
Bootstrapping UD treebanks for Delexicalized Parsing

Prasanth Kolachina
University of Gothenburg

prasanth.kolachina@gu.se

Aarne Ranta
University of Gothenburg
aarne@chalmers.se

Abstract

Standard approaches to treebanking tradi-
tionally employ a waterfall model (Som-
merville, 2010), where annotation guide-
lines guide the annotation process and in-
sights from the annotation process in turn
lead to subsequent changes in the anno-
tation guidelines. This process remains
a very expensive step in creating linguis-
tic resources for a target language, neces-
sitates both linguistic expertise and man-
ual effort to develop the annotations and is
subject to inconsistencies in the annotation
due to human errors.

In this paper, we propose an alternative ap-
proach to treebanking—one that requires
writing grammars. This approach is moti-
vated specifically in the context of Univer-
sal Dependencies, an effort to develop uni-
form and cross-lingually consistent tree-
banks across multiple languages. We
show here that a bootstrapping approach
to treebanking via interlingual grammars
is plausible and useful in a process where
grammar engineering and treebanking are
jointly pursued when creating resources
for the target language. We demonstrate
the usefulness of synthetic treebanks in the
task of delexicalized parsing, a task of in-
terest when working with languages with
no linguistic resources and corpora. Ex-
periments with three languages reveal that
simple models for treebank generation are
cheaper than human annotated treebanks,
especially in the lower ends of the learning
curves for delexicalized parsing, which is
relevant in particular in the context of low-
resource languages.

1 Introduction

Treebanking remains a vital step in the process
of creating linguistic resources for a language –
a practice that was established in the last 2-3
decades (Marcus et al., 1994). The process of tree-
banking involves training human annotators in or-
der to obtain high-quality annotations. This is a
human-intensive and costly process where multi-
ple iterations are performed to refine the quality
of the linguistic resource. Grammar engineering
is a complementary approach to creating linguis-
tic resources: one that requires a different kind of
expertise. These two approaches have remained
orthogonal for obvious reasons: treebanks are pri-
marily necessary to induce abstractions in NLU
(Natural Language Understanding) models from
data, while grammars are themselves abstractions
arising from linguistic knowledge. Abstractions
induced from data have proven themselves to be
useful for robust NLU tasks, while grammars are
better at precision tasks involving NLG (Natural
Language Generation).

Given the resources required for treebanking,
synthetic treebanks have been proposed and used
as substitute in cross-lingual parsing for languages
where treebanks do not exist. Such treebanks are
created using parallel corpora where parse trees in
one language are bootstrapped into a target lan-
guage using alignment information through anno-
tation projection (McDonald et al., 2011; Tiede-
mann, 2014) or using machine translation systems
to bootstrap existing treebanks in one or more
source language(s) to the target language (Tiede-
mann and Agic, 2016; Tyers et al., 2018). More re-
cently, synthetic treebanks are generated for both
real and artificial languages using multilingual
treebanks by learning feasible parameter combina-
tions (Wang and Eisner, 2016) – Wang and Eisner
(2018) show that such treebanks can be useful to
select the most similar language to train a parsing
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model for an unknown language.

At the same time, grammar-based treebanking
approaches have been shown to work in monolin-
gual setups—to derive rich linguistic representa-
tions defined by explicit grammars (Oepen et al.,
2004). These approaches are carried out by pars-
ing raw corpora with a target grammar and using
an additional human disambiguation phase. Al-
ternatively, existing treebanks are matched against
the target grammar further reducing the human ef-
fort in disambiguation: these approaches face a
challenge of under-specification in the source tree-
banks (Angelov, 2011). In the current paper, we
propose a hybrid of these two methods: we use ab-
stract syntax grammars as core linguistic abstrac-
tion to generate synthetic treebanks for a grammar
that can be translated to target representations with
high precision.

