
MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 289
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia
Fritzson, Peter and Pop, Adrian and Sjölund, Martin and Asghar, Adeel

289

MetaModelica – A Symbolic-Numeric Modelica Language
 and Comparison to Julia

Peter Fritzson Adrian Pop Martin Sjölund Adeel Asghar
PELAB – Programming Environment Lab, Dept. of Computer and Information Science

Linköping University, SE-581 83 Linköping, Sweden
{peter.fritzson,adrian.pop,martin.sjolund,adeel.asghar}@liu.se

Abstract
The need for integrating system modeling with
advanced tool capabilities is becoming increasingly
pronounced. For example, a set of simulation
experiments may give rise to new data that are used to
systematically construct a series of new models, e.g. for
further simulation and design optimization. Such
combined symbolic-numeric capabilities have been
pioneered by dynamically typed interpreted languages
such as Lisp and Mathematica. Such capabilities are also
relevant for advanced modeling and simulation
applications but lacking in the standard Modelica
language. Therefore, this is a topic of long-running
design discussions in the Modelica Design group. One
contribution in this direction is MetaModelica, that has
been developed to extend Modelica with symbolic
operations and advanced data structures, while
preserving safe engineering practices through static type
checking and a compilation-based efficient
implementation. Another recent effort is Modia,
implemented using the Julia macro mechanism, making
it dynamically typed but also adding new capabilities.
The Julia language has appeared rather recently and has
expanded into a large and fast-growing ecosystem. It is
dynamically typed, provides both symbolic and numeric
operations, advanced data structures, and has a just-in-
time compilation-based efficient implementation.
Despite independent developments there are
surprisingly many similarities between Julia and
MetaModelica. This paper presents MetaModelica and
its environment as a large case study, together with a
short comparison to Julia. Since Julia may be important
for the future Modelica, some integration options
between Modelica tools and Julia are also discussed,
including a possible approach for implementing
MetaModelica (and OpenModelica) in Julia.
Keywords: Modelica, MetaModelica, symbolic, Julia,
meta-programming, language, compilation

1 Introduction
Advanced development of today's complex products
requires integrated environments and equation-based
object-oriented declarative languages such as Modelica
(Fritzson, 2014; Modelica Association, 2017) for

modeling and simulation. Such combined symbolic-
numeric capabilities and advanced data structures have
been pioneered by dynamically typed interpreted
languages such as Lisp (Steel, 1993) and Mathematica
(Wolfram, 2003), but are also relevant for modeling and
simulation applications. Therefore, this is a topic of
design discussions in the Modelica Design group
regarding the future Modelica, and has also motivated
the development of MetaModelica (Fritzson et al 2005;
Pop et al, 2006, Fritzson et al, 2011) and Modia
(Elmqvist et al, 2016; Elmqvist et al 2017);

1.1 Motivation and Design Goals
At the time when the MetaModelica effort was started,
MetaModelica 1.0 (Fritzson et al 2005), there was no
existing efficiently compiled language that combined
strong numeric and symbolic capabilities. Our vision
was to extend Modelica in that direction via
MetaModelica, in a backwards compatible way,
supporting the Modelica design goals of safe
engineering practices through static type checking, and
explicitly declared types for increased model readability
and efficient compilation. In the longer term the goal
was an efficient interactive environment based on
incremental compilation or just-in-time compilation
(Section 8.4).

However, in the meantime the rather young language
Julia (Bezanson et al 2017; Julialang 2018) has matured,
(Julia 1.0 was released in August 2018), with similar
design goals of an efficiently compiled interactive
symbolic-numeric language. However, also with the
goals of dynamic typing and automatic interfacing with
libraries in other languages, and no special requirement
of integrating with the Modelica modeling language.

The design of MetaModelica has been mostly
influenced by Modelica, Standard ML (Milner et al,
1997) and RML (Pettersson 1989), whereas Julia has
been more influenced by dynamic languages such as
Lisp and Mathematica.

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

290 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

The advent of Julia has changed the situation, as
pointed out by (Elmqvist et al, 2016). Julia is a very
capable and efficient symbolic-numeric language
available with a rapidly growing ecosystem and set of
libraries. Thus, it seems likely that Julia will influence
the future of Modelica. The Modia prototype in Julia
demonstrates several advantages but lacks support for
safe engineering practices via static type checking. In
Section 8 we briefly discuss ways of integrating
Modelica tools with Julia without losing the Modelica
static type checking.

A further discussion of related work is available in
Section 10.

In the following, when we mention MetaModelica,
we usually also include Modelica, since MetaModelica
is an extension of Modelica.

1.2 Contributions
The contributions of this paper are not about inventing
new language constructs. The introduced constructs
have already been well proven in several other
languages. Similar statements have been made
regarding the Julia language. However, in the context of
Modelica there are contributions on integrating such
constructs into the Modelica language including the
Modelica type system in a backwards compatible way.

Another contribution is the comparison of Julia and
MetaModelica, showing many similarities and how
Julia-like features have been integrated into the
Modelica language via MetaModelica.

There are also contributions in the form of the very
large case study of implementing the OpenModelica
compiler in MetaModelica in an efficient way, and using
the language and the associated developed environment
(Figure 1, Section 8) for this large effort. Large case
studies are valuable from a scientific point of view since
it is often the case that results from investigations of
small toy problems may not be true when problem sizes
are scaled up.

1.3 Paper Organization
This paper is organized as follows.

Section 2 compares basic properties of MetaModelica
and Julia. Sections 3 and 4 introduces uniontypes, tree
and list data structures. Section 5 presents pattern
matching including a symbolic example. Section 7
discusses compiler performance.

Section 8 presents the new OMEdit-based
development environment for MetaModelica 3.0 and
gives a comparison to the Eclipse-based MDT plug-in

Section 9 discuses integration of Modelica tools with
Julia, whereas Section 10 presents related work and
makes a short comparison to functional languages and
languages such as Julia and Python. Finally, Section 11
gives conclusions and future work.

Figure 1. The integrated MetaModelica OMEdit-based development environment in debugging mode. Left: the package
browser. Top: the active stack frames (including C routines) and breakpoints. Middle: text editing and breakpoint setting.
Right: the local variables browser. The user can switch to modeling mode which has both textual and graphical editing.

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 291
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

2 Some Properties of MetaModelica

and Julia
We start by briefly summarizing and comparing some
basic properties of MetaModelica and Julia.

2.1 Syntax
The syntax of the MetaModelica extension of Modelica
is strongly influenced by Modelica, and to a lesser extent
by Standard ML and C++. The Julia syntax is more
influenced by languages like Python. Both are
influenced by Matlab. The Julia syntax is more concise
whereas the MetaModelica syntax is more verbose and
descriptive, with more keywords.

2.2 Type System and Dynamic/Static Typing
MetaModelica/Modelica is structurally typed with some
nominal typing parts, whereas Julia has a completely
nominal type system. Thus, in Julia, concrete types may
not be subtypes of each other. Both languages have
concrete and abstract types, and parameterized types.

