
A Practical Meet-in-the-Middle Attack on SIGABA

George Lasry
The CrypTool Team

george.lasry@cryptool.org

Abstract

The SIGABA is an electromechanical en
cryption device used by the US during WWII
and in the 1950s. Also known as ECM
Mark II, Converter M-134, as well as CSP-
888/889, the SIGABA was considered highly
secure, and was employed for strategic com
munications, such as between Churchill and
Roosevelt. The SIGABA encrypts and de
crypts with a set of five rotors, and im
plements irregular stepping, with two ad
ditional sets of rotors generating a pseudo
random stepping sequence. Its full keyspace,
as used during WWII, was in the order of
295 ·6 . It is believed that the German code
breaking services were not able to make
any inroads into the cryptanalysis of SI GABA
(Mucklow, 2015; Budiansky, 2000; Kel
ley, 2001).

The most efficient attack on SIGABA pub
lished so far is a known-plaintext attack
that requires at least 286·7 steps.1 Although
it is more efficient than an exhaustive search,
it is not practical, even with modem com
puting (Stamp and Chan, 2007; Stamp and
Low, 2007).

In this paper, the author presents a novel
meet-in-the-middle (MITM) known-plaintext
attack. This attack requires 260·2 steps and
less than 100 GB RAM, and it is feasible
with modem technology. It takes advan
tage of a weakness in the design of SI GABA.
With this attack, the author solved a Mys
teryTwister C3 (MCT3) Level III challenge
(Stamp, 2010). The author also presents a
series of new challenges, which will also
appear in MTC3.

1To date, no ciphertext-only attack has been proposed, ex
cept for an attack that requires multiple messages in depth
(Savard and Pekelney, 1999).

This paper is structured as follows: In Section 1,
the SIGABA encryption machine is described, in
cluding a functional description and an analysis of
its keyspace. In Section 2, prior attacks on SIGABA
are surveyed, and a novel MITM known-plaintext
attack is presented, including an analysis of its work
factor, and how it was used to solve MysteryTwister
C3 (MCT3) challenges (Stamp, 2010). In Sec
tion 3 and in the Appendix, new challenges are
presented, as well as the reference code for a SIGABA
simulator used to create those challenges.2

1 The SIGABA Encryption Machine

In this section, a short functional description of
the SIGABA is given, as well as an analysis of its
keyspace size.

1.1 Functional Description of SIGABA

The functional description of SIGABA presented
here focuses on the features essential to the un
derstanding of the new attack presented in Sec
tion 2. A complete description of the machine and
its history may be found in the references (Savard
and Pekelney, 1999; Sullivan, 2002b; Stamp and
Chan, 2007; Mucklow, 2015; Kelley, 2001; Pekel
ney, 1998; Sullivan, 2002a).

The SIGABA encryption and decryption mech
anism consists of three banks of five rotors each,
the cipher bank, the control bank, and the index
bank, as depicted in Figure 1. Each rotor of the
cipher bank has 26 inputs and 26 outputs (similar
in concept to the Enigma rotors, but with different
wirings). The cipher rotors implement encryption
(from left to right), and decryption (from right to
left). The rotors of the cipher bank step according
to an irregular pseudo-random pattern generated
by the index and the control rotor bank.

2This work has been supported by the Swedish Research
Council, grant 2018-06074, DECRYPT - Decryption of his
torical manuscripts.

Proceedings of the 2nd International Conference on Historical Cryptology, pages 41-49

Mons, Belgium, 23-26 June, 2019

Cipher Rotors

Ciphartext

Figure 1: SI GABA - Functional Diagram

The control bank consists of five rotors, each
with 26 inputs and 26 outputs. The cipher rotors
and the control rotors are interchangeable, and are
selected from a set of ten rotors. Furthermore,
those rotors can be installed in two possible ori
entations - forward or reverse (thus increasing the
size of the keyspace by a factor of 210 = 1,024).
Interestingly, the cipher rotors and the control ro
tors move through the alphabet in reverse order
(e.g., from D to C, or from C to B) when installed
in forward orientation, and in alphabetical order
(e.g., from D to E, or from E to F) when installed
in reversed orientation. The leftmost and right
most control rotors are stationary and do not ro
tate. The fast rotor always steps (interestingly, this
rotor is located between the slow and the medium
rotors). If the fast rotor steps from Oto N (while
in forward orientation) or from O to P (while in
reversed orientation), the medium rotor also steps
(Pekelney, 1998; Sullivan, 2002a).3 Similarly, if
the medium rotor steps from Oto N (while in for
ward orientation) or from Oto P (while in reversed
orientation), the slow rotor also steps. At each en
cryption step, the inputs F, G, H, and I of the right
most (stationary) rotor are activated and fed with
electrical current (and the 22 remaining input are
always inactive). The 26 outputs of the leftmost
control rotor enter the index input logic, described
in Figure 2.

The index bank consists of a set of five station
ary rotors, which do not rotate during encryption
or decryption, and they each have 10 inputs and

3(Stamp and Chan, 2007; Savard and Pekelney, 1999) de
scribe different implementations for the stepping mechanism.

