
Solving a 40-Letter Playfair Challenge with CrypTool 2

George Lasry
The CrypTool Team

george.lasry@cryptool.org

Abstract

Playfair is a manual substitution cipher in­
vented in 1854 by Charles Wheatstone. Its
name and popularity came from the en­
dorsement of his friend Lord Playfair. The
Playfair cipher encrypts bigrams (pairs of
letters), and is considered more secure than
monoalphabetic substitution ciphers which
encrypt single letters. It was used by sev­
eral countries in the 19th century and in
the first half of the 20th century.

Playfair ciphers can often be solved with
the help of a crib. Ciphertext-only attacks
usually require hundreds of letters when
carried out manually (Mauborgne, 1918).
More recently, computerized attacks based
on hill climbing and simulated annealing
have been published, that require between
60 to 100 letters of ciphertext (Cowan, 2008;
Al-Kazaz et al., 2018).

In this article, the author presents a novel
ciphertext-only attack, implemented in the
open-source e-learning CrypTool 2 (CT2)
platform, that is effective against cipher­
texts as short as 40 letters (CrypTool 2 Team,
2019). This attack is based on a special­
ized adaptation of simulated annealing and
uses hexagrams in the scoring method. With
CT2, a Playfair public challenge with only
40 letters was solved, establishing an un­
official world record for decrypting short
Playfair messages, encrypted with random
keys, from ciphertext only (Schmeh, 2018b).
The author also offers a series of new Play­
fair challenges. 1

1This work has been supported by the Swedish Research
Council, grant 2018-06074, DECRYPT - Decryption of his­
torical manuscripts.

1 Description of Playfair

Playfair enciphering and deciphering are based on
a key square, with a 5 · 5 grid of letters. Each of
the 25 letters must be unique and one letter of the
alphabet (usually J) is omitted from the square, as
there are only 25 positions in the square, but 26
letters in the alphabet.

While it is possible to use a random key square,
it is often more convenient to derive a key square
from a keyword (or sentence). The keyword is
written horizontally with duplicate letters being re­
moved. The rest of the square is filled with the
remaining letters of the alphabet, in alphabetical
order.

For example, the key square derived from the
keyphrase HELLO WORLD is:

H E L O W
R D A B C
F G I K M
N P Q S T
U V X Y Z

To encrypt a message, the plaintext is split into
bigrams. If there is an odd number of letters, a
z or X is added as the last letter. To encrypt the
message HIDE THE GOLD, we first split it into
bigrams, and add z at the end:

HI DE TH EG OL DZ

Next, for each pair, we locate its two letters in
the square. We replace them according to the fol­
lowing rules:

• If the two letters are comers of a rectangle,
take the letters on the horizontal opposite cor­
ners of the rectangle. For example, HI is en­
crypted as LF.

• If both letters are in the same column, select
the letters below each one in the square (go-

Proceedings of the 2nd International Conference on Historical Cryptology, pages 87-96

Mons, Belgium, 23-26 June, 2019

ing back to the top if at the bottom). For ex­
ample, DE is encrypted as GD.

• If both letters are in the same row, select the
letters to the right of each one (going back to
the left if at the farthest right). For example,
OL is encrypted as WO.

Using these rules, we obtain:

LF GD NW DP WO CV

2 Cryptanalysis of Playfair

In this section, the security of Playfair is discussed,
and a survey of prior attacks on Playfair is pre­
sented.

2.1 Security of Playfair

The Playfair cipher has several weaknesses, which
may be exploited when trying to recover a Playfair
key square:

• With long enough ciphertexts, statistical anal­
ysis can be applied on bigrams, and matched
against the frequencies of common bigrams
in the language (e.g., English). The cipher­
text bigrams corresponding to the most com­
mon bigrams in the language (such as TH or
IN in English) can often be easily identified.

• The most frequent ciphertext letters are likely
to be near the most frequent plaintext letters
(e.g., E, T, I, o, N) in the key square.

• Each mapping of a plaintext bigram to a ci­
phertext bigram reveals the mapping of an­
other bi gram, where the letters of the bi grams
have been reversed. For example, if HI is en­
coded as LF, then IH will necessarily be en­
coded as FL.

