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Abstract 

Playfair is a manual substitution cipher in­
vented in 1854 by Charles Wheatstone. Its 
name and popularity came from the en­
dorsement of his friend Lord Playfair. The 
Playfair cipher encrypts bigrams (pairs of 
letters), and is considered more secure than 
monoalphabetic substitution ciphers which 
encrypt single letters. It was used by sev­
eral countries in the 19th century and in 
the first half of the 20th century. 

Playfair ciphers can often be solved with 
the help of a crib. Ciphertext-only attacks 
usually require hundreds of letters when 
carried out manually (Mauborgne, 1918). 
More recently, computerized attacks based 
on hill climbing and simulated annealing 
have been published, that require between 
60 to 100 letters of ciphertext (Cowan, 2008; 
Al-Kazaz et al., 2018). 

In this article, the author presents a novel 
ciphertext-only attack, implemented in the 
open-source e-learning CrypTool 2 (CT2) 
platform, that is effective against cipher­
texts as short as 40 letters (CrypTool 2 Team, 
2019). This attack is based on a special­
ized adaptation of simulated annealing and 
uses hexagrams in the scoring method. With 
CT2, a Playfair public challenge with only 
40 letters was solved, establishing an un­
official world record for decrypting short 
Playfair messages, encrypted with random 
keys, from ciphertext only (Schmeh, 2018b). 
The author also offers a series of new Play­
fair challenges. 1 

1This work has been supported by the Swedish Research 
Council, grant 2018-06074, DECRYPT - Decryption of his­
torical manuscripts. 

1 Description of Playfair 

Playfair enciphering and deciphering are based on 
a key square, with a 5 · 5 grid of letters. Each of 
the 25 letters must be unique and one letter of the 
alphabet (usually J) is omitted from the square, as 
there are only 25 positions in the square, but 26 
letters in the alphabet. 

While it is possible to use a random key square, 
it is often more convenient to derive a key square 
from a keyword (or sentence). The keyword is 
written horizontally with duplicate letters being re­
moved. The rest of the square is filled with the 
remaining letters of the alphabet, in alphabetical 
order. 

For example, the key square derived from the 
keyphrase HELLO WORLD is: 

H E L O W 
R D A B C 
F G I K M 
N P Q S T 
U V X Y Z 

To encrypt a message, the plaintext is split into 
bigrams. If there is an odd number of letters, a 
z or X is added as the last letter. To encrypt the 
message HIDE THE GOLD, we first split it into 
bigrams, and add z at the end: 

HI DE TH EG OL DZ 

Next, for each pair, we locate its two letters in 
the square. We replace them according to the fol­
lowing rules: 

• If the two letters are comers of a rectangle, 
take the letters on the horizontal opposite cor­
ners of the rectangle. For example, HI is en­
crypted as LF. 

• If both letters are in the same column, select 
the letters below each one in the square (go-
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ing back to the top if at the bottom). For ex­
ample, DE is encrypted as GD. 

• If both letters are in the same row, select the 
letters to the right of each one (going back to 
the left if at the farthest right). For example, 
OL is encrypted as WO. 

Using these rules, we obtain: 

LF GD NW DP WO CV 

2 Cryptanalysis of Playfair 

In this section, the security of Playfair is discussed, 
and a survey of prior attacks on Playfair is pre­
sented. 

2.1 Security of Playfair 

The Playfair cipher has several weaknesses, which 
may be exploited when trying to recover a Playfair 
key square: 

• With long enough ciphertexts, statistical anal­
ysis can be applied on bigrams, and matched 
against the frequencies of common bigrams 
in the language (e.g., English). The cipher­
text bigrams corresponding to the most com­
mon bigrams in the language (such as TH or 
IN in English) can often be easily identified. 

• The most frequent ciphertext letters are likely 
to be near the most frequent plaintext letters 
(e.g., E, T, I, o, N) in the key square. 

• Each mapping of a plaintext bigram to a ci­
phertext bigram reveals the mapping of an­
other bi gram, where the letters of the bi grams 
have been reversed. For example, if HI is en­
coded as LF, then IH will necessarily be en­
coded as FL. 

• If the Playfair key is derived from a keyword, 
then the last row often contains the last alpha­
bet letters such as X, Y and z. Also, the letters 
which did not appear in the keyword and are 
used to fill the bottom part of the square will 
always appear in alphabetical order. 

