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Abstract 

The SIGABA is an electromechanical en
cryption device used by the US during WWII 
and in the 1950s. Also known as ECM 
Mark II, Converter M-134, as well as CSP-
888/889, the SIGABA was considered highly 
secure, and was employed for strategic com
munications, such as between Churchill and 
Roosevelt. The SIGABA encrypts and de
crypts with a set of five rotors, and im
plements irregular stepping, with two ad
ditional sets of rotors generating a pseudo
random stepping sequence. Its full keyspace, 
as used during WWII, was in the order of 
295 ·6 . It is believed that the German code
breaking services were not able to make 
any inroads into the cryptanalysis of SI GABA 
(Mucklow, 2015; Budiansky, 2000; Kel
ley, 2001). 

The most efficient attack on SIGABA pub
lished so far is a known-plaintext attack 
that requires at least 286·7 steps.1 Although 
it is more efficient than an exhaustive search, 
it is not practical, even with modem com
puting (Stamp and Chan, 2007; Stamp and 
Low, 2007). 

In this paper, the author presents a novel 
meet-in-the-middle (MITM) known-plaintext 
attack. This attack requires 260·2 steps and 
less than 100 GB RAM, and it is feasible 
with modem technology. It takes advan
tage of a weakness in the design of SI GABA. 
With this attack, the author solved a Mys
teryTwister C3 (MCT3) Level III challenge 
(Stamp, 2010). The author also presents a 
series of new challenges, which will also 
appear in MTC3. 

1To date, no ciphertext-only attack has been proposed, ex
cept for an attack that requires multiple messages in depth 
(Savard and Pekelney, 1999). 

This paper is structured as follows: In Section 1, 
the SIGABA encryption machine is described, in
cluding a functional description and an analysis of 
its keyspace. In Section 2, prior attacks on SIGABA 
are surveyed, and a novel MITM known-plaintext 
attack is presented, including an analysis of its work
factor, and how it was used to solve MysteryTwister 
C3 (MCT3) challenges (Stamp, 2010). In Sec
tion 3 and in the Appendix, new challenges are 
presented, as well as the reference code for a SIGABA 
simulator used to create those challenges.2 

1 The SIGABA Encryption Machine 

In this section, a short functional description of 
the SIGABA is given, as well as an analysis of its 
keyspace size. 

1.1 Functional Description of SIGABA 

The functional description of SIGABA presented 
here focuses on the features essential to the un
derstanding of the new attack presented in Sec
tion 2. A complete description of the machine and 
its history may be found in the references (Savard 
and Pekelney, 1999; Sullivan, 2002b; Stamp and 
Chan, 2007; Mucklow, 2015; Kelley, 2001; Pekel
ney, 1998; Sullivan, 2002a). 

The SIGABA encryption and decryption mech
anism consists of three banks of five rotors each, 
the cipher bank, the control bank, and the index 
bank, as depicted in Figure 1. Each rotor of the 
cipher bank has 26 inputs and 26 outputs (similar 
in concept to the Enigma rotors, but with different 
wirings). The cipher rotors implement encryption 
(from left to right), and decryption (from right to 
left). The rotors of the cipher bank step according 
to an irregular pseudo-random pattern generated 
by the index and the control rotor bank. 

2This work has been supported by the Swedish Research 
Council, grant 2018-06074, DECRYPT - Decryption of his
torical manuscripts. 
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Cipher Rotors 

Ciphartext 

Figure 1: SI GABA - Functional Diagram 

The control bank consists of five rotors, each 
with 26 inputs and 26 outputs. The cipher rotors 
and the control rotors are interchangeable, and are 
selected from a set of ten rotors. Furthermore, 
those rotors can be installed in two possible ori
entations - forward or reverse (thus increasing the 
size of the keyspace by a factor of 210 = 1,024). 
Interestingly, the cipher rotors and the control ro
tors move through the alphabet in reverse order 
(e.g., from D to C, or from C to B) when installed 
in forward orientation, and in alphabetical order 
(e.g., from D to E, or from E to F) when installed 
in reversed orientation. The leftmost and right
most control rotors are stationary and do not ro
tate. The fast rotor always steps (interestingly, this 
rotor is located between the slow and the medium 
rotors). If the fast rotor steps from Oto N (while 
in forward orientation) or from O to P (while in 
reversed orientation), the medium rotor also steps 
(Pekelney, 1998; Sullivan, 2002a).3 Similarly, if 
the medium rotor steps from Oto N (while in for
ward orientation) or from Oto P (while in reversed 
orientation), the slow rotor also steps. At each en
cryption step, the inputs F, G, H, and I of the right
most (stationary) rotor are activated and fed with 
electrical current (and the 22 remaining input are 
always inactive). The 26 outputs of the leftmost 
control rotor enter the index input logic, described 
in Figure 2. 