42

lnput1 B

Input:$

Figure 2: Index Input Logic

Figure 3: Index Output Logic

10 outputs. Those rotors are not interchangeable
with the cipher and control rotors, and they can
only be installed in a forward orientation. The in
dex input logic, described in Figure 2, maps its 26
inputs into 10 outputs, which enter the leftmost in
dex rotor. The index output logic, described in Fig
ure 3, maps the 10 outputs of the index rightmost
rotor into five stepping control signals, controlling
the stepping of the five cipher rotors. The design
of the control and index rotor banks, in conjunc
tion with the index input logic and the index output
logic, ensures that at least one of the five cipher ro
tors will step, but no more than four cipher rotors
ever step (Stamp and Chan, 2007, p. 203).

Encryption is performed as follows, assuming
that the 15 rotors have been installed. The ma
chine must be set to the encryption mode. The op
erator selects the starting positions of the rotors,

and types the plaintext on the SIGABA keyboard.
The plaintext symbol is applied to the cipher ro
tors from left to right, producing the ciphertext
symbol on a printing device. After encryption of
a symbol, the cipher rotors step according to the
state of the stepping control (see Figure 1). After
the cipher rotors have stepped, some of the control
rotors step, thus generating (via the index rotors) a
new state for the stepping control of the cipher ro
tors. The process is repeated for the next plaintext
symbols.

Decryption works similarly, except that the de
vice must be set to the decryption mode, and the
cipher symbols (typed on the keyboard) are ap
plied to the cipher rotors from right to left, the
resulting plaintext being printed.

1.2 Analysis of the Keyspace

Assuming that there is a set of ten rotors from
which the cipher and control rotors are selected,
there are 10 ! possible selections for those rotors.
Each one of those rotors may be installed in ei
ther a forward or reverse orientation. The size of
the keyspace for the settings of the ten rotors of
the cipher and control banks is therefore 10! · 210 ·

2610 = 278.8.

There are 5 ! possible ordering of the index ro
tors. The size of the keyspace for the settings of
the rotors of the index bank is therefore 5 ! · 105 =
223.5. The combined size of the SI GABA keyspace
is 2 78.8+23.5 = 2 102.3.

However, the size of the keyspace for the in
dex bank is limited by the fact that the five ro
tors implement a (stationary) permutation of the
ten inputs and the ten outputs are mapped by the
index output logic into only five outputs. There
fore, the size of the practical keyspace for the in
dex rotors including the index output logic is only
10!/25 = 113,400 = 216·8, and the combined size
of the practical keys pace of SI GABA is as follows:

278.8+16.8 = 295.6 (1)

For comparison, the size of the keyspace the
German Enigma I was in the order of 277 (Stamp
and Low, 2007, p. 31), and it is 256 for the more
recent DES.

2 Cryptanalysis of SI GABA

In this section, prior attacks on SIGABA are re
viewed, and a novel MITM attack is presented.

43

2.1 Prior Attacks

(Savard and Pekelney, 1999) describe a ciphertext
only attack on SIGABA which requires a series of
10 to 15 messages in depth, that is, encrypted with
the same key.4 First, the plaintexts are recovered
using Kirchoffs superimposition. 5 The alphabets
which represent the effect of the five cipher rotors
are reconstructed, for each position of the cipher
texts/plaintexts. Positions at which only the left
most or the rightmost cipher rotor move are iden
tified, and the wiring of those rotors are recovered,
by comparing the alphabet at such a position with
the alphabet at the following position. The authors
describe how the wiring of the inner cipher rotors
can also be recovered, and they suggest additional
methods to recover the wiring of the control rotors.

In (Lee, 2003), attacks on simplified and weak
ened versions of the SIGABA are presented.

(Stamp and Chan, 2007; Stamp and Low, 2007)
describe a known-plaintext attack in two phases.
It assumes that the wiring of the rotors is known,
while their order, orientation, and starting posi
tions, are unknown. At the first phase, only the
cipher rotors are considered, and all their possible
settings (rotor selection, orientation, starting posi
tions) are evaluated. For each such setting, the first
ciphertext symbol is applied across the five cipher
rotors, and the decrypted symbol is compared to
the known-plaintext symbol. To check the second
symbol, all options for the stepping of the cipher
rotors are tested (there are 30 such options, as at
least one rotor steps, and at most four), and the
cipher rotors step accordingly. If after stepping,
decrypting the second ciphertext symbol produced
the expected known-plaintext symbol, the process
is repeated for the next symbols. Only those ci
pher rotor settings that survive the test for all the
known-plaintext symbols are retained. With 100
letters of known-plaintext, about 234·5 cipher rotor
settings are expected to survive, out of 243 .4 possi
ble cipher rotor settings.

At the second phase, all the surviving cipher ro
tor settings are exhaustively tested against all pos
sible control and index settings. The total work
factor of the attack is 286·7, and it is therefore more

4 An unlikely scenario, given the US Army and Navy's
strict operational security procedures. The method, however,
requires little processing time, unlike the other attacks pre
sented in here.

5The authors do not provide any detail on how the plain
texts can be recovered using superimposition. Furthermore,
the required length for the messages in depth is not specified.

efficient than a simple brute-force attack by a fac
tor of 295-6- 86·7 = 28·9. The authors also propose a
method with a workfactor of 284·5 , but with only a
0.82 probability of success.

