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Abstract
In many different applications, a Venturi channel is used
as a tool to compute fluid flow rates. The Saint-Venant
equation is a hyperbolic type Partial Differential Equa-
tion (PDE) which can be used to model fluid flows
through a Venturi channel. The suitability of the 2nd or-
der Kurganov-Petrova (KP) scheme to solve the hyper-
bolic PDE for fluid flow in the Venturi channel is stud-
ied. A laboratory Venturi rig established at the Univer-
sity of South-Eastern Norway (USN) is used to measure
the Steady State (SS) fluid levels along the channel. In
this paper, the simulated results are compared with the ex-
perimental data. In addition, the simulation results ob-
tained with the second order scheme for solving the Saint-
Venant equations are compared with a 1st order numerical
scheme. The Froude number for the flow is calculated to
check the flow regime changes: from a subcritical flow to
a supercritical flow in the Venturi section of the channel.
The 2nd order KP scheme is found to be a suitable numer-
ical scheme which can be used to discretize hyperbolic
PDEs.
Keywords: Semi-discrete KP scheme, Venturi rig, drill
mud flow

1 Introduction
The Kurganov-Petrova (KP) scheme is a 2nd order numer-
ical scheme, which is developed to discretize Hyperbolic
Partial Differential Equations (PDEs) in spatial directions
(Kurganov and Petrova, 2007). In the development of the
KP scheme, the local speed of discontinuity propagation
is taken into account [2]. Suitability of the KP scheme
to simulate flows of water in a reach of a river has been
tested by the authors of this paper (Sharma, 2015; Vytvyt-
skyi et al., 2015; Dissanayake et al., 2016). Here, we con-
sider the usefulness of the 2nd order KP scheme to solve
the Saint-Venant equation for fluid flow through a Venturi
channel. The simulated results are compared to the ex-
perimental data obtained from a Laboratory Venturi chan-
nel established at the University of South-Eastern Norway
(USN). Moreover, the simulation results with the 2nd order
KP scheme is compared with a 1st order scheme. Based on
the case study, the usefulness of the KP scheme to solve
hyperbolic PDEs for fluid flow through the venturi chan-
nel is assessed.

In the Finite Volume Methods (FVM), the properties of
the flux are averaged in each Control Volume (CV) (Ver-
steeg and Malalasekera, 2007). A linear reconstruction
based on the flux property average of CVs, causes dis-
continuity at the cell interfaces giving rise to the Riemann
problem (Kurganov and Tadmor, 2000); the discontinuity
causes two different property values for a single interface
of a CV and the uniqueness of solution is lost. Subse-
quently, this may lead to oscillation in the final solution.
In order to deal with such discontinuity problems, several
numerical techniques have been developed. Various Rie-
mann solvers can be used to address the problem but they
usually consist of a number of intermediate calculations
to compute a single value for the CV interface (Kurganov
and Petrova, 2007). Due to the number of intermediate
calculations involved, Riemann solvers are computation-
ally expensive with slow convergence. The 2nd order KP
scheme is a Riemann free solver, which is recognized
as an appropriate scheme to address such discontinuity
problems with reasonable accuracy and fast convergence
(Kurganov and Petrova, 2007).

Use of a Venturi channel as a tool to compute flow rates
is well known in many industries, e.g., in oil drilling. The
downhole pressure of an oil wellbore is considered as a
crucial parameter to be controlled in the drilling opera-
tions. Abrupt changes of the pressure of an oil-well might
cause minor to major fractures in the wellbore. Such a
situation might result in an uncontrolled reduction of oil-
well pressure. Subsequently, if the oil well pressure de-
creases below the formation pore pressure, an unwanted
flow of formation fluid into the wellbore occurs. Such a
phenomenon is referred to as a kick (Berg et al., 2015). A
critical escalation of a kick condition may lead to blow-out
from oil wells (Hauge and Øien, 2012). Hence, the kick is
a key parameter to observe when drilling is in progress.