MetaModelica is a statically typed language; there
are rules for determining the type of every expression in
the program. Conversely, Julia is dynamically typed,
types are properties of data values, and are dynamically
created at runtime and implied by the way data flows
through the program during execution. In static
languages expressions have types, in dynamic languages
values have types.

However, Julia has a rather sophisticated language
for describing types, and it is possible to annotate
expressions with types. For example, in Julia, z::T is
an assertion that z is a value of type T; if that is true,
z::T evaluates to the value of z, otherwise an error is
raised. Type annotations in function signatures are
slightly different: instead of asserting the type of an
existing value, they indicate that the function only
applies if the corresponding argument is of the indicated
type.

To summarize, MetaModelica/Modelica is static,
structural, and parametric, whereas Julia is dynamic,
nominal, and parametric.

2.3 Multiple Dispatch and Overloading
Overloading of an operator or function means that in the
presence of multiple implementations/definitions the
definition with matching argument types is selected.

For some reason Julia has chosen to change from the
well-established overloading terminology to instead use
the term multiple dispatch. The new term might be more
descriptive, but this change may cause some initial
confusion for users. There is some arguing that dynamic
selection is a reason for the new term, but one could
instead talk about dynamic overloading.

MetaModelica provides user-defined overloading of
both functions and operators, whereas standard
Modelica only provides operator overloading. In both

cases the selection is made at compile time based on
statically available types of argument expressions. In
Julia, the selection is done either at compile-time if the
type can be inferred by the compiler, or at run-time
based on runtime type tags of argument values.

3 Tree Data Structures
What are the needs for data structures and operations for
symbolic (meta-programming) capabilities? One of the
most common examples of programs that manipulate
and produce other programs are compilers, which
translate programs in some language into the same or
another language. A small symbolic manipulation
example is presented in Section 5.3.

The most common data type representation for
programs in compilers are tree structures, and typical
operations are transformations of such trees into trees
during the translation process. Lists are a special case of
tree data types but are typically given special support in
many symbolic programming languages.

Tree data types have two interesting properties:
 Uniontype – a tree data type is typically the union

of a number of node types, each representing a tree
node.

 Recursive type – the children of a tree node may a
type which is the tree data type itself.

Below we describe the MetaModelica uniontype
language extension, give some examples of its usage,
and briefly compare to Julia.

3.1 Uniontypes

The uniontype MetaModelica construct is a restricted
class that can be viewed as the union of the record
classes it contains. The keyword uniontype is
followed by the name of the uniontype, in the example
below called Exp

A record type belonging to a uniontype is called a
union member record.

This example shows a small expression tree using
uniontype Exp containing six different node types
represented as Modelica record types, which must be
declared within the scope of the union type. The
uniontype restricted class construct has been
extensively used in a Modelica context.
uniontype Exp
 record RCONST Real rval; end RCONST;
 record INTconst Integer exp1; end INTconst;
 record ADDop Exp exp1; Exp exp2; end ADDop;
 record SUBop Exp exp1; Exp exp2; end SUBop;
 record MULop Exp exp1; Exp exp2; end MULop;
 record DIVop Exp exp1; Exp exp2; end DIVop;
 record NEGop Exp exp1; end NEGop;
end Exp;

The uniontype class grammar is as follows:
class_prefixes :
[partial]

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

292 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

(class | model | [operator] record |
block | [expandable] connector
| type | package | [(pure | impure)] [
operator] function | operator | uniontype)

The uniontype construct is used by functional languages
such as OCAML, Standard ML, Haskell, etc. In several
of these languages the uniontype construct is called
datatype.

Uniontypes are also very common in Julia. However,
in Julia the uniontypes are constructed dynamically at
run-time since they are properties of values, not of
expressions. Uniontypes in Julia can also be named and
explicitly defined using the Union keyword:
IntOrString = Union{Int,AbstractString}

3.2 Main Properties of Uniontypes
The MetaModelica uniontype construct is a restricted
class with the following main properties:
 Uniontype elements can be record declarations,

replaceable type declarations declared using
keywords replaceable type, only allowed to be used
for type parameterization of the member records
(and function(s)) and not to introduce uniontype
member records. A record type declared within a
uniontype is called a uniontype member record.

 Uniontypes can be recursive, i.e., reference
themselves. That is the case in the above Exp
example, where Exp is referenced inside its member
record types.

 The typing rules for a uniontype are similar to
operator records, i.e., nominal typing comparing
type names. To check subtyping, (currently type
identity) of two uniontypes, it is tested whether they
belong to a subtype with the same name.

 Uniontypes can be parameterized by other types,
using replaceable, similar to other restricted classes
in Modelica.

 Inheritance, extends, between uniontypes is
currently not allowed. The reason is that all issues
for efficient implementation of such a feature are
not yet resolved.

 Inheritance between member records is allowed e.g.
record ADDop2 = ADDop; or using the long form:
record ADDop2 extends ADDop; … end ADDop2

 Uniontypes provides a type-safe mechanism for
variant records.

3.3 Calling Member Record Constructors
A uniontype member record constructor can be called
using function syntax similar to standard record
constructors, where the uniontype name is prefixed to
the member record name to disambiguate:
UnionTName.MemberRecord()

If the union type is imported into a scope, the uniontype
name prefix is not needed, for example:

import UnionTName.*;
MemberRecord()

For example, to construct the small expression tree of
Figure 2 below using the above Exp uniontype without
importing, the following would be needed:
Exp.ADDop(Exp.RCONST(12), Exp.MULop(
Exp.RCONST(5), Exp.RCONST(13)))

If importing of Exp into the current scope is used, the
expression becomes more concise:
import Exp.*;
ADDop(RCONST(12), MULop(RCONST(5),
RCONST(13)))

3.4 A Small Expression Tree Example
A small expression tree, of the expression 12+5*13, is
depicted in Figure 2.
Using the Exp record constructors ADDop, MULop,
RCONST, this tree can be constructed by the expression
ADDop(RCONST(12), MULop(RCONST(5), RCONST(13)))

Figure 2. Abstract syntax tree of the expression 12+5*13.

3.5 Supertype Any

The predefined type Any is a supertype of any other
MetaModelica type, i.e., all other MetaModelica types
are subtypes of Any.

Since all other types are subtypes of Any, by using
Any in a replaceable type declaration, it is possible to
avoid any constraints and provide full flexibility in
using any type as a type parameter in the following
replaceable type declaration:
replaceable type TypeParam = Any
 constrainedby Any;

This is equivalent to the following, since the default type
is used as constraining type if that is missing:
replaceable type TypeParam = Any;

The type Any is also present in Julia, with the same
semantics that it is a supertype of all other types.

3.6 Predefined Uniontype Option for
Optional Values

The predefined MetaModelica Option uniontype
provides a type-safe way of representing the common
situation where a data item is optionally present in a data
structure.

The constructor NONE() is used to represent the case
where the optional data item is not present, whereas the
constructor SOME() is used when the data item is
present in the data structure.