• If the Playfair key is derived from a keyword,
then the last row often contains the last alpha­
bet letters such as X, Y and z. Also, the letters
which did not appear in the keyword and are
used to fill the bottom part of the square will
always appear in alphabetical order.

2.2 Prior Cryptanalysis of Playfair

Historically, Playfair was often solved by hand with
the help of cribs (partially-known plaintext attack).
Based on the crib, some entries of the key square
can be guessed or reproduced, and additional en­
tries reconstructed by trial and error.

88

Manual ciphertext-only cryptanalysis involves
frequency analysis of ciphertext bigrams, and usu­
ally requires hundreds of ciphertext letters, not an
uncommon scenario if multiple messages were en­
coded using the same key. In (Mauborgne, 1918),
a manual method is described, to solve a cipher­
text composed of 800 letters. The frequencies of
the most common ciphertext bigrams are matched
against those most common in English, e.g. TH,

ER, and ET. A tentative initial square is built, and
completed in a trial-and-error process.

In (Monge, 1936), a challenge ciphertext with
only 30 letters is solved by taking advantage of the
characteristics of a key square built from a key­
word (see Section 2.1). This is considered to be
the shortest Playfair ciphertext ever solved, that
was encrypted using a key derived from a key­
word.2

(Cowan, 2008) presents an attack based on sim­
ulated annealing. It uses quadgrams frequencies
(applied on a logarithmic scale) as the scoring func­
tion. A constant temperature is employed (Hoos
and Stiltzle, 2004, p. 76). With this method, ci­
phertexts as short as 80 letters can be solved. Also,
in the now-defunct website www.cryptoden.com3,

(Cowan, 2015) proposes a churn algorithm, de­
scribed in Section 3.2. The churn algorithm was
designed to mimic the process of simulated an­
nealing with constant temperature, while reducing
software code complexity and runtime. Cowan
describes how his churn method was found su­
perior to hill climbing for attacks on various ci­
phers (Cowan, 2015). Cowan's implementation
of churn also produces an interesting but probably
unintended side-effect, described in Section 3.3.

In (Al-Kazaz et al., 2018), a compression-based
technique combined with simulated annealing is
described, and demonstrated on several ciphertexts.
The shortest one, with only 60 letters, was suc­
cessfully decrypted with only two errors. The corn-

2The unicity distance for Playfair and English is 22.69
letters (Deavours, 1977). For any Playfair cryptogram of that
length or shorter, it is likely that there exist one or more keys,
different from the original key, which decrypt the cryptogram
so that the resulting decryption is a plausible English text (and
different from the original plaintext). The unicity distance
can be viewed as a theoretical lower-bound for the length of
a cryptogram, so that its key may be recovered via cryptanal­
ysis. The length of the cryptogram solved by Monge (30 let­
ters) is very close to that limit. On the other hand, the unicity
distance is only 16.56 letters ifit can be assumed that the last
row in the key square is VWXYZ (as for most keys derived
from keywords) (Deavours, 1977).

3www.cryptoden.com is still accessible via
www.wayback.com (Cowan, 2015).

pression technique proposed in (Al-Kazaz et al.,
2018) is essentially analog to using hexagram statis­
tics (on a logarithmic scale) as the scoring method.

3 A New Ciphertext-only Attack

In this section, a novel attack, successfully em­
ployed to solve several public challenges, is pre­
sented.

This new attack extends Cowan's method (Cowan,
2008). While it is also based on constant-temperature
simulated annealing, it uses hexagrams statistics,
instead of quadgrams, converted to a logarithmic
scale. It implements an extended set of transfor­
mations applied to candidate keys, adding new types
of transformations, as described in Section 3.4. Fur­
thermore, the new attack exhaustively applies and
tests the full set of transformations on candidate
keys, at each step of simulated annealing (instead
of applying only a random subset of transforma­
tions as in (Cowan, 2008)).