2.2 A New Meet-in-the-Middle
Known-Plaintext Attack

This new attack assumes that the wiring of the
rotors is known, but their order, orientation, and
starting positions are unknown. It was inspired by
the attack described in (Stamp and Chan, 2007),
and also consists of two phases. While (Stamp
and Chan, 2007) is essentially an (optimized) ex
haustive search, the new attack is a divide-and
conquer MITM attack. It is significantly more effi
cient than a simple brute-force attack.6 It only re
quires a minimum of 8 known-plaintext symbols.7

The first phase (described in Section 2.3) gener
ates a set of cipher rotor settings and stepping se
quences so that the expected known plaintext is ac
curately reproduced when decrypting the cipher
text. The second phase (described in Section 2.4)
generates feasible cipher stepping sequences, by
testing all possible control and index settings, and
matching the resulting cipher rotor stepping se
quences against those gathered during the first phase.
The whole process - phase 1 and phase 2 - is re
peated for all possible partitions of the ten cipher
and control rotors, into two sets of five rotors.

6MITM attacks are applicable to modem multi-stage en
cryption systems (Diffie and Hellman, 1977). The approach
is illustrated here with a system with two sequential encryp
tion stages, £ 1 and £ 2. For simplicity, we assume each stage
has a separate key, K1 and K2, with N1 and N2 bits, respec
tively. A known-plaintext MITM attack for such a system
could potentially be developed. The attack has two phases.
In the first phase, the plaintext is encrypted with E1 only, for
each value of K1. The resulting encryptions are stored is a
hash table mapping each such partial encryption to the rele
vant K1 . The second phase checks for all possible values of
K2, decrypts the ciphertext using only E2, and checks w~ether
this partial decryption (via E2) matches one of the partial en
cryptions (via £ 1) stored in the hash table. The overall com
plexity of this attack is the maximum of 2N1 and 2N2 , com
pared to 2N1+N2 for a brute-force search. This come~ at the
expense of additional memory for the hash table, which t~e
two phases use to "meet in the middle". Such an attack 1s
also effective against 2-DES (seriated DES with two stages,
each using a 56-bit key), and to achieve a level of security
higher than with DES (or 1-DES), three stages (or 3-DES)
are required.

7Toe attack also works, albeit less efficiently, with less
than 8 known plaintext symbols. It may also utilize more
than 8 symbols, but the author found that this number allows
for a good trade-off between the size of the required memory
and the overall processing time for the attack.

44

2.3 Phase 1 of Meet-in-the-Middle Attack

At the first phase, only the cipher rotors are con
sidered. For each partition of the ten cipher and
control rotors (divided into two sets of five rotors),
the first phase produces a hash table mapping all
cipher rotor stepping sequences, to their correspond
ing cipher rotor settings, that together produce a
decryption matching the 8 known-plaintext letters.
The structure and contents of the hash table is de
scribed later in this section. This is different from
the first phase of (Stamp and Chan, 2007), which
instead generates a simple list of matching cipher
rotor settings, but other than that, the first phase of
the new attack and of (Stamp and Chan, 2007) are
similar.

All orders of the five rotors (allocated for the ci
pher bank in the partition), their orientations, and
starting positions are tested. The first ciphertext
symbol is applied through the five cipher rotors,
and the output is compared to the expected known
plaintext symbol. If they match, all possible step
ping options are tested, and the second symbol
is processed and checked. The next symbols are
(recursively) checked, and if there is a match for
all the known-plaintext symbols, the correspond
ing cipher rotor stepping sequence and the cipher
rotor settings are added to the hash table.

(Maps to) Cipher Rotor Settings
stepping Sequence {Hash Key)

Rotor Selection Starting
1 2 3 4 5 Positions

Figure 4: Meet-in-the-Middle Attack- Hash Table

The structure of the hash table is illustrated in
Figure 4. This example is for a partition in which
rotors 0, 1, 4, 7, and 8 are allocated to the cipher
rotors. The hash key represents the stepping se
quence of the cipher rotors, applied during the de
cryption of the 8 symbols for which there is known
plaintext. Since stepping occurs after decryption,
only the first 7 stepping patterns are relevant, as
the eighth stepping pattern only affects the ninth
symbol. Each stepping pattern consists of 5 Boolean
values, one for each cipher rotor. The hash table
key therefore consists of 7 groups of 5 bits.

The first group represents the stepping of the ci-

pher rotors after decrypting the first symbol. In
the first entry in the hash table illustrated in Fig
ure 4, 01011 indicates that cipher rotors in slots 2
(from the left), 4, and 5 (the rightmost rotor) step
after decrypting the first symbol. Similarly, the
next group, 01000, indicates that only the cipher
rotor in slot 2 (from the left) steps after encrypting
the second symbol.

A hash key (the stepping sequence) maps into
one or more cipher rotor settings.8 Each such set
ting includes the selection and order of the rotors
in the 5 slots of the cipher rotor bank, their ori
entation, and their starting positions. In the first
entry in Figure 4, the order of the cipher rotors is
8, 0, 4, 7, and 1 (installed in cipher bank slots 1
to 5, from left to right). Rotors 8 and 4 (first and
third from the left) are in the reversed orientation
(marked as 8R and 4R, respectively). The start
ing positions of the cipher rotors are H, Y, J, N,
and H, respectively. The same stepping sequence
(the first in Figure 4) also maps to a second ci
pher setting, with 1, 7, 0, 8, and 4 as the order of
the rotors (7 and 8 are in the reversed orientation),
and T, U, A, L, and Mas their starting positions.
This illustrates the fact that the hash table imple
ments a one-to-many mapping, as there might be
several distinct cipher rotor settings which repro
duce the known plaintext, while the rotors step in
an identical manner (as represented by the step
ping sequence which is also the hash key).