ADDop

MULopRCONST

RCONST RCONST 12

5 13

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 293
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

The following is a definition of the parameterized

Option uniontype with a type parameter:
uniontype Option

 replaceable type TypeParam = Any
 constrainedby Any;

 record NONE
 end NONE;

 record SOME
 TypeParam elem;
 end SOME;

end Option;

For example, a StringOption type and a function
using it are defined:
uniontype StringOption = Option(redeclare
 TypeParam=String);
function stringOrDefault
 input StringOption strOpt;
 input String default;
 output String str;
algorithm
 str := match strOpt
 case Option.SOME(str) then str;
 else default;
 end match;
end stringOrDefault;

Calling the function a few times:
stringOrDefault(Option.NONE(),"default")
 "default"

stringOrDefault(Option.SOME("string"),
 "default")
"string"

A similar predefined facility is available in Julia.
Declaring a function argument or a record field as
having the type Union{T, Nothing} allows setting it
either to a value of type T, or to nothing to indicate that
there is no value.

3.7 Parameterized Union Types
Parameterized union types with opaque type parameters
are available. This means that only minimal information
about the type parameter is needed.

There is also support for redeclare in cases where
only information about sorting order needs to be
available about the type used as type parameter. For
example, this sorting order is provided by the type Key
given by the function keyCompare in the
AvlSetString package available in the
OpenModelica utility library.
package AvlSetString
 import BaseAvlSet;
 extends BaseAvlSet;

 redeclare type Key = String;

 redeclare function extends keyStr
 algorithm
 outString := inKey;
 end keyStr;

 redeclare function extends keyCompare
 algorithm
 outResult :=

 stringCompare(inKey1, inKey2);
 end keyCompare;

end AvlSetString;

4 Lists and Tuples
List and tuple data types are common in many languages
used for meta-programming and symbolic
programming, and are available in both MetaModelica
and Julia.

4.1 Lists
The following MetaModelica operations allows creation
of lists and addition of new elements in front of lists in
a declarative way, i.e., such lists are immutable.
Extracting elements is done through pattern-matching in
match-expressions.
 list – list(el1,el2,el3, ...) creates a list

of elements of identical type. Examples: list()is
the empty list, list(2,3,4) is a list of integers.

 :: – the :: operator in the expression
element::lst adds an element in front of the list
lst and returns the resulting list.

The types of lists and list variables can be specified as
follows:
 list – list<type-expr> using angle-bracket

notation is a list type constructor, e.g.:
 type RealList = list<Real>;

 Direct declaration of a variable rlist that denotes
a list of real numbers:

 list<Real> rlist;
A list type is a parametrized uniontype; the Option type
is also such a type. The only addition is the :: operator.

Lists are available in Julia with about the same
semantics and similar but slightly different syntax.

4.2 Tuples
Tuples can be viewed as instances of anonymous
records. The syntax is a parenthesized list. The same
syntax is used in extended Modelica presented here and
is in fact already present in standard Modelica as a
receiver of values for functions returning multiple
results.
 An example of a tuple literal: (a,b,"cc")
 A tuple with a single element can be created using

the tuple constructor instead of the short-hand
parentheses notation: tuple(a)

 A tuple can be seen as being returned from a
function with multiple results in standard Modelica:
 (x,y,z) := foo(var, 2, 3, 5);

 Access of field values in tuples can be achieved via
pattern-matching, e.g. the following will extract the
three field values from a tuple value:
 (x,y,z) := tuplevalue

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

294 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

The main reason to introduce tuples is for convenience
of notation. You can use them directly without explicit
declaration. Tuples using this syntax are already present
in the major functional programming languages.

A tuple will of course also have a type. When tuple
variable types are needed, they can for example be
declared using the following notation:
type VarBND = tuple<Ident, Integer>;

or directly in a declaration of a variable bnd:
tuple<Ident, Integer> bnd;

Tuples are also available in Julia, with the same syntax
(parenthesized list) and semantics. Tuple types can also
be defined explicitly in Julia using the Tuple keyword:
 Tuple{Ident,Int}

5 Match Expressions for Processing
Complex Data

Matching on instances of structured data types such as
trees is one of the central facilities in symbolic
processing languages. The matching provided by the
match-expression construct is very close to similar
facilities in many functional languages but is also related
to switch statements in C or Java. Match-expressions
have two important advantages over traditional switch
statements e.g. available in languages such as C or Java:
 A match-expression can appear in any of the three

Modelica contexts: expressions, statements, or in
equations.

 The selection in the case branches is based on
pattern matching, which reduces to equality testing
or switch in simple cases but is much more powerful
in the general case.

Regarding allowed patterns used in match-expressions
they are defined by the pattern language, see Section 5.2.
For example, constants can be patterns, e.g., "one",
384, RequirementStatus.violated. Constructors
with or without pattern variables can be patterns. The
wildcard pattern _ (underscore) matches anything.

A very simple example of a match-expression is the
following code fragment, which returns a number
corresponding to a given input string. The pattern
matching is very simple – just compare the string value
of s with one of the constant pattern strings "one",
"two" or "three", and if none of these matches return
0 since the wildcard pattern _ matches anything.
 String s;
 Real x;
algorithm
 x := match s
 case "one" then 1;
 case "two" then 2;
 case "three" then 3;
 case _ then 0;
 end match;

Alternatively, an else-branch, else 0;, can be used
instead of the last wildcard pattern case _ then 0:

Another, more useful example, but still trivial since it
only shows constants, is a match expression converting
an enumeration value to a Boolean value:
type RequirementStatus =
 enumeration(violated, undecided, satisfied);

function RequirementStatusToBoolean
 input RequirementStatus r;
 input Boolean undecided = false;
 output Boolean b;
algorithm
 b = match r
 case RequirementStatus.violated then false;
 case RequirementStatus.undecided then
 undecided;
 case RequirementStatus.satisfied then true;
 end match;
end RequirementStatusToBoolean;

The match expression in the above conversion function
gives the same result as the following if-expression, but
can be compiled more efficiently (Section 5) and is
easier to follow:
 b = if r == RequirementStatus.violated
 then false
 elseif r == RequirementStatus.undecided
 then undecided
 else true;

The general syntactic structure of match-expressions
starting with the match keyword is indicated by the
syntax outline below. The else-branch is optional and is
identical to a case _ branch. Local equation sections
contain equations, local algorithm sections contain
statements. The syntax outline:
match <match-value-expr> <opt-local-decl>
 ...
 case <pat-expr>
 [equation | algorithm]
 <opt-equations-or-statements>
 then <expr>;
 ...
 case <pat-expr>
 [equation | algorithm]
 <opt-equations-or-statements>
 ...
 else
 [equation | algorithm]
 <opt-equations-or-statements>

end match;

A slightly more advanced usage of match-expressions
compared to the above trivial cases is in a small
expression evaluator, the function eval. Here we use
as-binding of the result of a match to x, and standard
Modelica dot-notation to access values, e.g. x.rval or
x.exp2. The constructor pattern notation with empty
parentheses, e.g., ADDop(), means matching with
arbitrary arguments to that constructor.
function eval
 input Exp inExpression;
 output Real result;
 import Exp.*;
algorithm
 result := match x as inExpression
 case RCONST() then x.rval;

