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Abstract 
Seasonal thermal energy storage (STES) offers a 

solution to address the mismatch between production 

and consumption by storing the produced excess heat for 

later use. Borehole heat exchangers (BHEs) are one of 

the sensible STES technologies. In this paper, a long-

term simulation model for BHEs was developed. A 

finite line-source model for the heat transfer outside the 

borehole and a quasi-3D model for the heat transfer 

inside the borehole were applied in two region 

simulation approach. Fast Fourier transformation 

technique together with a cubic spline interpolation 

method were used for faster simulation time with time 

varying loads and longer simulation periods. The 

simulation method was validated using experimental 

data. Results showed that the simulation model is able 

to accurately model ground and fluid temperature 

evolution. 

Keywords: ground heat exchangers, boreholes, 
modelling, simulation, validation 

1 Introduction 

As renewable energy is gaining popularity, the storage 

of the energy is becoming increasingly important. In 

many times, the energy production from renewable 

energy sources is not aligned with the energy 

consumption. This situation arises for example with 

solar energy and waste incineration sources in cold 

climate conditions. Thermal energy storage (TES) 

systems offer a solution to address this mismatch 

between production and consumption by storing the 

produced excess heat for later use (Alva et al., 2018). 

Long-term TES systems are called seasonal thermal 

energy storages (STES) and can be further categorized 

into sensible, latent and chemical heat storages (Xu et 

al., 2014). Different sensible STES systems have been 

implemented in many large-scale projects since the 

1980s and it is considered the most mature and reliable 

technology compared with the other options (Xu et al., 

2014). In this work, simulation model for borehole heat 

exchangers (BHEs) is presented and validated. The 

analytical approach enables fast simulation times and 

flexibility to incorporate the model for system level 

simulations in different TES applications. 

BHEs are one of the sensible STES technologies. 

They are the most commonly applied technology in 

ground source heat pump systems whose use has been 

significantly increasing in recent years (Lund and Boyd, 

2016). To design, construct and operate BHE systems, 

modelling is needed (Koohi-Fayegh and Rosen, 2013). 

Determining the temperature of the fluid inside the 

borehole is the main goal of BHE modelling. Based on 

the fluid temperature range, the size and number of 

boreholes can be determined. Models can also be used 

to estimate the temperature rise in the ground. For 

reliable results, it is important that BHE model is 

validated against actual measurements. In many cases, 

field tests are used for validation, but laboratory scale 

tests can provide more controlled and reliable testing 

environment (Beier et al., 2011). 

For modelling purposes, the heat transfer in BHE is 

usually divided into two regions: heat transfer inside the 

borehole and heat transfer outside the borehole. Models 

for these two regions are then linked by the borehole 

wall temperature. Many numerical and analytical 

approaches to modelling both regions have been 

suggested (Yang et al., 2010; Li and Lai, 2015). Li and 

Lai (2015) argue that analytical methods can be more 

useful than numerical methods for advancing GHE 

technology. Although numerical methods can be more 

accurate than the analytical ones, they can also be 

computationally inefficient and not suitable for being 

directly incorporated into a design or energy analysis 

programs. Analytical models include assumptions and 

simplifications that slightly reduce the accuracy of the 

results. However, the calculation time is also reduced, 

making them more suitable for long-term simulations 

and the algorithms are usually straightforward to 

implement in simulation programs. 

In this work, a long-term simulation model for BHEs 

is developed and then validated against two different 

laboratory scale experimental data sets. Analytical 

models for heat transfer inside and outside of the 

borehole are applied and methods to reduce the 

calculation time are employed. 
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2 Methods 

2.1 Heat Transfer Inside Boreholes 

Zeng et al. (2003a; 2003b) presented a quasi-3D model 

for calculating the fluid temperature inside the borehole. 

Unlike the previous one- and two-dimensional models, 

this quasi-3D model takes into account the fluid 

temperature variation along the borehole depth. It is 

therefore a more accurate representation of the thermal 

process in the borehole heat exchanger. However, to 

keep the model concise and analytically manageable the 

convective heat flow in the grout and the ground in the 

axial direction is not considered. 