2.2 Prior Cryptanalysis of Playfair 

Historically, Playfair was often solved by hand with 
the help of cribs (partially-known plaintext attack). 
Based on the crib, some entries of the key square 
can be guessed or reproduced, and additional en­
tries reconstructed by trial and error. 
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Manual ciphertext-only cryptanalysis involves 
frequency analysis of ciphertext bigrams, and usu­
ally requires hundreds of ciphertext letters, not an 
uncommon scenario if multiple messages were en­
coded using the same key. In (Mauborgne, 1918), 
a manual method is described, to solve a cipher­
text composed of 800 letters. The frequencies of 
the most common ciphertext bigrams are matched 
against those most common in English, e.g. TH, 

ER, and ET. A tentative initial square is built, and 
completed in a trial-and-error process. 

In (Monge, 1936), a challenge ciphertext with 
only 30 letters is solved by taking advantage of the 
characteristics of a key square built from a key­
word (see Section 2.1). This is considered to be 
the shortest Playfair ciphertext ever solved, that 
was encrypted using a key derived from a key­
word.2 

(Cowan, 2008) presents an attack based on sim­
ulated annealing. It uses quadgrams frequencies 
(applied on a logarithmic scale) as the scoring func­
tion. A constant temperature is employed (Hoos 
and Stiltzle, 2004, p. 76). With this method, ci­
phertexts as short as 80 letters can be solved. Also, 
in the now-defunct website www.cryptoden.com3, 

(Cowan, 2015) proposes a churn algorithm, de­
scribed in Section 3.2. The churn algorithm was 
designed to mimic the process of simulated an­
nealing with constant temperature, while reducing 
software code complexity and runtime. Cowan 
describes how his churn method was found su­
perior to hill climbing for attacks on various ci­
phers (Cowan, 2015). Cowan's implementation 
of churn also produces an interesting but probably 
unintended side-effect, described in Section 3.3. 

In (Al-Kazaz et al., 2018), a compression-based 
technique combined with simulated annealing is 
described, and demonstrated on several ciphertexts. 
The shortest one, with only 60 letters, was suc­
cessfully decrypted with only two errors. The corn-

2The unicity distance for Playfair and English is 22.69 
letters (Deavours, 1977). For any Playfair cryptogram of that 
length or shorter, it is likely that there exist one or more keys, 
different from the original key, which decrypt the cryptogram 
so that the resulting decryption is a plausible English text (and 
different from the original plaintext). The unicity distance 
can be viewed as a theoretical lower-bound for the length of 
a cryptogram, so that its key may be recovered via cryptanal­
ysis. The length of the cryptogram solved by Monge (30 let­
ters) is very close to that limit. On the other hand, the unicity 
distance is only 16.56 letters ifit can be assumed that the last 
row in the key square is VWXYZ (as for most keys derived 
from keywords) (Deavours, 1977). 

3www.cryptoden.com is still accessible via 
www.wayback.com (Cowan, 2015). 



pression technique proposed in (Al-Kazaz et al., 
2018) is essentially analog to using hexagram statis­
tics ( on a logarithmic scale) as the scoring method. 

3 A New Ciphertext-only Attack 

In this section, a novel attack, successfully em­
ployed to solve several public challenges, is pre­
sented. 

This new attack extends Cowan's method (Cowan, 
2008). While it is also based on constant-temperature 
simulated annealing, it uses hexagrams statistics, 
instead of quadgrams, converted to a logarithmic 
scale. It implements an extended set of transfor­
mations applied to candidate keys, adding new types 
of transformations, as described in Section 3.4. Fur­
thermore, the new attack exhaustively applies and 
tests the full set of transformations on candidate 
keys, at each step of simulated annealing (instead 
of applying only a random subset of transforma­
tions as in (Cowan, 2008)). 

3.1 An Initial Implementation 

Initially, this new attack was implemented using 
a standard constant-temperature simulated anneal­
ing algorithm. As described in Listing 1, higher 
scores are always accepted. If the new score is 
lower than the current score, the probability of ac­
ceptance p is computed using the Metropolis for­
mula (Hoos and Sttitzle, 2004, p. 75), based on the 
score degradation d and the constant temperature 
t. 

p = e-d/t (1) 

The first implementation of this new attack, af­
ter tuning and optimizing the temperature t, was 
able to solve ciphertexts with only 70 letters, and 
rarely, with 60 letters (for comparison, (Cowan, 
2008) requires between 80 to 100 letters). Also, 
hexagrams were found to be more effective than 
quadgrams or pentagrams as the scoring method 
(all using a logarithmic scale). 