Kick is directly related to the drilling fluid circulation.
Thus, kick can be identified by applying mass balance to
the drilling fluid circulation (Berg et al., 2015). This bal-
ance of drilling fluid inflow and outflow of a wellbore can
be expressed as follows,

dm
dt

= ṁi− ṁe. (1)

Here, ṁi is the mass flow rate of drilling fluid injected into
the well (influent), ṁe is the mass flow rate of the fluid
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flowing out of the well (effluent) and m is the mass of
fluid in the well. For the detection of the kick and loss,
it is important to accurately measure the flow rate of the
fluid flowing out of the well. In oil industries, the use of a
measuring paddle in an open channel is a typical/conven-
tional way of measuring the flow rate out of the well. One
of the alternatives is to use an open channel system such
as the Venturi flume/Venturi channel for return drill fluid
flow measurement (Berg et al., 2015).

In this paper, the 2nd order KP scheme is used to dis-
cretize the Saint-Venant equation spatially. The objective
is to check the suitability of the 2nd order KP scheme to
solve hyperbolic type PDEs based on the case study of the
solution of the flow in the Venturi channel. The considered
laboratory Venturi channel has level sensors in fixed posi-
tions which provides the SS fluid level for a known volu-
metric flow rate. The set of experimental data is compared
to the simulation results with the 2nd order KP scheme. In
the latter part of the study, both experimental data and the
2nd order simulation results are compared to a set of 1st

order simulation results which have been published previ-
ously (Agu, 2014).

This paper is arranged as follows. The Venturi channel
and its use for flow rate estimation is discussed in section
2. A detailed description of the laboratory Venturi rig is
given in the same section, with a set of ground floor tanks,
upstream pipe, and the Venturi channel itself. A basic in-
troduction to the Saint-Venant equation together with the
2nd order KP scheme is given in section 3. The model of
the laboratory Venturi channel is simulated in section 4.
Simulation parameters, variables, and quantities are tabu-
lated in the same section. Section 5 provides a discussion
of results: how the simulated results compare with the ex-
perimental data. Moreover, simulation results of a 1st or-
der numerical scheme (Agu et al., 2015) are discussed,
and the percentage errors of the two different methods are
given. Finally, some conclusions are drawn in section 6.

2 The Venturi Channel
The Venturi channel or Venturi flume is an open chan-
nel system. The Venturi channel holds a section where
the width narrows; the Venturi section. When fluid flows
through a Venturi channel, the fluid level is decreased in
the Venturi section due to an acceleration of the flow ve-
locity. In the SS fluid flow, a correlation between volumet-
ric flow rate and the fluid height can be derived. Conse-
quently, either volumetric flow rate or fluid height is com-
puted. Typically, the fluid flow rate is calculated based on
the level measurements. The Venturi channel has two dif-
ferent names based on applications. The Venturi tube is
used for relatively smaller flow (e.g. mm3/s), while the
Venturi channel is used for large scale flows with up to
millions of cubic meter per hour units. The Venturi tube
was developed by G.B. Venturi based on the Bernoulli
principle,

v2

2
+gh+

p
ρ
= constant. (2)

Tank

Pump

Upstream pipe

Fluid in
Level sensors

Venturi channel

Figure 1. Laboratory Venturi rig.

Here, v denotes the velocity of the fluid, g is the accelera-
tion of gravity, h is the height elevation from the reference
plane, p is the pressure of the fluid, and ρ denotes the den-
sity of the fluid.

In the laboratory Venturi rig, the volumetric flow rate
is an adjustable variable. The SS fluid height is measured
by level sensors at fixed positions. The USN Venturi rig is
designed for doing experiments on the flow of drill mud:
more precisely, experiments on flow of artificial drill mud
. An artificial drill mud is a substitute fluid with properties
that match with the real drill mud.

The complete set-up has ground tanks for storing arti-
ficial drill mud. The system has an upstream pipe which
pumps fluid from the tanks and up to some elevation (2nd

floor). At the end of the upstream pipe, the Venturi chan-
nel is attached. A schematic diagram of the complete set-
up of the Venturi rig at USN is illustrated in Figure 1.

