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Abstract
Output-Error (OE) System Identification is used to esti-
mate the nonlinear behavior of an activated sludge process
(ASP) in a Wastewater Treatment Plant (WWTP). The aim
is to identify dynamic models to reproduce the effect of
different plant dynamics. How the dissolved oxygen con-
centration of the aerobic tank affect the effluent ammonia
concentration and how the internal recirculation affect the
nitrate concentration of the anoxic tank is studied. The
best fit of the model is estimated by varying the model
order through a trial-and-error approach. Three differ-
ent scenarios are investigated: one Single-Input-Single-
Output (SISO) and two Multiple-Input-Multiple-Output
(MIMO) structures. In the SISO scenario only the oxygen
to the effluent ammonia dynamics is investigated. Then
for both the MIMO scenarios the internal recirculation to
nitrate concentration dynamics in the anoxic tank is in-
cluded and in the last scenario the influent flow rate is also
included. The approach is evaluated using the Benchmark
Simulation Model no.1 (BSM1).
Keywords: Benchmark Simulation Model No. 1, Model
Predictive Control, Output Error Model, System Identifi-
cation.strict

1 Introduction
The activated sludge process (ASP) in a wastewater treat-
ment plant (WWTP) are large non-linear systems subject
to perturbations and uncertainty in the influent composi-
tion. However, these process should operate continuously
and following strict effluent regulations.

From the point of view of control, a system identifi-
cation of the process is important, mainly because it will
improve the control performance of the process, which is
typically formed by PI controllers. Another reason is that
the system identification can be used to carry out stabil-
ity analysis of the closed-loop system (Chistiakova et al.,
2017).

The system identification involves defining a model
structure, mainly a black-box model, where the model
parameters are adjusted to fit the data and do not reflect
physical consideration Ljung (1999). These models in-
volve a model-order definition with adjustable parame-
ters. The definition of such a model order is still empir-
ical. Typically, a certain model order is assumed, see for
example Chistiakova et al. (2017) where an Output-Error

Figure 1. 1 basic layout where the influent water first passes
2 anoxic tanks followed by 3 aerated tanks and then passes a
settler before being released. Two control loops are shown: One
measures the nitrate concentration of the 2nd anoxic tank to con-
trol the internal recirculation and the other measures the oxygen
concentration in the last aerated tank to control the air-flow rate.

(OE) model and nonlinear models were estimated, Ekman
(2008) where a bilinear model is estimated and Vrečko
et al. (2004) where a state-space model is estimated, those
cases used an ASP as case study.

The aim of this work is to present a way to get an ap-
propriate model-order in a system identification of the pro-
cess. For the system identification, an OE model is used.
An ASP was used case study using data from the Bench-
mark Simulation Model no. 1 (BSM1) (Alex et al., 2008).

2 The Benchmark Simulation Model
2.1 Description
Data from BSM1 is used for system identification, see
the model layout in Figure 1. The BSM1 is a platform
that defines a conventional ASP, and includes a simulation
model, plant layout, default control systems, performance
criteria and test procedures. The plant layout of the BSM1
is formed by a five-compartments ASP, consisting of two
anoxic tanks followed by three aerobic tanks and a settler.

The process model is based on the Activated Sludge
Model No. 1 (ASM1) (Henze et al., 1987) for the ASP
compartments and the Takács model (Takács et al., 1991)
for the secondary settler. The BSM1 kinetics and stoichio-
metric parameter values were kept as default.

The BSM1 includes a constant and a dynamic influent.
The constant influent (150 days) was used for the system
identification of the SISO case and the MIMO case with-
out influent flow rate, whereas the dynamic influent (14
days) was used for the case MIMO* where influent flow
rate is also considered.
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The BSM1 includes two default control loops. One
control loop is formed by a PI controller that controls the
dissolved oxygen (DO) concentration in the last aerobic
tank via air flow rate regulation which is shown in Fig-
ure 1 as a valve controlling the incoming air to the blow-
ers. The other control loop is also formed by a PI con-
troller which deals with the control of the nitrate concen-
tration in the last anoxic tank via the internal recirculation
flow rate. The sampling time was 15 minutes. The dry
weather scenario was used as dynamic influent.