Figure 1 shows the cross section of a borehole with a 

double U-tube configuration. The temperature excess in 

the four pipes of the U-tubes inside the borehole can be 

expressed as: 

𝑇𝑓1 − 𝑇𝑏 = 𝑅11𝑞1 + 𝑅12𝑞2 + 𝑅13𝑞3 + 𝑅14𝑞4 

𝑇𝑓2 − 𝑇𝑏 = 𝑅21𝑞1 + 𝑅22𝑞2 + 𝑅23𝑞3 + 𝑅24𝑞4 

𝑇𝑓3 − 𝑇𝑏 = 𝑅31𝑞1 + 𝑅32𝑞2 + 𝑅33𝑞3 + 𝑅34𝑞4 

𝑇𝑓4 − 𝑇𝑏 = 𝑅41𝑞1 + 𝑅42𝑞2 + 𝑅43𝑞3 + 𝑅44𝑞4 

(1) 

where Tf1, Tf2, Tf3 and Tf4 are the fluid temperatures, Tb 

is the borehole wall temperature, q1, q2, q3 and q4 are the 

heat fluxes per unit length, Rii (i = 1, 2, 3, 4) is the 

thermal resistance between the circulating fluid in a 

certain pipe and the borehole wall and Rij (i, j = 1, 2, 3, 

4) is the resistance between two pipes. 

Assuming a symmetric configuration of the U-tubes 

Rij = Rji, Rii = Rjj and R14 = R12 and so on. Based on the 

line-source approximation presented by Hellström 

(1991) three remaining resistances can be calculated as: 
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(2) 

where kb and k are the thermal conductivity of the 

borehole and ground respectively, rb and rp,o are the 

radiuses of the borehole and U-tube pipe respectively, D 

is the distance from the U-tube pipe center to the 

borehole center. Rp is the heat transfer resistance from 

the fluid inside the U-tube and can be calculated as: 

𝑅𝑝 =
1

2𝜋𝑘𝑝

ln (
𝑟𝑝,𝑜

𝑟𝑝,𝑖

) +
1

2𝜋𝑟𝑝ℎ𝑓

 (3) 

where kp is the thermal conductivity of the U-tube, 

subscripts o and i refer to the outer and inner radiuses of 

the U-tube pipe and hf is the convective heat transfer 

coefficient for the fluid. First part of the Equation (3) 

refers to the conductive resistance of the pipe and the 

second part to the fluid convective resistance. 

Nusselt number, which is needed for the calculation 

of hf, can be calculated for turbulent flow using Dittus-

Boelter equation: 

𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟0.35 (4) 

where Re is the Reynolds number and Pr is the Prandtl 

number. Then, hf can be calculated as: 

ℎ𝑓 =
𝑘𝑓𝑁𝑢

2𝑟𝑝,𝑖

 (5) 

where kf is the thermal conductivity of the fluid. 

The linear transformation of the Equation (1) leads to 

energy equilibrium equations for the fluid in individual 

pipes: 
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(6) 

where 0 ≤ z ≤ H and H is the borehole depth, Mf is the 

mass flow rate of the fluid, cf is the heat capacity of the 

fluid and 

𝑅1
∆ = 𝑅11 + 𝑅13 + 2𝑅12 

𝑅12
∆ =

𝑅11
2 + 𝑅13
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2  

 

The sign on the left side of Equation (6) is positive for 

downward flow and negative for upward flow. Two 

conditions are necessary to solve the equations in 

Equation (6): when z = 0 the fluid temperature for the 

 

Figure 1. The cross section of a double U-tube borehole. 
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downward flow is equal to the inlet temperature Tin and 

when z = H the fluid temperature for the downward flow 

is equal to the fluid temperature for the upward flow. 