A detailed sketch of the Venturi channel is given in Fig-
ure 2. The dimensions of the laboratory Venturi channel
are tabulated in Table 1. The total length of the Venturi
channel is 3.7 m.
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Table 1. Dimensions of the laboratory venturi channel

Symbol Description Values

BT Top width of entrance to the converging section 0.455 [m]
b0 Bottom width of entrance to the converging section 0.2 [m]
b∗0 Bottom width of exit from the converging section 0.1 [m]
H Total height of the channel 0.35 [m]
α Angle of the inclined sides of the channel 700

La Length of the upstream section 2.95 [m]
Lb Length of the converging section 0.15 [m]
Lc Length of the throat section 0.2 [m]
Ld Length of the diverging section 0.15 [m]
Le Length of the downstream section 0.25 [m]
θ Angle of channel bed 0.080

3 Governing Equations and the 2nd

Order KP Scheme
3.1 Governing Equations
The Saint-Venant equation/Shallow Water Equation is a
hyperbolic type PDE, which has versatile use in fluid dy-
namics: many different fluid dynamic applications such
as fluid flows in open channels, water flow in the rivers
to estimate wave propogation, compute tsunmai wave, etc.
(Sharma, 2015; Vytvytskyi et al., 2015; Dissanayake et al.,
2016). The Saint-Venant equation is given in Equation 3.

∂U
∂ t

+
∂F
∂x

= S (3)

Here, U stands for fluid property such as the flow rate and
fluid level, F(U) represents physical fluid flux and S is
a source term. x and t are spatial and time cordinates re-
spectively. More precisely, the Saint-Venant equation with
source term is given as (Sharma, 2015),

∂U(x, t)
∂ t

+
∂F(x, t,U)

∂x
= S(x, t,U), (4)

U = (A,Q)T , (5)

F =

(
Q,

Q2

A
+gI1 cos(θ)

)T

(6)

S =
(
0,−gI2 +gA

(
S0−S f

))
. (7)

Here, A is the cross-sectional area, Q is the volumetric
flow rate and g is acceleration due to gravity. The S term
reflects the source terms such as the expressions of friction
terms which give resistance against the fluid flow. I1 and
I2 in Equations 6 and 7 are functions of the geometry of
the channel. The term gI1 gives the hydrostatic force in
the cross-sectional area of the flow and I1 is expressed as,

I1 = h2
(

W
2
+h

SL

3

)
. (8)

Here W is the width of the base of the channel and SL
is the slope of the side wall (the laboratory Venturi rig is
trapezoidal). If the channel is rectangular, then SL become
zero. h is fluid level. I2 in Equation 7 represents the pres-
sure force in the fluid volume, which occurs due to channel
width and slope variations along the axial direction.

I2 = h2
(

1
2

dW
dx

+h
h
3

dSL

dx

)
. (9)

S f in Equation 7 is friction term and S0 stands for bed
slope which is expressed as,

S0 =−
∂B
∂x

. (10)

Here B stands for the bottom elevation. For Newtonian
fluids, the friction term S f in Equation 7 is calculated as
(Agu et al., 2015),

S f = v|v|n2
MR−4/3

h . (11)

Here nM is Manning’s roughness coefficient. v is the ve-
locity of the fluid and is calculated as,

v =
Q
A

(12)

Rh in Equation 11 refers to hydraulic radius and is ex-
pressed as in Equation 13.

Rh =
A

Pwet
. (13)

Pwet is the wetted perimeter which is illustrated in Figure
3.

Pwet in Equation 13 is the sum of all lengths of wetted
surface by the fluid, which is expressed as,

Pwet =
∞

∑
i=0

li. (14)

Here li is the length of each surface which has contact with
the fluid flow in the channel.
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Figure 2. Illustration of the Laboratory Venturi channel.
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Figure 3. The wetted perimeter of a trapezoidal channel.