The question of annotation costs and ways to
minimize the dependence on such annotated cor-
pora has been a recurring theme in the field for
the last two decades (Ngai and Yarowsky, 2000;
Garrette and Baldridge, 2013). This question has
also been extensively addressed in the context
of dependency treebanks. We revisit this ques-
tion in context of Universal Dependencies and re-
cent work on the interplay between interlingua
grammars and multilingual dependency trees in
this scheme (Kolachina and Ranta, 2016; Ranta
and Kolachina, 2017; Ranta et al., 2017). The
use of interlingua grammars to bootstrap depen-
dency treebanks guarantees two types of consis-
tencies: multilingual treebank consistency and
intra-treebank consistency. We study the effi-
cacy of these dependency treebanks using learn-
ing curves of a transition-based parser in a delexi-
calized parsing setup. The delexicalized parsing
setup allows for generation of parallel UD tree-
banks in multiple languages with minimal pre-
requisites on language-specific knowledge.

Another rationale behind the the current work in
the context of cross-lingual parsing is while syn-
thetic treebanks offer a “cheap” alternative, the
signal for the target language is limited by the
quality of the MT system. On the other hand, in-
terlingua grammars provide a high-quality signal
about the target language. High quality using in-
terlingual grammars refers to accurate generation
of word-order and morphology – although lexical
selection in translation is still a problem. There
have not been previous attempts in cross-lingual

parsing to our knowledge studying the effect of
these.

This paper is structured as follows: Sec-
tion 2 gives the relevant background on interlin-
gua grammars and the algorithm used to generate
UD trees given treebank derived from an interlin-
gua grammar. Section 3 describes our algorithm to
bootstrap treebanks for a given interlingua gram-
mar and parallel UD treebanks from them along
with an intrinsic evaluation of these bootstrapped
UD treebanks. Section 4 shows the parsing setup
we use and Section 5 details the results of the pars-
ing experiments.

2 Grammatical Framework

Grammatical Framework (GF) is a multilingual
grammar formalism using abstract syntax trees
(ASTs) as primary descriptions (Ranta, 2011).
Originating in compilers, AST is a tectogrammat-
ical tree representation that can be shared between
languages. A GF grammar consists of two parts –
an abstract syntax shared between languages and
concrete syntax that is defined for each language.
The abstract syntax defines a set of categories and
a set of functions, as shown in Figure 1. The
functions defined in the abstract syntax specify
the result of putting subparts of two categories to-
gether and the concrete syntax specifies how the
subparts are combined i.e. word-order preferences
and agreement constraints specific to the language.

A comprehensive implementation of a multilin-
gual grammar in GF is the Resource Grammar
Library, GF-RGL (Ranta, 2009), which currently
has concrete syntaxes for over 40 languages, rang-
ing from Indo-European through Finno-Ugric and
Semitic to East Asian languages. 1 This imple-
mentation contains a full implementation of the
morphology of the language, and a set of 284 syn-
tactic constructors that correspond to the core syn-
tax of the language. Also included is a small lex-
icon of 500 lexical concepts from a set of 19 cat-
egories, of which 10 correspond to different sub-
categorization frames of verbs, 2 classes of nouns
and adjectives. These grammars are reversible-
i.e. they can be used for parsing and simultaneous
multilingual generation into multiple languages.
The concrete syntaxes for all the languages de-
fine the rules for these syntactic constructors and

1The current status of GF-RGL can be seen in
http://www.grammaticalframework.org/
lib/doc/synopsis.html which also gives access to
the source code.

16



Figure 1: Abstract syntax of a GF grammar and its specification for UD scheme. Also shown is an
example AST for the sentence the black cat sees us today. Any function with a definition written as
f : C1 → C2 → ...Cn → C; can be rewritten as a context-free rule f. C ::= C1C2...Cn.

the lexical concepts. The expressivity of these
grammars is equivalent to a PMCFG (Seki et al.,
1991), which makes parsing complexity of this
formalism polynomial in sentence length. Poly-
nomial parsing with high exponents can still be
too slow for many tasks, and is also brittle if the
grammars are designed to not over-generate. But
generation using GF grammars has been shown to
be both precise and fast, which suggests the idea
of combining data-driven parsing with grammar-
driven generation. We refer the interested reader
to Ljunglöf (2004) for discussion on expressivity
of this formalism and Angelov (2011); Angelov
and Ljunglöf (2014) for discussion on probabilis-
tic parsing using GF grammars.