Similarly, the second stepping sequence (hash
key) in the hash table (Figure 4), which starts with
01111, maps to only one setting, with 1, 4, 8, 7,
and O as the order of the rotors (1 and 8 are in
reversed orientation), and set at starting positions
K, H, J, N, and M.

Note that the presence of a combination of a
stepping sequence and cipher rotor setting in the
hash table, only indicates that under that same com
bination, the 8 symbols of the ciphertext can be
decrypted to match the expected known plaintext.
It does not indicate that such a stepping sequence
is feasible and can be produced by the control and
index rotor banks. Therefore, the need for a sec
ond phase, in order to generate all feasible cipher
stepping sequences, and check whether they ap
pear in the hash table created by the first phase.

8This is different from most MITM attacks, where the
shared memory structure maps partial encryption or partial
decryption results to partial keys. Instead, in this attack on
SIGABA, the hash table maps stepping sequences of the ci
pher rotors to partial keys (the cipher rotor settings).

45

This second phase is described in Section 2.4.

2.4 Phase 2 of Meet-in-the-Middle Attack

The second phase looks at all possible control and
index settings, generates their resulting cipher ro
tor stepping sequences, and checks whether those
stepping sequences exist in the hash table. If such
a stepping sequence exists, then the combination
of the control and index settings, together with the
cipher setting associated with the stepping sequence,
constitutes a candidate key. When applying such a
candidate key to decrypt the 8 ciphertext symbols,
the decryption is guaranteed to match the expected
known plaintext.

Still, this is only a candidate key, as the fact that
it properly decrypts the given 8 ciphertext sym
bol does not mean it will necessarily properly de
crypt the rest of the message. To validate a candi
date key, there are two options. Either more than
8 plaintext symbols are known, and the candidate
key can be validated by checking whether it prop
erly reproduces the remaining known-plaintext sym
bols. Alternatively a quality measure such as the
Index of Coincidence can be applied to the de
cryption of the full message, together with a min
imal threshold. Both methods may be combined,
if the known plaintext is not long enough to safely
rule out wrong candidate keys.9 • Both validation
methods also impact the workfactor. The choice of
processing 8 letters of known-plaintext is a trade
off between the complexity of phase 1 (the longer
the plaintext, the more steps in phase 1), the stor
age requirements, and the need to validate phase 2
matches (the longer the known-plaintext, the lower
the probability for phase 2 false positives and the
need for validation).

2.5 Workfactor Analysis

Phase 1 and phase 2 of the attack are applied re
peatedly, on each partition of 10 rotors (those with
26 input and outputs) into a set of five cipher rotors
and another set of five control rotors. The number
of such partitions is equal to the number of ways
to select 5 unordered rotors from a set of 10 rotors,
that is, 10!/(5! -5!) = 252 = 27·9 .

Workfactor Analysis for Phase 1

For each partition, the number of possible cipher
rotor settings is 5 ! · 25 · 265 = 235.4. When eval
uating a certain cipher setting, all options for the

9Based on experiments, 12 to 22 letters of known plaintext
are necessary to rule out all 'false-positive' candidate keys.

stepping of the rotors are checked for each known
plaintext-ciphertext pair (the stepping after the 8th
symbol is ignored). Since between one to four ci
pher rotors step after decryption, there are only
25 - 2 = 30 possible stepping options, out of the
theoretically possible 25 = 32 stepping patterns of
the 5 rotors (patterns 00000 - none of the rotors
step, and 11111 - all rotors step, are not feasi
ble). For each symbol tested, the probability or
ruling out such a stepping option is (26 - 1) /26.
So on average, 30 · (1/26) = 1.154 option for step
ping of the cipher rotors survive after each de
cryption step, out of 30. The total number of op
erations for each cipher rotor setting is therefore
7
I: 1.154i = 13.9 = 23·8 . The total workfactor for

i=O
phase 1 for a single partition is 235-4+3.s = 239.2,
and 239-2+7.9 = 247·1 for all partitions.

Workfactor Analysis for Phase 2

For a given partition, the number of possible con
trol rotor settings is 5 ! · 25 · 265 = 235.4, and the
number of feasible options for the index rotors is
10!/232 = 113,400 = 216·8• Therefore, the work
factor for phase 2 is 235.4+16·8 = 252·2 for a single
partition, and 252-2+7.9 = 260·2 for all partitions.

Overall Workfactor

The workfactor for phase 2 is the dominant one,
and therefore, the overall workfactor for the attack
is 260·2. This attack is more efficient than a brute
force attack by a factor of 295·6- 60·2 = 235.4, and it
is feasible with modem technology. For compari
son, a brute-force attack on a 56-bit DES key was
successfully carried out already in 1998 (Gilmore,
1998).

