
Comparing linear and neural models for competitive MWE identification

Hazem Al Saied
ATILF, Université de Lorraine

France

halsaied@atilf.fr

Marie Candito
LLF, Université Paris Diderot

France

marie.candito@gmail.com

Mathieu Constant
ATILF, Université de Lorraine

France

mathieu.constant@univ-lorraine.fr

Abstract

In this paper, we compare the use of lin-
ear versus neural classifiers in a greedy
transition system for MWE identification.
Both our linear and neural models achieve
a new state-of-the-art on the PARSEME
1.1 shared task data sets, comprising 20
languages. Surprisingly, our best model
is a simple feed-forward network with one
hidden layer, although more sophisticated
(recurrent) architectures were tested.
The feedback from this study is that tuning
a SVM is rather straightforward, whereas
tuning our neural system revealed more
challenging. Given the number of lan-
guages and the variety of linguistic phe-
nomena to handle for the MWE identifi-
cation task, we have designed an accurate
tuning procedure, and we show that hyper-
parameters are better selected by using a
majority-vote within random search con-
figurations rather than a simple best con-
figuration selection.
Although the performance is rather good
(better than both the best shared task
system and the average of the best per-
language results), further work is needed
to improve the generalization power, espe-
cially on unseen MWEs.

1 Introduction

Multi-word expressions (MWE) are composed
of several words (more precisely of elements
that are words in some contexts) that exhibit
irregularities at the morphological, syntactic
and/or semantic level. For instance, ”prendre
la porte” is a French verbal expression with
semantic and morphological idiosyncrasy because
(1) its idiomatic meaning (”to leave the room”)
differs from its literal meaning (”to take the

door”) and (2) the idiomatic reading would
be lost if ”la porte” were used in the plural.
Identifying MWE is known to be challenging
(Constant et al., 2017), due to the highly lexical
nature of the MWE status, the various degrees of
the MWE irregularities and the various linguistic
levels in which these show. In this paper we
focus on the task of identifying verbal MWEs,
which have been the focus of two recent shared
tasks, accompanied by data sets for 20 languages:
PARSEME shared task ST.0 (Savary et al., 2017)
and ST.1 (Ramisch et al., 2018). Verbal MWEs
are rather rare (one every 4 sentences overall in
ST1.1 data sets) but being predicates, they are
crucial to downstream semantic tasks. They are
unfortunately even more difficult to identify than
other categories of MWEs: they are more likely
to be discontinuous sequences and to exhibit
morphological and structural variation, if only the
verb generally shows full inflectional variation,
allows adverbial modification and in some cases
syntactic reordering such as relativization.

Our starting point to address the MWE iden-
tification task is to reuse the system of Al Saied
et al. (2018), an enhanced version of the winning
system of ST.0, a transition system using a linear
(SVM) model. Our objective has been to incor-
porate neural methods, which are overwhelming
in current NLP systems. Neural networks have
brought substantial performance improvements on
a large variety of NLP tasks including transition-
based parsing (e.g. Kiperwasser and Goldberg
(2016) or Andor et al. (2016)), in particular thanks
to the use of distributed representations of atomic
labels, their ability to capture contextual informa-
tion. Moreover, neural methods supposedly learn
combinations from simple feature templates, as
an alternative to hand-crafted task-specific feature
engineering.

86
Proceedings of the 22nd Nordic Conference on Computational Linguistics (NoDaLiDa), pages 86–96

Turku, Finland, 30 September – 2 October, c©2019 Linköping University Electronic Press

Yet, using neural methods for our task is
challenging, the sizes of the available corpus are
relatively modest (no ST.1 language has more
than 5000 instances of training MWEs), albeit
neural models generally have more parameters to
learn than linear models. Indeed, the best systems
at the shared tasks ST.0 and ST.1 (Al Saied et al.,
2017; Waszczuk, 2018) (in closed track) are not
neural and surpassed some neural approaches.

In this paper, we carefully describe and com-
pare the development and tuning of linear versus
neural classifiers, to use in the transition system
for MWE identification proposed in Al Saied et al.
(2018), which itself built on the joint syntactic
/ MWE analyzer of Constant and Nivre (2016).
We set ourselves the constraints (i) of building
systems that are robust across languages, hence
using the same hyperparameter configuration for
all languages and (ii) of using lemma and POS
information but not syntactic parses provided in
the PARSEME data sets, so that the resulting
systems require limited preprocessing. We report
a systematic work on designing and tuning linear
and neural transition classifiers, including the
use of resampling, vocabulary generalization and
several strategies for the selection of the best
hyperparameter configuration. We address both
the open and closed tracks of the PARSEME ST.1,
i.e with and without external resources (which in
our case amount to pre-trained word embeddings).