3.2 Improved Implementation Using Churn 

The attack was modified to use Cowan's churn im­
plementation of constant-temperature simulated an­
nealing (Cowan, 2015). The churn acceptance func­
tion is described in Listing 2.4 Cowan does not 
explain why he employs the term churn, however, 

4The code in Listing 2 is different from the original code 
given in (Cowan, 2015). It was adapted for clarity, but it 
preserves the original functionality. 
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the process could be described as candidate keys 
being accepted with a decreasing probability, or 
discarded ('churned') with a increasing probabil­
ity, as the score of the current key increases over 
time during simulated annealing. 5 

A lookup table with degradation values, D, is 
precomputed. Cowan does not describe how he 
computed D, but his original values can be repro­
duced and closely approximated. From Equation 1, 
it follows that: 

d=t·ln(l/p) (2) 

D has 100 entries (with an index i from Oto 99). 
For each i, the acceptance probability is computed 
as follows: 

Pi= (i+ 1)/100 (3) 

and therefore: 

Di= t ·ln(lOO/(i+ 1)) (4) 

The churn acceptance function selects a (ran­
dom) degradation threshold from the lookup table 
by generating a random index i from O to 99. If 
the actual degradation d is lower than this thresh­
old, then the new key is accepted. 6 

After modifying the new attack on Playfair to 
use the churn acceptance function, the attack was 
again tested, and surprisingly, not only its runtime 
could be reduced, but the attack's performance was 
also improved. The algorithm was able to consis­
tently solve ciphertexts with 50 letters. Cowan's 
churn algorithm was originally designed to mimic 
a constant-temperature simulated annealing pro­
cess. There was therefore no apparent reason for 
such an improvement. After further investigation, 
the root cause of this phenomena was found, as 
described in Section 3.3. 

3.3 An Unintended Side Effect 

With a regular constant-temperature simulated an­
nealing process (without churn), since the Metropo­
lis acceptance function is a continuous function 

5The acceptance probability decreases exponentially for 
candidate keys with a score lower than the score for the cur­
rent key, as a function of the score degradation - see Equa­
tion 1. As the score of the current key increases over time (as 
better current keys are being selected), the degradation for a 
given candidate key increases, and its probability of accep­
tance decreases. 

6The same functionality could in principle be achieved 
without a lookup table. However, the implementation using a 
lookup table plays an important role, described in Section 3.3. 



(see Equation 1), a candidate key with a score sig­
nificantly lower than the score of the current key 
can theoretically be accepted, albeit with a low 
but non-zero probability p. In other words, a can­
didate key resulting in a very high degradation d 
might still be accepted. 

With churn, the lookup table stores 100 discrete 
degradation values, and from Equation 4, it can be 
seen that the highest degradation value is: 

• Swaps of any two elements in the square 

• Swaps of any two rows in the square 

• Swaps of any two columns in the square 

• Permutations of the five rows 

• Permutations of the five columns 

• Permutations of the five elements of any row 

• Permutations of the five elements of any col-
Do = t · ln(l00/(0 + l)) = t · ln(lOO) (5) umn 

As a result, with churn, no key resulting in degra­
dation d greater than Do may ever be accepted. 
Similarly, it can be seen that there is a also lower 
bound for the acceptance probability, Pmin, so that: 

Pmin = (0+ 1)/100 = 0.01 (6) 

Therefore, with churn, keys with a score degra­
dation resulting in an acceptance probability p < 
Pmin = 0.01 will always be rejected, unlike with 
regular simulated annealing, where there is a low 
but non-zero probability they might be accepted. It 
was suspected that particular side-effect of the im­
plementation of churn could be the root cause for 
the higher performance of the attack with churn 
compared to the attack with regular constant-tem­
perature simulated annealing. 

To validate this hypothesis, a third version of 
the attack was implemented, using the standard ac­
ceptance function (for constant-temperature sim­
ulated annealing - see Listing 1 ), but this time 
only accepting keys with acceptance probabilities 
p 2 0.01. With this modification (described in 
Listing 3), the attack on Playfair achieved the same 
performance as when using churn, confirming the 
hypothesis. The Pmin parameter was further fine­
tuned and set to an optimal value of 0.0085.7 

3.4 Transformations on Candidate Keys 

In all versions of the new attack on Playfair, the set 
of transformations applied at each stage of simu­
lated annealing includes: 

7In preliminary experiments with attacks on other ciphers, 
this seemingly minor adaptation of simulated annealing sig­
nificantly improved their performance. One possible explana­
tion is that accepting candidate keys with scores significantly 
lower than the score of the current key, might completely 
disrupt the convergence of simulated annealing towards the 
correct key. Whereas accepting keys with score slightly or 
moderately lower than for the current keys helps in surveying 
more diverse areas of the keyspace. 
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All possible transformations listed here are tested 
at each step of simulated annealing. In contrast, in 
(Cowan, 2008), only randomly selected transfor­
mations are applied and tested (from a smaller set 
of transformation types, which only includes the 
swaps, as well as a few special transformations). 