Storage Requirements

Since the attack is a MITM attack, we still need
to address the size of the hash table, which is gen
erated in phase 1, separately for each partition of
the cipher and control rotors. Based on simula
tions, the ratio between the number of stepping se
quences generated by phase 1 and the number of

for their orientation, and 5 · 5 bits for their start
ing positions, with a total of 7 + 5 + 5 · 5 = 37 bits.
Since the vast majority of the entries in the hash ta
ble map to only one cipher rotor setting, the total
size for an entry is about 35 + 37 = 72 bits. 10 Im
plementing and storing this information in a prac
tical hash table in RAM requires some additional
overhead, and based on measurements using Java
10 Hashmap library, the overall amount of space
required for each entry is approximately twice the
amount of space for just the data of the entry, that
is, 2 · 72 = 144 bits or about 18 bytes. 11 Therefore,
the memory size required for the per-partition hash
table can be estimated to be 232·1. 18 = 4.6 -109 .
18 = 80 GB.

A possible optimization to reduce the size of
the hash table consists of checking for additional
matching known-plaintext-ciphertext symbols, if
more than 8 plaintext symbols are known. For ex
ample, by checking an additional 7 symbols (to
tal of 8 + 7 = 15), about half of the stepping se
quences may be ruled out. When checking the
additional symbols (following the initial 8 sym
bols), we do not extend the size of the stepping
sequence stored as the key in the hash table, and
we still keep only the first 7 stepping patterns. We
only check whether there is at least one possible
continuation of this stepping sequence, following
the 8 initial decryption steps. However, this op
timization would also incur additional processing
at phase 1, which would probably not affect the
overall workfactor, as the workfactor of phase 2 is
overwhelmingly dominant.

The results in this section are based on sim
ulations performed on 200 hundreds of random
keys and plaintexts. Further analysis is required
to determine the optimal parameters (e.g. trade
offbetween processing time and storage space, de
rived from the length of the known plaintext pro
cessed), as well as more precise workfactor and
storage analyses, for a practical attack on the full
keys pace.

2.6 Solving the MysteryTwister C3 SIGABA
possible cipher rotor setti~gs is on average 0.107. Level 111 Challen e
There are therefore approximately 5 ! · 25. 265. 0.107 = g
232.1 sequences generated for each partition of the In (Stamp, 2010), a known-plaintext SIGABA chal-

ten rotors.
To represent a stepping sequence in the hash ta

ble (see Table 4), 7 · 5 = 35 bits are required. To
represent the cipher rotor setting, 7 bits are re
quired for the order (5 ! = 120 s 27 options), 5 bits

46

lenge is given. Due to the particular method the
challenge was created, the effective size ofkeyspace
is reduced, making the attack described above prac-

10Based on simulations.
11 A more (or less) efficient implementation of a hash table

may require different amounts of overhead.

tical on a consumer PC. With a probability of 31 /32,
it may be assumed that the starting position of four
out of the five cipher rotors is A, and the same ap
plies to the control rotors. If we assume this is
indeed the case, the size of the keyspace of the
cipher rotors and the control rotors are each both
reduced by a factor of 264 = 218·8. Under the same
assumption, the workfactor of phase 1 for this chal
lenge is therefore 247·1- 18·8 = 228·3, and for phase
2, the workfactor is 260-2- 18·8 = 241.3.

It took a few days on a 10-core Intel Core i7
6950X 3.0 GHz PC to complete the attack and
solve the challenge. The assumption stated above
was found to be true. 12

3 New Challenges

A series of new SIGABA known-plaintext chal
lenges is presented in Table 1 (see the Appendix),
with various levels of difficulty. 13 For most chal
lenges, the size of the keyspace is limited by set
ting several of the cipher and control rotors to a
fixed position A. Challenge #2 is against a keyspace
of a size similar to the keyspace for the challenge
in (Stamp, 2010). The last challenge (#6) is against
the full keyspace of SIGABA. Java source code,
used to generate the challenges, is listed in the Ap
pendix. It is compatible with the source code given
in (Pekelney, 1998), and has been tested against
another simulator (Sullivan, 2002a).14

4 Conclusion

The functional separation between the cipher ro
tor bank, and the control and index rotor banks, is
a significant weakness, and it allows for a practi
cal MITM attack. This attack is not feasible on
systems like the Siemens and Halske T52d, the
Russian Fialka, and the Hagelin CX-52, in which
rotors have two functions - encryption/decryption,

12jerva and Integral had previously found the solution to
the challenge. jerva used methods described in (Stamp and
Chan, 2007). Integral's methods are unknown.

13 All the plaintexts were extracted from Shakespeare writ
ings. Each plaintext consists of the concatenation of two seg
ments, extracted from different places. The first segment,
with 100 letters, is given as a crib. The letter Z is used to
represent a space.

14Toe SIGABA simulator source code given in (Stamp,
2010) and used to generate previous MysteryTwister C3 chal
lenges has several incompatibility issues. The first one, de
scribed in the forum discussion, has to do with several ro
tors being unintentionally reset to position A. Another issue
is with the stepping logic for the medium and slow rotors. In
addition, the mappings for rotors in reversed orientation are
incorrect.

47

and controlling the stepping of other rotors. 15 Still,
the attack on SIGABA proposed here would not
have been feasible given WWII technology.

