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Abstract
This work deals with the analysis and design of bioreac-
tors formed by a number of completely stirred tank reac-
tors (CSTRs) in series. The model includes three main
components: the concentration of one dominant partic-
ulate biomass, one soluble substrate component and one
particulate inert matter. The model is analyzed in steady-
state conditions. Monod kinetics is used for describing
the specific growth rate, and the decay rate of the biomass
is included. Two main optimization problems were stud-
ied: (i) minimize the effluent substrate concentration for
a given total volume, and (ii) minimize the total volume
for a given effluent substrate concentration. An alternative
to optimize a large number of CSTRs is to consider the
asymptotic case of one CSTR followed by a plug-flow re-
actor (PFR). Numerical results show that there is an opti-
mal volume distribution for the two configurations in each
optimization problem.
Keywords: Bioreactor optimization, completely stirred
tank, effluent minimization, plug-flow reactor.

1 Introduction
Modeling and analysis of bioreactors in wastewater treat-
ment processes have been active research areas in the last
50 years, see Grady Jr. et al. (1999) and the references
therein. Special attention has been placed in the steady-
state analysis because it can provide guidelines for achiev-
ing a proper process operation and optimization. Dur-
ing those decades, the optimization of bioreactors has
also been extensively analyzed. Every new contribution
aims to design methods for analyzing and optimizing the
volume distribution of completely stirred tank reactors
(CSTRs) in series.

In general, the aim is to design the process in such a way
that the substrate concentration of a certain incoming flow
can be minimized or reduced, even by using one or more
bioreactors in series (de Gooijer et al., 1996). Hence, the
optimization of CSTRs usually involves finding the opti-
mal distribution of volumes for a given effluent substrate
concentration, see Abu-Reesh (1996).

Alternatives to solve the optimization of CSTRs in-
cludes graphical solutions referred as nomograms, which
give an approximate graphical computation of mathemat-

ical functions (Braha and Hafner, 1985).
Most of the analysis and optimization of CSTRs as-

sumes up to two main components in the model: dis-
solved substrate and particulate biomass. Some examples
are mentioned as follows. Asymptotic solutions for the
effluent concentration leaving a system of up to N = 4
CSTRs in series were presented by Nelson and Holder
(2009). The analysis assumes equally-sized CSTRs and
Contois kinetics (Contois, 1959) for the biomass growth
rate. Two scenarios were studied, when a total residence
time (τt) is given, and when this residence time is slightly
larger than the wash-out condition. In the first scenario, re-
sults show that the effluent decreases with the form 1/τN

t .
In the second scenario, results show that a large decrease
in the effluent concentration can be obtained by a small
increase in τt .

The optimal design of CSTRs in series has often been
compared to the design of a plug-flow reactor (PFR). An-
other aspects is that, in practice, the behavior of a biolog-
ical reactor is between a CSTR and a PFR (Diehl et al.,
2016, 2017). The work by Luyben and Tramper (1982)
presents an analytical expression for the minimum vol-
ume to achieve a certain effluent substrate concentration
in a process with Monod kinetics. The work shows some
numerical results for up to N = 10 CSTRs in series con-
sidering two main scenarios: optimal volume distribution
and equally sized volume. The case of a PFR was used for
comparison. Results show that the difference between the
first two volumes is larger for low N and decreases as N
increases. Results also show that the case of N CSTRs
approaches to the case of a PFR as N increases. Hill
and Robinson (1989) derived an expression for different
growth kinetics that could be used to find the minimum
possible total residence time to obtain a certain substrate
conversion for N CSTRs. An illustration for Monod ki-
netics was included. The results were compared with a
PFR and showed that for most cases, three optimally de-
signed CSTRs in series give the same total mean residence
time as a PFR. Abu-Reesh (1996) calculates the optimal
design of N CSTRs to get the minimum overall volume
needed for a certain substrate conversion, and compares
the results with the behavior of a PFR. The study used a
Michaelis-Menten kinetics.

Zambrano et al. (2015) shows an approach for the opti-
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mal design of CSTRs in series when the number of CSTRs
is large. The process assumes Monod kinetics for the
biomass growth, and the model includes two main com-
ponents: one particulate biomass and one soluble sub-
strate. The biomass decay is negligible. Analytical ex-
pressions were derived for solving the following two sce-
narios: to find the optimal volume distribution for a given
total volume so that the effluent substrate concentration
can be minimized, and to find the minimum total volume
that gives a certain effluent substrate concentration.