The contributions of our work are:

• a new state-of-the art for the MWE identifica-
tion task on the PARSEME ST1.1 data sets.
Our neural model obtains about a four-point
error reduction on an artificial score mixing
the best results for each language, and 4.5
points compared to the best participating sys-
tem (even though we do not use syntactic
parses);

• a report on which hyperparameters proved
crucial to obtain good performance for the
neural models, knowing that a basic feed-
forward network without class balancing
showed high instability and achieves very
poorly (average F-score between 15% and
30%);

• an alternative strategy for tuning the hyperpa-
rameters, based on trends in random search

(Bergstra and Bengio, 2012);

• a fine-grained analysis of the results for vari-
ous partitions of the MWE, shedding light on
the necessity to address unknown MWE (not
seen in train);

• a negative result concerning the basic semi-
supervised strategy of using pre-trained word
embeddings.

We discuss the related work in Section 2, data
sets in Section 3 and the transition system in Sec-
tion 4. Linear and neural models are described
in Sections 5 and 6, and the tuning methodology
in Section 7. We present experiments and discuss
results in Sections 8 and 9, and conclude in Sec-
tion 10.

2 Related work

Supervised MWE identification has made sig-
nificant progress in the last years thanks to the
availability of new annotated resources (Schneider
et al., 2016; Savary et al., 2017; Ramisch et al.,
2018). Sequence tagging methods have been
largely used for MWE identification. In particular,
first studies experimented IOB or IOB-like anno-
tated corpora to train conditional random fields
(CRF) models (Blunsom and Baldwin, 2006;
Constant and Sigogne, 2011; Vincze et al., 2011)
or other linear models (Schneider et al., 2014).

Recently, Gharbieh et al. (2017) experimented
on the DiMSUM data set various IOB-based
MWE taggers relying on different deep learning
models, namely multilayer perceptron, recurrent
neural networks and convolutional networks.
They showed that convolutional networks achieve
better results. On the other hand, Taslimipoor and
Rohanian (2018) used pre-trained non-modifiable
word embeddings, POS tags and other technical
features to feed two convolutional layers with
window sizes 2 and 3 in order to detect n-grams.
The concatenation of the two layers is then passed
to a Bi-LSTM layer.
Legrand and Collobert (2016) used a phrase
representation concatenating word embeddings in
a fixed-size window, combined with a linear layer
in order to detect contiguous MWEs. They reach
state-of-the-art results on the French Treebank
(Abeillé et al., 2003; Seddah et al., 2013). Ro-
hanian et al. (2019) integrate an attention-based

87

L S T MWE L S T MWE
RO 43 782 4.7 DE 7 130 2.8
PT 22 473 4.4 LT 5 090 0.3
BG 18 399 5.4 HU 5 120 6.2
FR 17 421 4.6 EL 4 123 1.4
TR 17 335 6.1 EN 4 053 0.3
IT 14 342 3.3 FA 3 045 2.5
PL 13 220 4.1 ES 3 097 1.7
HE 12 238 1.2 HR 2 054 1.5
SL 10 202 2.4 HI 1 018 0.5
EU 08 117 2.8

Table 1: The number of Sentences, Tokens and MWEs in
train sets of ST.1 Languages. Dev and test sets have all a
close number of MWEs (between 500 and 800). Languages
are represented by their ISO 639-1 code and all table numbers
are scaled and rounded (1/1000).

neural model with a graph convolutional neural
network to produce an efficient model that outper-
forms the state-of-the-art on certain languages of
the PARSEME Shared Task 1.1.

The work of Waszczuk (2018) extends a se-
quential CRF to tree structures, provided that
MWEs form connected syntactic components and
that dependency parse trees are given as input. De-
pendency trees are used to generate a hypergraph
of possible traversals and a binary classifier labels
nodes as MWEs or not using local context infor-
mation. A multi-class logistic regression is then
used to determine the globally optimal traversal.
This method has showed very competitive scores
on the data sets of the PARSEME ST1.1, by rank-
ing first overall on the closed track.

By contrast, some authors have used Transition
systems, introducing a greedy structured method
that decomposes the MWE prediction problem
into a sequence of local transition predictions.
Constant and Nivre (2016) proposed a two-stack
transition system to jointly perform MWE iden-
tification and syntactic parsing. Al Saied et al.
(2017) experimented a partial implementation of
this system for identifying and categorizing ver-
bal MWEs. This system eliminates the syntac-
tic aspects of Constant and Nivre (2016)’s system
and learn a SVM model using linguistic and tech-
nical features to classify transitions. Relying on
Al Saied et al. (2017), Stodden et al. (2018) re-
placed the linear model with a convolutional mod-
ule that transforms the sparse feature vectors into
continuous ones and connect them to a dense layer.

Name Cond. Action
SHIFT β 6= ∅ (σ, i|β, γ) ⇒ (σ|i, β, γ)
REDUCE σ 6= ∅ (σ|i, β, γ) ⇒ (σ, β, γ)
MERGE |σ| > 1 (σ|i, j, β, γ) ⇒ (σ|(i, j), β, γ)
MARK σ 6= ∅ (σ|i, β, γ) ⇒ (σ|i, β, γ ∪ (i))

Figure 1: Set of transitions, each with its precondition.

