are multivari-
able input with multivariable outputs (MIMO), and also
systems with stable or unstable zero dynamics.

1.2 Previous Work

Classical control is well developed (Åstrøm and Murray,
2008), (Seborg et al., 2011); the same is true for linear
quadratic optimal control (Anderson and Moore, 1989).
Model predictive control is newer (Maciejowski, 2002),
(Rawlings et al., 2017). State estimation is described, e.g.,
in (Simon, 2006). Basic nonlinear control is described in
(Henson and Seborg, 1997).

A nonlinear, open loop unstable single input - single
output (SISO) reactor model is described in (Seborg et al.,
2011); an extension of the model is described in (Sund
et al., 2018). The Modelica modeling language is useful
for encoding dynamic models (Fritzson, 2015), and ex-
tended analysis can be achieved by combining Modelica
with Python (Lie et al., 2016).

1.3 Organization of Paper

Section 2 describes the chosen illustrative process model,
together with the control problem. In Section 3, a PI con-
troller for the open-loop unstable process model is devel-
oped, including a description of an anti-windup algorithm
that is easy to implement in Modelica. Further, continuous
LQ control with integral action is described, and a con-
troller is tuned. Next, a discrete time constant gain state
estimator is discussed. In Section 4, the state estimator is
tested for both the original model and an extended model,
then the PI controller is tested for both models. Finally,
the LQG+I controller is tested. In Section 5, the results
are discussed, and some conclusions are drawn. In three
appendices, the extended model is described, a nominal
linear model is given, and the extended LQ+I system is
given.
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Figure 1. Cooled liquid reactor with reaction aA → B.

2 Problem Description
2.1 Process Overview
We consider a liquid reactor of constant volume V , with
influent volumetric flow rate V̇i, influent concentration cA,i
of reactant A carried via an inert solvent S,1 and influent
temperature Ti, Fig. 1.

It is of interest to convert species A into species B
through an exothermic reaction

aA → B; (1)

the products are carried out of the reactor via solvent S. To
keep control of reactor temperature T , heat rate Q̇ is added
by flowing a liquid at temperature Tc through the tube side
of a coil/heat exchanger. With a high flow rate of the cool-
ing liquid, Tc is constant through the heat exchanger, and
the heat rate can be described as

Q̇ = U A(Tc −T ) . (2)

where U A is a parameter. If Tc < T , Q̇ < 0 and the reactor
is cooled.

The rate of reaction r is given as

r = kca
A (3)

where a is the reaction order and k is given by the Arrhe-
nius expression

k = k0 exp
(
−E/R

T

)
. (4)

The operation of the reactor is influenced by inputs V̇i,
cA,i, Ti and Tc, and it is of interest to study how these in-
fluence the outputs cA, cB and T .

Assuming that the reaction mixture constitutes an ideal
solution, a DAE formulation of the system model is dis-
cussed in (Sund et al., 2018). Appendix A suggests how
the DAE model can be manipulated into an implicit ODE,
and furthermore how assuming first order reaction (a= 1),
constant reactor density, and constant thermal parameters
leads to the model in (Seborg et al., 2011). A Linear Time
Invariant (LTI) approximate model in form

dx
dt

δ
= Axδ +Buδ (5)

yδ =Cxδ +Duδ (6)

1Inert implies non-reacting.

is given in Appendix B where superscript δ indicates de-
viation from a nominal solution, based on the conditions
suggested in (Sund et al., 2018) and computed using a
Python API for OpenModelica (Lie et al., 2016).

2.2 Control Problem

Although the case study has inputs u =
(
V̇i,cA,i,Ti,Tc

)
and outputs y = (cA,cB,T ), in a control problem one may
choose to control the temperature y = T by manipulat-
ing the input u = Tc. In that case, the additional inputs(
V̇i,cA,i,Ti

)
may be considered disturbances.