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 295
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

 case ADDop() then eval(x.exp1)+eval(x.exp2);
 case SUBop() then eval(x.exp1)-eval(x.exp2);
 case MULop() then eval(x.exp1)*eval(x.exp2);
 case DIVop() then eval(x.exp1)/eval(x.exp2);
 case NEGop() then –eval(x.exp);
 end match;
end eval;

Without the import Exp.* clause, constructors
would need the Exp prefix, e.g. Exp.RCONST(),
Exp.ADDop.Regarding Julia, there are several third-
party libraries available for pattern matching is available
with a semantics very close to the abovementioned
match expression construct. Match.jl (Squire 2013) and
Rematch.jl (RelationalAI 2018) use the following
syntax:
@match item begin
 pattern1 => result1
 pattern2, if cond end => result2
 pattern3 || pattern4 => result3
 _ => default_result
End

To make its semantics even closer to MetaModelica
match we included the Rematch.jl Julia package in our
prototype MetaModelica.jl compatibility layer and
enhanced it to also include named pattern matching
(Section 5.1) and matchcontinue semantics (pattern
matching with exception handling, see Fritzson et. al
2011 for details). To implement match and
matchcontinue semantics requires only 350 lines of
Julia code. See also Section 9.

5.1 Named Pattern Matching with Pattern
Variables vs Positional Matching

Named pattern matching uses named association to
match/bind pattern variables to values of corresponding
named arguments (e.g., record field names) of
constructors.

This notation is more verbose than that for positional
pattern matching but has the advantages that it is more
robust against model changes such as constructor
argument order, invention and maintenance of pattern
variable names is avoided, and usually increased
readability since the argument names are visible,
especially if there are many arguments.

This example is of an ADDop named pattern
mentioning field names exp1 and exp2 with pattern
variables e1 and e2 which become bound to values
during matching.

Named pattern matching is possible, i.e., the position
of the pattern variable does not matter, only the field
name (below exp1 or exp2) which it is associated to:
case ADDop(exp1=e1,exp2=e2)
 then eval(e1) + eval(e2);

In positional pattern matching this case would appear as
follows. It is more concise but dependent on argument
order:
case ADDop(e1,e2) then eval(e1)+eval(e2);

5.2 Pattern Expressions
Pattern expressions are used in match expressions and
can have the following forms:
 Patterns can contain literal constants of strings,

integers, real numbers, Booleans, enumeration
values, e.g. "string", 555, 3.14, true, false,
Sizes.medium.

 Patterns can contain the _ wildcard which matches
one item of anything.

 A pattern can be a pattern variable, i.e., an identifier,
which can appear as an argument to a constructor,
and which matches one item of anything.

 A pattern variable need not be declared. Its type is
inferred using simple type inferencing, e.g. from the
corresponding formal parameter type when it
appears as an argument to a record constructor.

 A pattern variable is automatically introduced into
the local scope, e.g. a case-clause, where the
variable is first mentioned. Therefore, it shadows
variables with the same name in outer scopes.

 A pattern variable is bound to the value it matches
during pattern matching.

 The same pattern variable may occur at most once
in the main part of the pattern expression, i.e.,
excluding the optional guard part.

 Patterns can contain calls to record constructor
functions, not to other kinds of functions except
constructors such as the array constructor array(),
the array function cat(), the list() constructor or
the tuple() constructor.

 Positional and/or named argument constructor call
syntax can be used in patterns containing
constructors, e.g., the positional call FOO(1,_,2),
is allowed; a named argument call version, e.g.,
FOO(field1=1,field3=2), or
FOO(field1=1,field3=myvar), where myvar
is a pattern variable, is also allowed. Moreover, you
can mix positional and named arguments in the call
pattern, with positional arguments first:
FOO(1,field3=myvar).

 A constructor pattern NAME(…) can have an
unspecified argument list denoted by an empty
argument list as in FOO(). This matches the
corresponding constructor, here FOO, with arbitrary
(zero or more) arguments.

 A constructor pattern NAME(…) is interpreted as
implicitly filling unspecified argument patterns _ at
the end of the argument list until it matches the
declared number of arguments of the constructor; in
the case of array(…) matching arbitrary (zero or
more) arguments after the specified arguments. For
example, a constructor R with three members x, y,
z, would fit all of the following patterns: R(),
R(v1), R(v1,v2), R(v1,v2,v3).

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

296 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

 Patterns can contain curly-brace array constructors,

which match exactly those elements mentioned,
e.g., {}, {3,5}, {3,5,_}, {3,5,6}, {a,5}. The array
pattern {} matches an empty array value.

 Patterns can contain the as binding operator, [e.g.
state1 as FOO(env,…).

 Patterns may optionally have guards, i.e.,
conditional expressions that are evaluated at run-
time and are part of the pattern condition, i.e., if the
whole matching fails including the guard, the match
may try another pattern if present. Example: case
REAL() guard x.value > 0 then x.value.

 Currently the MetaModelica pattern language does
not support explicit and/or combinations of patterns,
e.g. pattern1 and pattern2, pattern1 or
pattern2 whereas the Rematch.jl code was
influenced by Scala and does support this. The and-
mechanism can be achieved by embedding two or
more patterns in a list of patterns, e.g. {pattern1,
pattern2}, whereas the or-mechanism can be
achieved by having two case-rules, e.g., case
pattern1 …; case pattern2 … .

Some pattern examples:
"a" // constant literal string pattern
33 // constant literal Integer pattern
3.14 // constant literal Real pattern
false // constant literal Boolean pattern
true // constant literal Boolean pattern
p // pattern variable pattern, name p
Sizes.medium // literal enumeration pattern
ADDop() // constructor pattern with zero
 // or more arbitrary arguments
ADDop(3) // constructor pattern, first is 3,
 // followed by arbitrary args
ADDop(_,_) // constructor pattern with 2 or
 // more arbitrary arguments
ADDop(p,_) // constructor pattern with 2 or
 // more arbitrary arguments, the first
 // argument bound to pattern variable p
(_,_) // tuple pattern with 2 arguments
list(_,_) // list pattern with >=2 arguments
x :: rest // list pattern where x matches the
 // first element and rest the rest of the list
array(_) // array pattern with one or more
 // arbitrary arguments
array(3,4) // array pattern with the first
 // two elements being 3 and 4,
cat(1, {head}, rest) // Pattern which matches
 // both the head (first element) and
 // the rest (remaining elements) of an array
array()// array pattern, >= zero arguments
{_,_} // array pattern, exactly two elements
{_,55} // array pattern; two elements, 2nd 55
{44} // array pattern; one element being 44
{} // array pattern, zero elements
{33,_} // array pattern, two elements, 1st 33
{_,33,_,44} // array pattern with four
 // elements, the 2nd is 33, 4th is 44

Syntax rule:
pattern : expression

The pattern expression syntax is a subset of the general
expression syntax. This is checked by semantics rules.
The syntax looks slightly different in the Rematch.jl

package, but all of the semantics are supported (and has
some additional semantics as well).