4 A New Partly-Known Plaintext Attack 

The algorithm described in Section 3 was also adapted 
to support a crib-based attack. The scoring func­
tion was modified, so that the score ( computed 
using hexagrams statistics) is increased for each 
known-plaintext symbol correctly reproduced, when 
decrypting the ciphertext with a candidate key. With 
this modification, ciphertexts with 40 letters can 
easily be solved given a crib of 10 letters. 

5 Solving Playfair Challenges with 
CrypTool 2 (CT2) 

The new attacks described in Section 3 were first 
implemented as command-line programs. A first 
ciphertext-only challenge with 50 letters published 
by Klaus Schmeh was solved (Schmeh, 2018c). 
It took a few seconds on a 10-core Intel Core i7 
6950X 3.0 GHz PC to complete the attack and to 
recover the key and the plaintext. 

The attack was also integrated into CT2, taking 
advantage of the convenient user interface of CT2, 
which shows useful details about the progress of 
the attack, such as a list of top keys (CrypTool 2 
Team, 2019). Klaus Schmeh published a second 
challenge, this time with only 40 letters, stating 
that its solution would constitute a world record 
for solving the shortest Playfair ciphertext encrypted 
with a random key (Schmeh, 2018b). 

This new challenge was attacked with CT2. Ini­
tial runs only produced spurious solutions. At some 
stage, CT2 displayed a decryption (in the 4th place 



in the list), starting with MEETYOU, but only for a 
few seconds, before the decryption quickly disap­
peared from the list as new higher-score decryp­
tions were inserted. The partial known-plaintext 
attack (see Section 4) was then run with MEE TY OU 
as a crib, and the solution was quickly found (see 
Figure 1). The plaintext, after adding spaces, is as 
follows: 

MEET YOU TOMORROW AT FOUR TWENTY 

AT MARKET PLACE 

6 CrypTool 2 

CrypTool 2 (CT2) is an open-source e-leaming tool 
that helps pupils, students, and crypto enthusiasts 
to learn cryptology. 8 CT2 is part of the CrypTool 
project which includes widely-used e-leaming tools 
for cryptography and cryptanalysis.9 CT2 is the 
successor of CrypTool 1 (CTl), and it is based on 
a graphical programming language allowing the 
user to cascade different ciphers and methods and 
to follow the encryption or decryption steps in real­
time (CrypTool 2 Team, 2019). 

CT2 is maintained by the CrypTool team. Con­
tributions and voluntary support to this open-source 
project come from all over the world. CT2 imple­
ments classical and modem cryptographic meth­
ods, including cryptanalytic methods. It is also 
used to implement real-world prototypes of dis­
tributed cryptanalysis using the so-called CrypCloud. 
CT2 is maintained in English and German. 

State-of-the-art algorithms, such as the attack 
against the double transposition cipher described 
in (Lasry et al., 2014) and shown in Figure 2, are 
also integrated in CT2. 

7 New Challenges 

A series of new Playfair challenges is presented 
in Table 1 (Appendix 9), with short ciphertexts. 
The plaintexts were extracted from English books. 
The keys were generated either from an English 
keyphrase, or randomly. For some, the first eight 
letters of the plaintext are given as a crib. This crib 
is always PLAYFAIR, but the continuation of the 
plaintext is a sentence unrelated to Playfair. 

In addition, (Schmeh, 2018a) has published a 
new challenge with 30 letters only and encrypted 
using a random keysquare. 

8https://www.cryptool.org/en/cryptool2 
9https://en.wikipedia.org/wiki/cryptool 
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8 Appendix - Listings and Figures 

Listing 1: Simulated Annealing Acceptance Function - Constant Temperature 

package common ; 

import java.util.Random; 

public class FixedTemper a tureSimulatedAnnealing 

private Random random = new Random() ; 

II Fixed temperature optimi z e d for hexagram sco r i ng 
private static final double FIXED_ TEMPERATURE = 20_ 000.0 ; 

I** 
* Simulated annealing acceptance function. 