3.1 An Initial Implementation

Initially, this new attack was implemented using
a standard constant-temperature simulated anneal­
ing algorithm. As described in Listing 1, higher
scores are always accepted. If the new score is
lower than the current score, the probability of ac­
ceptance p is computed using the Metropolis for­
mula (Hoos and Sttitzle, 2004, p. 75), based on the
score degradation d and the constant temperature
t.

p = e-d/t (1)

The first implementation of this new attack, af­
ter tuning and optimizing the temperature t, was
able to solve ciphertexts with only 70 letters, and
rarely, with 60 letters (for comparison, (Cowan,
2008) requires between 80 to 100 letters). Also,
hexagrams were found to be more effective than
quadgrams or pentagrams as the scoring method
(all using a logarithmic scale).

3.2 Improved Implementation Using Churn

The attack was modified to use Cowan's churn im­
plementation of constant-temperature simulated an­
nealing (Cowan, 2015). The churn acceptance func­
tion is described in Listing 2.4 Cowan does not
explain why he employs the term churn, however,

4The code in Listing 2 is different from the original code
given in (Cowan, 2015). It was adapted for clarity, but it
preserves the original functionality.

89

the process could be described as candidate keys
being accepted with a decreasing probability, or
discarded ('churned') with a increasing probabil­
ity, as the score of the current key increases over
time during simulated annealing. 5

A lookup table with degradation values, D, is
precomputed. Cowan does not describe how he
computed D, but his original values can be repro­
duced and closely approximated. From Equation 1,
it follows that:

d=t·ln(l/p) (2)

D has 100 entries (with an index i from Oto 99).
For each i, the acceptance probability is computed
as follows:

Pi= (i+ 1)/100 (3)

and therefore:

Di= t ·ln(lOO/(i+ 1)) (4)

The churn acceptance function selects a (ran­
dom) degradation threshold from the lookup table
by generating a random index i from O to 99. If
the actual degradation d is lower than this thresh­
old, then the new key is accepted. 6

After modifying the new attack on Playfair to
use the churn acceptance function, the attack was
again tested, and surprisingly, not only its runtime
could be reduced, but the attack's performance was
also improved. The algorithm was able to consis­
tently solve ciphertexts with 50 letters. Cowan's
churn algorithm was originally designed to mimic
a constant-temperature simulated annealing pro­
cess. There was therefore no apparent reason for
such an improvement. After further investigation,
the root cause of this phenomena was found, as
described in Section 3.3.

3.3 An Unintended Side Effect

With a regular constant-temperature simulated an­
nealing process (without churn), since the Metropo­
lis acceptance function is a continuous function

5The acceptance probability decreases exponentially for
candidate keys with a score lower than the score for the cur­
rent key, as a function of the score degradation - see Equa­
tion 1. As the score of the current key increases over time (as
better current keys are being selected), the degradation for a
given candidate key increases, and its probability of accep­
tance decreases.

6The same functionality could in principle be achieved
without a lookup table. However, the implementation using a
lookup table plays an important role, described in Section 3.3.

(see Equation 1), a candidate key with a score sig­
nificantly lower than the score of the current key
can theoretically be accepted, albeit with a low
but non-zero probability p. In other words, a can­
didate key resulting in a very high degradation d
might still be accepted.

With churn, the lookup table stores 100 discrete
degradation values, and from Equation 4, it can be
seen that the highest degradation value is:

• Swaps of any two elements in the square

• Swaps of any two rows in the square

• Swaps of any two columns in the square

• Permutations of the five rows

• Permutations of the five columns

• Permutations of the five elements of any row

• Permutations of the five elements of any col-
Do = t · ln(l00/(0 + l)) = t · ln(lOO) (5) umn

As a result, with churn, no key resulting in degra­
dation d greater than Do may ever be accepted.
Similarly, it can be seen that there is a also lower
bound for the acceptance probability, Pmin, so that:

Pmin = (0+ 1)/100 = 0.01 (6)

Therefore, with churn, keys with a score degra­
dation resulting in an acceptance probability p <
Pmin = 0.01 will always be rejected, unlike with
regular simulated annealing, where there is a low
but non-zero probability they might be accepted. It
was suspected that particular side-effect of the im­
plementation of churn could be the root cause for
the higher performance of the attack with churn
compared to the attack with regular constant-tem­
perature simulated annealing.

