
A New OpenModelica Compiler High Performance Frontend

DOI Proceedings of the 13th International Modelica Conference 689
10.3384/ecp19157689 March 4-6, 2019, Regensburg, Germany

A New OpenModelica Compiler High Performance Frontend
Pop, Adrian and Östlund, Per and Casella, Francesco and Sjölund, Martin and Franke, Rüdiger

689

A New OpenModelica Compiler High Performance Frontend

Adrian Pop1 Per Östlund1 Francesco Casella2 Martin Sjölund1 Rüdiger Franke3

1PELAB - Programming Environments Lab, Dept. of Computer and Information Science, Linköping University,
SE-581 83 Linköping, Sweden, {adrian.pop,per.ostlund,martin.sjolund}@liu.se

2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy,
francesco.casella@polimi.it

3ABB, IAPG-A26, Kallstadter Str. 1, 68309 Mannheim, Germany, ruediger.franke@de.abb.com

Abstract
The equation-based object-oriented Modelica language al-
lows easy composition of models from components. It
is very easy to create very large parametrized models us-
ing component arrays of models. Current open-source and
commercial Modelica tools can with ease handle models
with a hundred thousand equations and a thousand states.
However, when the system size goes above half a mil-
lion (or more) equations the tools begin to have problems
with scalability. This paper presents the new frontend of
the OpenModelica compiler, designed with scalability in
mind. The new OpenModelica frontend can handle much
larger systems than the current one with better time and
memory performance. The new frontend was validated
against large models from the ScalableTestSuite library
and Modelica Standard Library, with good results.
Keywords: OpenModelica, compiler, flattening, frontend,
modelling, simulation, equation-based, scalability

1 Introduction and Motivation
System-level dynamic modelling and simulation is a key
activity in modern system engineering design. In paral-
lel to the detailed component design, which is performed
using advanced 3D CAD, CFD and FEM software tools,
system-level modelling, usually including systems of sys-
tems and large numbers of interacting components, allows
predicting the dynamic performance of complex systems,
which emerges from the interaction of its components.

The Modelica language (Modelica Association, 2017;
Fritzson, 2015) is a standardized tool-independent non-
proprietary equation-based object-oriented modeling lan-
guage, which was introduced 20 years ago by the non-
profit Modelica Association, with strong links to industry
and academia. This language, and the related eco-system
of tools, model libraries and the FMI standard (Blochwitz
et al., 2011), is ideally suited to system-level modeling of
complex, heterogenous and multi-domain cyber-physical
systems. It has become a de-facto standard in many in-
dustries, most notably the automotive one. The Model-
ica language is currently supported by about 10 different
modeling and simulation software tools; one of them, in
particular, the open-source OpenModelica software suite
(Fritzson et al., 2018), is the only Modelica tool owned

and maintained by a non-profit organization – the Open
Source Modelica Consortium (OSMC).

The main applications of Modelica tools so far have
been the study of individual systems, such as a car’s driv-
etrain and active suspension and steering control system,
a single industrial robot, a single power plant, a single
HVDC power link, the air conditioning system of a car,
etc. Existing Modelica tools employ strategies and algo-
rithms that are optimized for such system models, whose
typical complexity lies in the range of 1000-50000 equa-
tions and up to a few thousand state variables. The advent
of the internet-of-things paradigm is now fostering the de-
velopment of innovative very large-scale cyber-physical
systems, for example smart grids, or fleets of autonomous
vehicles. It is also sparking a renewed interest at the mod-
ernization of traditional large-scale systems. A first exam-
ple is continental-size high-voltage power generation and
transmission, which is facing increasing challenges due
to the introduction of power electronics equipment and to
the increased penetration of intermittent renewable energy
sources. A second example is district heating, possibly
integrated with heat pumps and distributed power genera-
tion in an integrated electrical and thermal smart grid. See
(Casella, 2015) for further examples and motivation.

Unfortunately, when Modelica is used to tackle the
modelling of large-scale systems with sizes exceeding the
ones mentioned above, currently available simulation soft-
ware that support Modelica fall short at providing ade-
quate performance. The time required to compile the mod-
els vastly exceeds what end users typically expect for sys-
tem level studies, i.e., a few minutes at most. The size of
the generated code and the memory requirements for com-
pilers vastly exceed what is normally available on laptops
and workstations used for daily work (8-16 GB).

In the last couple of years there have been some pio-
neering attempts at pushing the boundary of the size of
Modelica models that can be handled with reasonable time
and effort. In particular, some of our published papers
have demonstrated the feasibility of Modelica models of
high-voltage power generation and transmission systems
(Braun et al., 2017; Casella et al., 2017) and of detailed
models of key system components of future nuclear fusion
reactors, see (Froio et al., 2017). The size of the largest
models handled so far is about 750000 equations, which

A New OpenModelica Compiler High Performance Frontend

690 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157689

is about one order of magnitude bigger than the typical
size mentioned earlier.

The results were indeed very interesting and sparked a
lot of interest in the Modelica community. On the other
hand, they clearly showed the limits of current Modelica
tool technology, which is rather strained in terms of time
and memory requirements at that scale, and that cannot
in practice handle models of a size larger than one mil-
lion equations. Breaking that barrier and achieving the 10
million equations model size goal requires fundamental
methodological breakthroughs.

To summarize, the Modelica language has a lot of po-
tential to support the system-level modelling of innova-
tive engineering systems that require large-scale models.
However, current Modelica tools have serious limitations
as the system size grows.