2.1 gf2ud

Kolachina and Ranta (2016) propose an algorithm
to translate ASTs to dependency trees, that takes
a specification of the abstract syntax of the GF
grammar (referred to as configurations, see Fig-
ure 1) which describes the mapping between the
grammar and a target dependency scheme, in this
case Universal Dependencies. These configura-
tions can be interpreted as a synchronous grammar
over the abstract syntax as source and dependency
scheme as target.

The first step in this transducer is a recursive an-
notation that marks for each function in the AST,
one of the arguments as head and specifies labels
for the other arguments, as specified by the con-
figuration. The algorithm to extract the resulting
dependency tree from the annotated AST is sim-
ple.

• for each leaf X (which corresponds to a lexi-
cal item) in the AST

– trace the path up towards the root until
you encounter a label L

– from the node immediately above L, fol-
low the spine (the unlabeled branches)
down to another leaf Y

– Y is the head of X with label L

At the end of these two steps, the resulting data-
structure is an abstract dependency tree (ADT
shown in Figure 2). It should be noted that the
order of nodes shown in the ADT does not re-
flect the surface order that is specific to a language.
The ADT combined with the concrete syntax of a
language and concrete configurations (when nec-
essary) results in the corresponding full UD tree.
The concrete configurations are necessary to pro-
vide appropriate labels to syncategorematic words
like auxiliary verbs and negation particles. Addi-
tionally, the category configuration on the abstract
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see V2 cat N the Det black A we Pron today Adv
V2 N Det A Pron Adv

root

nsubj det

amod

obj

mod

Figure 2: ADT for the sentence the black cat sees
us today. The nodes in the ADT correspond to lex-
ical functions defined in the grammar. Also shown
is the UD part-of-speech tag sequence. Note that
the order of nodes does not reflect the surface or-
der in any particular language.

syntax can be augmented with a language-specific
category configurations to generate the morpho-
logical features in the dependency tree with a de-
sired tag set.

Kolachina and Ranta (2016) show that their
method can be used to generate partially labeled
UD trees for 30 languages when the correspond-
ing concrete syntax is available. They also show
that using configurations defined on abstract syn-
tax alone and depending on the availability of the
concrete syntax, a large fraction (around 75–85%
of edges) of the dependency treebanks can be gen-
erated automatically. This is done with small tree-
banks of ASTs – a UD treebank of 104 ASTs and a
GF treebank of 400 ASTs. Their results show that
parallel UD treebanks can be bootstrapped using
ASTs and interlingua grammars, the usefulness of
such treebanks however is not addressed in that
work. Full UD treebanks can be generated when
concrete configurations (those addressing syncate-
gorematic words) are additionally available for the
language.

3 Bootstrapping AST and UD treebanks

The abstract syntax component of a GF grammar
is an algebraic datatype definition, which can also
be seen as a context-free grammar (CFG). The dis-
ambiguation model defined in GF uses a context-
free probability distribution defined on the abstract
syntax. The advantage of defining the distribution
on the abstract syntax is that it allows for trans-
fer of distribution to languages for which GF tree-
banks do not exist. The context-free distribution
decomposes the probability estimate of a tree as
the product of probabilities of the sub-trees and the
probability of the function applied to these sub-

(a) An AST of an existential clause bootstrapped using our
model.

there is nothing or nobody next Saturday
det finns inget eller ingen nästa lördag

(b) Linearization of the AST in English and Swedish

nothing NP or Conj nobody NP saturday Weekday
PRON CCONJ PRON NOUN

root

cc

conj

obl

(c) ADT corresponding to the above example that has to be
delexicalized.