The index bank consists of a set of five station
ary rotors, which do not rotate during encryption 
or decryption, and they each have 10 inputs and 

3(Stamp and Chan, 2007; Savard and Pekelney, 1999) de
scribe different implementations for the stepping mechanism. 
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Figure 2: Index Input Logic 

Figure 3: Index Output Logic 

10 outputs. Those rotors are not interchangeable 
with the cipher and control rotors, and they can 
only be installed in a forward orientation. The in
dex input logic, described in Figure 2, maps its 26 
inputs into 10 outputs, which enter the leftmost in
dex rotor. The index output logic, described in Fig
ure 3, maps the 10 outputs of the index rightmost 
rotor into five stepping control signals, controlling 
the stepping of the five cipher rotors. The design 
of the control and index rotor banks, in conjunc
tion with the index input logic and the index output 
logic, ensures that at least one of the five cipher ro
tors will step, but no more than four cipher rotors 
ever step (Stamp and Chan, 2007, p. 203). 

Encryption is performed as follows, assuming 
that the 15 rotors have been installed. The ma
chine must be set to the encryption mode. The op
erator selects the starting positions of the rotors, 



and types the plaintext on the SIGABA keyboard. 
The plaintext symbol is applied to the cipher ro
tors from left to right, producing the ciphertext 
symbol on a printing device. After encryption of 
a symbol, the cipher rotors step according to the 
state of the stepping control (see Figure 1). After 
the cipher rotors have stepped, some of the control 
rotors step, thus generating (via the index rotors) a 
new state for the stepping control of the cipher ro
tors. The process is repeated for the next plaintext 
symbols. 

Decryption works similarly, except that the de
vice must be set to the decryption mode, and the 
cipher symbols (typed on the keyboard) are ap
plied to the cipher rotors from right to left, the 
resulting plaintext being printed. 

1.2 Analysis of the Keyspace 

Assuming that there is a set of ten rotors from 
which the cipher and control rotors are selected, 
there are 10 ! possible selections for those rotors. 
Each one of those rotors may be installed in ei
ther a forward or reverse orientation. The size of 
the keyspace for the settings of the ten rotors of 
the cipher and control banks is therefore 10! · 210 · 

2610 = 278.8. 

There are 5 ! possible ordering of the index ro
tors. The size of the keyspace for the settings of 
the rotors of the index bank is therefore 5 ! · 105 = 
223.5. The combined size of the SI GABA keyspace 
is 2 78.8+23.5 = 2 102.3. 

However, the size of the keyspace for the in
dex bank is limited by the fact that the five ro
tors implement a (stationary) permutation of the 
ten inputs and the ten outputs are mapped by the 
index output logic into only five outputs. There
fore, the size of the practical keyspace for the in
dex rotors including the index output logic is only 
10!/25 = 113,400 = 216·8, and the combined size 
of the practical keys pace of SI GABA is as follows: 

278.8+16.8 = 295.6 (1) 

For comparison, the size of the keyspace the 
German Enigma I was in the order of 277 (Stamp 
and Low, 2007, p. 31), and it is 256 for the more 
recent DES. 

2 Cryptanalysis of SI GABA 

In this section, prior attacks on SIGABA are re
viewed, and a novel MITM attack is presented. 
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2.1 Prior Attacks 

(Savard and Pekelney, 1999) describe a ciphertext
only attack on SIGABA which requires a series of 
10 to 15 messages in depth, that is, encrypted with 
the same key.4 First, the plaintexts are recovered 
using Kirchoffs superimposition. 5 The alphabets 
which represent the effect of the five cipher rotors 
are reconstructed, for each position of the cipher
texts/plaintexts. Positions at which only the left
most or the rightmost cipher rotor move are iden
tified, and the wiring of those rotors are recovered, 
by comparing the alphabet at such a position with 
the alphabet at the following position. The authors 
describe how the wiring of the inner cipher rotors 
can also be recovered, and they suggest additional 
methods to recover the wiring of the control rotors. 

In (Lee, 2003), attacks on simplified and weak
ened versions of the SIGABA are presented. 

(Stamp and Chan, 2007; Stamp and Low, 2007) 
describe a known-plaintext attack in two phases. 
It assumes that the wiring of the rotors is known, 
while their order, orientation, and starting posi
tions, are unknown. At the first phase, only the 
cipher rotors are considered, and all their possible 
settings (rotor selection, orientation, starting posi
tions) are evaluated. For each such setting, the first 
ciphertext symbol is applied across the five cipher 
rotors, and the decrypted symbol is compared to 
the known-plaintext symbol. To check the second 
symbol, all options for the stepping of the cipher 
rotors are tested (there are 30 such options, as at 
least one rotor steps, and at most four), and the 
cipher rotors step accordingly. If after stepping, 
decrypting the second ciphertext symbol produced 
the expected known-plaintext symbol, the process 
is repeated for the next symbols. Only those ci
pher rotor settings that survive the test for all the 
known-plaintext symbols are retained. With 100 
letters of known-plaintext, about 234·5 cipher rotor 
settings are expected to survive, out of 243 .4 possi
ble cipher rotor settings. 

At the second phase, all the surviving cipher ro
tor settings are exhaustively tested against all pos
sible control and index settings. The total work
factor of the attack is 286·7, and it is therefore more 

4 An unlikely scenario, given the US Army and Navy's 
strict operational security procedures. The method, however, 
requires little processing time, unlike the other attacks pre
sented in here. 