1.1 Overcoming the Size Barrier with New Ef-
ficient Flattening Approach

An important goal of this work is overcoming the size bar-
rier of current Modelica simulation tools, making it possi-
ble to efficiently generate fast simulation code for systems
of up to 10 million equations, enabling new important ap-
plications such as those mentioned earlier, including large-
scale networked system models. Overcoming the size bar-
rier to 10 million equations means handling one to two
orders of magnitude larger models than what is currently
possible with state-of-the-art tools. To keep the total simu-
lation time within reasonable bounds, the time needed for
the model compiler to generate executable code should be
in the order of minutes in the worst case, and the memory
requirements should be fulfilled by the standard memory
size available on laptop computers (16 GB), or possibly
on engineering workstations for the largest problems (64
GB). The size of the executable code should also be much
smaller than what can be achieved today, otherwise most
of the simulation time risks to be spent waiting for data to
be shuffled back and forth between RAM and CPU cache.

The availability of such a tool will allow to use the
Modelica language, its high-level declarative modelling
paradigm, to support a wide range of large-scale system
design activities, as discussed in the previous sections. To
realize these goals, a large new tool development within
the OpenModelica tool suite was initiated about two years
ago, in particular the development of a new highly per-
forming compiler frontend, reported in this paper. More
than half of the OpenModelica model compiler has been
re-written and extended, and the software tool architecture
significantly enhanced.

Traditionally, when a Modelica compiler is generating
the simulation code, the system model is first flattened
(expanded), i.e., reduced to a large system of scalar equa-
tions, before performing structural analysis and code gen-
eration. Although this process allows to combine compo-
nents belonging to different domains in a straightforward
way, this approach is obviously inefficient when there are
many similar components in a system model, that only dif-

fer by their parameters, because the structural analysis and
the generated code will be highly redundant.

Arrays of models, or even multiple instances of the
same model, which only differ by the values of their pa-
rameters, should not be flattened to their scalar equations,
but rather handled in an efficient way throughout the code
generation process. Structural analysis and symbolic sim-
plification of models which are instantiated multiple times
should be performed only once instead of many times. At
the system level, structural analysis of the overall system
of equations should use algorithms and methods that con-
sider arrays as symbolic entities instead of breaking them
down to individual components. The efficiency of the final
code generation process should also be improved so that
ideally, if there are 1000 instances of the same component
in a model, code should be generated for the equations
of one of them only, and then called 1000 times, so as to
drastically reduce the code generation time and memory
consumption.

Achieving this goal requires fundamental changes to
the structure of the Modelica tool with respect to the
current state-of-the-art, which is to perform flattening to
scalar equations before starting the code generation phase.

2 Related Work
Instantiation and flattening of Modelica is quite complex.
Even as of the time of this writing there are open discus-
sion on the Modelica issue tracker about unclear parts of
the Modelica specification with regards to flattening. Fur-
thermore, there is no available information on the instan-
tiation and flattening process in the commercial Modelica
tools – this is only available for the two open-source Mod-
elica tools available: OpenModelica and JModelica.org.

JModelica.org is based on JastAdd (Hedin and Mag-
nusson, 2003), a Java based meta-compilation system that
supports Reference Attribute Grammars (RAGs). The in-
stantiation and flattening in JModelica.org is detailed in
(Åkesson et al., 2010). The process is similar to the one in
OpenModelica. The instance ASTs (abstract syntax trees)
are created from source ASTs and data is referenced using
inter-AST references. From the instance ASTs trees the
Flat ASTs are generated. The difference between Open-
Modelica and JModelica.org comes down to the funda-
mental differences between JastAdd and MetaModelica
(Pop and Fritzson, 2006). The JastAdd framework com-
putes attributes in the ASTs based on user-defined equa-
tions that relate to existing or circular attributes. In Meta-
Modelica we use functional programming via functions
and pattern matching to compute these attributes. JastAdd
translates to Java, MetaModelica translates to C code.
Both frameworks have automatic garbage collectors.

Interested readers can read more about compilers in
(Aho et al., 1986). More on functional programming is
available in (Hudak, 2000; Milner et al., 1997). Our pre-
vious work on boostrapping the OpenModelica compiler
can be found in (Sjölund et al., 2014).

A New OpenModelica Compiler High Performance Frontend

DOI Proceedings of the 13th International Modelica Conference 691
10.3384/ecp19157689 March 4-6, 2019, Regensburg, Germany

3 OpenModelica Compiler New Fron-

tend Architecture
This section details the architecture and design of the
new frontend. The new frontend is implemented in mod-
ern MetaModelica 3.0 which combines Modelica fea-
tures with functional languages features. The implementa-
tion consists of 65 MetaModelica packages or uniontypes
defining encapsulated data structures and functions that
operate on the defined data.

3.1 New Frontend Typical File Structure
The new frontend uses the full capabilities of MetaModel-
ica 3.0 which simplifies the code, control flow and archi-
tecture.

Data structures are defined using uniontypes and
records. For example the flat model obtained after instan-
tiation and flattening was performed is defined as below.

encapsulated uniontype NFFlatModel
import Equation = NFEquation;
import Algorithm = NFAlgorithm;
import Variable = NFVariable;

record FLAT_MODEL
list<Variable> variables;
list<Equation> equations;
list<Equation> initialEquations;
list<Algorithm> algorithms;
list<Algorithm> initialAlgorithms;
Option<SCode.Comment> comment;

end FLAT_MODEL;

end NFFlatModel;

Encapsulation of data definition and functions that work
on the defined data is similar to Modelica. Below is a
partial definition of a binding in the new frontend together
with functions to access or query it.

encapsulated package NFBinding
public

import Expression = NFExpression;
import NFInstNode.InstNode;
import SCode;
import Type = NFType;
import NFPrefixes.Variability;
import Error;

protected
import Dump;

public
constant Binding EMPTY_BINDING

= Binding.UNBOUND();

uniontype Binding
record UNBOUND
end UNBOUND;

record UNTYPED_BINDING
Expression bindingExp;
// ...