PRON VERB PRON CCONJ PRON ADJ NOUN

expl

root

nsubj cc

conj

amod

nmod

(d) The delexicalized UD tree in both English and Swedish
shares the same part-of-speech tag sequence and dependency
labels

Figure 3: Example of a bootstrapped AST and UD
tree and the intermediate ADT.
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trees. The probabilistic abstract syntax grammar
can therefore be defined in terms analogous to a
probabilistic CFG (PCFG). The probability distri-
bution over the set of categories in the grammar is
also included in the distribution corresponding to
the abstract syntax.

We use this formulation as a starting point and
generate ASTs for a given grammar. The ASTs
bootstrapped using the probability model defined
above are correct in terms of the grammar but do
not follow the selectional preferences that encode
semantic preferences verbs have for their argu-
ments typically found in language. For this reason,
we refer to the bootstrapped treebanks as “syn-
thetic” data.

Additionally, while the algorithm used to boot-
strap ASTs does not change depending on whether
the grammar includes a lexicon or not, it is signif-
icantly faster depending the size of the grammar.
Stacking gf2ud defined using abstract configu-
rations on top of these bootstrapped ASTs results
in a treebank of ADTs. Alternatively, the concrete
syntax of a language can straightforwardly be used
to linearize a corpus of the target language. The
concrete syntax and the concrete configurations
when available are used to generate fully labelled
UD treebanks for a target language. Figure 3
shows an example of a synthetic AST and delexi-
calized UD tree bootstrapped using the RGL.
The bootstrapping algorithm uses a parameter cor-
responding to the maximum depth of the trees d to
be generated. The generative story is as follows:
• Pick a category C using the distribution over

categories defined in the probability model.
• Select a function F with the definition C1 →
C2 → ...→ Cn → C according to the condi-
tional distribution P (F |C).
• Recursively apply the same step to build sub-

trees of maximum depth d − 1, tC1 , tC2 ...
tCn of categories C1, C2 ... Cn respectively.
• Return (F tC1 tC2 .. tCn).

3.1 Differences against UDv2

The design of the RGL and corresponding config-
urations do not contain all of the structures de-
fined in the UD annotation scheme. The miss-
ing structures fall into two major categories: la-
bels that depend on the lexical realization in a spe-
cific language, and structures that correspond to
specific linguistic constructions that are not part
of the core RGL syntax. Examples of the first

Language H(PUD) H(PGF) Cross-entropy
Afrikaans 39.59 58.34 63.12
Arabic 40.00 42.13 51.38
Basque 44.19 51.19 54.21
Bulgarian 32.09 53.76 61.23
Catalan 44.49 49.37 57.39
Chinese 39.25 42.10 59.76
Danish 44.85 55.28 63.39
Dutch 48.99 49.67 61.27
English 50.52 45.31 58.17
Estonian 39.45 43.82 49.35
Finnish 47.86 41.52 54.39
French 43.41 49.43 53.47
German 41.35 49.35 51.29
Greek 29.48 41.13 49.17
Hindi 32.99 43.18 54.27
Italian 38.55 51.37 59.64
Japanese 27.34 40.18 47.25
Latin 42.07 43.47 49.89
Latvian 49.75 49.91 59.26
Norwegian (bokmal) 40.29 45.97 53.17
Norwegian (nynorsk) 37.29 44.56 56.32
Persian 33.07 47.29 47.16
Polish 23.85 41.27 49.83
Portuguese 40.84 48.73 53.60
Romanian 47.31 52.31 57.12
Russian 39.14 47.92 52.84
Spanish 46.36 52.17 57.73
Swedish 35.36 47.41 51.39
Urdu 33.70 42.14 58.73
Icelandic N/A 51.26 N/A
Thai N/A 41.23 N/A

Table 1: Entropy values of probability distri-
butions P(label—(head-pos)) for different lan-
guages estimated from real (PUD) and boot-
strapped (PGF) treebanks. If a language has more
than one treebank in the UD distribution, we se-
lect one treebank as the primary treebank and use
that to estimate the distribution and in the parsing
experiments. Languages for which a UD treebank
does not exist but is included in GF-RGL are listed
towards the bottom of the table.