3 Data sets

For our investigation, we focus on the data sets of
the PARSEME Shared Task on verbal MWE iden-
tification edition 1.1 (Ramisch et al., 2018), there-
after ST.1. Table 1 provides statistics on this data
set, which includes 20 languages1 covering a wide
range of families and corpus sizes. All languages
come with train and test sets, and all but EN, HI
and LT have a development set. They contain tok-
enized sentences in which MWEs are annotated.
Each token comes with its word and lemma forms
and its part of speech (POS) tag. ST.1 also has
extra linguistic annotations such as morphologi-
cal features and syntactic dependency trees, but
we do not use them for the purpose of the pa-
per. One MWE instance is either a set of sev-
eral potentially non-continuous tokens, or a sin-
gle token compounding multiple words (namely a
multiword token, hereafter MWT).2 Data sets also
contain rare MWEs embedded in another one, and
overlapping MWEs.

4 System description

Transition system A transition system incre-
mentally builds the expected output structure
by sequentially applying a transition to a con-
figuration that encodes the state of the system,
outputting a new configuration. It has been used
in particular to build a syntactic tree for a given
input sentence (Nivre, 2004), and to build both
the syntactic tree and the MWE list (Constant and
Nivre, 2016). We use such a system here to build
the list of MWEs only.We reuse the transition
system of Al Saied et al. (2018), simplified in that
we do not predict the MWE types.

In this system, a configuration is a triplet
c = (σ, β, γ), where β is a buffer of (remaining)
tokens, σ is a stack of ”elements”, which are
either single tokens or binary trees of tokens,
and γ is the list of elements that have been

1We used all languages but Arabic due to licence issues.
2MWTs are extremely marginal for all ST.1 languages ex-

cept German (30%) and Hungarian(75%)

88

Trans Configuration = (σ, β, γ)
Fi(s) ⇒ [], [Take, .., account], []
SHIFT ⇒ [Take], [the, .., account], []
SHIFT ⇒ [Take, the], [fact, .., account], []
REDUCE ⇒ [Take], [fact, .., account], []
SHIFT ⇒ [Take, fact], [that, .., account], []
...
SHIFT ⇒ [Take, give], [up, into, account], []
SHIFT ⇒ [Take, give, up], [into, account], []
MERGE ⇒ [Take, (give, up)], [into, account], []
MARK ⇒ [Take, (give, up)], [into, account]

, [(give, up)]
REDUCE ⇒ [Take], [into, account], [(give, up)]
SHIFT ⇒ [Take, into], [account], [(give, up)]
MERGE ⇒ [(Take, into)], [account], [(give, up)]
SHIFT ⇒ [(Take, into), account], [], [(give, up)]
MERGE ⇒ [((Take, into), account)], [], [(give, up)]
MARK ⇒ [((Take, into), account)], [], (give, up),

((Take, into), account)]
REDUCE ⇒ [], [], [(give, up), ((Take, into), account)]

Figure 2: Application of the oracle transition sequence for
the sentence Take the fact that I didn’t give up into account,
containing two verbal MWEs: Take into account and give up.

identified as MWEs so far3. To build the list of
MWEs for a given input sentence w1, w2, ...wn,
the system starts by the initial configuration
(σ = [], β = [w1, ..., wn], γ = []), and applies
a sequence of transitions until a terminal config-
uration is reached, namely here when both the
buffer and stack are empty. The transition set,
and their precondition is described in Figure 1.
Note the MERGE transition creates complex stack
elements, by merging the top 2 elements of the
stack4.

The identification of a MWE made of m com-
ponents t1, ..., tm necessitates m − 1 MERGEs,
and one final MARK. The REDUCE transition
allows to manage discontinuities in MWEs. Note
that MARK identifies S0 as MWE, but does
not remove it from the stack, hence enabling to
identify some cases of embedded MWEs (we
refer to Al Saied et al. (2018) for the precise
expressive power). At prediction time, we use
a greedy algorithm in which the highest-scoring
applicable transition according to a classifier is
applied to the current configuration.

Learning algorithm and oracle To learn this
3In all the following, we use σ|i to denote a stack with

top element i and remainder σ, and i|β for a buffer with first
token i followed by the elements in β. Si and Bi denote the
ith element of the stack and buffer respectively, starting at 0.

4Hence Si elements are either single tokens or binary
trees of tokens. In the latter case, their linguistic attributes
(lemma, POS, word form) are obtained by simple concatena-
tion over their components.