end UNTYPED_BINDING;

record TYPED_BINDING
Expression bindingExp;
// ...

end TYPED_BINDING;

public
function isBound
input Binding binding;
output Boolean isBound;

algorithm
isBound := match binding
case UNBOUND() then false;
else true;

end match;
end isBound;

function untypedExp
input Binding binding;
output Option<Expression> exp;

algorithm
exp := match binding
case UNTYPED_BINDING()
then SOME(binding.bindingExp);

else NONE();
end match;

end untypedExp;

function typedExp
input Binding binding;
output Option<Expression> exp;

algorithm
exp := match binding
case TYPED_BINDING()
then SOME(binding.bindingExp);

else NONE();
end match;

end typedExp;

end Binding;
end NFBinding;

One can note some of the new features in MetaModel-
ica 3.0:

• does not require verbose listing of all components (or
named component access) of the record in the pattern
matching (UNTYPED_BINDING())
• accesses record components via the dot notation in-

side the case (binding.bindingExp).
• allows definitions of functions inside uniontypes
• allows definitions and the use of generic datatypes

such as trees using redeclare/replaceable types

3.2 Features Relevant to High Performance
The new frontend was carefully designed with perfor-
mance and scalability in mind.

References (pointers) are used to link component refer-
ences to their definition scope via lookup and usage scope
via application.

Constant evaluation and expression simplification are
more restricted compared to the old frontend.

Both arrays of basic types and arrays of models are not
expanded until the Scalarization phase (see next section).

Expansion of arrays is currently needed because the
backend cannot handle all the cases of non-expanded ar-
rays. See Section 4 on preliminary handling of non-
expanded arrays of models in the backend and runtime.

3.3 New Frontend Design
The old OpenModelica frontend builds a DAE structure
(flattened Modelica code) directly from the SCode struc-
ture (simplified parsed abstract syntax tree) for a model.

A New OpenModelica Compiler High Performance Frontend

692 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157689

This means that it takes one component and flattens it to
list of variables and equations for that single component
before continuing with the next component. This flatten-
ing process involves doing instantiation, scalarization of
arrays, typing, and so on.

Components in Modelica models often have dependen-
cies on other components though, and the approach taken
by the old frontend means that components sometimes
need to be partially or fully flattened out of order. This
has made it hard to implement certain features, such as re-
declares, and has also led to a lot of superfluous flattening
where parts of the model are flattened multiple times.

One of the driving forces in the design of the new fron-
tend has therefore been to find ways to break dependen-
cies between the various frontend phases. Instead of be-
ing component-focused like the old frontend it has in-
stead been designed to be model-focused, meaning that
each frontend phase processes the whole model before the
model is passed on to the next phase. The result is the de-
sign seen in Figure 1, which shows the flow of the model
through the different phases of the new frontend. The fol-
lowing sections will describe each phase in more detail.

3.3.1 Instantiation

The instantiation phase takes all the libraries and models
that have been loaded by the compiler in the form of an
SCode structure as well as the name of the model that
should be instantiated, and builds an instance tree for that
model. The instance tree consists of the class instance cor-
responding to the model as the root node, with the compo-
nent instances of the class as child nodes that themselves
have component instances (as seen in Figure 2).

Because the SCode structure is not suitable for name
lookup, as it only contains lists of elements, the instance
tree is instead used for this purpose by the new frontend
since each node contains a lookup tree. The first task of
the instantiation is thus to partially instantiate the concep-
tual root class that contains all top-level classes, which
mainly involves constructing a lookup tree. The first part
of the model name can then be looked up in the root class,
and the rest of the name is looked up recursively using the
same process.

Once the SCode element of the model’s class has been
found, it will then be instantiated, which involves three
stages: partial instantiation, expansion, and full instanti-
ation. Partial instantiation will, as mentioned, construct a
lookup tree, but only local classes and imported names are
added in this stage. This is needed to be able to look up
the names of base classes, since Modelica allows classes
to inherit from local and imported classes but not from in-
herited classes.

The next stage, expansion, uses this partial lookup tree
to resolve any base classes of the class. All the inherited
names as well as the names of local components are then
added to the lookup tree. The reason why local compo-
nents are not added until this stage is because the order
in which the local and inherited components are declared

SCode

Instantiation

Expression Instantiation

 Instance Tree

Typing

Flattening

Constant Evaluation

 Flat Model

Simplification

Scalarization Function Collection

DAE Conversion

Function Tree

DAE + DAE Function Tree

Figure 1. Frontend phases.

needs to be preserved, since this is important for e.g. func-
tions where the order of the function parameters matter.
The class elements are therefore stored in declaration or-
der in arrays, with the lookup tree only referencing ele-
ments in those arrays, and the inherited components need
to be known before all components can be added in the
correct order.

The final stage is full instantiation in which the compo-
nents of the class are instantiated, which involves looking
up the type of each component and instantiating it. In this
stage modifiers are also associated with the elements they
modify, and redeclares are applied. The names of any base
classes are also looked up again in this stage, to make sure
that the same classes are found as in the earlier expansion
stage since inheriting from an inherited class is illegal in
Modelica (see Figure 3). This conveniently also allows
the frontend to also check that no extends is referencing a
component, since those are, as mentioned earlier, added to
the lookup tree after resolving base class names.