type include multi-word expressions and proper
nouns (labeled using fixed and flat label). In
the second class, are ellipsis and paratactic con-
structions in addition to labels that are used in ro-
bust analysis of web text (orphan, goeswith
and reparandum). Examples that cover these
labels can be generated by re-writing the gram-
mar: however, we found very few instances of
these in the treebanks. Finally, another varia-
tion in the bootstrapped treebanks is in the case
of label subtypes that are optionally defined in a
language-specific manner. While the configura-
tions allow for accurate generation of certain la-
bels (e.g. obl:agent in the case of passive
agents), recovering similar information in other
instances is not possible without a significant re-
design of the RGL (e.g. obl:tmod for tempo-
ral modifiers). We address this issue by restricting
gf2ud to generate only the core labels in UD and
ignore subtype labels uniformly across languages.

Table 1 shows the entropies of the conditional
probability distribution defined as probability of a
UD label given the part-of-speech tag of the head.
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The distributions are estimated on both the syn-
thetic UD treebank and a human annotated UD
treebank 2 Also shown in the table are the cross-
entropy values between the distribution estimated
from the synthetic and the original treebanks.

4 UD Parsing

The bootstrapped UD treebanks are used to train
delexicalized parsing models. We choose to work
with the delexicalized UD treebanks for two rea-
sons: first, the context-free assumption in the
probabilistic model defined on the abstract syntax
makes the tree generation decomposable, but se-
lectional preferences are not encoded in the gener-
ative model used for bootstrapping the ASTs. Sec-
ondly, generating a full UD treebank assumes the
availability of an interlingua lexicon – which re-
duces the portability of this approach to new lan-
guages.3 For both these reasons, we restrict our-
selves to strictly delexicalized UD treebanks in our
parsing experiments.

We are interested in the following three use-
cases depending on the size of the training data
(N) available for inducing parsing models.

• When N ≤ 1K sentences4 are available for
a language. There are around 20 treebanks
in the current UD distribution that match
this criterion and almost all these treebanks
have been manually annotated from scratch.
This corresponds to the scenario of under-
resourced languages, where either the mono-
lingual corpus for treebank or annotators
for treebanking are scarce. This scenario
strongly corresponds to our proposed idea of
simultaneous grammar engineering and tree-
banking.

• When 1K ≤ N ≤ 5K sentences5 are avail-
able for a language. There are around 18
treebanks in the current UD distribution that
match this criterion. While one can argue
that these languages are not really under-
resourced, this setup matches the typical case
of training domain-specific parsers either for
a particular domain like bio-medical or legal
texts.

2The UD treebanks are taken from the v2.3 distribution.
3 There is ongoing work on developing interlingual lexica

from linked data like WordNet (Virk et al., 2014; Angelov
and Lobanov, 2016).

4This approximately corresponds to 20K tokens.
5This approximately corresponds to 20K – 100K tokens.

• The case where treebanks are larger than ei-
ther of the two previous scenarios N ≥ 5K.
This setup is interesting to test the limit of
how useful are bootstrapped ASTs and UD
treebanks to train parsing models.

For each of these use-cases, we train parsing
models using data from both human annotated
UD treebanks and synthetic treebanks for different
sizes of training data. The resulting parsing mod-
els are evaluated using labelled attachment scores,
obtained by parsing the test set of the UD tree-
bank for the language in question. We experiment
with an off-the-shelf transition-based dependency
parser that gives good results in the dependency
parsing task (Straka and Straková, 2017). In the
ideal case the experiments need to be carried out
using multiple parsers from both the transition-
based and graph-based paradigms. We leave that
for future work.