Recently, Gómez-Pérez and Espinosa (2017) analyzed
the design of continuous bioreactors in series with recir-
culation. The bioreactors were represented by a system
of linear equations. The growth rate was assumed to be
constant and the decay of biomass was neglected. Non-
trivial solutions to the equation system was found by using
Singular Value Decomposition (SVD) as an analysis tool.
The SVD analysis makes it possible to characterize the
solutions to the system of equations, and thereby improve
the design of bioreactors in series.

In the present work, we deal with a simulation anal-
ysis of the process presented in Zambrano et al. (2015).
In this case, the inert particulate matter is included in the
bioreactor model, as well as the decay rate of the biomass.
Two optimization problems were investigated: (i) the op-
timal volume distribution of N CSTRs in series in a given
total volume in order to minimize a given effluent sub-
strate concentration, and (ii) the minimum total volume
needed for a given effluent substrate concentration. The
optimization results were compared with the case of a pro-
cess formed by a CSTR followed by a PFR.

2 Materials and Methods
2.1 The bioreactor model
Consider a bioreactor of volume Vtot formed by N CSTRs
in series as shown in Figure 1, where each CSTR is mod-
eled assuming one limiting substrate, one biomass and
one inert particulate matter. The time-dependent ordinary

S1, X1, Z1 

V1 

Si-1, Xi-1, Zi-1 

Vi-1 

Si, Xi, Zi 

Vi 

SN, XN, ZN 

VN 

Influent 

Q, Sin 

Effluent 

Q, SN, XN, ZN … … 

Figure 1. N CSTRs in series.

differential equations that describe the dynamics of these
three components in the i-th (i = 1,2, ...,N) CSTR are

dSi

dt
=−

[
µ(Si)

Y
− (1− fp)b

]
Xi +

Q
Vi

(Si−1−Si) , (1)

dXi

dt
= [µ(Si)−b]Xi +

Q
Vi

(Xi−1−Xi) , (2)

dZi

dt
= fpbXi +

Q
Vi

(Zi−1−Zi) , (3)

where the i-th CSTR has volume Vi, substrate concentra-
tion Si, biomass concentration Xi and inert concentration

Nomenclature
A area [m2]
b biomass decay rate [1/d]
fp fraction of decay of biomass [−]
h position in plug-flow reactor [m]
KS half-saturation constant for S [kg/m3]
N number of bioreactors in series [−]
Q influent volumetric flow rate [m3/d]
S dissolved substrate concentration [kg/m3]
t time [d]
V volume [m3]
X particulate biomass concentration [kg/m3]
Y yield constant [−]
Z particulate inert concentration [kg/m3]
Greek letters
µ Monod function [1/d]
µmax maximum specific growth rate [1/d]
Subscripts
�e effluent
�i component in ith bioreactor
�in influent
�tot total
Superscripts
�∗ optimal
�min minimum

Zi. Y is the yield factor, b is the decay rate of the biomass
and fp is the fraction of decay of biomass (0 ≤ fp ≤ 1).
The growth of the biomass is assumed to follow a sin-
gle growth rate equation described by the Monod kinetics
(Monod, 1949) given by

µ(Si) = µmax
Si

KS +Si
, (4)

where µmax is the maximum specific growth rate, and KS
is a half-saturation constant. The influent and effluent vol-
umetric flow rate are equal to Q.

The influent to the process is assumed to be formed only
by a substrate concentration Sin, no biomass and inert con-
centration are present. Hence, from (1)–(3) and Figure 1
we have S0 = Sin, X0 = Xin = 0 and Z0 = Zin = 0.

See in (1)–(3) that a fraction fp of the decay of
biomass concentration is assumed to be inert concentra-
tion, whereas the remaining fraction (1− fp) is used as
substrate.