5The authors do not provide any detail on how the plain
texts can be recovered using superimposition. Furthermore, 
the required length for the messages in depth is not specified. 



efficient than a simple brute-force attack by a fac
tor of 295-6- 86·7 = 28·9. The authors also propose a 
method with a workfactor of 284·5 , but with only a 
0.82 probability of success. 

2.2 A New Meet-in-the-Middle 
Known-Plaintext Attack 

This new attack assumes that the wiring of the 
rotors is known, but their order, orientation, and 
starting positions are unknown. It was inspired by 
the attack described in (Stamp and Chan, 2007), 
and also consists of two phases. While (Stamp 
and Chan, 2007) is essentially an (optimized) ex
haustive search, the new attack is a divide-and
conquer MITM attack. It is significantly more effi
cient than a simple brute-force attack.6 It only re
quires a minimum of 8 known-plaintext symbols.7 

The first phase (described in Section 2.3) gener
ates a set of cipher rotor settings and stepping se
quences so that the expected known plaintext is ac
curately reproduced when decrypting the cipher
text. The second phase (described in Section 2.4) 
generates feasible cipher stepping sequences, by 
testing all possible control and index settings, and 
matching the resulting cipher rotor stepping se
quences against those gathered during the first phase. 
The whole process - phase 1 and phase 2 - is re
peated for all possible partitions of the ten cipher 
and control rotors, into two sets of five rotors. 

6MITM attacks are applicable to modem multi-stage en
cryption systems (Diffie and Hellman, 1977). The approach 
is illustrated here with a system with two sequential encryp
tion stages, £ 1 and £ 2. For simplicity, we assume each stage 
has a separate key, K1 and K2, with N1 and N2 bits, respec
tively. A known-plaintext MITM attack for such a system 
could potentially be developed. The attack has two phases. 
In the first phase, the plaintext is encrypted with E1 only, for 
each value of K1. The resulting encryptions are stored is a 
hash table mapping each such partial encryption to the rele
vant K1 . The second phase checks for all possible values of 
K2, decrypts the ciphertext using only E2, and checks w~ether 
this partial decryption ( via E2) matches one of the partial en
cryptions (via £ 1) stored in the hash table. The overall com
plexity of this attack is the maximum of 2N1 and 2N2 , com
pared to 2N1+N2 for a brute-force search. This come~ at the 
expense of additional memory for the hash table, which t~e 
two phases use to "meet in the middle". Such an attack 1s 
also effective against 2-DES (seriated DES with two stages, 
each using a 56-bit key), and to achieve a level of security 
higher than with DES (or 1-DES), three stages (or 3-DES) 
are required. 

7Toe attack also works, albeit less efficiently, with less 
than 8 known plaintext symbols. It may also utilize more 
than 8 symbols, but the author found that this number allows 
for a good trade-off between the size of the required memory 
and the overall processing time for the attack. 
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2.3 Phase 1 of Meet-in-the-Middle Attack 

At the first phase, only the cipher rotors are con
sidered. For each partition of the ten cipher and 
control rotors ( divided into two sets of five rotors), 
the first phase produces a hash table mapping all 
cipher rotor stepping sequences, to their correspond
ing cipher rotor settings, that together produce a 
decryption matching the 8 known-plaintext letters. 
The structure and contents of the hash table is de
scribed later in this section. This is different from 
the first phase of (Stamp and Chan, 2007), which 
instead generates a simple list of matching cipher 
rotor settings, but other than that, the first phase of 
the new attack and of (Stamp and Chan, 2007) are 
similar. 

All orders of the five rotors ( allocated for the ci
pher bank in the partition), their orientations, and 
starting positions are tested. The first ciphertext 
symbol is applied through the five cipher rotors, 
and the output is compared to the expected known
plaintext symbol. If they match, all possible step
ping options are tested, and the second symbol 
is processed and checked. The next symbols are 
(recursively) checked, and if there is a match for 
all the known-plaintext symbols, the correspond
ing cipher rotor stepping sequence and the cipher 
rotor settings are added to the hash table. 

(Maps to) Cipher Rotor Settings 
stepping Sequence {Hash Key) 

Rotor Selection Starting 
1 2 3 4 5 Positions 

Figure 4: Meet-in-the-Middle Attack- Hash Table 

The structure of the hash table is illustrated in 
Figure 4. This example is for a partition in which 
rotors 0, 1, 4, 7, and 8 are allocated to the cipher 
rotors. The hash key represents the stepping se
quence of the cipher rotors, applied during the de
cryption of the 8 symbols for which there is known 
plaintext. Since stepping occurs after decryption, 
only the first 7 stepping patterns are relevant, as 
the eighth stepping pattern only affects the ninth 
symbol. Each stepping pattern consists of 5 Boolean 
values, one for each cipher rotor. The hash table 
key therefore consists of 7 groups of 5 bits. 

The first group represents the stepping of the ci-



pher rotors after decrypting the first symbol. In 
the first entry in the hash table illustrated in Fig
ure 4, 01011 indicates that cipher rotors in slots 2 
(from the left), 4, and 5 (the rightmost rotor) step 
after decrypting the first symbol. Similarly, the 
next group, 01000, indicates that only the cipher 
rotor in slot 2 (from the left) steps after encrypting 
the second symbol. 