5 Experiments

We ran experiments with 3 languages – English,
Swedish and Finnish in this paper. In addition to
the availability of a concrete syntax for the lan-
guage, our approach also requires concrete config-
urations for the languages (Kolachina and Ranta,
2016) in order to bootstrap full UD trees. Ta-
ble 2 shows statistics about the concrete config-
urations for the RGL grammar for the languages.
The probability distribution defined on the RGL
was estimated using the GF-Penn treebank (Mar-
cus et al., 1994; Angelov, 2011) of English. This
raises another question – how well does the distri-
bution defined on the abstract syntax of the RGL
estimated from monolingual data transfer across
other languages. The bootstrapping algorithm was
restricted to generate 20K ASTs of depth less than
10.6

We use UDPipe (Straka and Straková, 2017) to
train parsing models, using comparable settings
to the baseline systems provided in the CoNLL18
shared task (Zeman and Hajič, 2018). Gold tok-
enization and part-of-speech tags are used in both
training and testing the parser. This was done
to control for differences in tagging performance
across the synthetic and original UD treebanks.
The models are trained using the primary tree-
banks from Universal Dependencies v2.3 distri-
bution.7 We plot the learning curves for parsing

6Trees of depth less than 4 were filtered out in the process.
7 The notion of primary treebank for a language has been

20



(a) Learning curves for English (b) Learning curves for Finnish (c) Learning curves for Swedish

Figure 4: Learning curves for parsing models of trained on original UD and synthetic UD treebanks.

(a) Learning curves for English (b) Learning curves for Finnish (c) Learning curves for Swedish

Figure 5: Learning curves shown using bar plots for parsing models trained on less than 1000 sentences
from original UD and 2000 sentences from synthetic UD treebanks.

Language Abstract Concrete Morph-features
English 143 21 57
Swedish 143 25 59
Finnish 143 31 57

Table 2: Estimate of the effort required in gf2ud.
The abstract configurations are the same for
all languages, while the concrete functions and
morph-features are defined for each language. The
first column corresponds to configurations for syn-
tactic constructors in the RGL, and second column
corresponds to constructors that use syncategore-
matic words in the linearization.

models in Figure 4 trained on both the original and
synthetic treebank data for each use case outlined
in Section 4. The learning curves were plotted us-
ing the LAS accuracies obtained on the test set for
the three languages using models trained on both
the original and the synthetic treebanks. It is seen
from the learning curves that models trained on the
synthetic treebanks do not outperform the models
trained using original UD treebanks.

However, the full learning curves shown in Fig-
ure 4 do not tell the complete story. Figure 5
shows the learning curves (visualized using bar
plots) for English, Finnish and Swedish in the
setup where less than 1K sentences from UD tree-

made obsolete in UD v2.3 distribution - with all treebanks be-
ing assigned a code. So, we use the term primary in this paper
to refer to EWT for English, TDT for Finnish and Talbanken
for Swedish.

banks are used. It is clear from the plots for all
the three languages that the synthetic treebanks are
sub-optimal when directly compared against real
treebanks of the same size. However, what is in-
teresting is that parsing models in this range (i.e.
N ≤ 1K) with synthetic treebanks quickly reach
comparable accuracies to using real treebank data,
with an approximate effective data coefficient of
2.0. In other words comparable accuracies can be
obtained using roughly twice the amount of syn-
thetic data, generated for free by the abstract syn-
tax grammar.

It is interesting to note that the learning curves
using the synthetic data for the English parsing
models become comparably flat in our setup with
less than 5K sentences (shown in Figure 6a). De-
spite the lower improvements with increasing tree-
bank sizes, there is still a consistent improvement
in parsing accuracies with the best accuracy of
65.4 LAS using 10K synthetic samples (shown
in Figure 6b). This pattern is consistent across
Swedish and Finnish, which allows us to draw
the conclusion that while the effective data co-
efficient is smaller, the synthetic treebanks are still
useful to improve parsing accuracies.

6 Related Work

The current trend in dependency parsing is di-
rected towards using synthetic treebanks in an
attempt to cover unknown languages for which
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(a) Learning curves for English with N between 1K and 5K
samples

(b) Learning curves for English with N between 5K and 10K
samples

Figure 6: Learning curves shown using bar plots for parsing models of English

resources are minimal or do not exist alto-
gether. Such treebanks rely on various auxiliary
resources: parallel corpora (Tiedemann, 2014),
multilingual word-embeddings (Xiao and Guo,
2014), MT system for the target language (Tiede-
mann and Agic, 2016; Tyers et al., 2018) or
more minimally, tagged corpora in the target lan-
guage (Wang and Eisner, 2018).