Realistic controllers must utilize output feedback; inter-
nal states are not known in practice, thus state feedback is
infeasible. We compare the operation of linear controllers
such as proportional (P) and linear quadratic (LQ) and lin-
ear quadratic with state estimation (LQG), as well as their
versions with integral action (PI, LQ+I, LQG+I). Some
key differences are that P+PI and LQG, LQG+I are out-
put feedback controllers, while LQ, LQ+I are unrealistic
state feedback controllers. The main difference between
P+PI and LQ(G), LQ(G)+I controllers are that P+PI con-
trollers do not use much information about the system dy-
namics, while LQ(G), LQ(G)+I controllers include a dy-
namic model2.

With digital controllers, measurements are available at
given sample times, and it is common to use zero-order
hold of the control input between each sample. In modern
control systems, also P+PI controllers are usually imple-
mented as digital controllers.

3 Controller Design
3.1 PI Controller
Using the linearized model in Appendix B with Tc as con-
trol input, the closed loop matrix Acl with a proportional
controller (P controller) is

Acl = A−KpB:,1C (7)

where B:,1 is the first column of B. Looping through Kp ∈
[−1,8] leads to the closed loop eigenvalues as depicted in
Figure 2.

The P-controller stabilizes the system for Kp ' 1.2;
Kp = 5.7 gives two real, closed loop eigenvalues/poles at
approximately λ ≈ −5, which implies closed loop time
constants τ j ≈ 1

5 = 0.2.
For a proportional + integral controller, it is reasonable

to let the reset time (= integral time) be, say, 10 times
larger than the closed loop time constants of a P controller.
Thus, the PI controller

Tc (s) = T ∗
c +Kp

1+Tints
Tints

· e(s) (8)

e(s) = Tref (s)−T (s) (9)

2Essentially, LQ controllers give “intelligent” derivative action.
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Figure 2. Root locus plot λ
(
Acl;Kp

)
for Kp ∈ [−1,8].

with Kp = 5.7 and Tint = 2 may be an acceptable choice.3

Nominal input T ∗
c is not needed with integral action, but

is useful to avoid an initial “kick” in the control action.
Tref is the reference temperature. If we let Tint → ∞, the
controller becomes a P controller.

In the time domain, we can express the PI controller as

Tc −T ∗
c = Kpe+ T̃c (10)

dT̃c

dt
=

Kp

Tint
e. (11)

To handle constraints for Tc ∈ [4,96]◦C, if Tc =Kpe+T ∗
c +

T̃c breaks this constraint, we set Tc equal to the constraint
and dT̃c

dt = 0 to avoid controller wind-up.

3.2 LQ+I Controller
We consider an infinite horizon optimal linear quadratic
(LQ) controller with cost function

J =
1
2

∫ ∞

0

(
eT

y Qyey + eT
u Reu

)
dt (12)

where matrix Qy > 0 puts weight on quality deviation ey =
y− yref and matrix R > 0 puts weight on the regulating
input eu = u− u∗. Postulating a reference state xref such
that yref =Cxref, this gives the standard LQ cost function

J =
1
2

∫ ∞

0

(
eT

x Qex + eT
u Reu

)
dt (13)

where ex = x− xref with xref =
(

Tref cA,ref
)T and cA,ref

is found by solving Eq. 36 in steady state:

cA,ref =
V̇i/V

k0 exp
(
−E/R

Tref

)
+V̇i/V

cA,i, (14)

while Q =CT QyC ≥ 0. The solution is

eu =−Kcex ⇒ u = u∗−Kcex (15)

where Kc can be found, e.g., using the MATLAB control
toolbox as >> Kc = lqr(A,B,Q,R). Here, it is required

3The integral time is denoted Tint in order to make a distinction be-
tween integral time and influent temperature, Ti.

Figure 3. Variation of closed loop eigenvalues λ (Acl) with ρ
varying logarithmically over

[
101,10−2

]
; red circles indicate

“cheap control”.

that (A,B) is stabilizable and (A,C) detectable. The closed
loop eigenvalues are given by

Acl = A−BKc. (16)

See, e.g., (Anderson and Moore, 1989) for a classical
treatment.