Because modifiers are only applied in the full instantia-
tion stage, it is possible for the new frontend to cache the

A New OpenModelica Compiler High Performance Frontend

DOI Proceedings of the 13th International Modelica Conference 693
10.3384/ecp19157689 March 4-6, 2019, Regensburg, Germany

model A
Real x;
Real y;

end A;

model B
A a;
Real z;

end B;

model M
B b;

end M;

⇒

''M''

b

a z

x y

Figure 2. Example of a model and its instance tree.

model A
model B

...
end B;

end A;

model M
extends A;
// Illegal, B is inherited from A.
extends B;

end M;

Figure 3. Example of illegal inheritance in a Modelica model.

work done during partial instantiation and expansion for
each class. This means that e.g. the lookup tree for a class
is only constructed once and then reused for all instances
of that particular class, unlike the old frontend where a
new lookup tree is constructed for each instance.

3.3.2 Expression Instantiation

Expressions in the compiler are things such as numbers,
strings, unary and binary operator expressions, and named
references to elements such as a.b[2].c[4]. They are
used to represent things such as equations and algorithms,
modifiers, and array dimensions.

The old frontend represents names used in expressions
as a nested structure where each node contains the refer-
enced element’s name and type, the subscripts used, and
for qualified names a reference to the next part of the
name. The new frontend uses a similar representation, but
instead of storing the element’s name it stores a reference
to the element’s instance tree node (which itself contains
the name).

This small difference in representation has a large im-
pact on the design of the new frontend, because unlike the
old frontend it always has direct access to the referenced
elements. The old frontend is instead forced to look up
names whenever it requires additional information about
a name used in an expression, which due to how the old
frontend is designed might require additional instantiation
and other performance issues. Rewriting the old frontend
to use a similar representation would have required a com-

plete redesign, since it has no instance tree in the same
way that the new frontend has.

For the new frontend this means that it needs to find the
correct instance node during name lookup, which can be
tricky to do during the instantiation since names can refer
to elements that have not yet been instantiated. Expres-
sions are not needed to build the instance tree though, so
the instantiation is therefore separated into two phases: the
instantiation phase described in the previous section and
the expression instantiation phase described in this sec-
tion.

The instantiation phase builds the instance tree and con-
structs all the nodes, and the expression instantiation phase
instantiates all expressions in that instance tree. This in-
volves looking up the names used in expressions and asso-
ciating them with the correct nodes in the instance tree. In
the case of function calls this also triggers instantiation of
the called functions, which mostly involves instantiating
the function as a normal class.

3.3.3 Typing

The typing phase traverses the instance tree and deter-
mines the type of all components and expressions. Similar
to the instantiation this is again done in two stages: typing
of components and typing of expressions.

The typing of components involves determining the
type of each component in the instance tree. For com-
ponents of basic types, such as Real or Integer, this is
trivial by virtue of them being instances of said types. For
composite types, such as instances of models, blocks or
records, it means typing each child of the instance tree
node and constructing a type from them.

The most complex part of the typing of components is
typing dimensions for array components and classes. This
is partly because dimensions can be expressions that need
to be evaluated, and partly because they can be declared
as : which means that the dimension size must be deduced
from the component’s binding equation.

This can require typing components that have not yet
been typed, and must be done with care to avoid introduc-
ing unnecessary dependencies between dimensions. Hav-
ing dimensions whose size depend on each other could
result in a typing loop that would cause the compiler to
hang or crash, but the new frontend detects such loops and
gives an appropriate error message instead. In many cases
such loops can be avoided by typing as little as possible
when determining the size of a dimension, such as only
typing the first dimension of a when typing a dimension
defined as size(a, 1).

The next stage of the typing phase is typing of expres-
sions, which involves typing binding equations, equations,
and algorithms. This also includes checking that expres-
sions are type compatible, for example checking that bind-
ing equations are type compatible with the components
they belong to. Having a separate stage for typing of ex-
pressions is not strictly necessary in the same way as dur-
ing the instantiation, but it means that expressions can be

A New OpenModelica Compiler High Performance Frontend

694 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157689

typed with the assumption that all components are already
typed and acyclic. The typing of expressions therefore be-
comes less complicated and more optimized than it would
be if all the typing were to be done in a single combined
stage.

Most of the typing of expressions is fairly straightfor-
ward, but the typing of binding equations becomes some-
what non-trivial in the new frontend due to the way array
components are handled. Take for example this model:

model A
Real x;

end A;

model M
A a[3](x = {1, 2, 3});

end M;

The old frontend would instantiate and type each el-
ement of the array component a and the modifier on a

would be split, so the component would thus be in-
stantiated and typed as a[1].x = 1, a[2].x = 2, and
a[3].x = 3 (where [1], [2], and [3] are subscripts).

The new frontend instead treats this as one component,
a[3].x = {1, 2, 3} (where [3] is a dimension), which
is achieved by keeping track of where a modifier comes
from and adding the appropriate dimensions to the com-
ponent’s type when type checking the binding equations.
In this particular case it would thus add the dimension [3]

to the type of x when checking that the binding equa-
tion is type compatible, in other words type checking
one Real[3] == Real[3] relation whereas the old fron-
tend would type check three separate Real == Real rela-
tions. The superior efficiency of this approach in the case
arrays with thousands of elements need to be instantiated
is pretty obvious.

3.3.4 Flattening

The flattening phase of the new frontend traverses the in-
stance tree and flattens the tree into a flat model that con-
sists of a list of variables, a list of equations and a list of
algorithms:

model A
Real x;
Real y;

equation
y = der(x);

end A;

model B
A a;

equation
a.x = time;

end B;

model M
B b;

end M;

⇒

model M
Real b.a.x;
Real b.a.y;

equation
b.a.y = der(b.a.x);
b.a.x = time;

end M;

The flattening involves prefixing component names and
element name references in expressions with the names
of their parents in the instance tree, to make sure all vari-
ables in the flat model have unique names. It also collects

all the connect-equations in the model and inserts the re-
quired equations generated from the connections into the
flat model.