2.2 The steady-state expressions for CSTRs
By assuming steady-state conditions in (1)–(3), an expres-
sion for Si can be obtained

Si = Si−1−
1
Y
(Xi−Xi−1)−

b
QY

(
1−(1− fp)Y

)
ViXi. (5)

For N CSTRs in series, the recursive expression (5)
gives

SN = Sin−
1
Y

XN−
b

QY

(
1− (1− fp)Y

) N

∑
n=1

VnXn. (6)
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For a single CSTR, the solution for the substrate,
biomass and inert concentration, and the minimum vol-
ume (V min

1 ) to avoid wash-out are given by the following
expressions

µ(S1) =
Q
V1

+b, (7)

X1 =
Y Q(Sin−S1)

Q+V1b
(

1−Y (1− fp)
) , (8)

Z1 =
fpbV1X1

Q
, (9)

V1 >V min
1 =

Q
µ(Sin)−b

. (10)

2.3 The steady-state expression for a PFR
When the number of N CSTRs in series becomes large,
the resulting process can be seen as a CSTR followed by
a PFR. The CSTR is assumed to be large enough to avoid
wash-out condition (i.e., V1 > V min

1 ). The PFR is formed
by dividing the remaining volume (Vtot−V1) into a large
number of volumes ∆V , see Figure 2.

CSTR PFR 

___ A___ --����-�--����-
' ,r � 

0 

ii.I 1� 
!ih 

Effluent Influent 

Q, Sin Q, Se, Xe, Ze

V1 VPFR=Vtot-V1

Figure 2. Dividing the remaining volume (Vtot−V1) into a large
number of volumes ∆V .

It is also assumed that each sliced bioreactor has the
same area A, giving ∆V =A∆h. For a small interval (h,h+
∆h) the conservation of mass for the dissolved substrate
gives

d
dt

∫ h+∆h

h
AS(x, t)dx︸ ︷︷ ︸

mass increase per time unit

= QS(h, t)︸ ︷︷ ︸
flux in

−QS(h+∆h, t)︸ ︷︷ ︸
flux out

−
∫ h+∆h

h
A
[

µ(S)
Y
− (1− fp)b

]
Xdx︸ ︷︷ ︸

consumption per time unit

. (11)

Dividing the previous expression by A∆h and taking the
limit ∆h→ 0 we get

∂S
∂ t

+
Q
A

∂S
∂h

=−
[

µ(S)
Y
− (1− fp)b

]
X . (12)

In the same way, for the biomass and the inert matter

we get

∂X
∂ t

+
Q
A

∂X
∂h

= [µ(S)−b]X , (13)

∂Z
∂ t

+
Q
A

∂Z
∂h

= fpbX . (14)

In steady-state conditions, (12)–(14) become

Q
A

∂S
∂h

=−
[

µ(S)
Y
− (1− fp)b

]
X , (15)

Q
A

∂X
∂h

= [µ(S)−b]X , (16)

Q
A

∂Z
∂h

= fpbX , (17)

where S = S(h), X = X(h) and Z = Z(h) are the steady-
state concentrations along the PFR that should satisfy
the boundary conditions: S(0) = S1, X(0) = X1 and
Z(0) = Z1. The effluent concentrations are Se = S(hmax),
Xe = X(hmax) and Ze = Z(hmax), where hmax refers to the
maximum length of the PFR.

See in (12) that when b = 0, the partial derivative for S
is negative, i.e. the substrate decreases as long as the PFR
length increases. When b > 0, there is a condition for (12)
to be positive, which means that there is a minimum efflu-
ent substrate concentration Smin

e achievable in the effluent
of the PFR, and is given by

Smin
e =

KSY b(1− fp)

µmax−Y b(1− fp)
. (18)

2.4 Optimization problems
Given N CSTRs in series as shown in Figure 1, assume
that the process is in steady-state condition. It is of interest
to get the solution of the following optimization problems:

Problem 1N. Given a total volume Vtot of N CSTRs in
series, find the optimal volume distribution that minimize
the effluent substrate concentration SN expressed in (6),
i.e.,

minimize
(V1,...,VN)

{SN(V1, ...,VN)} , (19)

subject to

V1 >V min
1 , {Vi}N

i=2 > 0,
N

∑
i=1

Vi =Vtot. (20)

Problem 2N. Given an effluent substrate concentration
Se < Sin of N CSTRs in series, find the optimal volume
distribution that minimize the total volume Vtot, i.e.,

minimize
(V1,...,VN)