Tuning BoR TB Feature template
Prelim + + Unigrams S0, S1, B0

Prelim + + Bigrams S0S1, S0B0, S0B1, S1B0

Prelim + + Lemma ngrams and POS ngrams
Prelim + + S0 in MWT dictionary
Prelim - - Resampling
Rdm Sch - - word forms ngrams
Rdm Sch + - Unigram B1

Rdm Sch + - Bigram S0B2

Rdm Sch + - Trigram S1S0B0

Rdm Sch + + Distance between S0 and S1

Rdm Sch + + Distance between S0 and B0

Rdm Sch + - MWE component dictionary
Rdm Sch - - Stack length
Rdm Sch + + Transition history (length 1)
Rdm Sch - + Transition history (length 2)
Rdm Sch + - Transition history (length 3)
FG 62.5 60

Table 2: Linear model feature hyperparameters. First col-
umn: prelim if the hyperparameter was fixed once and for all
given preliminary tests vs. Rdm Sch for tuning via random
search (see Section 7). Best of random BoR column: whether
the template is activated (+) or not (-) in the best performing
hyperparameter set of the random search. Trend-based TB:
same but for the trend-based hyperparameter set (cf. sec-
tion 7). The last line provides the corresponding global F-
scores on dev sets of the three pilot languages (BG, PT and
TR).

transition classifier, we use the static deterministic
oracle of Al Saied et al. (2018). For any input
sentence and list of gold MWEs, the oracle
defines a unique sequence of transitions, pro-
viding example pairs (config / next transition to
apply). Transitions have a priority order (MARK

> MERGE > REDUCE > SHIFT), and the oracle
greedily applies the highest-priority transition that
is compatible with the gold analysis. MERGE

is gold-compatible whenever S0 and S1 are part
of the same gold MWE.5 For REDUCE to be
gold-compatible, S0 must not be strictly included
in a gold MWE. Moreover, either S0 is not a gold
MWE, or it is already marked as MWE.

Figure 2 shows the application of the ora-
cle transition sequence for a sentence with two
MWEs.6

5 Linear model

In order to compare linear and neural models
for MWE identification, we reused the best

5Note that this order will lead to left-branching binary
trees for elements in the stack.

6The system is implemented in Python 2.7, using
Keras and Scikit-learn libraries. The code is available
at https://github.com/hazemalsaied/MWE.
Identification/releases/tag/v.1 under MIT
licence.

89

performing linear model of Al Saied et al. (2018),
namely a SVM, in a one versus rest scheme with
linear kernel and squared hinge loss.

We used the feature templates of Al Saied
et al. (2018) minus the syntactic features, since
we focus on MWE identification independently
of syntactic parsing. Table 2 displays the list of
feature templates. We detail the ”S0 in MWT
dictionary” and ”MWE component dictionary”
templates, the other features names being rather
transparent: ”S0 in MWT dictionary” feature fires
when S0 lemma is a MWT at least once in train,
and binary features fire when either S0, S1, B0,
B1 or B2 belong to at least one train multi-token
MWE.

We ran some preliminary experiments which
led us to set some hyperparameters once and for all
(first four lines of Table 2). In particular, we ended
up not using resampling to balance the class distri-
bution, because it proved quite detrimental for the
linear model, contrary to the neural models. We
then performed tuning for all the other features (cf.
section 7).

6 MLP model

Though we investigated various neural archi-
tectures7, the ”baseline” multi-layer perceptron
(hereafter MLP) proved to be the best in the
end. It is a plain feed-forward network, with an
embedding layer concatenating the embeddings
for the POS of S0, S1, B0 and B1 and for either
their word form or lemma (hyperparameter), fully
connected to a dense layer with ReLU activation,
in turn connected to the output layer with softmax
activation.

Table 3 provides the exhaustive list of MLP
hyperparameters, along with their possible values
and their optimal values for the most performing

7We tried in particular (1) a MLP with several hidden lay-
ers; (2) a MLP fed with a bidirectional recurrent layer to rep-
resent the sequence of elements S0S1B0; (3) We also built a
model inspired by Kiperwasser and Goldberg (2016) in which
the recurrent (LSTM) embeddings of certain focus elements
(S0, S1, B0 and B1) are dynamically concatenated and fed
into a MLP, with back-propagation for a whole sentence in-
stead of for each transition. The recurrent representations of
the focus elements are supposed to encode the relevant con-
textual information of these elements in the sentence. These
models suffered from either a non-competitive performance
or a very unstable loss (36.7 for the bidirectional MLP and
8.4 for kiperwasser on test data sets of ST1.1).

configurations. Lines 1 to 9 correspond to embed-
ding and initialization hyperparameters: Lines (1,
2) concern which elements to include as additional
input (Use B2, Use B−1)8, (3) which form for
input tokens (Lemmatization), (4, 5) which size
for token and POS tag embeddings (Token and
POS dimensions), (6) whether the embeddings are
initialized randomly or pre-trained (pre-trained),
(7) whether the embeddings are Trainable or
not, and (8) how to generate embedding vectors
for stack elements: as the average of tree token
embeddings or as their sum (Averaging).

Vocabulary For the neural model, when Si
or Bi are missing, a special dummy word is used
instead. Moreover, we investigated an aggressive
reduction of the known vocabulary. We compared
2 strategies to define it: in exhaustive vocabulary
mode, hapaxes are replaced at training time by a
UNK symbol, with probability 0.5. In compact
vocabulary mode, any token (or complex element)
whose lemma is never a component of a MWE in
the training set is replaced by UNK. Note that in
both modes, the used vocabulary contains the con-
catenated symbols in case of complex Si elements.