A relatively common rule-of-thumb for choosing
weight matrices is to let them be diagonal with elements

Qy, j, j = 1/ε2
y, j (17)

R j, j = ρ/ε2
u, j (18)

where εy, j and εu, j are some acceptable deviations in ey, j
and eu, j, respectively, while ρ is some scalar tuning pa-
rameter for R which is manipulated to get acceptable
closed loop eigenvalues. We could choose, say, approx-
imately 1% of nominal values:

Qy =
1
32 , R = ρ

1
32 . (19)

If ρ → 0, this should give a fast closed loop system since
this means that the control input is “cheap”. Figure 3
shows the closed loop eigenvalues λ (Acl) as ρ varies
logarithmically over

[
101,10−1

]
, and illustrates the well

known result that one eigenvalue approaches the (“sta-
ble”) zero at λ =−2 when ρ → 0 (Kwakernaak and Sivan,
1972). From an input-output perspective, the closed loop
pole at λ ≈−2 will approximately cancel out the zero; see
transfer function in Appendix B.

A decent compromise would be ρ = 0.2, leading to
eigenvalues at λ (Acl) = (−5.1761,−1.8246) where the
fast eigenvalue would be similar to that achieved via P
control. The resulting state feedback gain is

Kc =
(

4.4838, 107.4579
)
. (20)

This standard LQ controller gives steady deviation in
ey. One way to achieve zero steady deviation in ey is to
augment the system with state

dz
dt

= ey (21)
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and extend the cost function to

J̃ = J +
1
2

∫ ∞

0
zT Qzzdt : (22)

unless ey → 0, J̃ will be unbound and can not be con-
sidered optimal.4 The extended control problem with in-
tegrator is solved as above, with augmenting the system
into state x̃ = (x,z), and likewise for Q̃, see Appendix C.5

A possible rule-of-thumb for Qz is Qz = Qy/ρz where
first Qy and R are chosen to give decent closed loop poles
of the original system, and then ρz is tuned to give reason-
ably fast integral action. Setting ρz = 4 leads to

K̃cl =
(

4.7073, 106.0020, 1.1180
)

(23)

and closed loop eigenvalues λ
(
Ãcl

)
=

(−5.1568,−0.5011,−1.8105).
Using a digital controller with fixed sample time, a dis-

crete version of the LQ controller can easily be found
by (i) discretizing the system (A,B,C,D)

ts→ (Ad,Bd,C,D)
with sample time ts using, e.g., MATLAB function c2d(
sys,ts), and related optimal control function >> Kc =
dlqr(Ad,Bd,Q,R).

3.3 State Estimator
Because measurements normally are available in discrete
time with sample time ts, it is more convenient to operate
with a discrete time model. Thus, we assume a linearized
model

xt+1 = Adxt +Bdut +Gdwt (24)
yt =Cxt +Dut + vt (25)

where Bd is discretized input matrix B:,1, Gd is discretized
input matrix B:,2:4, wt is process disturbance and vt is mea-
surement noise. We will assume that w and v are uncorre-
lated, zero mean white noise with a Gaussian distribution,
and co-variance matrices W and V , respectively. Thus

E
{

wtwT
t+τ

}
=W ·δτ (26)

E
{

vtvT
t+τ

}
=V ·δτ (27)

E
{

wtvT
t+τ

}
= 0 (28)

where δτ is the (single argument) Kronecker delta. With
input Tc used as control variable, inputs

(
Ti,V̇i,cA,i

)
would

be natural disturbances. With a priori estimates x̂t|t−1
given by solving the non-disturbed, nonlinear model over
sample time ts with initial value x̂t−1|t−1, and a priori mea-
surement ŷt|t−1 = g

(
x̂t|t−1,ut−1

)
, we can find the a poste-

riori estimate x̂t|t from Kalman’s expression as

x̂t|t = x̂t|t−1 +Ke
(
yt − ŷt|t−1

)
. (29)

4Even if ey → 0, most likely z ̸= 0 for infinite time leading to infinite
value for J̃ ; still, some optimum may be found. However, if ey is
different from zero at infinite time, no optimum can be found.

5Seemingly, integral action can be achieved in a simpler way by re-
placing weight on u in J with weight on u̇. However, this requires an
unbiased model to work, with added complexity of estimating the bias
in a state estimator.