{
Vtot =

N

∑
i=1

Vi

}
, (21)
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subject to

V1 >V min
1 , {Vi}N

i=2 > 0, SN(V1, ...,VN) = Se. (22)

For a large number of N CSTRs in series, an alternative
to solve Problem 1N and Problem 2N is by considering
the volumes V2, ...,VN as a PFR. This gives two optimiza-
tion problems to solve:

Problem 1PFR. Given a total volume Vtot > V min
1 of a

process formed by a CSTR followed by a PFR, find the
optimal volume V1 of the CSTR that minimizes the efflu-
ent substrate concentration Se of the PFR, i.e.,

minimize
(V1)

{Se(V1)} , (23)

subject to

V min
1 <V1 ≤Vtot. (24)

Problem 2PFR. Given an effluent substrate concentra-
tion Se < Sin of a CSTR followed by a PFR, find the op-
timal volumes V1 of the CSTR and VPFR of the PFR that
minimize the total volume Vtot =V1 +VPFR, i.e.,

minimize
(V1,VPFR)

{Vtot =V1 +VPFR} , (25)

subject to

SPFR = Se, (26)

where SPFR is the effluent substrate concentration of the
PFR.

3 Numerical illustration
This section shows a numerical example of the pro-
cess described in the previous section. Let assume the
following parameter values: Vtot = 1.1 m3, Q = 1 m3/d,
A = 0.428 m2, µmax = 2 d−1, b = [0,0.8] d−1, fp = [0,1],
Y = 0.8, KS = 1.2 kg/m3, Sin = 10 kg/m3. The simula-
tions were performed using the software Matlab.

3.1 Response of the system for a given V1

Given a total volume Vtot and the volume of the first CSTR,
we show the value of the substrate, biomass and inert con-
centrations for the remaining volume (Vtot−V1) for some
values of N CSTRs in series and for the configuration
CSTR+PFR. In this case, V1 should be larger than V min

1
(cf. (10)). See that V min

1 depends on b. As illustration, this
example shows results for b = 0 and b = 0.1. Hence, to
use the same V1 in all the evaluations, we take the most re-
strictive case, i.e. b = 0.1, giving V min

1 = 0.593. We select
V1 = 1.2V min

1 = 0.712. Results are shown in Figure 3 for
three different combinations of b and fp.

See that, as expected, the biomass concentration de-
creases and the substrate concentration increases when b
increases. Also see that the inert concentration increases
as fp increases.
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Figure 3. Response of S,X and Z for a given V1. Results for N
CSTRs and CSTR+PFR. Top: b= fp = 0. Middle: b= 0.1, fp =
0.1. Bottom: b = 0.1, fp = 0.4.

3.2 Optimal design for a given total volume
In this example, the aim is to find the solution of Problem
1N and Problem 1PFR. In order to show the optimal de-
sign in an illustrative way, we proceed to get the effluent
substrate concentration Se for different values of V1.

For the case of Problem 1N, the volumes V2 to VN are
optimized using the Matlab function fmincon since it
can find the minimum value of a multivariate function with
linear and nonlinear constraints. See that Problem 1N only
has linear constraints.

For the case of Problem 1PFR, Se is obtained by solv-
ing (15)–(17). After the evaluation with the full possible
range of V1, the optimum V1 that gives the minimum ef-
fluent concentration is obtained. The results are shown in
Figure 4 for the case of N = 2,3,5,10 and for the case of
CSTR+PFR, for some values of b and fp.

See that the solution given by the N CSTRs converges
to the solution of CSTR+PFR as N increases. Note that the
steady-state solutions converge to the value Se = Sin = 10
which corresponds to V1 =V min

1 , and to the value Se = S1
when V1 =Vtot, which is the case of a single CSTR.

3.3 Optimal vs. sub-optimal design for a given
total volume

Given a total volume Vtot, two volume designs of N CSTRs
are compared: (a) suboptimal design, where volume V1
is taken from the optimal design of CSTR+PFR and the
rest of the volumes are equally sized; and (b) optimal de-
sign, where all the volumes are optimized. The results are
shown in Figure 5 for different values in b and fp.