Applying these conditions, Zeng et al. (2003a; 2003b) 

used Laplace transform technique to solve the energy 

equilibrium equations in Equation (6) for the circulating 

fluid. As a result, the fluid temperature for the 

downward and upward flow in case of a single U-tube 

(pipes 1 and 3 or 2 and 4 in Figure 1) inside the borehole 

can be calculated as: 

𝜃1(𝑍) = cosh(𝛽𝑍) −
1

𝛽𝑆12

[(
𝑆12

𝑆1

+ 1) 

−
𝛽𝑆1 cosh(𝛽) − sinh(𝛽)

β𝑆1cosh(𝛽) + sinh(𝛽)
] sinh(𝛽𝑍) 

θ2(𝑍) =
β𝑆1cosh(𝛽) − sinh(𝛽)

β𝑆1cosh(𝛽) + sinh(𝛽)
cosh(𝛽𝑍) 

+
1

𝛽𝑆12

[1 − (
𝑆12

𝑆1

 

+1)
β𝑆1cosh(𝛽) − sinh(𝛽)

β𝑆1cosh(𝛽) + sinh(𝛽)
] sinh(𝛽𝑍) 

(7) 

where dimensionless parameters Θ, Z, S1, S12 and β are 

defined as: 

𝜃 =
𝑇(𝑧) − 𝑇𝑏

𝑇𝑖𝑛 − 𝑇𝑏

 

𝑍 =
𝑧
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1
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2 +

2

𝑆1𝑆12

 

 

The heat transfer rate per unit length into or from the 

ground can be calculated as: 

𝑞 =
(𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡)𝑀𝑓𝑐𝑓

𝐻
 (8) 

In case of a double U-tube configuration inside borehole 

two cases for a parallel connection can be found. The 

fluid can flow through pipes 1 and 3 and pipes 2 and 4 

(1–3, 2–4) or through pipes 1 and 2 and pipes 3 and 4 

(1–2, 3–4). In both cases, Equation (7) can be used to 

calculate the fluid temperature but the dimensionless 

parameters S1 and S12 are defined as 
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𝑀𝑓𝑐𝑓
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when the flow is (1–3, 2–4), and as 
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𝑀𝑓𝑐𝑓

𝐻
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when the flow is (1–2, 3–4). 

2.2 Heat Transfer Outside Borehole 

Eskilson (1987) presented a numerical method to 

calculate g-functions that represent the dimensionless 

temperature response in the ground outside the 

boreholes by also taking into account the heat flow 

along the borehole depth. This was a major 

advancement from the previous infinite line-source 

model and cylindrical source model. However, the g-

functions have to be calculated numerically for different 

borehole field configurations and is therefore time-

consuming to implement in simulation programs. Based 

on Eskilson’s (1987) model, Zeng et al. (2002) proposed 

an analytical method for calculating the ground 

temperature response. This finite line-source model was 

later modified by Lamarche and Beauchamp (2007) to 

faster calculate the ground temperature response using 

the integral mean borehole temperature. This model to 

calculate ground temperature response at time t and 

distance r from the borehole is shown in Equation (9) as 

presented by Marcotte et al. (2010). 

∆𝑇(𝑟, 𝑡) =
𝑞

2𝜋𝑘𝑔

( ∫
𝑒𝑟𝑓𝑐(𝜔𝑧)

√𝑧2 − 𝐵2

√𝐵2+1

𝐵

𝑑𝑧 − 𝐷𝐴 

− ∫
𝑒𝑟𝑓𝑐(𝜔𝑧)

√𝑧2 − 𝐵2

√𝐵2+4

√𝐵2+1

𝑑𝑧 − 𝐷𝐵) 

(9) 

Parameters B and ω in Equation (9) are defined as 

follows B = r/H, 𝜔 =
𝐻

2√𝑎𝑡
 and DA and DB are given by: 

𝐷𝐴 = √𝐵2 + 1𝑒𝑟𝑓𝑐 (𝜔√𝐵2 + 1) − 𝐵𝑒𝑟𝑓𝑐(𝜔𝐵) 

−
𝑒−𝜔2(𝐵2+1) − 𝑒−𝜔2𝐵2

𝜔√𝜋
 

 

and 

𝐷𝐵 = √𝐵2 + 1𝑒𝑟𝑓𝑐 (𝜔√𝐵2 + 1) 

−0.5 [𝐵𝑒𝑟𝑓𝑐(𝜔𝐵)

+ √𝐵2 + 4𝑒𝑟𝑓𝑐 (𝜔√𝐵2 + 4)] 