To validate this hypothesis, a third version of
the attack was implemented, using the standard ac­
ceptance function (for constant-temperature sim­
ulated annealing - see Listing 1), but this time
only accepting keys with acceptance probabilities
p 2 0.01. With this modification (described in
Listing 3), the attack on Playfair achieved the same
performance as when using churn, confirming the
hypothesis. The Pmin parameter was further fine­
tuned and set to an optimal value of 0.0085.7

3.4 Transformations on Candidate Keys

In all versions of the new attack on Playfair, the set
of transformations applied at each stage of simu­
lated annealing includes:

7In preliminary experiments with attacks on other ciphers,
this seemingly minor adaptation of simulated annealing sig­
nificantly improved their performance. One possible explana­
tion is that accepting candidate keys with scores significantly
lower than the score of the current key, might completely
disrupt the convergence of simulated annealing towards the
correct key. Whereas accepting keys with score slightly or
moderately lower than for the current keys helps in surveying
more diverse areas of the keyspace.

90

All possible transformations listed here are tested
at each step of simulated annealing. In contrast, in
(Cowan, 2008), only randomly selected transfor­
mations are applied and tested (from a smaller set
of transformation types, which only includes the
swaps, as well as a few special transformations).

4 A New Partly-Known Plaintext Attack

The algorithm described in Section 3 was also adapted
to support a crib-based attack. The scoring func­
tion was modified, so that the score (computed
using hexagrams statistics) is increased for each
known-plaintext symbol correctly reproduced, when
decrypting the ciphertext with a candidate key. With
this modification, ciphertexts with 40 letters can
easily be solved given a crib of 10 letters.

5 Solving Playfair Challenges with
CrypTool 2 (CT2)

The new attacks described in Section 3 were first
implemented as command-line programs. A first
ciphertext-only challenge with 50 letters published
by Klaus Schmeh was solved (Schmeh, 2018c).
It took a few seconds on a 10-core Intel Core i7
6950X 3.0 GHz PC to complete the attack and to
recover the key and the plaintext.

The attack was also integrated into CT2, taking
advantage of the convenient user interface of CT2,
which shows useful details about the progress of
the attack, such as a list of top keys (CrypTool 2
Team, 2019). Klaus Schmeh published a second
challenge, this time with only 40 letters, stating
that its solution would constitute a world record
for solving the shortest Playfair ciphertext encrypted
with a random key (Schmeh, 2018b).

This new challenge was attacked with CT2. Ini­
tial runs only produced spurious solutions. At some
stage, CT2 displayed a decryption (in the 4th place

in the list), starting with MEETYOU, but only for a
few seconds, before the decryption quickly disap­
peared from the list as new higher-score decryp­
tions were inserted. The partial known-plaintext
attack (see Section 4) was then run with MEE TY OU
as a crib, and the solution was quickly found (see
Figure 1). The plaintext, after adding spaces, is as
follows:

MEET YOU TOMORROW AT FOUR TWENTY

AT MARKET PLACE

6 CrypTool 2

CrypTool 2 (CT2) is an open-source e-leaming tool
that helps pupils, students, and crypto enthusiasts
to learn cryptology. 8 CT2 is part of the CrypTool
project which includes widely-used e-leaming tools
for cryptography and cryptanalysis.9 CT2 is the
successor of CrypTool 1 (CTl), and it is based on
a graphical programming language allowing the
user to cascade different ciphers and methods and
to follow the encryption or decryption steps in real­
time (CrypTool 2 Team, 2019).

CT2 is maintained by the CrypTool team. Con­
tributions and voluntary support to this open-source
project come from all over the world. CT2 imple­
ments classical and modem cryptographic meth­
ods, including cryptanalytic methods. It is also
used to implement real-world prototypes of dis­
tributed cryptanalysis using the so-called CrypCloud.
CT2 is maintained in English and German.

State-of-the-art algorithms, such as the attack
against the double transposition cipher described
in (Lasry et al., 2014) and shown in Figure 2, are
also integrated in CT2.