References

Stephen Budiansky. 2000. Battle of wits: the complete
story of codebreaking in World War II. Simon and
Schuster.

Whitfield Diffie and Martin E Hellman. 1977. Ex
haustive cryptanalysis of the NBS data encryption
standard. Computer, 10(6):74-84.

John Gilmore. 1998. Cracking DES: Secrets of En
cryption Research, Wiretap Politics & Chip Design.
OReilly.

Stephen J. Kelley. 2001. Big Machines: Cipher Ma
chines of World War II.

Michael Lee. 2003. Cryptanalysis of the SIGABA,
Master's Thesis. University of California, Santa
Barbara.

Timothy Jones Mucklow. 2015. The SIGABA/ECM
II Cipher Machine: "a Beautiful Idea". National
Security Agency, Center for Cryptologic History.

Richard S. Pekelney. 1998. ECMApp - Emulation
of ECM Mark II. https: //maritime. org/
tech/ ecmapp. txt, [Accessed: January, 18th,
2019].

John J. G. Savard and Richard S. Pekelney. 1999.
The ECM Mark II: Design, History, and Cryptology.
Cryptologia, 23(3):211-228.

Mark Stamp and Wing On Chan. 2007. SIGABA:
Cryptanalysis of the Full Keyspace. Cryptologia,
31(3):201-222.

Mark Stamp and Richard M. Low. 2007. Applied
Cryptanalysis: Breaking Ciphers in the Real World.
John Wiley & Sons.

Mark Stamp. 2010. MysteryTwister C3
(MTC3), SIGABA Part 2 (Level III). https:
//www.mysterytwisterc3.org/en/
challenges/level-iii/sigaba-part-2,
[Accessed: December, 16th, 2018].

Geoff Sullivan. 2002a. CSG Sigaba (ECM
Mark II) Simulator for Windows. http :
//cryptocellar.org/simula/sigaba/
index. html, [Accessed: January, 18th, 2019].

Geoff Sullivan. 2002b. The ECM Mark II: some
observations on the rotor stepping. Cryptologia,
26(2):97-100.

15 A MITM attack is also not feasible against Enigma. Al
though there are multiple components involved, there is no
feasible 'meet-in-the-middle point' as the encryption path tra
verses the plugboard and the rotors back and forth via the
reflector.

5 Appendix - Source Code and
Challenges

Listing 1: SI GABA Simulator Source Code
package simul ato r ;

class Sigaba {
private Rotor cipherBank [] = new Rotor [5];
private R o tor contro1Bank[] = new Rotor[5];
private In dexRotor indexBank[] = new IndexRotor[S] ;
Siga ba(String cph, String ctl , String idx,

}

String cphP , Strin g c !IP , Siring idxP) {
for (in! i = 0; i < 5 ; i ++) {

ci p herBank [i] =
new Rotor (cph.ch a rAt (i • 2) - ' O' ,

cph.charA t (i • 2 + 1) ' R' ,
cphP . charAt(i) - 'A') ;

c ontro1Bank [i] =
new Rotor(ctl .charA t (i * 2) - 'O' ,

c!l . c harA t (i • 2 + 1) == 'R' .
ctlP.charA t(i) - 'A');

indexBank [i] =
new lndexRotor (idx . c h ar At (i) - 'O' ,

idx P . ch arAt (i) - 'O');

Str i ng eo c r y ptDecr ypt (boolean d ecr ypt , Str in g i n) {
String outStr in g = "" ;
for (char c : in. toCharArray ()) {

o u t S t ring +=
(char)(ciphcrPa th (d c c rypt , c - 'A') + ' A ') ;

cipherBankUpdate ();
c o otro!BankUpdate () ;

}
return o u tString;

}
private void controlB ank Upd a te () {

if (contro1Ban k [2] . p os == (in l) 'O' - 'A') {
/ / medium rotor moves
if (contro1Baok[3].pos == (int) 'O' - ' A') {

// slow rotor moves
c ontrolB auk [1]. advance() ;

}

}
con t rolBank [3]. advance () ;

}
// fas l ro i o r always moves
co n tro1 B a nk [2] . a d vance() ;

priv ate S t a ti C fi nal in t INDEX_IN[]
{ 9 , 1, 2. 3. 3. 4, 4,
6, 6 , 7 . 7, 7. 7, 7 ,

// r oto r s t ep pin g magnet

4,
8 ,

private s tatic final int JNDEX_QUT [J =
{I , 5 , 5, 4, 4, 3 , 3 , 2, 2 , I};

privale void cipherBankUpdate () {
boolean move[] = new boolean [5];
for (int i = (int) 'F' - 'A ' ;

i <= (in t) ' I ' - 'A ' ;
i++) {

5. 5, 5 . 6 ,
8 . 8 . 8 . 8.