As expected, the effluent substrate concentration in-
creases as b increases. Note also that, when b increases,
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Figure 4. Steady-state solution of the effluent substrate concen-
tration as a function of V1. Results shown for N CSTRs and
CSTR+PFR, and for different values in b and fp. The volume V1
that gives the minimum effluent is marked with black dot (for N
CSTRs) and with asterisk (for CSTR+PFR).

not much Se reduction is obtained when N increases. This
is because the minimum volume to avoid wash-out in-
creases as b increases (see (10)), which makes V1 to be
closer to Vtot.

3.4 Optimal design for a given Se

In this example, the aim was to compare the solution of
Problem 2N and Problem 2PFR. This is, we compare the
minimum total volume required in N CSTRs to achieve
a given effluent substrate concentration Se, with the min-
imum total volume required in the case of CSTR+PFR.
Note that there is no bounds imposed for the total volume
required in both problems. Both problems were solved
with the Matlab function fmincon. Note that these prob-
lems involve linear constraints (regarding the volume dis-
tribution) and nonlinear constraints (regarding the effluent
substrate concentration).

To facilitate the comparison, the ratio Vopt/V (N)
with respect to the ratio Se/Sin is plotted, where
Vopt =V ∗1 +Ah∗, and V (N) refers to the minimum total
volume required for N CSTRs. We evaluate this exam-
ple for up to N = 5 and for Se/Sin between 10−2 and 1.
Results are shown in Figure 6 for some values in b and fp,
the value Smin

e /Sin (cf. (18)) is also shown.
See that, for a given effluent requirement, the ratio be-

tween Vopt and V (N) approaches to one as N increases,
i.e. the solution given by Problem 2N converges to the
solution given by Problem 2PFR when more CSTRs are
involved in the process. See also that when the effluent
requirement is less exigent (Se/Sin close to 10−1), the to-
tal volume of both problems is very similar (i.e. ratio very
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Figure 5. Effluent substrate concentration as a function of N
CSTRs for two configurations. V ∗1 refers to the optimal volume
of the case CSTR+PFR. Results shown for different values in b
and fp.

close to one).
Note that the ratio Vopt/V (N) decreases as b increases,

and that this decrease is more evident for low N. Since
increasing b promotes that more biomass die (which later
will become part as substrate and the remaining as inert),
then a larger total volume is needed to reduce the substrate
concentration to the required level. Hence, compared to
the case CSTR+PFR, a larger total volume is needed for
low N CSTRs.

On the other hand, the ratio Vopt/V (N) increases as fp
increases. Since increasing fp promotes more inert and
less substrate concentration, then it has the opposite effect
in the ratio of volumes compared to increasing b.

4 Conclusions
A process consisting of N CSTRs in series has been stud-
ied in steady-state conditions. A simple model for the bi-
ological reactions based on ordinary differential equations
has been used, which describes the growth of biomass
via consuming dissolved substrate and producing new dis-
solved substrate and inert particulate matter.

Numerical results suggest that it is possible to find
an optimal distribution of CSTR volumes in order to ei-
ther: (i) minimize the effluent substrate concentration for
a given volume, or (ii) minimize the total volume to fulfill
an imposed effluent substrate concentration. The configu-
ration of CSTRs in series was compared to a configuration
formed by one CSTR followed by a PFR, i.e. CSTR+PFR.
In the configuration CSTR+PFR, an optimal distribution
of volume was also found. This configuration can be used
as an approximation to the optimal design, by finding the
optimal design of the first CSTR and then dividing the re-
maining volume in equally distributed CSTRs.

The decay rate b has a strong influence in the optimiza-
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Figure 6. Minimum total volume needed for a given effluent
substrate concentration Se. Vopt refers to the solution of Problem
2PFR, and V (N) refers to the solution of Problem 2N. Results
shown for different values in b and fp. Smin

e /Sin is indicated with
a vertical red dashed line.

tion results of both the N CSTRs and the CSTR+PFR. The
amount of substrate generated by increasing b makes it
less determinant to include a PFR in the process.

This study assumed the hydrolysis as an instantaneous
step, since part of the product generated by the biomass
is considered already dissolved. A possible extension of
this work is to include a hydrolysis step, which involves
adding a particulate substrate concentration in the process
modelling.
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