Another task done by the flattening phase is unrolling
for-equations into scalar equations:

for i in 1:3 loop
x[i] = i;

end for;
⇒

x[1] = 1;
x[2] = 2;
x[3] = 3;

This might be considered more appropriately done
by the later scalarization phase, or preferably not done
at all, even though the connection handling requires
for-equations containing connect-equations to be un-
rolled. The current backend additionally requires all for-
equations to be unrolled, so at the moment the flattening
unrolls all for-equations by default, regardless of whether
they contain connect-equations or not. However, it is pos-
sible to disable the loop unrolling (as well as other scalar-
ization features discussed later on in the paper) with the
-d=-nfScalarize debug flag, which allows to experi-
ment with extensions of the backend, code generation, and
runtime phases that can handle arrays directly.

3.3.5 Constant Evaluation

Some parts of the frontend evaluate expressions when
needed, for example when typing dimensions consisting
of arbitrary expressions where the actual size needs to be
known in a model context (unlike in a function context).
Constants that are not used in such places should still be
evaluated though, which is done in the constant evaluation
phase. This phase traverses the flat model and replaces
references to constants with the values bound to those con-
stants:

model M
constant Real x = 1.0;
Real y;

equation
y = x;

end M;

⇒
model M
Real y;

equation
y = 1.0;

end M;

Models can also contain so called structural parame-
ters, which are parameters used in places where they affect
the structure of the model. One example is array dimen-
sions which must as mentioned be known in a model con-
text, but are allowed to be defined by parameters. Once
such a parameter has been evaluated it should no longer
be considered changeable, since changing its value after
the model has been compiled could result in parts of the
model using the old value and other parts the new value.
The earlier parts of the new frontend therefore mark such
parameters as structural, and the constant evaluation phase
makes sure all occurrences in the model are replaced with
the parameter’s value.

3.3.6 Simplification

The simplification phase traverses the flat model and sim-
plifies expressions, equations and algorithms. This in-
cludes doing trivial simplifications such as evaluating
unary and binary operations involving numerical literals,

A New OpenModelica Compiler High Performance Frontend

DOI Proceedings of the 13th International Modelica Conference 695
10.3384/ecp19157689 March 4-6, 2019, Regensburg, Germany

e.g. 1 + 1⇒ 2, but also structural changes such as remov-
ing for-loops with zero-sized iteration ranges.

3.3.7 Scalarization

The scalarization phase expands array variables and equa-
tions into separate scalar variables and equations:

model M
Real x[3];

equation
x = {1, 2, 3};

end M;

⇒

model M
Real x_1;
Real x_2;
Real x_3;

equation
x_1 = 1;
x_2 = 2;
x_3 = 3;

end M;

This is not necessary for the operation of the frontend
itself, but is done because the old frontend does it and the
backend expects it to be done. A long term goal is to im-
prove the handling of arrays in the backend though, par-
tially or completely removing the need for this phase (see
Section 4).

Since the scalarization is a separate phase in the new
frontend it can also easily be disabled, unlike in the
old frontend where the scalarization is an integral part
of the flattening process that is hard to isolate. This
is currently possible by means of the already mentioned
-d=-nfScalarize debug flag.

3.3.8 Function Collection

The flat model contains only the variables, equations and
algorithms of the model. The functions used in the model
are stored in the instance tree nodes corresponding to the
functions’ classes, but the backend expects to get a binary
search tree containing the functions that are used in the
model.

The new frontend therefore has a phase that goes
through the model and collects all functions that are used
in the model into a function tree. Besides explicitly called
functions, this also includes, e.g., record constructors for
all record instances, which might be needed by the back-
end even if they are not explicitly called in the model.

3.3.9 DAE Conversion

The old frontend produces a DAE structure that’s used
as an immediate representation of the flat model, and the
OpenModelica backend expects the model to be given in
this format.

The flattening phase of the new frontend uses its own
representation of a flat model though, since using the old
DAE structure would cause many of the advantages of the
new frontend to be lost (such as name references in ex-
pressions having direct access to the instance tree nodes).

The new frontend therefore contains a final phase that
converts the flat model and the function tree to the DAE
structure expected by the backend. This serves as an inter-
face between the new frontend and the backend, and is rel-
atively straightforward since the DAE structure is mostly
a subset of the data structures used by the new frontend.

4 Compilation of Vectorized Models
for New Digital Applications

Many emerging applications require the individual con-
trol of vast numbers of similar devices that share a com-
mon system infrastructure. Such applications include dis-
tributed renewable power generation and charging of elec-
tric vehicles that share the same power grid. Other appli-
cations arise from autonomously driving cars that share
the same roads. The Internet of Things opens the possibil-
ity to connect such devices to digital twins and to imple-
ment supervisory control applications in the cloud.

Unfortunately today’s Modelica tools typically suffer
from bad performance for the translation of resulting large
models. This is caused by the Modelica DAE represen-
tation defined for a flat model. Even though the Model-
ica syntax supports arrays of model objects to express re-
peated structures, the expansion of arrays during flattening
results in large numbers of scalar variables and equations
that slow down the translation. This is particularly bad
if the computational effort of the used algorithms grows
more than linearly with increasing model size. Moreover,
the resulting executable model code becomes unnecessar-
ily large.

The new frontend offers the feature to convert arrays
of component models to array equations and to keep ar-
rays during flattening. Additionally, the current backend
has been extended prototypically, by exploiting previous
work by (Schuchart et al., 2015) to treat for-equations dur-
ing model translation and by (Franke et al., 2015) to treat
unexpanded arrays and array slices in the generated code.