Here, a constant Kalman gain Ke can be found, e.g., by
using MATLAB’s control toolbox, >> Ke = dlqe(Ad,
Gd,C,W,V). It is required that (Ad,C) is detectable and
(Ad,Gd) is stabilizable in order for the estimator to work.

In practice, W and V are not known accurately. A pos-
sible rule-of-thumb for tuning the state estimator could
be as follows. Let ς̂w, j be assumed variation in w j over
time horizon τ j. Then choose diagonal elements of W as

Wj, j =
(

ς̂w, j
ts
τ j

)2
.6 For the measurement noise, assume

instantaneous standard deviation σ̂v, j, but we set diagonal
elements to Vj, j = µσ̂v, j where µ is a tuning parameter to
give suitable closed loop performance of the estimator: if
µ → 0, we assume little measurement noise and the esti-
mator should become fast. Ideally, µ should be unity.

We could choose, say, approximately 1% of nominal
values for ς̂w, j in the course of τw, j = τ , and assume a 1%
measurement standard deviation:

W =
( ts

τ

)2


( 300

100

)2
0 0

0
( 100

100

)2
0

0 0
( 1

100

)2

 , V = µ ·
(

300
100

)2

.

(30)
To simplify matters, we will assume direct disturbance

to each state, w′
t = Gdwt , where

W ′ = GdWGT
d . (31)

Choosing ts = 1
10 , τ = ts, and µ = 1 leads to Kalman gain

Ke =

(
0.45942

−0.0030453

)
(32)

and estimator closed loop eigenvalues at λ =
(0.74733,0.91768) which are well within the unit
circle, hence stable.

The fast mode in the controller has a time constant of
approximately τ j ≈ 1

5 = 0.2, which implies that a step
change is damped to exp(−1)≈ 0.37 in 0.2min, or to ap-
proximately 0.74 in ts = 0.1min. This means that the fast
mode of the controller in a discretized system is approxi-
mately λd ≈ 0.74. In other words: the Kalman Filter gain
in Eq. 32 makes the estimator slower than the controller.
If we tune µ to µ = 10−2 instead, we find

Ke =

(
0.75947

−0.0018525

)
(33)

with eigenvalues at λ = (0.37741,0.80854). Reducing µ
further, the second eigenvalue is stuck at a value around
0.8; the first eigenvalue, is, however, twice as fast as the
closed loop controller eigenvalue.

3.4 LQG+I Controller
For linear systems, the controller and the estimator (with
Gaussian noise, LQG) can be tuned independently. We

6The assumed discrete time standard deviation would be σ̂w, j = ς̂ ts
τ, j .
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Figure 4. Real temperature T , a priori estimate T̂t|t−1, and a
posteriori estimate T̂t|t when estimator model is identical to the
real system — except initial states.

will assume that this is true here, too. Because it doesn’t
make sense to assume “disturbance” on the integral state,
we will base the estimator on the original model with state
x, and not on state x̃.

4 Simulation Results
4.1 Operation
The model as given in Appendix A is used for all designs
(P+PI controller tuning, LQ(G)+I design); this original
model is referred to as the org model. A slightly more
complex model (ideal solution assumption, is) is used.
White noise disturbances, additive to the nominal values
of

(
Ti,V̇i,cA,i

)
in (Sund et al., 2018), are used with values

as discussed in Section 3.3 for all simulations. For test-
ing the state estimator, the measurement noise indicated
in Section 3.3 is used with parameter µ = 1 in the Kalman
Filter tuning, together with a 3% deviation in the initial
states of the estimator. Because a continuous time PI con-
troller is implemented in Modelica, it is difficult to have
continuous measurement noise: for the controller compar-
isons, the measurement noise is set to zero, and the tuning
parameter of the Kalman Filter is set to µ = 10−2.

4.2 State Estimation
Figure 4 shows the estimate of T when the “real” system
equals the org model.

Figure 5 shows the resulting estimate of T when the
“real” system equals the is model.