6 .
8};

iot in d exln = INDEX _!N[co n tro!P ath (i)];
move [INDEX_OUT [i n dex P a th (ind exl o)] - 1] true ;

}
for (inl i = O; i < 5 ; i ++) {

if (move[i]) cipher B a nk [i]. advance ();

}
private int ci pherPath(boolea n decrypt , int c) {

if (d ec ryp t) {

}

for (int r = 4 ; r >= O; r--)
c = cip her Bank[r] . r ig ht T o L eft (c) ;

els e {
for (int r = O; r <= 4; r ++)

c = c i ph crB a nk [r] . lcftToRi gh t (c) ;

return (c) ;

priv a te int c o ntrolPath (i nt c) {
for (int r = 4; r >= O; r--)

c = contro!Baok [r] . r ightT oLe f t (c) ;
return (c) ;

private int i n d cxPath (in t c) {
for (int r = O; r <= 4 ; r ++)

c = inde xBank [r] . i ndex Path(c) ;
r e turn (c) ;

48

static class Rotor {

}

p rivate s tatic final S t ring [] WIRINGS
"YCIILQSUGBDIXNZKFRPVITA WFOM" ,
"INPXBWEffiUYSAOCHVlDMQKZJFR" ,
"WNDRIOZPTAXHFJYQBMSVEKUCGL" ,
'"IZ.GHOBKRVUXLQDMPNFWCIYElAS" ,
"YWl"AHl{Q.rvu:BillNGll!PlMSD~OK" ,
"QSlRBTEKOGAICFWYVMHJNXZUDP" ,
"CHJDQIGNBSAKVIUOXFWLEPRMZY" ,
"CDFAJXTIMNBEQHSUGRYLWZKVPO" .
"XHffiSZDNRBCXiKQIJL1VMUOYAPW" ,
"EZTQXMOGYIC~FRIUPVNADLHWBK" } ;

// Index f or left t o r i gh t.
priv a te s tatic final in t TO..R.IGHT = O;
// Index for ri g hl l o l ef t .
pri va t e static final i n t TO..LEFT = 1 ;
p r iv a t e in! wir i ng [][) = new in([2][26];
int pos ;
p r i va t e boolean r e ver s e d;
R otor(i n t wi r ing lnd e x , bo olean r eve r sed , in t p os) {

for (iot i = O; i < 26 ; i ++) {

}

}

wiring [TO.RIGHT][i] =
WIRINGS[wiringlnde x]. char At (i) - 'A' ;

wiring [TO_LEFf] [w i r ing [TO.RIGHT] [i]] = i;

th is . reversed = re versed;
th i s . pos = pos ;

void a dv a nce() {
i f (rever sed)

p os = (po s + 1) % 26 ;
} el se {

p os = (pas - + 2 6) % 2 6 ;

int l eftToRight(int in) {
if (!reversed) {

r eturn
(wirin g [TO.RIGHT] [(i n+pos) %26]- pos +26) %26;

relurn
(pos -wiring [TO_LEFf] [(pos-in +26)%26]+26) %26;

int ri gh t ToLe ft(int in) {
if (!revers ed) {

r e t urn
(wiring [TO_LEFf] [(i n +p os) %26]-pos +26) %26;

re iurn
(pos - wir ing [TO.RIGHT] [(pos- in +26) %26)+26)%26;

s ta t i c c l a s s IndexR o tor {

}

priv a t e s tati c fin a l in t WIRINGS [][] = {
{7 , 5 , 9 , I , 4, 8 , 2, 6 , 3, O} ,
{3 , 8, I , 0, 5, 9, 2 , 7, 6 , 4} ,
{4, 0 , 8, 6 , I , 5 , 3, 2 , 9 , 7} ,
{3 , 9, 8 , 0 , 5, 2 , 6 , I , 7, 4} ,
{ 6 , 4, 9 , 7, I , 3, 5 , 2, 8, O}} ;

priv a t e int wirin g [l = new int f l Ol ;
pri va te int p os ;
Ind e xR otor (int wiringlnd e x . int pos) {

Sy stem . arraycop y (WIRINGS [wir ingl nd ex) . 0 .
wiring . 0 , 10) ;

t his . pos = pos;

int i ndexPath (i nt in) {
r eturn (wiring [(in + p os) % 10] - po s + 10) % 10 ;

public s ta tic void m ain(Str i n g [] a r gs) {
Si gaba siga b a =
new Si ga b a (" ORIN2N3N4R" , "5N6N7R8N9N" ,

" 01234 " , "AllO)E" , " FGHIJ" , "01 234 ");
Stri n g out = s i ga b a . e ncry p t lJecr y p t (fal.si:: ,

"AAAAAAAAAAAAAAA") ;
Systcm .out . p rint f (

"%s (expe c ting JllO\UillRWOQKRXHKMVD) \ n" , o ut);
s i g a b a =

new Sigab a ("ORIN2N3N4R" , "5N6N7R8N9N" ,
"01234" , "ABCDE" , "FGHIJ" , "01234");

S t r i n g i n = s i gaba. encry p t Decr y p t (true , o ut) ;
Systi::m. out . prin tf (

"%s (exp e cting AAAAAAAAAAAAAAA)\n" , in);

Ciphertext First 100 Plaintext Letters Hint
#1 GSZQEMAGFULNFZHHRVUTCUEXU AHZFOULZSHREWDZNEWSZBESHR All cipher and control