Consider the following example. It instantiates a large
number of solar plants as array of component models and
connects them to a collector grid.

package Vectorized
import SI = Modelica.SIunits;

connector Terminal
SI.Voltage v;
flow SI.Current i;

end Terminal;

model SolarPlant
input Boolean on "Plant status";
input SI.Power P_solar "Solar power";
parameter Real eta = 0.9 "Efficiency";
Terminal term;

equation
term.v * term.i =
if on then eta * P_solar else 0;

end SolarPlant;

model Collector
parameter Integer n;
parameter SI.Voltage V = 1000;
output SI.Power P_grid;
Terminal terms[n];

equation
for i in 1:n loop
terms[i].v = V;

end for;
0 = P_grid + terms.v * terms.i;

end Collector;

A New OpenModelica Compiler High Performance Frontend

696 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157689

model SolarSystem
parameter Integer n = 1000;
SolarPlant plant[n](
each on = true,
P_solar = 100:100:n*100);
Collector grid(n = n);

equation
connect(plant.term, grid.terms);

end SolarSystem;

end Vectorized;

With a number of n=1000 solar plants, the flat model
would have 6001 variables and 6001 equations. The num-
ber of variables reduces to 7 when preserving arrays. Then
the whole dependency analysis, equation sorting and code
generation only treat 7 equations. This is possible as each
array variable is defined with one array equation, resulting
in a balanced array model.

The current implementation in OpenModelica still con-
siders the dimension parameter n as structural and fixes
its value during model instantiation. This is not needed
though. The actual value of n could be left undefined until
model execution.

The flat array model reads:
class SolarSystem
parameter Integer n = 1000;
Real[1000] plant.term.i;
Real[1000] plant.term.v;
parameter Real[1000] plant.eta = 0.9;
Real[1000] plant.P_solar =

(100:100:100000);
Boolean[1000] plant.on = true;
parameter Integer grid.n = 1000;
parameter Real grid.V = 1000.0;
Real grid.P_grid;
Real[1000] grid.terms.i;
Real[1000] grid.terms.v;

equation
plant.term.v = grid.terms.v;
plant.term.i + grid.terms.i = 0.0;
for $i in 1:1000 loop

plant[$i].term.v * plant[$i].term.i =
if plant[$i].on then

plant[$i].eta * plant[$i].P_solar
else

0.0;
end for;
for i in 1:1000 loop

grid.terms[i].v = grid.V;
end for;
0.0 = grid.P_grid +

grid.terms.v * grid.terms.i;
end SolarSystem;

The array of connectors between plant and grid results
in array equations. The flow equation, as well as some
variable bindings, relate arrays to scalars. This simplifies
the further treatment up to code generation, implicitly as-
suming an "each" qualifier. Note that this only happens
after the check of types and dimensions. It is crucial to
avoid unnecessary expansions of large literal arrays.

Many Modelica expressions cannot be vectorized eas-
ily. For instance the condition of an if-expression must
be a scalar boolean in an array equation as well. This is
why the vectorization of component models converts non-
trivial equations to for-equations. See the equation with
P_solar as an example.

The early prototype implementation of vectorized mod-
els presented here already proved useful in first production
uses (see next section for benchmarks). The model given
in this section can be compiled and simulated without ar-
ray expansion via flags -d=newInst,-nfScalarize
--simCodeTarget=Cpp. Future work needs to focus
on enhanced preservation of arrays during symbolic trans-
formations in the backend. The frontend might expand
arrays selectively, e.g. expand two or three dimensional
arrays in electrical multi-phase models, while preserving
large arrays of component models along with dimension
parameters.

5 Status and Benchmarks
The new frontend is still work in progress at the time of
this writing (January 2019). It is currently able to pro-
cess about 75% of the 7884 models with an experiment(

StopTime) annotation in the set of 55 tested open-source
Modelica libraries that are included in the extended test-
suite of the OpenModelica continuous integration sys-
tem. The development effort so far has been focused
towards achieving full coverage of the Modelica Stan-
dard Library (MSL) 3.2.3, for which the fraction of suc-
cessfully simulating models is currently 92%, includ-
ing non-trivial models such as the 6 d.o.f. robot model
of Modelica.Mechanics.Multibody and models using the
IF97 water model of Modelica.Media.

The updated status of the coverage is available online
(New FrontEnd - Modelica Library Coverage). The de-
velopment of the new frontend can be followed on (New
FrontEnd - Ticket 4138); in particular, the progress of
the coverage of the development version of MSL 3.2.3 is
shown in Fig. 4. The new frontend is currently able to pro-
cess all models except one, though there are still some is-
sues that are revealed later in the code generation process,
either because of incorrectly flattened models, or because
the model is flattened in a different way than the old fron-
tend, which the back-end cannot handle correctly. Note
that the verification indicator is not reliable, due to many
false negatives and to the lack of reference results for all
the models introduced in version 3.2.3.

During the last six months, the number of successfully
simulating MSL models has steadily increased at a rate of
about 8%/month, so it is expected that full coverage for
the MSL will be achieved by the end of Q2 2019 at the
latest; the coverage of the 55 open-source library testsuit
should approach 100% before the end of 2019.

All the benchmarks have been realized on a portable
computer: HP ZBook Studio G3 I7 QuadCore 6820HQ @
2.7Ghz with 16Gb of RAM.

To validate performance and scalability we have bench-
marked the new OpenModelica frontend against the state-
of-the-art commercial tool Dymola 2019 (2018-04-11)
(Dassault Systèmes) on some large models from the Scal-
ableTestSuite library (Casella, 2015).

An example of the Dymola and OpenModelica scripts

A New OpenModelica Compiler High Performance Frontend

DOI Proceedings of the 13th International Modelica Conference 697
10.3384/ecp19157689 March 4-6, 2019, Regensburg, Germany

Figure 4. Modelica Standard Library version 3.2.3 coverage

used are given below. Note that this include parsing of
the Modelica Standard Library, the ScalableTestSuite and
running checkModel on the given model where Model-
Path is the full path to the model in the library.