A hash key (the stepping sequence) maps into 
one or more cipher rotor settings.8 Each such set
ting includes the selection and order of the rotors 
in the 5 slots of the cipher rotor bank, their ori
entation, and their starting positions. In the first 
entry in Figure 4, the order of the cipher rotors is 
8, 0, 4, 7, and 1 (installed in cipher bank slots 1 
to 5, from left to right). Rotors 8 and 4 (first and 
third from the left) are in the reversed orientation 
(marked as 8R and 4R, respectively). The start
ing positions of the cipher rotors are H, Y, J, N, 
and H, respectively. The same stepping sequence 
(the first in Figure 4) also maps to a second ci
pher setting, with 1, 7, 0, 8, and 4 as the order of 
the rotors (7 and 8 are in the reversed orientation), 
and T, U, A, L, and Mas their starting positions. 
This illustrates the fact that the hash table imple
ments a one-to-many mapping, as there might be 
several distinct cipher rotor settings which repro
duce the known plaintext, while the rotors step in 
an identical manner (as represented by the step
ping sequence which is also the hash key). 

Similarly, the second stepping sequence (hash 
key) in the hash table (Figure 4), which starts with 
01111, maps to only one setting, with 1, 4, 8, 7, 
and O as the order of the rotors (1 and 8 are in 
reversed orientation), and set at starting positions 
K, H, J, N, and M. 

Note that the presence of a combination of a 
stepping sequence and cipher rotor setting in the 
hash table, only indicates that under that same com
bination, the 8 symbols of the ciphertext can be 
decrypted to match the expected known plaintext. 
It does not indicate that such a stepping sequence 
is feasible and can be produced by the control and 
index rotor banks. Therefore, the need for a sec
ond phase, in order to generate all feasible cipher 
stepping sequences, and check whether they ap
pear in the hash table created by the first phase. 

8This is different from most MITM attacks, where the 
shared memory structure maps partial encryption or partial 
decryption results to partial keys. Instead, in this attack on 
SIGABA, the hash table maps stepping sequences of the ci
pher rotors to partial keys (the cipher rotor settings). 
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This second phase is described in Section 2.4. 

2.4 Phase 2 of Meet-in-the-Middle Attack 

The second phase looks at all possible control and 
index settings, generates their resulting cipher ro
tor stepping sequences, and checks whether those 
stepping sequences exist in the hash table. If such 
a stepping sequence exists, then the combination 
of the control and index settings, together with the 
cipher setting associated with the stepping sequence, 
constitutes a candidate key. When applying such a 
candidate key to decrypt the 8 ciphertext symbols, 
the decryption is guaranteed to match the expected 
known plaintext. 

Still, this is only a candidate key, as the fact that 
it properly decrypts the given 8 ciphertext sym
bol does not mean it will necessarily properly de
crypt the rest of the message. To validate a candi
date key, there are two options. Either more than 
8 plaintext symbols are known, and the candidate 
key can be validated by checking whether it prop
erly reproduces the remaining known-plaintext sym
bols. Alternatively a quality measure such as the 
Index of Coincidence can be applied to the de
cryption of the full message, together with a min
imal threshold. Both methods may be combined, 
if the known plaintext is not long enough to safely 
rule out wrong candidate keys.9 • Both validation 
methods also impact the workfactor. The choice of 
processing 8 letters of known-plaintext is a trade
off between the complexity of phase 1 (the longer 
the plaintext, the more steps in phase 1), the stor
age requirements, and the need to validate phase 2 
matches (the longer the known-plaintext, the lower 
the probability for phase 2 false positives and the 
need for validation). 

2.5 Workfactor Analysis 

Phase 1 and phase 2 of the attack are applied re
peatedly, on each partition of 10 rotors (those with 
26 input and outputs) into a set of five cipher rotors 
and another set of five control rotors. The number 
of such partitions is equal to the number of ways 
to select 5 unordered rotors from a set of 10 rotors, 
that is, 10!/(5! -5!) = 252 = 27·9 . 

Workfactor Analysis for Phase 1 

For each partition, the number of possible cipher 
rotor settings is 5 ! · 25 · 265 = 235.4. When eval
uating a certain cipher setting, all options for the 

9Based on experiments, 12 to 22 letters of known plaintext 
are necessary to rule out all 'false-positive' candidate keys. 



stepping of the rotors are checked for each known
plaintext-ciphertext pair (the stepping after the 8th 
symbol is ignored). Since between one to four ci
pher rotors step after decryption, there are only 
25 - 2 = 30 possible stepping options, out of the 
theoretically possible 25 = 32 stepping patterns of 
the 5 rotors (patterns 00000 - none of the rotors 
step, and 11111 - all rotors step, are not feasi
ble). For each symbol tested, the probability or 
ruling out such a stepping option is (26 - 1) /26. 
So on average, 30 · (1/26) = 1.154 option for step
ping of the cipher rotors survive after each de
cryption step, out of 30. The total number of op
erations for each cipher rotor setting is therefore 
7 
I: 1.154i = 13.9 = 23·8 . The total workfactor for 

i=O 
phase 1 for a single partition is 235-4+3.s = 239.2, 
and 239-2+7.9 = 247·1 for all partitions. 