Tiedemann and Agic (2016) propose a method
to generate synthetic treebanks for new lan-
guages using machine translation systems to trans-
fer cross-linguistic information from resource-rich
language to under-resourced languages. This work
builds on top of many previous approaches to
cross-lingual parsing using parallel corpora and
multilingual word-embeddings. The synthetic
treebanks generated in the current work are are dif-
ferent in two ways:
• we assume multilingual abstraction and the

concrete syntaxes are available, namely the
GF-RGL to generate language-independent
samples in the form of ASTs.
• we also assume that a distribution of the tar-

get language is not available and what is
available is a distribution on the abstract syn-
tax that generalizes to other languages.

Hence, the resulting treebank is licensed by a
grammar, and high-precision cross-linguistic in-
formation is specified, but the distribution over the
resulting treebank is different from the distribution
obtained using the real treebanks. An alternative
to the method of bootstrapping UD treebanks is
to use ud2gf (Ranta and Kolachina, 2017) as a
way to translate existing UD treebanks to GF tree-
banks, that are licensed by a grammar.

The current work also relates to more recent

work in data-augmentation for dependency pars-
ing (Sahin and Steedman, 2018) and more gener-
ally in NLP (Sennrich et al., 2016). The augmenta-
tion methods are designed to address data scarcity
by exploiting monolingual corpora or generat-
ing synthetic samples in multilingual applications.
However, the underlying abstractions used to gen-
erate the synthetic data are induced from auxiliary
corpora.

Jonson (2006) show that synthetic corpora gen-
erated using a GF grammar can be used to build
language models for speech recognition. Ex-
periments in their work show that synthetic in-
domain examples generated using the grammar
when combined with large out-of-domain data re-
sult in significant reduction of word error rate of
the speech recognizer. This work falls in line with
similar approaches to combine corpus driven ap-
proaches with rule-based systems (Bangalore and
Johnston, 2004), as a way to combine the sta-
tistical information available from corpora with
good coverage resulting from rule-based abstrac-
tions especially when working with restricted do-
mains. In this paper, we restrict ourselves to uti-
lizing synthetic treebanks for parsing, and leave
the discussion on ways to combine synthetic tree-
banks with real treebanks as future work. This
choice is primarily motivated by our interest in
grammar-based development of dependency tree-
banks as opposed to the traditional way of tree-
banking – by training human annotators.

7 Conclusions

In the current paper, we propose an alternative ap-
proach to cross-lingual treebanking — one that
recommends grammar engineering. Multilingual
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abstractions that facilitate bootstrapping of cross-
lingual treebanks have been previously explored
in the setup of low precision high recall methods.
These methods presume the availability of differ-
ent resources in order to induce the cross-linguistic
signal – parallel or multilingual corpora, word
embeddings etc. Our approach explores the op-
posite direction – multilingual grammars of high
precision are used to bootstrap parallel treebanks.
While these multilingual grammars are not easy
to develop, the question of how useful such gram-
mars are is one that has been largely unexplored in
the context of cross-lingual syntactic parsing.

We use a context-free probability model to gen-
erate ASTs that are used to bootstrap parallel
UD treebanks in 3 languages. Experiments in
delexicalized parsing show that these treebanks
are useful in two scenarios – when data in the
target language is minimal (<1K sentences) and
small (<5K sentences). In the future, we intend
to look at ways to generate synthetic treebanks
from existing UD treebanks of languages using
ud2gf (Ranta and Kolachina, 2017), that aims to
address the lack of syntactic distributions in our
synthetic treebanks. We also did not pursue the
obvious direction of combining the real and syn-
thetic treebanks in the current work: we leave this
for future work. Another direction that is of in-
terest is to augment existing treebanks with syn-
tactic variations to quantify the need for regular
syntactic variants in parser development, such as
converting declaratives to questions, varying tense
and polarity, adding and removing modifiers, and
so on. String-based augmentation (as opposed to
precise grammar-based generation) in this direc-
tion has already shown promising results (Sahin
and Steedman, 2018).
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