Dymola script:
openModel("ScalableTestSuite/package.mo");
checkModel("ModelPath");
exit();

OpenModelica script:
loadFile("ScalableTestSuite/package.mo");
getErrorString();
checkModel(ModelPath);
getErrorString();

The benchmarking was performed from command line
using running adaptations of the scripts above. The re-
sults for selected ScalableTestSuite (STS) models and the
Vectorized.SolarSystem from section 4 are given below in
Table 1.

One can see that the new OpenModelica frontend per-
forms very well in comparison to Dymola, in some cases
faster, in some cases slower. The comparision between the
current frontend (CF) and the new frontend (NF) is also
included where possible. From these benchmarks one can
also see that investigation is needed to find out why param-
eter arrays are scaling poorly in the new frontend (models
6, 7, 8). For models 10 and 11 the number in the paren-
theses is for the new frontend not expanding arrays at all
during the flattening. The performance improvement in
this case is extreme.

In Table 2 we compare the current frontend (CF) with
the new frontend (NF) when instantiating and flattening
models from Modelica.Mechanics.MultiBody
and evaluating their graphical annotation. The
OpenModelica compiler API function that is
called to evaluate the graphical annoations is
getComponentAnnotations(). The new frontend
performs 20 to 200 times better than the current Open-
Modelica frontend, allowing to obtain a nearly immediate
response time of the OMEdit GUI, which relies on this
API.

6 Conclusions and Future Work
In this paper, the new high-performance frontend of the
OpenModelica compiler is presented. The frontend has
been completely redesigned, with the main objective of
achieving dramatically improved performance on large
models, as well as of resolving many corner-cases that the
old frontend could not handle without the need of exces-
sive ad-hoc work.

The architecture of the new design is presented in de-
tail, particularly concerning the new approach that avoids
the full expansion and scalarization of components one at
a time, thus allowing significant optimizations when large
numbers of instances of the same class, and/or large ar-
rays, are present in the model. Many of these optimiza-
tion would also require a substantial redesign of the com-
piler backend, code generation, and runtime system. For
the time being the new non-scalarization approach has
been experimented with a prototype implementation in the
backend, which works in some specific cases, for which
very promising results are reported.

Future developments involve first and foremost the fi-
nalization of the new frontend, with the aim of achieving
100% coverage of most open-source Modelica libraries,
particularly the MSL. This goal is planned to be achieved
during the first half of 2019. In the long term, the plan is
to use the new frontend to achieve full support of non-
expanded arrays of equations and models in the entire
compiler toolchain, including also the backend, code gen-
eration, and runtime system.

Another research direction is to improve the compi-
lation speed by using the LLVM framework to perform
function evaluation in the new frontend.

7 Acknowledgements
This work has been supported by Vinnova in the ITEA
OPENCPS and EMPHYSIS projects and in the Vinnova
RTISIM and EMISYS projects. This work was supported
in parts by the German Federal Ministry of Education
and Research (BMBF) in the PARADOM project. Sup-
port from the Swedish Government has also been received
from the ELLIIT project. The OpenModelica develop-
ment is supported by the Open Source Modelica Consor-
tium. Many students, researchers, engineers have con-
tributed to the OpenModelica system. There is not room
here to mention all these people, but we gratefully ac-
knowledge their contributions.

References
Alfred V. Aho, Ravi Sethi, and Jeff D. Ullman. Compilers: Principles,

Techniques and Tools. Addison-Wesley Publishing Company, 1986.

Torsten Blochwitz et al. The Functional Mockup Interface for tool indepen-
dent exchange of simulation models. In Christoph Clauß, editor, Pro-
ceedings of the 8th International Modelica Conference. Linköping Uni-
versity Electronic Press, March 2011. doi:10.3384/ecp11063105.

Willi Braun, Francesco Casella, and Bernhard Bachmann. Solving large-
scale Modelica models: new approaches and experimental results us-

A New OpenModelica Compiler High Performance Frontend

698 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157689

No Model Equations Dym (s) OMC NF/CF (s)
1 Electrical.DSystemAC.SE.DistributionSystemLinear_N_40_M_40 99776 15.53 06.32 / 91.33
2 Electrical.DSystemAC.SE.DistributionSystemLinear_N_80_M_80 397936 40.50 17.76 / 435.32
3 Electrical.DSystemAC.SE.DistributionSystemLinear_N_112_M_112 779312 74.21 32.31 / 1076.54
4 Electrical.DSystemDC.SE.DistributionSystemModelicaActiveLoads_N_80_M_80 129929 18.04 08.33 / 159.28
5 Electrical.TransmissionLine.SE.TransmissionLineModelica_N_1280 26915 09.84 04.45 / 47.77
6 Elementary.ParameterArrays.SE.Table_N_100_M_100 0 06.59 05.09 / 06.21
7 Elementary.ParameterArrays.SE.Table_N_400_M_400 0 10.25 12.19 / 18.03
8 Elementary.ParameterArrays.SE.Table_N_1600_M_100 0 09.77 19.04 / 28.17
9 Power.ConceptualPowerSystem.SE.PowerSystemStepLoad_N_64_M_16 11907 17.29 03.99 / 28.57
10 Vectorized.SolarSystem(n=10000) from section 4 60001 146.30 34.12 / 314.8 (02.95)
11 Vectorized.SolarSystem(n=100000) from section 4 600001 14458.68 2450.57 / 19760.42 (02.95)

Table 1. Flattening performance comparison Dymola vs. OpenModelica (NF vs CF included). Bold numbers in parentheses are
with Scalarization disabled -d=-nfScalarize. Shortened names: SE=ScaledExperiments, DSystem=DistributionSystem.