2.2 Case studies
Three different structures were studied for system identi-
fication. One structure (referred as SISO case) considers
only the DO set-point in the last aerated tank (Ssp

O,5) as
input signal, whereas the effluent ammonia concentration
(SNH,e f f ) was used as output signal. The DO was modi-
fied from the default constant value of 2 mg/l to a range
between 0.8 and 2.4 mg/l with a minimum step-interval of
the change of set-point set to 100 time-steps.

The other structure (referred as MIMO case) includes
the input/output signals of SISO with the addition of the
effect of the internal recirculation (Qint) in the nitrate con-
centration of the second anoxic tank (SNO,2).

The last structure (referred as MIMO* case) is the
MIMO case including the effect of the influent flow rate
(Qin). Here the minimum step-interval is also changed to
10 time-steps because of the lower total simulation time.

3 Method
3.1 System Identification
The structure of the model includes a linear OE model
(Ljung, 1999), given as follows

ŷ(t) =
B(q−1)

F(q−1)
u(t−nk)+ e(t), (1)

where ŷ(t) is the output signal of the OE model, u(t) is the
input signal, e(t) is the error, nk is a time delay. B and F
have the form

B(q−1) = b1 +b2q−1 + · · ·+bnbq−nb+1, (2)

F(q−1) = 1+ f1q−1 + · · ·+ fn f q−n f , (3)

which are polynomials in the backward shift operator
q−1 (i.e. q−ix(k) = x(k− i)), where bi(i = 1, ...,nb) and
fi(i = 1, ...,n f ) are unknown parameters, nb and n f are
the orders of the OE model.

Part of the system identification involves generating in-
put signals and measurable outputs. The input signals
were generated by multiplying a pseudo-random binary
sequence (PRBS) with a uniformly distributed random
factor. This gives a sequence where each constant value
is multiplied with a uniformly distributed amplitude (Wi-
gren, 2003). Figure 2 shows an example of data used for
system identification in the MIMO case.
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Figure 2. Input signals (Ssp
O,5,Qint) and output signals

(SNH,e f f ,SNO,2) used for system identification in MIMO case.

Multiple simulations are done and for each simulation
multiple linear models are estimated by varying the order
of the B and F polynomials (cf. (2)-(3)).

3.2 Model selection
The Akaike Information Criterion (AIC) (Akaike, 1974) is
a way to compare and obtain a good model order. The AIC
takes into account the number of parameters and the size
of the data set in the following way

AIC = log

(
1
N

N

∑
i=1

ε
2
i

)
+

2np

N
, (4)

where ε is the error between the estimated model and the
BSM1 model, np is the number of estimated parameters,
and N is the size of the estimation data set.

In this work, the small sample-size corrected Akaike’s
Information Criterion (AICc) has been used, since it was
especially developed for regression and autoregressive
time series models (Hurvich and Tsai, 1989). The AICc
is defined as follows

AICc = AIC+
2np(np +1)
N−np−1

. (5)

See in (5) that the number of estimated parameters is more
relevant than the size of the data set. A model with the
lowest AICc is expected to be the model that better de-
scribes the data with the minimal number of parameters.
The same principle applies to the AIC value.

3.3 Model validation
Since each set of input sequence gives a particular best
model, the overall best model is obtained by checking how
well the particular best models fit the other set of data,
i.e. the model are cross validated with the different valida-
tion data. This cross validation is quantified using the Fit
measure, which is the normalized root mean square error
fitness value, defined as

Fit = 100×
(

1− ‖y− ŷ‖
‖y− y‖

)
, (6)
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where y is the output of the validation data, ŷ is the output
given by the estimated model, and y is the mean value of
the validation data.

The full system identification and model validation pro-
cess is shown in Figure 3. See that once one simulation is
completed, the Input/Output data obtained is used to esti-
mate an OE model in a loop where the orders of the OE
model are varied up to a predefined maximum model order
M. The best OE model is determined by the AICc value.
This process is repeated for a new simulation. Finally, the
best model from each simulation is cross-validated against
the input and output data from each of the other simula-
tions to determine which OE-model that has the best aver-
age Fit value against every simulation made.

Figure 3. System identification process. A simulation is done
and the data from this is collected and used to estimate a model.
During model estimation different model orders are tried and
each model is evaluated based on the AICc value. Multiple sim-
ilar simulations are then done and the best model from each sim-
ulation is validated against input and output data from other sim-
ulations.