Figures 6 and 7 show the similar estimates of cA, re-
spectively.

4.3 Proportional + Integral Control
Figure 8 shows the use of PI controller to keep reactor
temperature T close to a reference Tref. The PI controller
tuned for the org model, is also applied to the is model.

The result indicates that the controller easily handles
the model difference between the two models. Figure 9
shows the applied control input Tc as well as the integral
state T̄c in the controller for the two model cases.

Figure 5. Real temperature T , a priori estimate T̂t|t−1, and a
posteriori estimate T̂t|t when estimator model differs from the
real system, including different initial states.

Figure 6. Real temperature cA, a priori estimate ĉA,t|t−1, and
a posteriori estimate ĉA,t|t when estimator model is identical to
the real system — except initial states.

Figure 7. Real temperature cA, a priori estimate ĉA,t|t−1, and a
posteriori estimate ĉA,t|t when estimator model differs from the
real system, including different initial states.
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Figure 8. Output T as controlled with PI controller tuned for
org model, and applied to org and is model.

Figure 9. PI control signal Tc and integrator state T̄c for org
and is models.

Figure 9 clearly shows a problem for the controller: the
cooling water can not take on negative temperatures Tc.
We therefore add the constraint that Tc ∈ [4,96] ◦C, which
together with anti-windup leads to the results in Figures 10
and 11 for output T and controller Tc, respectively.

4.4 Linear Quadratic Control
Figure 12 shows the use of LQG+I controller to keep re-
actor temperature T close to a reference Tref.

Figure 13 shows the applied control input Tc.
Figures 12 and 13 should be compared with Figures 8

Figure 10. Output T as controlled with PI controller tuned for
org model, and applied to org and is model: control input Tc
is constrained to [4,96] ◦C and anti-windup is applied.

Figure 11. PI control signal Tc and integrator state T̄c for org
and is models: control input Tc is constrained to [4,96] ◦C and
anti-windup is applied.

Figure 12. Output T as controlled with LQG controller tuned
for org model, and applied to org model.

Figure 13. Control signal Tc from LQG controller.
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Figure 14. Output T as controlled with LQG controller tuned
for org model, and applied to org model: control input Tc is
constrained to [4,96] ◦C and anti-windup is applied.

Figure 15. Control signal Tc from LQG controller: control input
Tc is constrained to [4,96] ◦C and anti-windup is applied.

and 9, respectively.
Adding the same constraint and anti-windup in the

LQG+I controller leads to the results in Figures 14 and 15
for output T and controller Tc, respectively. These should
be compared to Figures 10 and 11, respectively.

5 Discussion and Conclusions
Practical procedures for tuning a PI controller for an open
loop unstable system is described, together with some
continuous time implementation details with anti-windup
action suitable for implementation in Modelica. A disad-
vantage of a continuous time implementation is that the
chosen combination (Python + Modelica) does not allow
for continuous time measurement noise. Details of tun-
ing a constant gain Extended Kalman Filter is discussed,
with an algorithm suitable for implementation in a combi-
nation of Python and Modelica. Finally, design of a linear
LQG controller is described, and a controller is tuned. The
method is extended to include integral action.

The developed control algorithms are applied to the
nonlinear models, and tested through simulation. The
EKF estimator works well in a highly non-linear regime,
even for a more complex model. The developed PI con-
troller is tuned; the example shows the need to take con-
trol input constraint into account. This leads to an un-
fortunate overshoot in the controlled variable (tempera-

ture). The LQG controller gives superior control with a
considerable reduction in temperature overshoot, but gives
slightly less disturbance attenuation; this problem would
have been solved by setting KF parameter µ even smaller.
To further reduce the temperature overshoot, utilizing the
nonlinearity of the system in the controller design should
be attempted.

The design of the LQG controller was carried out using
the MATLAB Control Toolbox7. All other parts of the
design and testing was carried out in a Jupyter Notebook8

where Python code was combined with Modelica code.
The main message of this work is not so much the de-

sign of a controller, but rather to demonstrate how modern
modeling and simulation tools such as OpenModelica in
tandem with a script based language such as Python can
ease and streamline control design, analysis, and testing
through simulation.