Resampling Given that tokens are mostly not
part of a VMWE, the transitions for their identi-
fication are very rare, leading to a very skewed
class distribution.9 Resampling techniques aiming
at balancing class distribution are known to be
efficient in such a case (Chawla, 2009). Moreover,
preliminary experiments without resampling
showed unstable loss and rather low performance.
We thus used in subsequent experiments a hy-
brid resampling method composed of (1) under
sampling, that removes training sentences non
containing any MWE, and (2) random over-
sampling, that forces a uniform distribution of
the classes by randomly duplicating minority
class instances (all but SHIFT) (Chawla, 2009).
Preliminary experiments showed that without
these strategies, the systems suffered from very
unstable loss and low performance, which led us
to systematically use these two strategies in the
subsequent experiments.

8 B−1 is the last reduced element (its right-most token if
it is a complex stack element).

9For all ST.1 languages, the transitions in training sets are
approximately distributed as follows: 49% for SHIFT, 47%
for REDUCE, 3% for MERGE and 1% for MARK.

90

Type Hyperparameter Range or set BoRc BoRo TB

E
m

be
dd

in
g

an
d

in
iti

al
is

at
io

n Use B2 {True, False} True True True
Use B−1 {True, False} True False True
Lemmatization {True, False} True True True
Token dimension [100, 600] 157 300 300
POS dimension [15, 150] 147 132 35
Pre-trained {True, False} False True True | False
Trainable {True, False} True True True
Averaging {True, False} False True True
Vocabulary {Compact, Exhaustive} True False True

Dense
Unit number [25, 600] 85 56 75
Dropout {.1, .2,.. .6} 0.3 0.1 0.4

Sampling
Focused / Frequency threshold {True, False} / {5, 10,.. 30} False / - False / - False / -
Over loss / Loss coefficient {True, False} / [1, 40] False / 1 False / 1 False / 1

Train
Learning rate [.01, .2] 0.017 0.095 0.03
Batch size {16, 32, 48, 64, 128} 128 16 48

FG on all languages (on dev sets if available or 20% of train) 61.2 57.8 63.5 | 64.3

Table 3: MLP hyperparameters and their possible values (”range or set” column). Best-of-random closed (BoRc) and Best-
of-random open (BoRo) columns: hyperparameter values in best configurations according to random search on the three pilot
languages, in closed and open tracks. Last column: Trend-based (TB) configuration (see text in section 7). Last line: global
F-scores for these configurations, calculated using the average precision and recall for all ST.1 languages. The models are fit
on truncated training sets of the three pilot languages (BG, PT and TR) (cf. section 7).

Tuning explored two supplementary resampling
techniques: ”focused” oversampling which aims
at mimicking a minimum number of occurrences
for all MWEs. When set, training instances with
MERGE and MARK transitions are duplicated for
each training MWE below a frequency threshold.
”Over loss” hyperparameter penalizes the model
when it fails to predict MERGE and MARK, by
multiplying the loss by a coefficient (see Table 3).

7 Tuning methodology

The tuning phase served us to choose a hyperpa-
rameter configuration for the linear model and the
neural model, in closed and open track. In our
case, we experimented open track for the neural
model only, by using pre-trained embeddings
instead of random initialization. We thus consider
three cases: closed track linear, closed track MLP
and open track MLP.

For each of these three cases, in order to enforce
the robustness across languages of the selected hy-
perparameters, we aimed at selecting the same hy-
perparameter configuration for all the languages.

Yet, to reduce the tuning time, we have chosen
to work on three pilot languages, from three
different language families. But because the
various training sets have various sizes, we tried
to neutralize this variation by using training sets
of average size. This led us to choose three
languages (Bulgarian, Portuguese and Turkish)
among ST.1 languages having training sets bigger

than average and to tune the hyperparameters
using training sets truncated to that average size
(270k tokens) and evaluating on dev sets.

Multilingual metric: the official metric for the
PARSEME shared task is the macro average of
the F-scores over all languages (hereafter FAV G).
Yet we noted that although macro-averaging
precision and recall is appropriate because the
number of dev and test MWEs is almost the
same for all languages, averaging the F-scores
of all languages sometimes substantially differs
(e.g. by 2 points) from taking the F-score of the
macro-averaged precision and the macro-averaged
recall (hereafter FG). We thus use FAV G for
comparability with the shared task results, but
also report the FG score, and use the latter during
tuning.

Random search: To tune the hyperparame-
ters on the three pilot languages, we used random
search, which proved to be more efficient than
grid search when using the same computational
budget, because it allows to search larger ranges
of values (Bergstra and Bengio, 2012). We thus
run about 1000 trials for SVM, closed track MLP
and open track MLP. For the SVM, random search
used a uniform distribution for the hyperparam-
eters, which are all boolean. For the MLP, the
random hyperparameter values are generated from
either a set of discrete values using a uniform
distribution or from a range of continuous values

91

using logarithmic distribution. For the MLP, each
resulting random hyperparameter configuration
was run on each pilot language twice, using
always the same two seeds 0 and 110. We then
averaged the precision and recall on the dev sets,
for the three languages and the two seeds (i.e. use
the global F-score FG).