The BSM1 was simulated using the
Matlab/Simulink R©platform, version R2017a. Mat-
lab was also used to estimate the coefficients of the
OE-model running the oe command with default
parameter settings.

4 Results

The best SISO case was estimated by running i = 100
cross-realizations of input-output data with model order
M = 10. Figure 4(a) shows how good the input-output
data fit for each of the different cross-fit realizations ap-
plied to the SISO case. In the boxplots, the median value
is represented by a red line, the edges of the box are the
25th and 75th percentile, the end of the lines are the ex-
treme points that the algorithm consider not to be outliers
and outliers are plotted as a red + sign. The best model or-
der obtained was an OE(6,10,1) from trial 93, which gave

an average fit of 71.4% with the following coefficients:



B(q−1) =−0.133q−1 +0.429q−2−0.545q−3

+0.371q−4−0.156q−5 +0.034q−6,

F(q−1) = 1−3.556q−1 +5.154q−2−4.172q−3

+2.216q−4−0.686q−5−0.17q−6

+0.601q−7−0.768q−8 +0.523q−9

−0.142q−10.
(7)
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Figure 4. Boxplot of cross-validation for several trials in the
SISO, MIMO and MIMO* cases. (a) SISO case, (b)-(c) Output
SNH,e f f and SNO,2 of MIMO case, (d)-(e) Output SNH,e f f and
SNO,2 of MIMO* case. Red line is the median value, the edges of
the box are the 25th and 75th percentile, the end of the lines are
the extreme points that the algorithm consider not to be outliers
and outliers are plotted as a red ’+’ sign.

The same procedure was applied for the MIMO case. In
this case, i = 10 and M = 3 which is lower than the SISO
case due to the increasing processing time. Figure 4(b)-
(c) show how good the input-output data fit for each of the
different cross-fit realizations applied to the MIMO case.
The best model order obtained was from trial 2, which
gave a sum average fit of 65.2% and has the following
form:

OE
([3 3

2 3

]
,

[
3 3
1 3

]
,

[
1 1
1 1

])
,
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with the coefficients for ŷ1(t) (SNH,e f f ):

B1(q−1) =−0.1197q−1−0.04353q−2 +0.1633q−3,

B2(q−1) = 2.767×10−5q−1−5.52×10−5q−2

+2.754×10−5q−3,

F1(q−1) = 1−0.9046q−1−0.2211q−2 +0.1258q−3,

F2(q−1) = 1−2.482q−1 +2.021q−2−0.5382q−3.
(8)

and for ŷ2(t) (SNO,2):

B1(q−1) =−0.1747q−1 +0.1817q−2

B2(q−1) = 4.156×10−5q−1−8.21×10−5q−2

+4.054×10−5q−3,

F1(q−1) = 1−0.9173q−1,

F2(q−1) = 1−2.601q−1 +2.213q−2−0.6124q−3.
(9)

The same procedure was applied for the MIMO* case
with influent flow rate. In this case, i = 10 and M = 2
which is even lower than the MIMO case due to the fur-
ther increase of processing time. Figure 4(d)-(e) show
how good the input-output data fit for each of the different
cross-fit realizations applied to the MIMO* case. The best
model order obtained was from trial 2, which gave a sum
average fit of 58.5% and has the following form:

OE
([2 2 2

1 2 1

]
,

[
1 2 2
1 1 1

]
,

[
1 1 1
1 1 1

])
,

with the coefficients for ŷ1(t) (SNH,e f f ):

B1(q−1) =−0.5266q−1 +0.4534q−2,

B2(q−1) = 1.513×10−5q−1−1.54×10−5q−2,

B3(q−1) =−3.791×10−5q−1 +5.487×10−5q−2,

F1(q−1) = 1−0.9664q−1,

F2(q−1) = 1−1.614q−1 +0.6388q−2,

F3(q−1) = 1−1.768q−1 +0.8218q−2,
(10)

and for ŷ2(t) (SNO,2):

B1(q−1) = 0.0091q−1,

B2(q−1) = 2.735×10−5q−1 +2.898×10−6q−2,

B3(q−1) =−4.192×10−5q−1,

F1(q−1) = 1−0.9977q−1,

F2(q−1) = 1−0.7495q−1,

F3(q−1) = 1−0.889q−1.
(11)

In figure 5(a)-(e) each of the best models is validated
against a new simulation. For SISO and MIMO valida-
tion, new random sequences are generated for the constant
influent scenario, whereas for MIMO* validation new ran-
dom sequences are generated for the dry influent scenario.