Workfactor Analysis for Phase 2 

For a given partition, the number of possible con
trol rotor settings is 5 ! · 25 · 265 = 235.4, and the 
number of feasible options for the index rotors is 
10!/232 = 113,400 = 216·8• Therefore, the work
factor for phase 2 is 235.4+16·8 = 252·2 for a single 
partition, and 252-2+7.9 = 260·2 for all partitions. 

Overall Workfactor 

The workfactor for phase 2 is the dominant one, 
and therefore, the overall workfactor for the attack 
is 260·2. This attack is more efficient than a brute
force attack by a factor of 295·6- 60·2 = 235.4, and it 
is feasible with modem technology. For compari
son, a brute-force attack on a 56-bit DES key was 
successfully carried out already in 1998 (Gilmore, 
1998). 

Storage Requirements 

Since the attack is a MITM attack, we still need 
to address the size of the hash table, which is gen
erated in phase 1, separately for each partition of 
the cipher and control rotors. Based on simula
tions, the ratio between the number of stepping se
quences generated by phase 1 and the number of 

for their orientation, and 5 · 5 bits for their start
ing positions, with a total of 7 + 5 + 5 · 5 = 37 bits. 
Since the vast majority of the entries in the hash ta
ble map to only one cipher rotor setting, the total 
size for an entry is about 35 + 37 = 72 bits. 10 Im
plementing and storing this information in a prac
tical hash table in RAM requires some additional 
overhead, and based on measurements using Java 
10 Hashmap library, the overall amount of space 
required for each entry is approximately twice the 
amount of space for just the data of the entry, that 
is, 2 · 72 = 144 bits or about 18 bytes. 11 Therefore, 
the memory size required for the per-partition hash 
table can be estimated to be 232·1. 18 = 4.6 -109 . 
18 = 80 GB. 

A possible optimization to reduce the size of 
the hash table consists of checking for additional 
matching known-plaintext-ciphertext symbols, if 
more than 8 plaintext symbols are known. For ex
ample, by checking an additional 7 symbols (to
tal of 8 + 7 = 15), about half of the stepping se
quences may be ruled out. When checking the 
additional symbols (following the initial 8 sym
bols), we do not extend the size of the stepping 
sequence stored as the key in the hash table, and 
we still keep only the first 7 stepping patterns. We 
only check whether there is at least one possible 
continuation of this stepping sequence, following 
the 8 initial decryption steps. However, this op
timization would also incur additional processing 
at phase 1, which would probably not affect the 
overall workfactor, as the workfactor of phase 2 is 
overwhelmingly dominant. 

The results in this section are based on sim
ulations performed on 200 hundreds of random 
keys and plaintexts. Further analysis is required 
to determine the optimal parameters (e.g. trade
offbetween processing time and storage space, de
rived from the length of the known plaintext pro
cessed), as well as more precise workfactor and 
storage analyses, for a practical attack on the full 
keys pace. 

2.6 Solving the MysteryTwister C3 SIGABA 
possible cipher rotor setti~gs is on average 0.107. Level 111 Challen e 
There are therefore approximately 5 ! · 25. 265. 0.107 = g 
232.1 sequences generated for each partition of the In (Stamp, 2010), a known-plaintext SIGABA chal-

ten rotors. 
To represent a stepping sequence in the hash ta

ble (see Table 4), 7 · 5 = 35 bits are required. To 
represent the cipher rotor setting, 7 bits are re
quired for the order (5 ! = 120 s 27 options), 5 bits 
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lenge is given. Due to the particular method the 
challenge was created, the effective size ofkeyspace 
is reduced, making the attack described above prac-

10Based on simulations. 
11 A more (or less) efficient implementation of a hash table 

may require different amounts of overhead. 



tical on a consumer PC. With a probability of 31 /32, 
it may be assumed that the starting position of four 
out of the five cipher rotors is A, and the same ap
plies to the control rotors. If we assume this is 
indeed the case, the size of the keyspace of the 
cipher rotors and the control rotors are each both 
reduced by a factor of 264 = 218·8. Under the same 
assumption, the workfactor of phase 1 for this chal
lenge is therefore 247·1- 18·8 = 228·3, and for phase 
2, the workfactor is 260-2- 18·8 = 241.3. 

It took a few days on a 10-core Intel Core i7 
6950X 3.0 GHz PC to complete the attack and 
solve the challenge. The assumption stated above 
was found to be true. 12 

3 New Challenges 

A series of new SIGABA known-plaintext chal
lenges is presented in Table 1 (see the Appendix), 
with various levels of difficulty. 13 For most chal
lenges, the size of the keyspace is limited by set
ting several of the cipher and control rotors to a 
fixed position A. Challenge #2 is against a keyspace 
of a size similar to the keyspace for the challenge 
in (Stamp, 2010). The last challenge (#6) is against 
the full keyspace of SIGABA. Java source code, 
used to generate the challenges, is listed in the Ap
pendix. It is compatible with the source code given 
in (Pekelney, 1998), and has been tested against 
another simulator (Sullivan, 2002a).14 

4 Conclusion 

The functional separation between the cipher ro
tor bank, and the control and index rotor banks, is 
a significant weakness, and it allows for a practi
cal MITM attack. This attack is not feasible on 
systems like the Siemens and Halske T52d, the 
Russian Fialka, and the Hagelin CX-52, in which 
rotors have two functions - encryption/decryption, 

12jerva and Integral had previously found the solution to 
the challenge. jerva used methods described in (Stamp and 
Chan, 2007). Integral's methods are unknown. 