Many common fluids are assumed as Newtonian, e.g.,
water. A Newtonian fluid is a fluid for which the viscous
stresses developed due to the flow of fluid are linearly pro-
portional to local strain rates or rate of change of deforma-
tion (Versteeg and Malalasekera, 2007). The drilling fluid
however is a non-Newtonian fluid.

3.2 Non-Newtonian Fluid
Non-Newtonian fluids are fluids for which the viscous
stresses developed due to the flow of fluid are not linearly
proportional to the rate of deformation. Polymers, paints,
and Oobleck1 are common examples of non-Newtonian
fluids. Drill mud consist of fines of drill cuttings in a mix-
ture of liquid, and is exhibits a non-Newtonian fluid be-
hvaiour.

Therefore, fluids used in our simulations are considered
as non-Newtonian fluid. The friction term in the Saint
Venant equation is modified to account for more types
of fluids. Subsequently, the Venturi rig simulation is ex-
tended to the non-Newtonian fluid.

Shear stress, τ , is a component of stress applied on the
material cross-sectional area. Shear stress is written as,

τ =
F
A
. (15)

Here, F refers to forces applied on the cross sectional area
A. For a flowing fluid, the shear stress becomes,

τ = µ

(
∂v
∂x

)
. (16)

Here µ is the dynamic viscosity of the fluid. The term ∂v
∂x

is the velocity gradient. x signifies the spatial coordinate.
For non-Newtonian fluid, shear stress is derived by ap-

plying the momentum balance. Then τ is written as in
Equation 17, the well-known Herschel-Buckley model.

τ = ρgS f (Rh−h) = τh +K
(

∂u
∂x

)n

. (17)

In Equation 17, ρ signifies the density of the fluid and g
denotes the acceleration due to gravity. h is height above
the reference plane. K is the consistency index, u in the
equation stands for the velocity component in the positive
x direction, τh is yield stress and n is the flow index. For
n< 1, the fluid is shear thinning. If n> 1, the fluid is shear
thickening. If n = 1 and τh = 0, Equation 17 reduces to
Newtonian model (Agu, 2014).

For non-Newtonian fluids, internal frictional shearing
stress has a major impact. Then from Equation 17, S f is
derived as (Agu et al., 2015),

S f =
K

4ρgRh

(
|v|
h

1+2n
n

)n

. (18)

1Oobleck is corn flour in water. The name originates from a story-
book: Bartholomew and the Oobleck by Dr. Seuss (Theodor Geisel).
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3.3 The 2nd Order KP Scheme
The 2nd order KP scheme is used to discretize the Saint-
Venant equation. The 2nd order KP scheme is semi-
discrete in nature, and is used in the spatial discretiza-
tion of the model equations (Kurganov and Petrova, 2007).
Spatial discretization of the Saint-Venant equation results
in a set of Ordinary Differential Equations (ODEs). Dif-
ferent time integrators can be used to solve such ODEs.
However, the chosen time integrator should essentially be
of order equal to or lower than the order of the spatial dis-
cretization to attain fast convergence. Also, (Dissanayake
et al., 2016) found that fixed step length solvers are more
suitable for solving such a set of ODEs. The ODEs result-
ing from the spatial discretization are of 2nd order. There-
fore, a 2nd order Runge-Kutta (RK2) method is used as a
time integrator.

The set of ODEs generated by the spatial discretization
of the Saint-Venant equation using the KP scheme is writ-
ten as (Sharma, 2015),

d
dt

Ū j =−
H j+ 1

2
(t)−H j− 1

2
(t)

4x
, (19)

H j+ 1
2
(t) =

a+
j+ 1

2
F
(

U−
j+ 1

2
,B j+ 1

2

)
−a−

j+ 1
2
F
(

U+
j+ 1

2
,B j+ 1

2

)
a+

j+ 1
2
−a−

j+ 1
2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
−a−

j+ 1
2

(
U+

j+ 1
2
−U−

j+ 1
2

)
, (20)

H j− 1
2
(t) =

a+
j− 1

2
F
(

U−
j− 1

2
,B j− 1

2

)
−a−

j− 1
2
F
(

U+
j− 1

2
,B j− 1

2

)
a+

j− 1
2
−a−

j− 1
2

+
a+

j− 1
2
a−

j− 1
2

a+
j− 1

2
−a−

j− 1
2

(
U+

j− 1
2
−U−

j− 1
2

)
, (21)

where a±
j± 1

2
are the one-sided local speeds of wave propa-

gation and U±
j± 1

2
are property fluxes at indexed positions.