7 New Challenges

A series of new Playfair challenges is presented
in Table 1 (Appendix 9), with short ciphertexts.
The plaintexts were extracted from English books.
The keys were generated either from an English
keyphrase, or randomly. For some, the first eight
letters of the plaintext are given as a crib. This crib
is always PLAYFAIR, but the continuation of the
plaintext is a sentence unrelated to Playfair.

In addition, (Schmeh, 2018a) has published a
new challenge with 30 letters only and encrypted
using a random keysquare.

8https://www.cryptool.org/en/cryptool2
9https://en.wikipedia.org/wiki/cryptool

91

References

Noor R Al-Kazaz, Sean A Irvine, and William J Tea­
han. 2018. An Automatic Cryptanalysis of Playfair
Ciphers Using Compression. In Proceedings of the
1 st International Conference on Historical Cryptol­
ogy HistoCrypt 2018, number 149, pages 115-124.
Linkoping University Electronic Press.

Michael J Cowan. 2008. Breaking short Playfair ci­
phers with the simulated annealing algorithm. Cryp­
tologia, 32(1):71-83.

Michael J Cowan. 2015. Chum Al-
gorithm. https: //web.archive.
org/web/20150308125149/http:
//www.cryptoden.com:80/index.php/
algorithms/churn-algorithm, [Accessed:
January, 18th, 2019].

CrypTool 2 Team. 2019. CrypTool Portal - Cryptog­
raphy for Everybody. http : / / www . crypt o o 1 .
org /, [Accessed: January, 18th, 2019].

C.A. Deavours. 1977. Unicity Points in Cryptanalysis.
Cryptologia, 1(1):46-68.

Holger H. Hoos and Thomas Stlitzle. 2004. Stochastic
local search: Foundations and applications. Else­
vier.

George Lasry, Nils Kopal, and Amo Wacker. 2014.
Solving the Double Transposition Challenge with
a Divide-and-Conquer Approach. Cryptologia,
38(3):197-214.

Joseph Oswald Mauborgne. 1918. An advanced prob­
lem in cryptography and its solution. Army Service
Schools Press.

Alf Monge. 1936. Solution of a Playfair cipher. US
Signal Corps.

Klaus Schmeh. 2018a. Playfair cipher: Is it
unbreakable, if the message has only 30
letters? http://scienceblogs.de/
klausis-krypto-kolumne/2019/04/15/,
[Accessed: May, 18th, 2019].

Klaus Schmeh. 2018b. Playfair cipher: Is it
unbreakable, if the message has only 40
letters? http://scienceblogs.de/
klausis-krypto-kolumne/2018/12/08/,
[Accessed: January, 18th, 2019].

Klaus Schmeh. 2018c. Playfair cipher: Is it
unbreakable, if the message has only 50
letters? http://scienceblogs.de/
klausis-krypto-kolumne/2018/04/07/,
[Accessed: January, 18th, 2019].

8 Appendix - Listings and Figures

Listing 1: Simulated Annealing Acceptance Function - Constant Temperature

package common ;

import java.util.Random;

public class FixedTemper a tureSimulatedAnnealing

private Random random = new Random() ;

II Fixed temperature optimi z e d for hexagram sco r i ng
private static final double FIXED_ TEMPERATURE = 20_ 000.0 ;

I**
* Simulated annealing acceptance function.

*
* @param newKeyScore - score for the ney key
* @param currentKeyScore - score for the current key
* @r etur n t rue if new key shoul d be a ccepted
*I

boolean a c cept(double newKeyScore, double current KeySco re)

II Always accept better keys
if (newKeyScore > currentKey Score)

return true ;

I I De gradation between c u r r e nt key a n d new key .
double degradation= currentKeyScore - newKe yScore;

double acceptanceProbability =
Math. pow (Math.E, - degradation I FIXED_TEMPERATURE) ;

return ran d om . nextDouble() < acceptanceProbabi l ity;

92

Listing 2: Simulated Annealing Acceptance Function - With Chum Lookup Table

package common;
import java.util.Random;

public class ChurnSimulated.Annealing

priv a t e Random random = new Random() ;