* 
* @param newKeyScore - score for the ney key 
* @param currentKeyScore - score for the current key 
* @r etur n t rue if new key shoul d be a ccepted 
*I 

boolean a c cept(double newKeyScore, double current KeySco re) 

II Always accept better keys 
if (newKeyScore > currentKey Score) 

return true ; 

I I De gradation between c u r r e nt key a n d new key . 
double degradation= currentKeyScore - newKe yScore; 

double acceptanceProbability = 
Math. pow (Math.E, - degradation I FIXED_TEMPERATURE) ; 

return ran d om . nextDouble() < acceptanceProbabi l ity; 
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Listing 2: Simulated Annealing Acceptance Function - With Chum Lookup Table 

package common; 
import java.util.Random; 

public class ChurnSimulated.Annealing 

priv a t e Random random = new Random() ; 

I I Fixed temperature optimized f o r hexagram s c o ring 
private static final double FIXED_TEMPERATURE = 20_000.0; 

II Size o f de gradat ion thre s ho ld lookup t a ble. 
private sta tic final int LOOKUP_TABLE_SIZE = 100; 

II The churn algorithm lookup tab l e of degradation thresholds . 
privat e final doub le [ ] degradationLookupTable = n ew double [LOOKUP_TABLE_SIZEJ; 

II Compute the chur n algorithm l ookup table of degradation t hresholds. 
void computeDegradat i onLookupTable() { 

I ** 

f or (int index = O; index< LOOKUP_TABLE_SI ZE ; i ndex++) 
degradationLookupTable[index] = 

FIXED_TEMPERATURE * Math.log (LOOKUP_TABLE_S IZE I (index+ 1)); 

* Simulated Annea l i n g acceptance function - Chu r n implementation . 

* 
* @param n ewKeySc ore - sco re f or t h e ney ke y 
* @param c u rrent Ke yScore - score f or t h e c u rrent key 
* @retu r n tru e i f n e w ke y s h ould be accepted . 
* I 

boolean accept(doub le newKeyScore, double currentKeyScore) 

II Always accep t better ke ys 
if (newKeyScore > currentKeyScore) return t r ue ; 

II Fetch a ran d om de g radat i o n t hr e shold f r om t h e l ookup tab l e . 
i nt randomindex = random.next i nt (LOOKUP_ TABLE_ SIZE ); 
double degradationRandomThreshold = degradationLookupTable [r a ndomindex]; 

II Degradation b etween curre nt key and new ke y . 
double degradation currentKeyScore - newKeyScore; 

return degradation< degradationRandomThreshold; 
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Listing 3: Simulated Annealing Acceptance Function - Constant Temperature - Modified 

package common; 

import java.util.Random; 

public class ImprovedFixedTemperatureSimulatedAnneal i ng 

private Random random = new Random() ; 

// Fixed temperature optimized f or hexagram scoring 
private static final double FIXED_TEMPERATURE = 20_000.0; 

I** 
* Simulated Anneal ing acceptance function. 

* * @param newKeyScore - score for t h e ney key 
* @param currentKeyScore - score for the current key 
* @return true if new key should be accepted. 
*I 

boolean accept( double newKeyScore , double currentKeyScore) 

// Always accept better keys 
if (newKeyScore > currentKeyScore) 

return true ; 

/ / Degradation between current key and new ke y . 
double degradation= currentKeyScore - newKeyScore; 

double acceptanceProbability = 
Math.pow(Math.E, - degradation/ FIXED_TEMPERATURE); 

return acceptanceProbability > 0 .0085 
&& random .nextDouble() < acceptanceProbability; 
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Figure 1: CT2 - Cryptanalysis of Playfair with Crib 

Figure 2: CT2 - Cryptanalysis of the Double Transposition Cipher 
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9 Appendix - Challenges 

Ciphertext Length Key Crib 
1 QONACDBLNKHIOTWDUEISOITFIDQBVOUTNRZOUCPC 40 From key phrase PLAYFAIR 
2 LVNXDNMHHLHIUIEGENXTHEGQHXUHFQ 30 From key phrase PLAYFAIR 
3 HNGFDIRFAMAVHFOVXLGLTVOAZMYLQGRXHAHRNHGF 40 Random key PLAYFAIR 
4 ZAYNWPSYEMYQTIRXICMCKVHQHTHUKY 30 Random key PLAYFAIR 
5 IROAWMDQLRNCTUOCFHMQQKMAALCQMGHIQOQKLCAP 40 From key phrase 
6 BQUWLODQTOODLXWKEGAQOGHQQTOQZI 30 From key phrase 
7 ILPMPEOIIZIRTPPRQRUYFUVXLIRCVANBVTPRWRCE 50 Random key 

CRVSLIQOVS 
8 TVCIYVGFVOGWPEFPDASNIXWKDISDRQVQLGSDZQXB 40 Random key 
9 PBILKMXFPGDMDHCYHIVECOOUTGBNUC 30 Random key 
10 PROMGDUGVBNYXKEADCHTHM 22 Random key 

Table 1: New Playfair Challenges 
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