4 Simulation Setup
The model of the laboratory Venturi channel is simulated
for the flow of artificial drill mud. Important simulation
parameters are summarized in Table 2. MATLAB2 is used
as a simulation software.

5 Results and Discussion
Width variation along the length of the Venturi channel
is plotted in Figure 4. According to the dimensions of
the laboratory Venturi channel (Table 1), the width of the

2MATLAB R2014a

Table 2. Simulation Parameters.

Length of the Venturi channel 3.7 [m]
Density of the fluid 1109 [kgm−3]
Acceleration due to gravity 9.81 [ms−2]
Channel side angle 700

Channel bed angle 0.080

Volumetric flow in 0.00451 [m3s−1]
Volumetric flow out 0.00451 [m3s−1]
Number of CVs 50
Time step (4t) 0.02 [s]
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Figure 4. Width variation in the Venturi rig as a function of the
length of the channel.

channel varies gradually between 0.2 m and 0.1 m at the
throat section of the channel. The SS fluid level along the
whole length of the Venturi channel obtained using the KP
scheme is shown in Figure 5.

According to Figure 5, the initial fluid level is about
0.076 m from the reference plane (which is the bottom
of plane of the channel). The SS fluid level decreases in
the Venturi section: after 3 m along the channel, the fluid
level starts to decrease and continues to decrease until po-
sition ca. 3.4 m along the Venturi channel. According to
the dimensions of the Venturi channel (Table I), the Ven-
turi section starts at position 2.95 m. In other words, the
width of the channel is gradually reducing from 0.2 m to
0.1 m after 2.95 m from the starting point of the Venturi
channel. Downstream from the Venturi section: after 3.45
m, the channel width is back again to 0.2 m. Downstream
from the Venturi section, the level of the fluid remains con-
stant: more or less steady level throughout the rest of the
length: 3.45m ≤ Length ≤ 3.6m. Visual observation and
level sensor readings support these changes in flow behav-
ior. Experimental data from the Venturi rig is plotted with
the simulated SS fluid level, in order to check the accuracy
of the simulation.
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Figure 5. Steady State fluid level in the Venturi channel using
KP scheme.
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Figure 6. Comparison of simulation results with KP scheme
with experimental data.

5.1 Comparison of Simulated Results With
Experimental Data

The laboratory Venturi rig has a few level sensors which
can measure the fluid level at several positions in the Ven-
turi channel. Simulated data and experimental data have
been plotted and compared in this section. Figure 6, shows
the simulation results together with the experimental data.

In a previous work by (Agu et al., 2015), a similar study
of the exact same Venturi channel was carried out. In their
study, the authors derived the ODEs by the spatial dis-
cretization of the Saint-Venant equation with a 1st order
scheme. Both the 1st order simulation results [11], and
the 2nd order simulation results are plotted together with
the experimental data in Figure 7. (Agu et al., 2015) used
MATLAB ode solver ode15s in their simulations.

From Figure 7, both the 1st order and the 2nd order
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l (
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Comparison of results

Figure 7. Comparison of the simulation results from 2nd order
KP scheme and 1st order scheme with experimental data.

scheme produce similar results at the steady state. In the
Venturi section, both schemes follow the similar pattern.
However, both schemes show a small deviation from the
experimental data. After the Venturi section, the 1st order
model approximation is closer to the experimental data;
the 2nd order KP scheme shows a small deviation.