−
𝑒−𝜔2(𝐵2+1) − 0.5(𝑒−𝜔2𝐵2

+ 𝑒−𝜔2(𝐵2+4))

𝜔√𝜋
 

 

Marcotte and Pasquier (2008) applied fast Fourier 

transformation (FFT) to efficiently calculate the hourly 

ground temperature response with varying loads by 

applying the superposition principle in time (Yavuzturk, 

1999). When the unit response calculated with Equation 

(9) (q = 1) and the incremental load is known at each 

time step, the ground temperature can be calculated by 

evaluating the convolution product of these two 

(Marcotte and Pasquier, 2008): 

∆𝑇(𝑟, 𝑡) = 𝐹𝐹𝑇−1(𝐹𝐹𝑇(𝑞𝑖)𝐹𝐹𝑇(𝑓)) (10) 
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where FFT-1 is the inverse-FFT, qi is the incremental 

load and f is the unit response calculated with Equation 

(9). 

As can be seen from Equation (9), the calculation of 

the unit temperature response in the ground requires 

solving the integrals at each time step which can be time 

consuming for longer simulation periods. For 20-year 

simulation, Equation (9) would need to be solved 

20×8760 = 175,200 times.  However, Marcotte and 

Pasquier (2008) presented a faster method to calculate 

the unit temperature response for long simulation 

periods. In their method, the Equation (9) is only solved 

at certain time points that follow geometric progression 

and the solutions for all the other time points are 

obtained using cubic spline interpolant. Equation (9) is 

solved at times 1–48, 50, 54, 62, 78, 110, 174, 302, and 

so on up to, and including, the last time point. Marcotte 

and Pasquier (2008) reported 0.0007 °C maximum 

difference between the calculated and interpolated unit 

temperature response showing very good accuracy of 

the interpolation method. 

2.3 Error Analysis 

Mean Absolute Percentage Error (MAPE), Mean 

Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) were used to analyze the error between the 

measured experimental validation data and the 

simulation model: 

𝑀𝐴𝑃𝐸 = [
1

𝑁
∑ (

|𝑥(𝑡) − 𝑦(𝑡)|

𝑦(𝑡)
)

𝑁

𝑡=1

] ∙ 100% 

𝑀𝐴𝐸 =  
1

𝑁
∑(|𝑥(𝑡) − 𝑦(𝑡)|)

𝑁

𝑡=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑥(𝑡) − 𝑦(𝑡))2

𝑁

𝑡=1

 

(11) 

where x and y are the measured value and the output of 

the simulation model at time t respectively. Mean errors 

between the measured and simulated values are also 

reported to estimate the bias. 

3 Simulation Model 

The finite line-source model for the heat transfer outside 

the borehole and the quasi-3D model for the heat 

transfer inside the borehole presented in Section 2 were 

implemented in Matlab® environment. Parameters for 

the simulation model are listed in Table 1. Measured 

input was the inlet temperature (°C) or the 

heating/cooling load (W). 

Water was used as default heat transfer fluid in the 

simulation model, but fluid properties can be easily 

changed if some other fluid than water is used. The heat 

capacity and dynamic viscosity of water were taken 

from tabular values based on water temperature rounded 

to the nearest integer. The thermal conductivity of the 

water was calculated as (Ramires et al., 1995): 

𝑘𝑓 = 0.6065 (−1.48445 + 4.12292 (
273.15 + 𝑇𝑖𝑛

298.15
) 

−1.63866 (
273.15 + 𝑇𝑖𝑛

298.15
)

2

) 
(12) 

The simulation model can be used to calculate the outlet 

and ground temperature of the borehole field based on 

the known heating/cooling load or inlet temperature. 

The spatial superposition principle was applied to 

calculate the ground temperature response of the 

borehole field (Eskilson, 1987; Yavuzturk, 1999; Zeng 

et al., 2002). This means that the ground temperature 

response on a certain borehole wall is calculated by 

taking into account the effect of all the other boreholes. 