5.3 Symbolic Differentiation Example
Symbolic differentiation of expressions is a symbolic
operation that transforms expressions into differentiated
expressions.
uniontype Exp
 record RCONST Real e1; end RCONST;
 record ADD Exp e1; Exp e2; end ADD;
 record SUB Exp e1; Exp e2; end SUB;
 record MUL Exp e1; Exp e2; end MUL;
 record DIV Exp e1; Exp e2; end DIV;
 record NEG Exp e1; end NEG;
 record IDENT String name; end IDENT;
 record CALL Exp id; Exp[:]args;end CALL;
 record AND Exp e1; Exp e2; end AND;
 record OR Exp e1; Exp e2; end OR;
 record LESS Exp e1; Exp e2; end LESS;
 record GREATER Exp e1;Exp e2;end GREATER;
end Exp;

An example function df performs symbolic
differentiation of the expression expr with respect to
the variable time, returning a differentiated expression.

As previously mentioned, in the patterns _ is a
reserved word that can be used as a placeholder instead
of a pattern variable when the particular value in that
place is not needed later as a variable value. The as-
construct is used to bind the additional identifier to the
matched value of the relevant expression.

In the following example the _ is used as a
placeholder of any argument in one of the patterns,
CALL(IDENT("sin"),{_}). This is a function call to
sin with the argument list being an array of exactly one
element {_}. The example also uses constructors with
empty parentheses like ADD() to match for zero or more
arguments with any contents.

The following well-known derivative rules are
represented in the match-expression code:

 The time-derivative of a constant RCONST() is zero.
 The time-derivative of the time variable is one.
 The time-derivative of a time dependent variable id

is der(id) but is zero if the variable is not time
dependent, i.e., not in the list tv/timevars.

 The time-derivative of the sum add(x.e1,x.e2)
of two expressions is the sum of the expression
derivatives.

 The time-derivative of sin(x) is cos(x)*x’ if x is a
function of time, and x’ its time derivative.

Some operators have been excluded in the df example
below:
function df "Symbolic differentiation of
expression with respect to time"
 input Exp expr;
 input String[:] tv;
 output Exp diffexpr;
 import Exp.*;

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 297
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

algorithm
 diffexpr := match x as expr
 // der of constant
 case RCONST() then RCONST(0.0);
 // der of a variable
 case IDENT() then
 if x.id == "time" then RCONST(1.0)
 // der of time variable
 else if member(x.id,tv)
 // der of any variable id
 then CALL(IDENT("der"),{x.id})
 else RCONST(0.0);

 // (x.e1 + x.e2)’ => x.e1’ + x.e2’
 case ADD() then
 ADD(df(x.e1,tv), df(x.e2,tv));
 case SUB()then
 SUB(df(x.e1,tv), df(x.e2,tv));
 // (x.e1*x.e2)’ => x.e1’*x.e2+x.e1*x.e2’
 case MUL() then
 PLUS(MUL(df(x.e1,tv),x.e2),
 MUL(x.e1, df(x.e2,tv);));

 case DIV()then
 DIV(SUB(MUL(df(x.e1,tv),x.e2),
 MUL(x.e1,df(x.e2,tv))),
 MUL(x.e2,x.e2));

 case NEG() then NEG(df(x.e1,tv);
 // sin(x.e1)’ => cos(x.e1) * x.e1’
 case CALL(IDENT("sin"),{_}) then
 MUL(CALL(IDENT("cos"),{x.e2[1]}),
 df(x.e2[1],tv)); //first elem from e2

 case AND() then
 AND(df(x.e1,tv), df(x.e2,tv));
 case OR() then
 OR(df(x.e1,tv), df(x.e2,tv));

 case LESS() then
 LESS(df(x.e1,tv), df(x.e2,tv));
 case GREATER() then
 GREATER(df(x.e1,tv), df(x.e2,tv));
 // etc...
 end match;
end df;

6 Exception Handling
The available MetaModelica exception handling
construct has the following structure:
 try
 // Perform something which might fail
 else
 // Perform something different
 end try;

This is used extensively in many of the existing
MetaModelica applications. There is also a function
fail(), which can be called to create a failure that can
be caught by the next level exception handler, typically
after emitting an error message.

Julia has a very similar exception handling
mechanism, with a try – catch statement and a throw
call to create exceptions, but additionally has named
exceptions and the finally clause.

7 Compiler Size and Performance
The OpenModelica compiler is a very large application
implemented in MetaModelica 3.0. The sizes of the

main parts are shown in Table 1. It is also bootstrapped,
i.e., it compiles itself (Sjölund et al, 2014).

Moreover, the new OpenModelica compiler frontend,
(Pop, et al, 2019) using the new facilities of
MetaModelica 3.0, has a flattening speed of between
one and two orders of magnitude faster than the previous
compiler frontend.

Table 1. Sizes of OpenModelica compiler phases, lines of
code, including several code generators.

Compiler Phase Lines

BackEnd (from flat Modelica to sorted
equation systems) 106299

FrontEnd (up to flat Modelica) 152059
Intermediate representation for code
generation 17368

Code generators (generated code) 356889

Code generators (template source code) 8957
Code generators template language compiler
& runtime 14586

OpenModelica scripting environment 35460

Utility modules 31050

Total size (excl. generated code) 412869

The compilation speed for two example models is
indicated in Table 2.

Table 2. Compilation speed of the OpenModelica
compiler implemented in MetaModelica 3.0 for some
models, using a standard desktop computer.

Example model and size Compile time (s)

Hummod, 29145 equations 239 s

Engine V6 (analytic), 9016 eqs 26 s

8 New Development Environment
As previously mentioned, the new integrated OMEdit-
based development environment supports algorithmic
code development in MetaModelica 3.0 or Modelica
3.4, or equation-based Modelica 3.4 model
development. There are four simulation arrow buttons
visible in Figure 3, from the left: standard simulation,
simulation with the transformational debugger for
equation models, simulation with the algorithmic code
debugger, and simulation with 3D graphic animation.

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

298 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

Figure 3. OMEdit with graphical view of an electrical
model, as well as its four simulation+debug buttons.

8.1 Why Develop a New Environment
What was the motivation for developing a new version
of the integrated environment since the Eclipse-based
MDT-plugin was already available? There are basically
two reasons:
 Ease of use. Users and developers asked for a more

integrated tool, instead of needing to install the
rather complex Eclipse tool for textual model
debugging and MetaModelica development.

 Performance. Several developers were dissatisfied
with the Eclipse plugin since they felt it was too
slow, even though it provided useful functionality.
By contrast, the new OMEdit environment is very
fast, also for large applications.

8.2 Browsing and Debugging
The OMEdit-based development environment supports
browsing and searching of MetaModelica packages just
as the MDT Eclipse plugin. Debugging, including
setting breakpoints, stepping, conditional breakpoints,
attaching the debugger to an already running process,
etc., is supported. A new feature is the ability to also
show C function calls in the stack trace. See Figure 4,
Figure 5, and Figure 6.