5.2 Error Computation
Simulated results have only a minor deviation from the
experimental data. Fluid level readings have been taken
at fixed positions along the Venturi channel. These fixed
positions do not necessarily fall at the centers of the grid
cells of the FVM. The simulated results have thus been
interpolated to compute the values of the fluid level such
that they correspond to these fixed positions (where level
sensors are placed) and then only compared with the ex-
perimental data. These interpolated values and the experi-
mental data are plotted together with the simulated results
in Figure 8.

In a similar way, interpolated values and the experimen-
tal data are plotted for the study of (Agu et al., 2015)
where a first order scheme for spatial discretization is
used. Figure 9 shows the interpolated points, experimental
data and the simulation of (Agu et al., 2015).

The difference between the interpolated values and the
experimental data are the error of the simulated results.
Percentage error of the 2nd order KP scheme and the 1st

order scheme of (Agu et al., 2015) are plotted in Figure
10.

According to Figure10, the 2nd order KP scheme has
negligible percentaged error upstream from the Venturi
section: 2.2m ≤ Level ≤ 3m. The simulation results of
(Agu et al., 2015) exhibit a small deviation for this sec-
tion of the channel. In the Venturi section both simulated
results show more or less similar behavior. However, the
simulation of (Agu et al., 2015) has a slightly larger over-
shoot and undershoot in the Venturi section. The simula-
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Figure 8. Simulation results with the 2nd order KP scheme, in-
terpolated points, and experimental data.
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Figure 9. Simulated results of (Agu et al., 2015), experimental
data and interpolated points.
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Figure 10. Percentage error for 2nd order KP scheme and the 1st
order scheme of (Agu et al., 2015).
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Figure 11. Froude number along the length of the venturi chan-
nel.

tion of (Agu et al., 2015) produces a slightly less percent-
age error after the Venturi section.

As a whole, the KP scheme produces acceptable results
for the whole length of the Venturi channel apart from the
length: 3.4m ≤ Length (the part which is not useful and
thus not used for the estimation of fluid flow rate).

5.3 Flow Regimes
Flow velocity changes along the length of the Venturi
channel can be found by computing the Froude number
(Fr) which is a dimensionless number that explains the
speed-length ratio, and is written as,

Fr =
u0√
g0l0

. (22)

Here u0 is characteristic flow velocity, g0 is characteristic
of the external field: more precisely, acceleration of grav-
ity. l0 stands for characteristic length. Fr for the current
scenario can be written as,

Fr =
u0

v
. (23)

Here v is the characteristic fluid propagation velocity and
is written as,

v =
√

gh, (24)

where g is gravitational constant and h is fluid level.The
Frode number computed along the Venturi channel is plot-
ted in Figure 11. When Fr increases and becomes greater
than 1, this means that the flow changes from subcritical
to supercritical. In the Venturi section of the channel, flow
becomes supercritical.

5.4 Flow Rate Calculation
When the fluid flow is at SS, fluid level is measured. When
the flow rate increases, the level increases. Such incre-
ment of the height of the flowing fluid increases the wetted
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perimeter. The wetted perimeter has a correlation with the
hydraulic radius (Equation 13). According to Equation
2, total energy in the system is preserved. Based on the
known parameters, back calculation can be used to com-
pute volumetric flow rate of the fluid.

6 Conclusions
Based on this study, the KP scheme is recognized as a
suitable numerical scheme to discretize the Saint-Venant
equations, which is a hyperbolic PDE. ODEs resulting
from the spatial discretization has a 2nd order of accuracy.
Hence when the KP scheme is compare with the 1st order
scheme, the KP scheme shows increment in the accuracy.
According to the percentage error comparison, it is con-
cluded that increment of the order of the spatial discretiza-
tion improve the accuracy. Flow regime changes along
the Venturi channel is observed with the Frode number.
The KP scheme successfully recognized the flow regime
change from subcritical to supercritical. For the Venturi
section both schemes show deviation from the experimen-
tal results. However, the 1st order scheme shows slightly
larger overshoot and undershoot. Hence the KP scheme
can be used to solve the Saint-Venant equations for the
flow through a venturi channel.
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