This requires solving Equation (9) for every distance 

between individual boreholes at each time instance. By 

default, for the ease and speed of computation, the 

simulation model is set up for a square or rectangular 

configuration of the borehole field where every borehole 

is at equal distance from each other. This allows taking 

advantage of the symmetry of some boreholes reducing 

the amount of calculations. However, the advantage of 

the analytical approach is that any regular or irregular 

borehole field configuration can be easily simulated 

with the model by providing borehole coordinates. 

Based on the borehole field configuration, the mean 

unit temperature response of the ground at borehole wall 

for the whole borehole field is calculated with Equation 

(9) applying spatial superposition. For faster 

calculation, the cubic spline interpolation method 

presented in Section 2.2 is also applied. If the 

heating/cooling load is known, Equation (10) is used to 

calculate the hourly ground temperature response. 

Integrals are solved using quadgk function from 

Matlab®. Then an iterative search is executed to find the 

Table 1. Parameters for the simulation model. 

Parameter Unit 

Number of boreholes - 

Distance between boreholes m 

Borehole depth, H m 

Borehole radius, rb m 

Ground thermal conductivity, kg W/m K 

Ground thermal diffusivity, α m2/s 

Initial ground temperature, T0 °C 

Grout thermal conductivity, kb W/m K 

U-tube configuration - 

U-tube thermal conductivity, kp W/m K 

U-tube inner radius, rp,i m 

U-tube outer radius, rp,o m 

Distance from U-tube center to borehole 

center, D 
m 

Fluid mass flow, Mf kg/s 
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proper inlet and outlet temperatures applying Equations 

(7) and (8). If the inlet temperature is known, an 

optimization algorithm fminbnd from Matlab® is used to 

find the proper heating rate and outlet temperature 

applying Equations (10), (7), and (8). The flow chart in 

Figure 2 presents the principle of the calculation 

procedure. 

               

Figure 2. The principle of the calculation procedure for the 

BHE field. 

4 Validation of the Modelling 

Methods 

As there are no available experimental data sets for 

GHEs with multiple boreholes, two laboratory scale 

experimental data sets for single borehole systems were 

used for the validation of the modelling method. Data 

set 1 came from Shirazi and Bernier (2014), where the 

experimental apparatus was a small-scale laboratory 

tank with a single U-tube borehole. Data consisted of the 

measured ground temperature, supply and return 

temperature and flow rate recorded in ten second 

intervals for a 73-hour heat injection period. Data set 2 

came from Beier et al. (2011), where the experimental 

facility was a large sandbox with a single U-tube 

borehole. Data set comprised minutely recorded values 

for the ground temperature, supply and return 

temperature and flow rate for 52 hours with constant 

heat input. The applied model parameters for both data 

sets are presented in Table 2. For data set 2, α was 

calculated using the volumetric heat capacity of 3.2×106 

J/K m3 as provided by Beier (2014). 

First, the finite line-source model (Equation (9)) was 

tested to see if the model output follows the measured 

ground temperature. For data set 1, the ground 

temperature at borehole wall was calculated as a mean 

temperature of the sixteen temperature measurements 

provided at the borehole wall. The same was done with 

the data set 2 using four measured temperatures at the 

borehole wall. Equation (8) was used to calculate the 

Table 2. Parameter values for data sets 1 and 2. 

Parameter Data set 1 Data set 2 Unit 

H 1.23 18.3 m 

rb 0.038 0.064 m 

kg 0.29 2.82 W/m K 

α 2.292×10-7 8.8125×10-7 m2/s 

T0 23.5 22 °C 

kb 0.35 0.73 W/m K 

kp 401 0.39 W/m K 

rp,i 0.00395 0.0137 m 

rp,o 0.00475 0.0167 m 

D 0.014275 0.0265 m 

 

               

Figure 3. Modelling results on borehole wall temperature 

with (a) data set 1 and (b) data set 2. Black line is the mean 

borehole wall temperature calculated from the measured 

experimental data and grey line is the modelled borehole 

wall temperature. 
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heating rate per unit length and then Equations (9) and 

(10) were applied to calculate the ground temperature

response. The specific heat of water was assumed as

4200 J/kg K. Results are presented as a semi-log plot in

Figure 3 and the modelling errors are presented in Table

3.

Mean errors for data sets 1 and 2 were -0.53 °C and -

0.49 °C respectively, showing that the model slightly 

overestimates the ground temperature in both cases. 