13 All the plaintexts were extracted from Shakespeare writ
ings. Each plaintext consists of the concatenation of two seg
ments, extracted from different places. The first segment, 
with 100 letters, is given as a crib. The letter Z is used to 
represent a space. 

14Toe SIGABA simulator source code given in (Stamp, 
2010) and used to generate previous MysteryTwister C3 chal
lenges has several incompatibility issues. The first one, de
scribed in the forum discussion, has to do with several ro
tors being unintentionally reset to position A. Another issue 
is with the stepping logic for the medium and slow rotors. In 
addition, the mappings for rotors in reversed orientation are 
incorrect. 
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and controlling the stepping of other rotors. 15 Still, 
the attack on SIGABA proposed here would not 
have been feasible given WWII technology. 
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5 Appendix - Source Code and 
Challenges 

Listing 1: SI GABA Simulator Source Code 
package simul ato r ; 

class Sigaba { 
private Rotor cipherBank [] = new Rotor [5]; 
private R o tor contro1Bank[] = new Rotor[5]; 
private In dexRotor indexBank[] = new IndexRotor[ S ] ; 
Siga ba( String cph, String ctl , String idx, 

} 

String cphP , Strin g c !IP , Siring idxP) { 
for ( in! i = 0; i < 5 ; i ++) { 

ci p herBank [ i ] = 
new Rotor (cph.ch a rAt (i • 2) - ' O' , 

cph.charA t ( i • 2 + 1) ' R' , 
cphP . charAt( i) - 'A' ) ; 

c ontro1Bank [ i] = 
new Rotor(ctl .charA t ( i * 2) - 'O' , 

c!l . c harA t ( i • 2 + 1) == 'R' . 
ctlP.charA t( i ) - 'A' ); 

indexBank [ i] = 
new lndexRotor ( idx . c h ar At ( i) - 'O' , 

idx P . ch arAt ( i) - 'O' ); 

Str i ng eo c r y ptDecr ypt ( boolean d ecr ypt , Str in g i n ) { 
String outStr in g = "" ; 
for ( char c : in. toCharArray ()) { 

o u t S t ring += 
( char )(ciphcrPa th ( d c c rypt , c - 'A' ) + ' A ' ) ; 

cipherBankUpdate (); 
c o otro!BankUpdate () ; 

} 
return o u tString; 

} 
private void controlB ank Upd a te () { 

if ( contro1Ban k [ 2 ] . p os == ( in l ) 'O' - 'A' ) { 
/ / medium rotor moves 
if (contro1Baok[3].pos == ( int ) 'O' - ' A' ) { 

// slow rotor moves 
c ontrolB auk [ 1]. advance() ; 

} 

} 
con t rolBank [ 3]. advance () ; 

} 
// fas l ro i o r always moves 
co n tro1 B a nk [ 2] . a d vance() ; 

priv ate S t a ti C fi nal in t INDEX_IN[ ] 
{ 9 , 1, 2. 3. 3. 4, 4, 
6, 6 , 7 . 7, 7. 7, 7 , 

// r oto r s t ep pin g magnet 

4, 
8 , 

private s tatic final int JNDEX_QUT [J = 
{I , 5 , 5, 4, 4, 3 , 3 , 2, 2 , I}; 

privale void cipherBankUpdate () { 
boolean move[] = new boolean [ 5 ]; 
for ( int i = ( int ) 'F' - 'A ' ; 

i <= ( in t ) ' I ' - 'A ' ; 
i++) { 

5. 5, 5 . 6 , 
8 . 8 . 8 . 8. 

6 . 
8}; 

iot in d exln = INDEX _!N[ co n tro!P ath (i)]; 
move [INDEX_OUT [ i n dex P a th ( ind exl o ) ] - 1] true ; 

} 
for ( inl i = O; i < 5 ; i ++) { 

if ( move[ i] ) cipher B a nk [ i]. advance (); 

} 
private int ci pherPath( boolea n decrypt , int c) { 

if ( d ec ryp t) { 

} 

for ( int r = 4 ; r >= O; r--) 
c = cip her Bank[ r ] . r ig ht T o L eft (c) ; 

els e { 
for ( int r = O; r <= 4; r ++) 

c = c i ph crB a nk [ r ] . lcftToRi gh t ( c ) ; 

return ( c) ; 

priv a te int c o ntrolPath (i nt c) { 
for ( int r = 4; r >= O; r--) 

c = contro!Baok [ r ] . r ightT oLe f t (c) ; 
return ( c ) ; 

private int i n d cxPath ( in t c ) { 
for ( int r = O; r <= 4 ; r ++) 

c = inde xBank [ r ] . i ndex Path(c) ; 
r e turn (c ) ; 
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static class Rotor { 