A Model details
The ideal solution extension of the model in (Seborg et al.,
2011) is presented with some details in (Sund et al., 2018):
model parameters and nominal operating conditions are
given, together with a manipulation of the model into an
implicit ODE model of form M · dx

dt = f (x,u;θ). The se-
quel discusses how this implicit ODE model can be sim-
plified to the model in (Seborg et al., 2011).

When assuming that solvent S totally dominates in the
mixture wrt. density, “mass matrix” M in Appendix A of
(Sund et al., 2018) simplifies to the identity matrix, M → I.
Furthermore, the total heat capacities simplify to

Cp = mSĉ•p,S =Cp,i. (34)

With this assumption, information about species B be-
comes irrelevant — unless we are particularly interested
in cB. Thus, when cB is of no particular interest, the model
can be simplified to

dcA

dt
=

V̇i

V
(cA,i − cA)−a · r (35)

dT
dt

=
V̇i

V
(Ti −T )+

(
−∆rH̃

)
r

ρ•
S ĉ•p,S

+
Q̇

ρ•
S ĉ•p,SV

, (36)

where r and Q̇ are given by Eqs. 3 and 2, respectively,
while ∆rH̃ is given by

∆rH̃ = H̃◦
B −aH̃◦

A +
(
c̃•p,B −ac̃•p,A

)
(T −T ◦) . (37)

Consider now the Continuous Stirred Tank Reactor
(CSTR) in Example 2.5 of (Seborg et al., 2011): this
model is identical to the simplified model in Eqs. 35–369

provided that a ≡ 1 and ∆rH̃ is constant wrt. temperature.
Assuming that the standard state specific enthalpies are

7www.mathworks.com
8www.jupyter.org
9The model notation is changed from that of (Seborg et al., 2011).
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temperature independent, i.e., Ĥ◦
j is temperature indepen-

dent, this requires that c̃•p,B −ac̃•p,A ≡ 0 — or c̃•p,B ≡ c̃•p,A.
The parameters and operating conditions in Tables 3-4 of
(Sund et al., 2018) are judiciously chosen to ensure that
the solvent-dominating model is identical to the model in
(Seborg et al., 2011).

B Model linearization
For the model, with x = (T,cA), u = (Tc,Ti,V̇i,cA,i), and
y = T , the linearized model is:

dxδ

dt
= Axδ +Buδ (38)

yδ =Cxδ +Duδ (39)

where for any z, zδ , z − z∗ and asterisk ∗ indicates
nominal value. Using the Python API described in (Lie
et al., 2016) together with OpenModelica, let sr_org be
a Python object of the original reactor in (Seborg et al.,
2011) (but with nA replacing cA as state). We can then
linearize the model in Python with the statement:
>>> A, B, C, D = sr_org.linearize()

The following system matrices are found:

A =

(
4.3796 209.205

−0.035714 −2

)
(40)

B =

(
2.09205 1 0 0

0 0 0.005 1

)
(41)

C =
(

1 0
)

(42)

D =
(

0 0 0 0
)
. (43)

The open loop eigenvalues of A are λ =
(2.83388381,−0.45432613), hence the system is
open loop unstable. The open loop transfer function from
T δ

c to T δ is

T δ (s) = 2.092
s+2

s2 −2.38s−1.288
·T δ

c (s) (44)

which implies that the system has a “stable” zero at s =
−0.5 at the nominal operating point.

C Extended LQ+I system
The extended LQ problem with integral action is given as
follows. Thee extended system is10

d
dt

(
x
z

)
︸ ︷︷ ︸

x̃

=

(
A 0
C 0

)
︸ ︷︷ ︸

Ã

x̃+
(

B
0

)
︸ ︷︷ ︸

B̃

u (45)

while the extended cost function J̃ given as

J̃ =
1
2

∫ ∞

0

(
eT

x̃ Q̃ex̃ + eT
u Reu

)
dt (46)

where

Q̃ =

(
CT QyC 0

0 Qz

)
. (47)

10Tref acts as a disturbance
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