This could be expected for the short simulation period 

that both data sets cover and it can be seen in Figure 3 

that the error decreases in longer times. Maximum 

absolute errors for data sets 1 and 2 were 2.41 °C and 

0.88 °C respectively. For both data sets, the maximum 

errors were related to early times in the modelling 

period. It is well known that finite line-source model is 

not accurate to model short term performance as the heat 

capacities inside the borehole are neglected by the 

model (Yang et al., 2010). As Eskilson (1987) 

presented, finite line-source model is valid 

approximately after time 5rb
2/α, which for data sets 1 

and 2 were 8.8 and 6.5 hours respectively. Errors for 

data set 1 reach maximum around 0.5 hours and rapidly 

decrease after that and reaching absolute errors below 

0.8 °C after 8.8 hours. For data set 2, the maximum 

errors occur around two hours and then slowly decrease. 

After 6.5 hours, absolute errors were below 0.7 °C. 

Next, the modelled borehole wall temperature and 

measured inlet temperature and flow rate were used to 

calculate the outlet temperature applying the quasi-3D 

model (Equation (7)). As the inlet temperature was 

almost constant for data set 1, the dynamic viscosity and 

thermal conductivity for the water were assumed 

constants as 0.0004 Pas and 0.66 W/m K respectively. 

Results are presented as a semi-log plot in Figure 4 and 

the modelling errors can be found in Table 3. 

For data set 1, the mean error was 0.16 °C. Although 

slightly underestimating, showing very good accuracy. 

For data set 2, the mean error was -0.28 °C, showing that 

there the model slightly overestimates the outlet 

temperature, although the modelling error decreases in 

longer times. Maximum absolute errors for data sets 1 

and 2 were 30.35 °C and 1.11 °C respectively. 

Maximum errors for data set 1 were relatively big, but 

these maximum errors occurred only very early in the 

modelling period. Inlet temperature was increased 

rapidly in data set 1 at the start of the test and as the 

quasi-3D model neglects the heat capacity inside the 

borehole (Zeng et al., 2003b) the model overestimated 

the outlet temperature. However, after 9 minutes, which 

is much lower than the calculated validity time 8.8 

hours, absolute errors were below 0.33 °C. For data set 

2, absolute errors were below 0.33 °C after 6.5 hours. 

The above results with two experimental data sets 

showed that the modelling errors were low. Taking into 

account the errors related to measurements, heating rate, 

thermal conductivities and heat capacities (Shirazi and 

Bernier, 2014; Li and Lai, 2013; Beier et al., 2011), it 

can be concluded that the selected methods for the 

simulation model can be applied to accurately model 

long-term borehole ground and fluid temperatures. 

5 Conclusions 

In this paper, simulation model for BHEs was developed 

applying finite line-source and quasi-3D models. For 

faster calculation time in case of time varying loads and 

longer simulation periods FFT technique and a cubic 

spline interpolation method were utilized. The 

simulation model was validated with two different 

laboratory scale experimental data sets. Results showed 

low modelling error with experimental data validating 

the correct performance of the simulation model. 

Table 3. Modelling error for data sets 1 and 2. 

Data set 1 Data set 2 

Borehole wall temperature 

MAPE (%) 1.16 1.81 

MAE (°C) 0.53 0.49 

RMSE (°C) 0.61 0.50 

Outlet temperature 

MAPE (%) 0.27 0.78 

MAE (°C) 0.17 0.28 

RMSE (°C) 0.35 0.29 

Figure 4. Modelling results on outlet temperature with (a) 

data set 1 and (b) data set 2. Black line is the measured 

outlet temperature from the experimental data and grey 

line is the modelled outlet temperature. 
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The developed simulation model can be used for a 

long-term modelling of BHE fields consisting of 

multiple boreholes. It can also be applied for system 

level simulations by including heat pumps and different 

heat sources (e.g. solar collectors). Some shortcomings 

of the developed simulation model should be addressed 

in future work for wider applicability. These include 

adding the ability to take into account the borehole 

inclination and the efficient calculation of borehole 

fields with series connections. 
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