5 Discussions
When more input and output variables are added to the
model the complexity increase and the fit goes down. But
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Figure 5. Validation of how well the output data from each of
the winning models fit against the output of a new simulation of
the same type as the ones used for system identification. Mean-
ing that the input data from this new simulation is used as the
input to the model and the output from the simulation is com-
pared with the output of the simulation. (a) SISO case, (b)-(c)
Output SNH,e f f and SNO,2 of MIMO case, (d)-(e) Output SNH,e f f
and SNO,2 of MIMO* case.

since more data is considered and being taken into account
in these more complex models, they should also be able
to handle variations and changes of the data better. The
more complex models could also be further improved by
increasing the order of the models if higher processing
power or more time was used for the system identifica-
tion process. Another possibility would be to find correla-
tions between the input variables to the OE model estima-
tor namely nb and n f which could eliminate the need to
try different orders of some variables and thus the time re-
quired to estimate the model. It would also be possible to
have variating order of the different inputs variables since
some of the output coefficients are very low while others
are higher.

A potential use of system identification is from Model
Predictive Control (MPC). Usually, the controllers in-
stalled in an ASP are based on a proportional-integral (PI)
controllers which regulates the air flow rate in the aeration
tanks using the feedback from the effluent ammonia con-
centration. MPC could enhance the response of a given
process since it deals with multivariate constrained con-
trol problems in an optimal way. MPC has already been
tested in ASP models with good results, see for example
Foscoliano et al. (2016); Mulas et al. (2015).

The design of MPC involves a system identification of
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the process, where the aim is to achieve a good model of
the process in order to get a good control design (Fos-
coliano et al., 2016). Empirical models have been used
for performing the system identification of ASPs, where a
pre-defined model order is assumed, see some examples in
Vrečko et al. (2004). System identification of simplified
ASPs has been carried out by Chistiakova et al. (2017),
dealing with linear and non-linear models.

Future studies will be to analyze how well the selected
models work as models for MPC and how the fit of the
models affects the MPC performance.

Another aspect to consider is different MIMO struc-
tures. For example, considering the effluent nitrate con-
centration. This might require a non-linear system identi-
fication of the process.

6 Conclusions
An OE model was used as a black-box model that would
describe the input to output relationship of an ASP. A
model with a good fit against several scenarios could be
obtained by using the rather simple approach of calculat-
ing an OE model from input-output data and then cross-
validate this model against several similar trials. A model
for a SISO scenario could be calculated without much ef-
fort to a high model order, whereas the computation time
using this method increases fast as the number of input and
output variables increase. To reduce the computation time
it was required to reduce the cross-validation trials and/or
reduce the maximum order of the model which has a neg-
ative impact of the fit between the obtained model and the
data. Some other black-box models would be investigated,
however they might increase the number of parameters to
identify.
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tive control of an activated sludge process with nitrogen re-
moval. IFAC Proceedings Volumes, 37(3):505–510, 2004.
doi:10.1016/s1474-6670(17)32632-0.

T. Wigren. User choices and model validation in system iden-
tification using nonlinear wiener models. IFAC Proceed-
ings Volumes, 36(16):837–842, 2003. doi:10.1016/s1474-
6670(17)34864-4.

https://doi.org/10.3384/ecp18153243 247 Proceedings of The 59th Conference on Simulation 
and Modelling (SIMS 59), 26-28 September 2018, 

Oslo Metropolitan University, Norway

http://dx.doi.org/10.1109/tac.1974.1100705
http://dx.doi.org/10.1016/j.jprocont.2007.12.006
http://dx.doi.org/10.1016/j.cej.2016.07.018
http://dx.doi.org/10.1093/biomet/76.2.297
http://dx.doi.org/10.1016/j.jprocont.2015.08.005
http://dx.doi.org/10.1016/0043-1354(91)90066-y
http://dx.doi.org/10.1016/s1474-6670(17)32632-0
http://dx.doi.org/10.1016/s1474-6670(17)34864-4
http://dx.doi.org/10.1016/s1474-6670(17)34864-4

	Introduction
	The Benchmark Simulation Model 
	Description
	Case studies

	Method
	System Identification
	Model selection
	Model validation

	Results
	Discussions
	Conclusions
	Acknowledgments