I I Fixed temperature optimized f o r hexagram s c o ring
private static final double FIXED_TEMPERATURE = 20_000.0;

II Size o f de gradat ion thre s ho ld lookup t a ble.
private sta tic final int LOOKUP_TABLE_SIZE = 100;

II The churn algorithm lookup tab l e of degradation thresholds .
privat e final doub le [] degradationLookupTable = n ew double [LOOKUP_TABLE_SIZEJ;

II Compute the chur n algorithm l ookup table of degradation t hresholds.
void computeDegradat i onLookupTable() {

I **

f or (int index = O; index< LOOKUP_TABLE_SI ZE ; i ndex++)
degradationLookupTable[index] =

FIXED_TEMPERATURE * Math.log (LOOKUP_TABLE_S IZE I (index+ 1));

* Simulated Annea l i n g acceptance function - Chu r n implementation .

*
* @param n ewKeySc ore - sco re f or t h e ney ke y
* @param c u rrent Ke yScore - score f or t h e c u rrent key
* @retu r n tru e i f n e w ke y s h ould be accepted .
* I

boolean accept(doub le newKeyScore, double currentKeyScore)

II Always accep t better ke ys
if (newKeyScore > currentKeyScore) return t r ue ;

II Fetch a ran d om de g radat i o n t hr e shold f r om t h e l ookup tab l e .
i nt randomindex = random.next i nt (LOOKUP_ TABLE_ SIZE);
double degradationRandomThreshold = degradationLookupTable [r a ndomindex];

II Degradation b etween curre nt key and new ke y .
double degradation currentKeyScore - newKeyScore;

return degradation< degradationRandomThreshold;

93

Listing 3: Simulated Annealing Acceptance Function - Constant Temperature - Modified

package common;

import java.util.Random;

public class ImprovedFixedTemperatureSimulatedAnneal i ng

private Random random = new Random() ;

// Fixed temperature optimized f or hexagram scoring
private static final double FIXED_TEMPERATURE = 20_000.0;

I**
* Simulated Anneal ing acceptance function.

* * @param newKeyScore - score for t h e ney key
* @param currentKeyScore - score for the current key
* @return true if new key should be accepted.
*I

boolean accept(double newKeyScore , double currentKeyScore)

// Always accept better keys
if (newKeyScore > currentKeyScore)

return true ;

/ / Degradation between current key and new ke y .
double degradation= currentKeyScore - newKeyScore;

double acceptanceProbability =
Math.pow(Math.E, - degradation/ FIXED_TEMPERATURE);

return acceptanceProbability > 0 .0085
&& random .nextDouble() < acceptanceProbability;

94

Figure 1: CT2 - Cryptanalysis of Playfair with Crib

Figure 2: CT2 - Cryptanalysis of the Double Transposition Cipher

95

9 Appendix - Challenges

Ciphertext Length Key Crib
1 QONACDBLNKHIOTWDUEISOITFIDQBVOUTNRZOUCPC 40 From key phrase PLAYFAIR
2 LVNXDNMHHLHIUIEGENXTHEGQHXUHFQ 30 From key phrase PLAYFAIR
3 HNGFDIRFAMAVHFOVXLGLTVOAZMYLQGRXHAHRNHGF 40 Random key PLAYFAIR
4 ZAYNWPSYEMYQTIRXICMCKVHQHTHUKY 30 Random key PLAYFAIR
5 IROAWMDQLRNCTUOCFHMQQKMAALCQMGHIQOQKLCAP 40 From key phrase
6 BQUWLODQTOODLXWKEGAQOGHQQTOQZI 30 From key phrase
7 ILPMPEOIIZIRTPPRQRUYFUVXLIRCVANBVTPRWRCE 50 Random key

CRVSLIQOVS
8 TVCIYVGFVOGWPEFPDASNIXWKDISDRQVQLGSDZQXB 40 Random key
9 PBILKMXFPGDMDHCYHIVECOOUTGBNUC 30 Random key
10 PROMGDUGVBNYXKEADCHTHM 22 Random key

Table 1: New Playfair Challenges

96