Selecting hyperparameter configurations:
Random hyperparameter search for the three pilot
languages led us to use two strategies to select
the hyperparameter sets. The first one is simply
to select the best performing hyperparameter sets
(shown in column BoR in Table 2 for the linear
model, and in the BoRc and BoRo columns in Ta-
ble 3). Yet, we noted that some hyperparameters
varied a lot among the top performing systems.
We thus investigated to build a ”trend-based”
configuration, by selecting each hyperparameter
value according to the observed trend among the
top k best configurations (with k=500/250 for
MLP/SVM)11. This results in two sets for the
linear model (best-of-random and trend-based,
in closed mode) and four configurations for the
MLP: best-of-random or trend-based, in closed or
open mode.

We then trained these six configurations on the
full-size training sets for all ST.1.1 languages,
using two seeds (0 and 1), and retaining the best
seed for each language. For the MLP case, the
global F-scores on dev sets are provided in the
last row of Table 3. Interestingly, the trend-based
configuration largely beats the best-of-random
configurations, both in closed and open tracks12.
This shows that choosing hyperparameter values
independently of each other is compensated by
choosing more robust values, by using the top k
best performing systems instead of one.

Note that for the linear case, the trend-based
configuration does not surpass the best perform-
ing random search configuration (the last line of

10Preliminary experiments showed a relative stability
when changing seeds, hence we used only two seeds in the
end. Changing seeds was useless for the linear model which
is more stable.

11We chose the values using an approximate majority vote,
using a graphical visualization of the hyperparameter values
in the top k best performing systems.

12Moreover, the best-of-random open configuration
showed instability when switching from the three pilot lan-
guages to all languages, leading to a null score for Hindi
(hence the rather low global F-score of 57.8).

Language Closed track Open track
SVM MLPc ST.1 MLPo ST.1

BG 63.3 66.8 62.5 67.7 65.6
HR 55.4 59.3 55.3 59.0 47.8
LT 38.0 45.7 32.2 45.3 22.9
PL 69.4 71.8 67.0 72.2 63.6
SL 53.5 62.7 64.3 61.2 52.3
DE 49.5 51.5 45.3 49.9 45.5
EN 28.4 31.4 32.9 31.9 33.3
ES 39.2 40.0 34.0 39.7 38.4
FR 61.1 59.0 56.2 58.8 60.9
IT 55.7 55.0 49.2 56.5 45.4
PT 68.9 67.8 62.1 70.4 68.2
RO 80.9 83.5 85.3 82.0 87.2
HI 66.8 64.9 73.0 64.9 72.7
FA 75.4 70.6 77.8 70.6 78.4
EL 57.8 62.2 49.8 61.4 58.0
EU 80.7 82.1 75.8 80.2 77.0
HE 43.3 45.2 23.3 47.3 38.9
HU 91.7 92.4 90.3 92.6 85.8
TR 47.5 52.1 45.2 47.9 58.7

FAV G 59.3 61.3 56.9 61.0 57.9
FG 60.8 62.6 57.8 62.3 58.7

FG best sys 54.0 58.1

Table 4: MWE-based F-scores for ST.1 languages on test
sets using our tuned SVM and MLP models, fit on train and
dev sets when available. ST.1 stands for the most perform-
ing scores of the shared task for each language in closed and
open tracks. All ST.1 systems fit training and development
sets except the system that produced the best score of BG
on closed track. Languages are grouped according to their
linguistic families (Slavic, Germanic, Romance, Indo-Iranian
and other).) FAV G is the official metric (average F-scores).
FG is the global F-score (see Section 7). In the FAV G and
FG lines, the best ST.1 per-language scores are used, whereas
the last line concerns the FG score of the best ST.1 systems
(Waszczuk, 2018; Taslimipoor and Rohanian, 2018).

Table 2). This asymmetry could mean that the
number of random trials is sufficient for the lin-
ear case, but not for the neural models, and that a
trend-based strategy is advantageous within a lim-
ited computational budget.

8 Experiments and results

Table 4 provides identification scores on test sets,
for our tuned SVM and MLP models for each
ST.1 language, along with the best score of ST.1
for each language, in open and closed tracks. It
also displays overall scores using both the official
ST.1 metrics (FAV G) and the more precise FG

score introduced in section 7. This FG score for
the ST.1 results is computed in two modes: in line
FG, the ST.1 columns correspond to artificially
averaging the best result of each language (in
closed / open tracks), whereas ”FG best sys” is the
score of the best system of ST.1. The differences
between SVM and MLPc results are significant13

13We used a MWE-based McNemar test.

92

for all languages except EU, HU, LT and PL.