} 

p rivate s tatic final S t ring [] WIRINGS 
"YCIILQSUGBDIXNZKFRPVITA WFOM" , 
"INPXBWEffiUYSAOCHVlDMQKZJFR" , 
"WNDRIOZPTAXHFJYQBMSVEKUCGL" , 
'"IZ.GHOBKRVUXLQDMPNFWCIYElAS" , 
"YWl"AHl{Q.rvu:BillNGll!PlMSD~OK" , 
"QSlRBTEKOGAICFWYVMHJNXZUDP" , 
"CHJDQIGNBSAKVIUOXFWLEPRMZY" , 
"CDFAJXTIMNBEQHSUGRYLWZKVPO" . 
"XHffiSZDNRBCXiKQIJL1VMUOYAPW" , 
"EZTQXMOGYIC~FRIUPVNADLHWBK" } ; 

// Index f or left t o r i gh t. 
priv a te s tatic final in t TO..R.IGHT = O; 
// Index for ri g hl l o l ef t . 
pri va t e static final i n t TO..LEFT = 1 ; 
p r iv a t e in! wir i ng [][) = new in([ 2 ][ 26 ]; 
int pos ; 
p r i va t e boolean r e ver s e d; 
R otor( i n t wi r ing lnd e x , bo olean r eve r sed , in t p os) { 

for ( iot i = O; i < 26 ; i ++) { 

} 

} 

wiring [TO.RIGHT][ i ] = 
WIRINGS[ wiringlnde x ]. char At ( i ) - 'A' ; 

wiring [TO_LEFf] [ w i r ing [TO.RIGHT] [ i ]] = i; 

th is . reversed = re versed; 
th i s . pos = pos ; 

void a dv a nce() { 
i f (rever sed) 

p os = (po s + 1) % 26 ; 
} el se { 

p os = ( pas - + 2 6) % 2 6 ; 

int l eftToRight( int in ) { 
if ( !reversed ) { 

r eturn 
( wirin g [ TO.RIGHT ] [ ( i n+pos ) %26]- pos +26) %26; 

relurn 
( pos -wiring [ TO_LEFf ] [ ( pos-in +26)%26]+26) %26; 

int ri gh t ToLe ft( int in ) { 
if ( !revers ed ) { 

r e t urn 
( wiring [TO_LEFf] [ ( i n +p os ) %26]-pos +26) %26; 

re iurn 
( pos - wir ing [TO.RIGHT ] [ ( pos- in +26) %26)+26)%26; 

s ta t i c c l a s s IndexR o tor { 

} 

priv a t e s tati c fin a l in t WIRINGS [][ ] = { 
{7 , 5 , 9 , I , 4, 8 , 2, 6 , 3, O} , 
{3 , 8, I , 0, 5, 9, 2 , 7, 6 , 4} , 
{4, 0 , 8, 6 , I , 5 , 3, 2 , 9 , 7} , 
{3 , 9, 8 , 0 , 5, 2 , 6 , I , 7, 4} , 
{ 6 , 4, 9 , 7, I , 3, 5 , 2, 8, O}} ; 

priv a t e int wirin g [l = new int f l Ol ; 
pri va te int p os ; 
Ind e xR otor ( int wiringlnd e x . int pos) { 

Sy stem . arraycop y (WIRINGS [ wir ingl nd ex ) . 0 . 
wiring . 0 , 10) ; 

t his . pos = pos; 

int i ndexPath (i nt in ) { 
r eturn ( wiring [ ( in + p os) % 10 ] - po s + 10 ) % 10 ; 

public s ta tic void m ain(Str i n g [ ] a r gs) { 
Si gaba siga b a = 
new Si ga b a ( " ORIN2N3N4R" , "5N6N7R8N9N" , 

" 01234 " , "AllO)E" , " FGHIJ" , "01 234 " ); 
Stri n g out = s i ga b a . e ncry p t lJecr y p t ( fal.si:: , 

"AAAAAAAAAAAAAAA" ) ; 
Systcm .out . p rint f ( 

"%s ( expe c ting JllO\UillRWOQKRXHKMVD) \ n" , o ut ); 
s i g a b a = 

new Sigab a ( "ORIN2N3N4R" , "5N6N7R8N9N" , 
"01234" , "ABCDE" , "FGHIJ" , "01234" ); 

S t r i n g i n = s i gaba. encry p t Decr y p t ( true , o ut ) ; 
Systi::m. out . prin tf ( 

"%s ( exp e cting AAAAAAAAAAAAAAA)\n" , in ); 



Ciphertext First 100 Plaintext Letters Hint 
#1 GSZQEMAGFULNFZHHRVUTCUEXU AHZFOULZSHREWDZNEWSZBESHR All cipher and control 

FBMPDGOROJRPMAUDOZMJWJCVH EWZTHYZVERYZHEARTZIZDIDZN rotors are at position A. 
YCBZDELOWKVLYJLSZBQJXWXLR OTZTHINKZTOZBEZSOZSADZTON 
WOIMBVUTBAVRHPPPYQDTIURLV IGHTZASZTHISZHATHZMADEZME 
IQGIZSEVGXOYCMGESFOXDLPFT 
UQQCRDSRNFDTBDDULFJKQGXZB 
XKKIMSBSIUZSZNOOLCFRRVTOD 
XFQRRXLDEMSLORKXUCGDKCZKY 
ULDORUGEGDLTTROBUIVWJTBVH 
YWOKANYJCGQUYGPHSMWJRILZP 
SQJOXKKMEGMWQKXWVKF 