Model CF (s) NF (s) Factor
World 9.53 0.28 33.9

Joints.FreeMotionScalarInit 28.90 0.14 199.4
Joints.Planar 3.56 0.13 25.6

Joints.UniversalSpherical 6.99 0.22 30.5
Joints.SphericalSpherical 4.64 0.11 39.5

Joints.Universal 2.31 0.12 18.4

Table 2. Flattening performance comparison of the current (old)
vs the new frontend in OpenModelica (OMEdit GUI impact).

ing OpenModelica. In Proc. 12th International Modelica Confer-
ence, pages 557–563, Prague, Czech Republic, May 15–17 2017.
doi:10.3384/ecp17132557.

Francesco Casella. Simulation of large-scale models in Modelica: State of
the art and future perspectives. In Peter Fritzson and Hilding Elmqvist,
editors, Proceedings 11th International Modelica Conference, pages
459–468, Versailles, France, Sep 21–23 2015. The Modelica Associa-
tion. ISBN 978-91-7685-955-1. doi:10.3384/ecp15118459.

Francesco Casella, Alberto Leva, and Andrea Bartolini. Simulation of large
grids in OpenModelica: reflections and perspectives. In Proc. 12th Inter-
national Modelica Conference, pages 227–233, Prague, Czech Republic,
2017. doi:10.3384/ecp17132227.

Dassault Systèmes. Dymola version 2019, 2018. URL http://dymola.
com.

Rüdiger Franke, Marcus Walther, Niklas Worschech, Willi Braun, and Bern-
hard Bachmann. Model-based control with FMI and a C++ runtime for
Modelica. In Proceedings of the 11th International Modelica Confer-
ence. Modelica Association, Paris, France, 2015.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3: A Cyber-Physical Approach. Wiley-IEEE Press, 2 edition,
April 2015. ISBN 978-1-118-85912-4.

Peter Fritzson, Adrian Pop, Adeel Asghar, Bernhard Bachmann, Willi
Braun, Robert Braun, Lena Buffoni, Francesco Casella, Rodrigo Cas-
tro, Alejandro Danós, Rüdiger Franke, Mahder Gebremedhin, Bernt
Lie, Alachew Mengist, Kannan Moudgalya, Lennart Ochel, Arunku-
mar Palanisamy, Wladimir Schamai, Martin Sjölund, Bernhard Thiele,
Waurich Volker, and Per Östlund. The OpenModelica Integrated Mod-
eling, Simulation and Optimization Environment. In Michael Tiller and
Luigi Vanfretti, editors, Proceedings of the 1st American Modelica Con-
ference. Linköping University Electronic Press, October 2018. URL
http://www.ep.liu.se/.

Antonio Froio, Francesco Casella, Fabio Cismondi, Alessandro Del
Nevo, Laura Savoldi, and Roberto Zanino. Dynamic thermal-
hydraulic modelling of the EU DEMO WCLL breeding blanket cool-
ing loops. Fusion Engineering and Design, 124:887–891, 2017.
doi:10.1016/j.fusengdes.2017.01.062.

Görel Hedin and Eva Magnusson. JastAdd: An aspect-oriented compiler
construction system. Sci. Comput. Program., 47(1):37–58, April 2003.
ISSN 0167-6423. doi:10.1016/S0167-6423(02)00109-0. URL http:
//dx.doi.org/10.1016/S0167-6423(02)00109-0.

Paul Hudak. The Haskell School of Expression: Learning Functional Pro-
gramming Through Multimedia. Cambridge University Press, New York,
NY, USA, 2000. ISBN 0-521-64408-9.

Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1997. ISBN 0262631814.

Modelica Association. Modelica: A unified object-oriented language for
physical systems modeling, language specification version 3.4, 2017.
URL http://www.modelica.org/.

New FrontEnd - Modelica Library Coverage. New FrontEnd - Mod-
elica Library Coverage, 2018. URL https://libraries.
openmodelica.org/branches/overview-newinst.html.

New FrontEnd - Ticket 4138. New FrontEnd - Ticket 4138, 2018.
URL https://trac.openmodelica.org/OpenModelica/
ticket/4138.

OSMC. Open Source Modelica Consortium, 2007. URL https://
openmodelica.org/home/consortium.

Adrian Pop and Peter Fritzson. MetaModelica: A unified equation-based
semantical and mathematical modeling language. In 7th Joint Modu-
lar Languages Conference, JMLC 2006 Oxford, UK, September 13-15,
2006 Proceedings, pages 211–229. Springer Berlin Heidelberg, 2006.
doi:10.1007/11860990_14.

Johan Åkesson, Torbjörn Ekman, and Görel Hedin. Implementation
of a Modelica compiler using JastAdd attribute grammars. Sci.
Comput. Program., 75(1-2):21–38, January 2010. ISSN 0167-6423.
doi:10.1016/j.scico.2009.07.003. URL http://dx.doi.org/10.
1016/j.scico.2009.07.003.

Joseph Schuchart, Volker Waurich, Martin Flehmig, Marcus Walther, Wolf-
gang E. Nagel, and Ines Gubsch. Exploiting repeated structures and vec-
torization in Modelica. In Proceedings of 11th International Modelica
Conference. Modelica Association, Paris, France, 2015.

Martin Sjölund, Peter Fritzson, and Adrian Pop. Bootstrapping a Compiler
for an Equation-Based Object-Oriented Language. Modeling, Identifica-
tion and Control, 35(1):1–19, 2014. doi:10.4173/mic.2014.1.1.

	Session 6C: Tools
	A New OpenModelica Compiler High Performance Frontend