For both FAV G and FG metrics, results show
that MLP models significantly outperforms all
other systems both in the closed and open tracks.
In the closed track, MLP surpasses SVM by 1.8
points, the best ST.1 systems per language by
4.8 points, and the best ST.1 system (Waszczuk,
2018) by 8.6 points. In the open track, MLP beats
the best ST.1 system (Taslimipoor and Rohanian,
2018) by 4.2 points, and the best ST.1 systems per
language by 3.6 points14.

In the closed track, MLP ranks first for 11
languages, while the SVM model and the best
ST.1 systems per language reach the first position
respectively for three and five languages. In
open track, MLP achieves the highest scores for
13 languages while ST.1 systems beat it for six
languages. These results tend to validate the
robustness of our approach across languages.
Regarding language families, MLP reports
remarkable gains for Slavic languages and lan-
guages from the other family, but achieve lower
performance on Indo-Iranian languages when
compared with best ST.1 results. For Romance
languages, our models surpass the ST.1 best
results (except for RO), and the SVM model is
globally better than the MLP.

Comparing the results of the open and the
closed track, we can observe that the use of pre-
trained word embeddings has no significant im-
pact on the MLP results. This might mean that
static embeddings are not well-suited for repre-
senting tokens both when used literally and within
MWE. This tendency would deserve more investi-
gation using other word embedding types, in par-
ticular contextualized ones (Devlin et al., 2018).

9 Discussion

Performance analysis In order to better under-
stand the strengths and weaknesses of the various
systems, we provide in Table 5 an in-depth
performance analysis of our models, on dev sets,
broken-down by various classifications of MWEs,

14It is worth noting that the model of Rohanian et al.
(2019), published while writing this paper, outperforms our
scores for the languages they use for evaluating their model
(EN:41.9, DE:59.3, FR:71.0, FA:80.0) on the ST.1 test sets.
However, this model exploits syntactic information (See Sec-
tion 2).

namely (1) whether a dev MWE was seen in train
(and if so, more than 5 times or not) or unseen;
(2) whether the MWE is continuous or has gaps;
and (3) according to the MWE length. The
table provides the proportions of each subclass
within the gold dev set and within the predictions
of each model (% columns), in addition to the
average precision and recall over all languages,
and the global FG score, for each model. Overall,
neural models (in closed and open tracks) tends
to get better recall than the SVM model (56
and 57, versus 49) but lower precision (70 versus
86), which is coherent with the use of embeddings.

Generalization power Without surprise, the
global F-score on seen MWEs is high for all our
systems (> 80), and it is still above 75 for MWEs
with frequency ≤ 5. Yet this masks that the neural
models have comparable precision and recall
on seen MWEs, whereas the SVM has better
precision than recall. Now when turning to the
unseen category, we can observe that all systems
get very low performance.

In comparison with MLP models, the most
important advantage of SVM is its (little) ability
to generalize (FG = 12 on unseen MWEs),
whereas the MLPs have none at all. Note that
frequency ≤ 5 is sufficient for the MLP models
to surpass the linear model. For comparison, the
average F-scores on test sets of the PARSEME
ST.1 for unseen MWEs range from 0 to almost 20.
This very low generalization of our MLP models
is understandable since tuning led us to favor
the compact vocabulary mode, which agressively
reduces the known vocabulary to seen MWE
components. Yet our best result on unseen MWEs
with a MLP with exhaustive vocabulary mode
only achieves FG = 4 on unseen MWEs.

It appears that for all models, more than 90%
of the unindentified MWEs (the silence) are either
unseen or with frequency ≤ 5, which clearly
shows that the frequency of a MWE in train set is
the crucial trait for identification. Further analysis
is needed to study the performance according to
the literal versus MWE ambiguity rate.

Continuous/discontinuous MWEs MLP
models show better performances for discon-
tinuous MWEs than SVM, whereas they reach

93

Type % SVM MLPo MLPc

% FG P R % FG P R % FG P R
All - - 63 86 49 - 62 70 56 - 63 70 57
Seen 63 93 80 89 72 99 81 83 80 98 82 82 82
- Freq > 5 26 37 80 84 77 37 82 81 82 36 81 81 82
- Freq <= 5 38 56 75 86 67 62 77 79 76 61 78 79 77
Unseen 37 7 12 44 7 1 0 7 0 2 2 10 1
Contin. 67 77 69 88 57 75 69 84 59 74 70 83 60
Discont. 33 23 45 78 31 25 50 77 37 26 50 75 37
Length 1 (MWT) 6 7 84 93 77 7 82 89 77 7 84 91 78
Length 2 78 84 64 86 51 85 65 82 54 85 66 81 56
Length 3 13 8 40 66 29 7 40 69 28 7 40 66 29

Table 5: Performance of our tuned models, on all languages, with models fit on train and evaluated on dev sets if available,
otherwise fit on 80% of train and evaluated on the rest (with seed 0 for MLP models). First line: performance on all languages.
Subsequent lines: break-down according to various MWE classifications (first column). Second column: proportion of the
subclass in gold dev set. For each model (SVM, MLPo(open) and MLPc(losed)), we report for each subclass: the proportion of
the subclass in the system prediction, the global F-score (FG), Precision (P) and Recall (R).

comparable scores for continuous MWEs. In
particular, they display a 5-point gain in F-score,
due to a 6-point gain in recall on discontinuous
MWEs.