#2 ZMJHMLJTJSSHZBBMYXJRVZCUS WOULDSTZTHOUZNOTZBEZGLADZ The last 4 cipher rotors 
PMETNBPZQCAHGYJDHJNQNMTHY TOZHAVEZTHEZNIGGARDLYZRAS and the last 4 control 
EJAOOQYFSURONLTOGQVKOMABX CALLYZSHEEPBITERZCOMEZBYZ rotors are at position A. 
QXGKRAVBZYWBRWYWGLBYFZNNA SOMEZNOTABLEZSHAMEZFABIAN 
XIVJVOJYYBQGTWJIIZESYBRAN 
XEWYDRMYAINJWWDFWBVCTHRGL 
ZCTNHWWBRYSJSZSYMSSLUXBLZ 
STDBARVGCSMTJOWIRFXYIBZCF 
CCYRUXMUCISNUIFLCOJYZQTBY 
DWVFJDHZBJNSAPYAUYWQGFPYO 
ZJYWPCWVRSVCQTPHTFPGHCJAM 
CFZRHYNFXJVWWNNN 

#3 HYYQUSBFHVDVKSLKSGUQIVZAR TISZWONDERFULZWHATZMAYZBE The last 3 cipher rotors 
QKCQZBLLGCTCLQHZNBEQVUOJH ZWROUGHTZOUTZOFZTHEIRZDIS and the last 3 control 
BROKUKRYXWPGSPDJSWLLTDASB CONTENTZNOWZTHATZTHEIRZSO rotors are at position A. 
MTTPRPFHMSXPLBDENAYJWAQZD ULSZAREZTOPFULZOFZOFFENCE 
JDXGBJCWXNARABTTSEZBJDYHT 
NEIQCQRTFUAZDTTVBNHJGWQHF 
UHAPPBPYJAIXGELTILPULVSNC 
BJJIGFJNYDURTIVWYHTNKFSLS 
ALTHLBHYQBYXUK 

#4 CEXZZGZOYLDYPAGJQTFJSEYZP IZWILLZBESPEAKZOURZDIETZW The last 2 cipher rotors 
ORHMSTYLQVSJARJLCDBYXFPKB HILESZYOUZBEGUILEZTHEZTIM and the last 2 control 
NREAEYVOPBQKYFYETXOUQNMAT EZANDZFEEDZYOURZKNOWLEDGE rotors are at position A. 
CBWIIFKJWZJFWZHMJYQALVNXV ZWITHZVIEWINGZOFZTHEZTOWN 
UDUVEJGJNBWZRCVMIHDHLPOSD 
LSBPTFNEGWIAIRZZPIPPVEBWV 
VBGLNCGBKWFUUCVGTTGKGEHJQ 
XGEHVPLDDLALNWVNDOXTPPWCQ 
HNAWFTXVOWIZFVRWXBIIJDFAU 
TMCNWDHLSCHNOBQRURVLCXLVB 
YXDXKMPYIWPYOXPFXBNESBUCR 
WZECWXOUDTVVNRGGHPTE 

#5 JJJWJZMPUKYDGRHSPIXTYPAPA HOWZMIGHTZWEZSEEZFALSTAFF The last cipher rotor 
IVGFOTXMFWRZLBRXQPNRYLCPF ZBESTOWZHIMSELFZTONIGHTZI and the last control ro-
WNMZFHFSMVIEEDAHWZOMBIVPA NZHISZTRUEZCOLOURSZANDZNO tor are at position A. 
RTAOWYOWRFACGAITUAFDFCTEV TZOURSELVESZBEZSEENZPOINS 
YZAQIQXVHZFCIBSVSQJAMYPTS 
YNWXBFBKDKVDOXZQQEVVGAAWI 
LRFYRGIPJCKVVPMQAEIAIMOPY 
XCSJFDAUHYZYVQJXGGZTMCAGW 
BEICRYROYCPNGEZQFVVQTSZBP 
SZYWCONNWMUBCNYQX 

#6 FWEYNOPSTLFMWXQITVTMRVHOL TOZHAVEZNOZSCREENZBETWEEN No hint given. 
YDEIROBXPPVZVBLCSJPSYIXIY ZTHISZPARTZHEZPLAYDZANDZH 
IJHJMCHAWSWAQBHSUVASAGYLR IMZHEZPLAYDZITZFORZHEZNEE 
DJREKIFQUXBEJZUFVIJBJMWVT DSZWILLZBEZABSOLUTEZMILAN 
VSPHOQTRAECHEEJLBRCDTGXRP 
OVSJKDYYWNWIUTPXKVXSHDCBC 
WVYDGBVJLMCPZJROXKDPTDTMC 
PHXGCTHPDLVHYQHHFRTTKSOTE 
IWAXEDMUOVBLSLZUWFTYGNCQY 
YPHZRNJRBXYVVSNPYWAEMXOIV 
UQWAXAECBOODIPLWGCVQJVDCX 
GKCBXHCUK 

Table 1: New SIGABA Challenges 
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