Figure 4. OMEdit during MetaModelica development.
See also Figure 1 for more details.

Figure 5. The function call stack trace browser showing
Modelica and MetaModelica function calls at the top, C
functions at the bottom.

Figure 6. The local variables browser. Both standard
Modelica data and MetaModelica data such as trees and
lists are shown.

8.3 Separate Compilation
An efficient separate compilation mechanism for
algorithmic MetaModelica or Modelica code is
available, which is used routinely by the OpenModelica
compiler developers to achieve rather fast turnaround
time since more than two years. The compiler itself is a
large application consisting of more than 250 packages,
which is why separate compilation is quite important.
Separate compilation of equation models is a separate
topic not covered here, and is partly available using the
FMI interface. The algorithmic code separate
compilation mechanism works as follows:

A restriction has been introduced that all top-level
packages are encapsulated and all dependencies of a
module must be marked by an import statement. This
improves performance in subsequent steps.

An additional useful restriction is that any public
function, constant, or type may only refer to other public
elements. By introducing this restriction, it is possible to
create an interface file for each package that strips out
protected elements and algorithm sections. Everything
that remains in the resulting file is part of the interface,
and loading each and every file (e.g., of the 250 OMC
files) in the interface takes less than 0.6 seconds on a
standard laptop.

For performance, a distinction between protected and
public import elements in Modelica has been
introduced. When calculating the list of interface files

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 299
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

that a package depends on, we must start with all the
import elements in the package that is going to be
compiled. For each of these packages, add the public
imports to the list of packages that are going to be loaded
(and do this recursively if any of those packages contain
public imports). This is the list of all interfaces needed
to calculate all types used in functions of the package
that is going to be compiled. This set is substantially
smaller than loading every single interface file.

Thus, to compile a package, the interface
dependencies and the main file is loaded. For each
function in the package, perform instantiation of that
function and send it to the code generator. Compile each
of those files with a C compiler and perform linking of
the total application.

The total time including linking when updating a file
without changing its public interface is 4.5 seconds for
typical file (about 6000 lines of MetaModelica) or about
8 seconds for a large file (about 13000 lines). The tests
were performed using an Intel Core i7 3820 @3.60GHz.
There were about 250 packages in the OpenModelica
compiler application used for the measurements.

Regarding Julia, the LLVM just-in-time compiler
produces code directly into a binary image in memory.
The disadvantage is that compilation is eventually
repeated when code is loaded. However, there are some
facilities for saving precompiled code to avoid
recompilation.

8.4 Just-in-Time and Incremental
Compilation

Julia uses LLVM for just-in-time compilation which
combines performance with flexibility and interactivity.
MetaModelica is currently compiled to C-code that is
compiled either using the GNU C compiler or the
LLVM Clang compiler. Instead, by directly generating
LLVM compatible binary code it would be possible to
get faster compilation and also to utilize the just-in-time
capabilities of LLVM. Thus, recently we have made
prototyping efforts for adapting the OpenModelica
compiler backend intermediate representation (IR) to an
LLVM compatible form (Andersson and Eriksson,
2018) and to interface it to the LLVM just-in-time
compiler (Tinnerholm, 2019). In this way it is possible
to obtain just-in-time capabilities with the associated
flexibility without dependence on the Julia run-time.
Additionally, there is an earlier prototype incremental
compilation functionality in OpenModelica (Klinghed
and Jansson, 2008).

9 Integration with Julia in Modelica
Environments

As previously mentioned, Julia provides a powerful
environment and a rapidly growing set of libraries for
computational applications. Thus, some kind of
integration with Julia seems relevant for many Modelica

tools. We have identified a few levels of integration
between a Modelica tool and Julia, from less to more
integration:
 Level 1. Using Julia as a scripting language and

making an API available for calling the Modelica
tool from Julia. This have benefits of making
Modelica model simulation and analysis available
from Julia, e.g. for applications such as model-based
control system design, e.g., (Thiele et al, 2019). Such
an integration has recently been made available via
the OMJulia subsystem (Lie et al, 2019) in
OpenModelica

 Level 2a. Introducing an external function
declaration facility for Julia functions. The benefits
include making Julia functions available to Modelica
modelers.

 Level 2b. Generating Julia code from the Modelica
tool, i.e., adding another target language in addition
to the typical C / C++. The benefits include Julia
functions available to Modelica modelers as external
functions and leverage some Julia run-time system
functions for supporting the tool implementation.

 Level 3. Using Julia as the implementation language
for the Modelica tool. This has the advantage of
making the powerful Julia language and ecosystem
available for tool implementation supporting both
numeric and symbolic operations, and with rich
libraries.

Regarding Level 3, two approaches are language
embedding, i.e., embedding a Modelica-like language
subset into the Julia language, or complete
implementation from scratch in order to preserve all
Modelica semantics.

Language embedding is a quick approach and has
been chosen, e.g., by the Modia effort and is discussed
in more detail in Section 10. As mentioned, an important
disadvantage of such an approach is the loss of the static
type checking and safe engineering practices which has
been a strong guiding principle of Modelica language
design. However, it might be possible to develop a static
type system with static type checking for a subset of
Julia. Most Julia code will not pass such a type checker,
but for code that passes, this may solve the problem of
safe engineering practice that is lacking for dynamic
languages Some work in that direction is mentioned in
(Chung et al, 2016) where a static type checker for a
very small subset of Julia has been developed.

Regarding the other approach, implementation from
scratch, a quicker approach is automatic
translation/porting of code if the existing Modelica tool
implementation language is close enough to Julia. Given
the strong similarities between MetaModelica and Julia,
it might be possible to auto-translate most of the
OpenModelica compiler to Julia and thereby obtain a
fully compliant Modelica compiler with static type
checking implemented in Julia. As a first step, a

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

300 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

compatibility package for MetaModelica in Julia has
been developed by us, including named pattern
matching that was missing. One issue that was
discovered is that recursive uniontypes that can be
directly defined in MetaModelica are not possible in
Julia. However, a solution was found by first declaring
an abstract type of the uniontype which then can be
referred to in the member structs. Another related issue
is that Julia constants and types are declared in the order
of the file, whereas in MetaModelica order does not
matter. This either requires moving some MetaModelica
code around if a very simple MetaModelica to Julia
translator was implemented. Other than this,
OpenModelica depends on a lot on external C code,
which is expected to be the bulk of work to translate the
entire compiler to Julia.

Performance is of great importance to OpenModelica
but the MetaModelica compiler is primarily a high-level
compiler and does not optimize many low-level
operations due to maintenance issues of such code. Julia
has a different approach where the language was
designed to allow for high-performance code. An initial
test showed that the Julia garbage collector is twice as
fast as the Boehm garbage collector used in
OpenModelica. And while the OpenModelica LLVM
just-in-time compiler (Tinnerholm, 2019) is not feature-
complete, it shows that LLVM just-in-time compilation
such as Julia’s could bring great performance benefits.
If OpenModelica was ported to Julia and Modelica
functions would be translated to the internal Julia AST,
OpenModelica could gain performance by removing the
interpreter and replacing it with running native code.