FBMPDGOROJRPMAUDOZMJWJCVH EWZTHYZVERYZHEARTZIZDIDZN rotors are at position A.
YCBZDELOWKVLYJLSZBQJXWXLR OTZTHINKZTOZBEZSOZSADZTON
WOIMBVUTBAVRHPPPYQDTIURLV IGHTZASZTHISZHATHZMADEZME
IQGIZSEVGXOYCMGESFOXDLPFT
UQQCRDSRNFDTBDDULFJKQGXZB
XKKIMSBSIUZSZNOOLCFRRVTOD
XFQRRXLDEMSLORKXUCGDKCZKY
ULDORUGEGDLTTROBUIVWJTBVH
YWOKANYJCGQUYGPHSMWJRILZP
SQJOXKKMEGMWQKXWVKF

#2 ZMJHMLJTJSSHZBBMYXJRVZCUS WOULDSTZTHOUZNOTZBEZGLADZ The last 4 cipher rotors
PMETNBPZQCAHGYJDHJNQNMTHY TOZHAVEZTHEZNIGGARDLYZRAS and the last 4 control
EJAOOQYFSURONLTOGQVKOMABX CALLYZSHEEPBITERZCOMEZBYZ rotors are at position A.
QXGKRAVBZYWBRWYWGLBYFZNNA SOMEZNOTABLEZSHAMEZFABIAN
XIVJVOJYYBQGTWJIIZESYBRAN
XEWYDRMYAINJWWDFWBVCTHRGL
ZCTNHWWBRYSJSZSYMSSLUXBLZ
STDBARVGCSMTJOWIRFXYIBZCF
CCYRUXMUCISNUIFLCOJYZQTBY
DWVFJDHZBJNSAPYAUYWQGFPYO
ZJYWPCWVRSVCQTPHTFPGHCJAM
CFZRHYNFXJVWWNNN

#3 HYYQUSBFHVDVKSLKSGUQIVZAR TISZWONDERFULZWHATZMAYZBE The last 3 cipher rotors
QKCQZBLLGCTCLQHZNBEQVUOJH ZWROUGHTZOUTZOFZTHEIRZDIS and the last 3 control
BROKUKRYXWPGSPDJSWLLTDASB CONTENTZNOWZTHATZTHEIRZSO rotors are at position A.
MTTPRPFHMSXPLBDENAYJWAQZD ULSZAREZTOPFULZOFZOFFENCE
JDXGBJCWXNARABTTSEZBJDYHT
NEIQCQRTFUAZDTTVBNHJGWQHF
UHAPPBPYJAIXGELTILPULVSNC
BJJIGFJNYDURTIVWYHTNKFSLS
ALTHLBHYQBYXUK

#4 CEXZZGZOYLDYPAGJQTFJSEYZP IZWILLZBESPEAKZOURZDIETZW The last 2 cipher rotors
ORHMSTYLQVSJARJLCDBYXFPKB HILESZYOUZBEGUILEZTHEZTIM and the last 2 control
NREAEYVOPBQKYFYETXOUQNMAT EZANDZFEEDZYOURZKNOWLEDGE rotors are at position A.
CBWIIFKJWZJFWZHMJYQALVNXV ZWITHZVIEWINGZOFZTHEZTOWN
UDUVEJGJNBWZRCVMIHDHLPOSD
LSBPTFNEGWIAIRZZPIPPVEBWV
VBGLNCGBKWFUUCVGTTGKGEHJQ
XGEHVPLDDLALNWVNDOXTPPWCQ
HNAWFTXVOWIZFVRWXBIIJDFAU
TMCNWDHLSCHNOBQRURVLCXLVB
YXDXKMPYIWPYOXPFXBNESBUCR
WZECWXOUDTVVNRGGHPTE

#5 JJJWJZMPUKYDGRHSPIXTYPAPA HOWZMIGHTZWEZSEEZFALSTAFF The last cipher rotor
IVGFOTXMFWRZLBRXQPNRYLCPF ZBESTOWZHIMSELFZTONIGHTZI and the last control ro-
WNMZFHFSMVIEEDAHWZOMBIVPA NZHISZTRUEZCOLOURSZANDZNO tor are at position A.
RTAOWYOWRFACGAITUAFDFCTEV TZOURSELVESZBEZSEENZPOINS
YZAQIQXVHZFCIBSVSQJAMYPTS
YNWXBFBKDKVDOXZQQEVVGAAWI
LRFYRGIPJCKVVPMQAEIAIMOPY
XCSJFDAUHYZYVQJXGGZTMCAGW
BEICRYROYCPNGEZQFVVQTSZBP
SZYWCONNWMUBCNYQX

#6 FWEYNOPSTLFMWXQITVTMRVHOL TOZHAVEZNOZSCREENZBETWEEN No hint given.
YDEIROBXPPVZVBLCSJPSYIXIY ZTHISZPARTZHEZPLAYDZANDZH
IJHJMCHAWSWAQBHSUVASAGYLR IMZHEZPLAYDZITZFORZHEZNEE
DJREKIFQUXBEJZUFVIJBJMWVT DSZWILLZBEZABSOLUTEZMILAN
VSPHOQTRAECHEEJLBRCDTGXRP
OVSJKDYYWNWIUTPXKVXSHDCBC
WVYDGBVJLMCPZJROXKDPTDTMC
PHXGCTHPDLVHYQHHFRTTKSOTE
IWAXEDMUOVBLSLZUWFTYGNCQY
YPHZRNJRBXYVVSNPYWAEMXOIV
UQWAXAECBOODIPLWGCVQJVDCX
GKCBXHCUK

Table 1: New SIGABA Challenges

49