Further investigations of MetaModelica in Julia will
follow, especially with regard to performance.

10 Related Work
OCaml (Minsky, et al, 2013) and Standard ML (Milner
et al, 1997) are from the ML family of programming
languages. These languages are similar to
MetaModelica in that they both use very similar
language constructs, statically strong typing and type
inference. One major difference is that all variables in
MetaModelica have a specific type while in ML each
expression has a most general type. MetaModelica can
generate error messages that are easier to understand
because type inference only has to be performed when
calling a polymorphic function. However, this design
choice also results in more local variable declarations
since all temporary variables need to be declared. This
is both positive (one documents what type one expects a
variable should have) and negative (one ends up with a
number of local variable declarations).

Another group of languages with similar constructs
and pattern matching are the dynamically typed
languages Lisp, Mathematica, Python, and Julia. Of
these, only Julia currently seem to have good enough
performance for efficient implementation of core

compiler modules. Such dynamic typing is popular for
prototyping but is negative from the correctness point of
view since certain bugs may remain undetected for a
long time and require exhaustive testing for detection.
Some languages, like Lisp and Julia, provide meta-
programming macros with Quote and Unquote
constructs. This enables the use of concrete syntax
fragments in meta-programming which may be slightly
easier to use that the abstract syntax-oriented approach
by the ML languages and MetaModelica, but on the
other hand may be less efficiently compilable.

Several authors have used language embedding in a
host language for implementing equation-based
languages instead of designing a new language such as
Modelica or MetaModelica. In this way the concrete and
abstract syntax as well as parts of the implementation of
the host language can be re-used. On the negative side,
one is constrained by the host language regarding
expressivity, semantics, and tool facilities (e.g. specific
support for small-footprint embedded system code
generation recently developed for OpenModelica).
Giorgidze and Henrik Nilsson (2011) used this to embed
an equation-based language in a functional language,
and also used its JIT-compilation facilities for
dynamically structure changing models. Erik Frisk
(2017) used it for a simple diagnosis equation-based
language embedded in Matlab and Python, using the
available symbolic toolboxes. Hilding Elmqvist et al
(2016) used language embedding of the Modia language
prototype into Julia, using meta-programming macros,
and also using its JIT-compilation for investigating
structure changing models.

11 Conclusions
We have presented the MetaModelica 3.0 language for
Modelica-style meta-programming together with its
new OMEdit-based development environment. We have
also done a short comparison to Julia and conclude that
there are many similarities between MetaModelica and
Julia. The current OpenModelica environment is the
first Modelica environment that integrates meta-
programming as well as graphical and textual modeling
support and debugging in the same tool. The
development environment provides efficient separate
compilation with short turn-around time also for
applications of several hundred thousand lines of code.
Several facilities from the MDT Eclipse plug-in such as
go to definition, type, and signature display, are planned
to be made available in the new environment. A more
efficient compiler frontend is almost completed, as well
as a more powerful interface to the OpenModelica code
generators. Moreover, further investigation of possible
porting of MetaModelica to Julia is planned, which
would make possible a Julia-based OpenModelica
implementation.

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 301
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

Acknowledgements
This work has been supported by Vinnova in the ITEA
OPENPROD, MODRIO, OPENCPS, and EMPHYSIS
projects, and in the Vinnova RTISIM project. Support
from the Swedish Government has been received from
the ELLIIT project, as well as from the European Union
in the H2020 INTO-CPS project. The OpenModelica
development is supported by the Open Source Modelica
Consortium.

References
Patrik Andersson and Simon Eriksson. Efficient IR for the

OpenModelica Compiler. Maser Thesis report, Linköping
University, 202018 | LIU-IDA/LITH-EX-A--2018/001—
SE, October 2018.

Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter Bunus
and Kaj Nyström. Meta Programming and Function
Overloading in OpenModelica. In Proceedings of the 3rd
International Modelica Conference, Linköping, Sweden,
Nov 2003.

Adeel Asghar, Sonia Tariq, Mohsen Torabzadeh-Tari, Peter
Fritzson, Adrian Pop, Martin Sjölund, Parham Vasaiely,
and Wladimir Schamai. An Open Source Modelica Graphic
Editor Integrated with Electronic Notebooks and Interactive
Simulation. In Proc. of the 8th International Modelica
Conference 2011, pp. 739–747. Dresden, Germany,
March.20-22, 2011.

Modelica Association. Modelica: A Unified Object-oriented
Language for Physical Systems Modeling, Language
Specification Version 3.4. May 2017. URL
http://www.modelica.org/

Jeff Bezanson, Alan Edelman, Stefan Karpinski, Viral Shah.
Julia: A Fresh Approach to Numerical Computing. SIAM
Review, Vol. 59, No. 1, pp. 65-98., 2017.
http://julialang.org/publications/julia-fresh-approach-
BEKS.pdf; see also: http://julialang.org/

Julialang. Julia Language Documentation, Release 1.02
Accessed November 14, 2018. www.julialang.org

David Broman and Jeremy Siek J. G. (2012): Modelyze: a
Gradually Typed Host Language for Embedding Equation-
Based Modeling Languages, University of California at
Berkeley, No. UCB/EECS-2012-173, 2012.
www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-
2012-173.html.

Benjamin Chung, Paley Li, and Jan Vitek. Static Typing
Without Static Types – Typing Inheritance from the Bottom
Up. In Proc. of 1th Workshop on New Object-Oriented
Languages (NOOL) 2016, In conjunction with ACM
SIGPLAN SPLASH Conference, Amsterdam, The
Netherlands, October 31, 2017:
http://www.it.uu.se/workshop/nool16/nool16-paper4.pdf

Hilding Elmqvist, Toivo Henningsson, and Martin Otter.
Innovations for Future Modelica. In Proc. of Modelica
Conference 2017, Prague, May 15-17, 2017.

Hilding Elmqvist, Toivo Henningsson, and Martin Otter.
System Modeling and Programming in a Unified
Environment based on Julia. In Proc of ISoLA 2016, (Eds)
T. Margaria and B. Steffen, Part II, LNCS 9953, pp. 198-
217, Oct. 10-14, 2016.

Erik Frisk, Mattias Krysander, and Daniel Jung. A Toolbox
for Analysis and Design of Model Based Diagnosis Systems
for Large Scale Models. IFAC World Congress. Toulouse,
France, 2017. https://faultdiagnosistoolbox.github.io/
DOI: https://doi.org/10.1016/j.ifacol.2017.08.504

Fritzson Peter, Adrian Pop, and Peter Aronsson. Towards
Comprehensive Meta-Modeling and Meta-Programming
Capabilities in Modelica. In Proceedings of the 4th
International Modelica Conference, Hamburg, Germany,
March 7-8, 2005

Peter Fritzson, Adrian Pop, and Martin Sjölund. Towards
Modelica 4 Meta-Programming and Language Modeling
with MetaModelica 2.0. Technical reports in Computer and
Information Science, No 10, Linköping University
Electronic Press. February 2011. URL
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68361

Peter Fritzson. Principles of Object Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach.
1250 pages. ISBN 9781-118-859124, Wiley IEEE Press,
2014.

Peter Fritzson, Adrian Pop, Adeel Asghar, Bernhard
Bachmann, Willi Braun, Robert Braun, Lena Buffoni,
Francesco Casella, Rodrigo Castro, Alejandro Danós,
Rüdiger Franke, Mahder Gebremedhin, Bernt Lie, Alachew
Mengist, Kannan Moudgalya, Lennart Ochel, Arunkumar
Palanisamy, Wladimir Schamai, Martin Sjölund, Bernhard
Thiele, Volker Waurich, Per Östlund. The OpenModelica
Integrated Modeling, Simulation, and Optimization
Environment. In Proceedings of the 1st American Modelica
Conference, Cambridge, MA, USA, October, 8-10, 2018.
Published by LIU Electronic Press, www.ep.liu.se

George Giorgidze and Henrik Nilsson. Mixed-level
Embedding and JIT Compilation for an Iteratively Staged
DSL. In Julio Mariño, editor, Proceedings of the 19th
Workshop on Functional and (Constraint) Logic
Programming (WFLP 2010), volume 6559 of Lecture Notes
in Computer Science, pages 48-65, Springer-Verlag, 2011.
http://www.cs.nott.ac.uk/~psznhn/Publications/wflp2010-
lncs.pdf

Paul Hudak. The Haskell School of Expression. Cambridge
University Press, 2000.

Kim Jansson and Joel Klinghed. Incremental compilation and
dynamic loading of functions in OpenModelica. Master's
thesis, Linköping University, IDA, June 2008.
URN: urn:nbn:se:liu:diva-12329

Bernt Lie, Arunkumar Palanisamy, Alachew Mengist, Lena
Buffoni, Martin Sjölund, Adeel Asghar, Adrian Pop, and
Peter Fritzson. OMJulia: An OpenModelica API for Julia-
Modelica Interaction. In Proc. of the 13th Int. Modelica
Conference, Regensburg, Germany, March 4-6, 2019.

Robin Milner, Mads Tofte, R. Harper, and D. MacQueen, The
Definition of Standard ML. MIT Press, Cambridge, MA,
USA, 1997.

Yaron Minsky, Anil Madhavepeddy, and Jason Hickey. Real
World OCaml. O'Reilly, 2013.

Martin Otter and Hilding Elmqvist. Transformation of
Differential Algebraic Array Equations to Index One Form.
In Proc. Modelica Conference, Prague, May 15-17, 2017.

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

302 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

Mikael Pettersson, Compiling Natural Semantics. Lecture

Notes in Computer Science (LNCS). Vol. 1549. 1999,
Springer Verlag.

Adrian Pop, Martin Sjölund, Adeel Asghar, Peter Fritzson,
Francesco Casella. Integrated Debugging of Modelica
Models. Modeling, Identication, and Control, Vol 35, No 2,
pp. 93-107, DOI: http://dx.doi.org/10.4173/mic.2014.2.3,
ISSN 1890-1328, Aug 2014.

Adrian Pop, Peter Fritzson, Andreas Remar, Elmir Jagudin,
and David Akhvlediani. OpenModelica Development
Environment with Eclipse Integration for Browsing,
Modeling, and Debugging. In Proceedings of the 5th
International Modelica Conference (Modelica'2006),
Vienna, Austria, Sept. 4-5, 2006.

Adrian Pop and Peter Fritzson, MetaModelica: A Unified
Equation-Based Semantical and Mathematical Modeling
Language. In D. Lightfoot and C. Szyperski, editors,
Modular Programming Languages, Vol. 4228 of Lecture
Notes in Computer Science, pages 211/229. Springer Berlin
/ Heidelberg, 2006. DOI:10.1007/11860990_14.

Adrian Pop. Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages. Ph.D. Thesis. Linköping Studies in Science and
Technology, Dissertation No. 1183, June 5, 2008.

Adrian Pop, Per Östlund, Francesco Casella, Martin Sjölund,
Rüdiger Franke. A New OpenModelica Compiler High
Performance Frontend. In Proc. of the 13th Int. Modelica
Conference, Regensburg, Germany, March 4-6, 2019.

RelationalAI. Julia pattern matching Rematch.jl package,
2018. https://github.com/RelationalAI-oss/Rematch.jl.
Accessed Sept. 2018.

Peter van Roy and Seif Haridi. Concepts, Techniques, and
Models of Computer Programming. MIT Press, 2004.

Tim Sheard. Accomplishments and Research Challenges in
Meta-Programming. Lecture Notes in Computer Science,
2196:2–.., 2001.

Tom Short. Sims - A Julia package for equation-based
modeling and simulations. https://github.com/tshort/Sims.jl
2012.

Martin Sjölund, Peter Fritzson and Adrian Pop. Bootstrapping
a Compiler for an Equation-Based Object-Oriented
Language. DOI: 10.4173/mic.2014.1.1. Modeling,
Identification and Control, Vol 35, No 1, pp 1-19, 2014.

Martin Sjölund. Tools and Methods for Analysis, Debugging,
and Performance Improvement of Equation-Based Models.
Ph.D. Thesis. Linköping Studies in Science and
Technology, Dissertation No. 1664, June 1, 2015.

Kevin Squire. Julia pattern matching Match.jl package, 2013.
https://github.com/kmsquire/Match.jl. Accessed Sept 2018.

Rickard Stallman, R. Pesch, S. Shebs, et al. Debugging with
GDB. Free Software Foundation, 2014. URL
http://www.gnu.org/software/gdb/documentation/.

Guy Steel and Rickard Gabriel. The Evolution of Lisp. In The
second ACM SIGPLAN conference on History of
programming languages, HOPLII. ACM, New York, NY,
USA, pages 231{270, 1993. doi:10.1145/154766.155373

Bernt Lie, Arunkumar Palanisamy, Alachew Mengist, Lena
Buffoni, Martin Sjölund, Adeel Asghar, Adrian Pop, and
Peter Fritzson. OMJulia: An OpenModelica API for Julia-

Modelica Interaction. In Proc. of the 13th Int. Modelica
Conference, Regensburg, Germany, March 4-6, 2019.

John Tinnerholm. An LLVM backend for the OpenModelica
Compiler. Master Thesis LIU-IDA/LITH-EX-A--
2019/001--SE, Dept. Computer and Information Science,
Linköping University, January 2019.

Stephen Wolfram. The Mathematica Book, 5th Ed. Wolfram
Media, Inc, 2003.

Dirk Zimmer. Equation-Based Modeling of Variable
Structure Systems. PhD Dissertation, ETH Zürich.
http://ecollection.library.ethz.ch/eserv/eth:1512/eth-1512-
02.pdf

	Session 3B: Language
	MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