MWE length The three systems display com-
parable scores regarding MWE length. Results
validate the intuition that the shorter the MWE, the
easier it is to identify.

10 Conclusion

We described and compared the development of
linear versus neural classifiers to use in a transition
system for MWE identification (Al Saied et al.,
2018). Surprisingly, our best neural architecture
is a simple feed-forward network with one hidden
layer, although more sophisticated architectures
were tested. We achieve a new state-of-the art
on the PARSEME 1.1 shared task data sets,
comprising 20 languages.
Our neural and linear models surpass both the
best shared task system (Waszczuk, 2018) and the
artificial average of the best per-language results.
Given the number of languages and the variety
of linguistic phenomena to handle, we designed a
precise tuning methodology.
Our feedback is that the development of the linear
(SVM) system was pretty straightforward, with
low variance between the configurations. For
the neural models on the contrary, preliminary
runs led to low and unstable performance. Class
balancing proved crucial, and our proposal to
select hyperparameter values using majority vote
on the top k best performing systems in random
search also proved beneficial.

Although our systems are competitive, their
generalization power reveals disappointing: per-
formance on unseen MWEs is very low for the
linear model (F-score=12) and almost zero for the
neural models (whereas the shared task results
range from 0 to 20 for unseen MWEs). Basic
semi-supervised experiments, consisting in using
pre-trained word embeddings, did not bring any
improvement. Static embeddings might not be
suitable representations of MWE components, as
their behavior differs when used literally or within
a MWE. This definitely calls for future work that
can incorporate information on semantic irregular-
ity.

Acknowledgement

This work was partially funded by the French Na-
tional Research Agency (PARSEME-FR ANR-14-
CERA-0001).

94

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for French. In Anne
Abeillé, editor, Treebanks. Kluwer, Dordrecht.

Hazem Al Saied, Marie Candito, and Matthieu Con-
stant. 2017. The ATILF-LLF system for parseme
shared task: a transition-based verbal multiword ex-
pression tagger. In Proceedings of the 13th Work-
shop on Multiword Expressions (MWE 2017), pages
127–132, Valencia, Spain. Association for Compu-
tational Linguistics.

Hazem Al Saied, Marie Candito, and Matthieu Con-
stant. 2018. A transition-based verbal multiword
expression analyzer. In Multiword expressions at
length and in depth: Extended papers from the MWE
2017 workshop, volume 2, page 209. Language Sci-
ence Press.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. arXiv
preprint arXiv:1603.06042.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305.

Phil Blunsom and Timothy Baldwin. 2006. Multilin-
gual deep lexical acquisition for hpsgs via supertag-
ging. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Process-
ing, pages 164–171, Sydney, Australia. Association
for Computational Linguistics.

Nitesh V Chawla. 2009. Data mining for imbalanced
datasets: An overview. In Data mining and knowl-
edge discovery handbook, pages 875–886. Springer.

Mathieu Constant, Gülşen Eryiğit, Johanna Monti,
Lonneke Van Der Plas, Carlos Ramisch, Michael
Rosner, and Amalia Todirascu. 2017. Multiword ex-
pression processing: A survey. Computational Lin-
guistics, 43(4):837–892.

Matthieu Constant and Joakim Nivre. 2016. A
transition-based system for joint lexical and syn-
tactic analysis. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 161–
171, Berlin, Germany. Association for Computa-
tional Linguistics.

Matthieu Constant and Anthony Sigogne. 2011. Mwu-
aware part-of-speech tagging with a crf model and
lexical resources. In Proceedings of the Workshop
on Multiword Expressions: from Parsing and Gen-
eration to the Real World, pages 49–56. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Waseem Gharbieh, Virendrakumar Bhavsar, and Paul
Cook. 2017. Deep learning models for multiword
expression identification. In Proceedings of the
6th Joint Conference on Lexical and Computational
Semantics (*SEM 2017), pages 54–64, Vancouver,
Canada. Association for Computational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. arXiv preprint
arXiv:1603.04351.

Joël Legrand and Ronan Collobert. 2016. Phrase rep-
resentations for multiword expressions. In Proceed-
ings of the 12th Workshop on Multiword Expres-
sions, pages 67–71, Berlin, Germany. Association
for Computational Linguistics.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. In Proceedings of the
ACL Workshop Incremental Parsing: Bringing En-
gineering and Cognition Together, pages 50–57,
Barcelona, Spain. Association for Computational
Linguistics.

Carlos Ramisch, Silvio Cordeiro, Agata Savary,
Veronika Vincze, Verginica Mititelu, Archna Bhatia,
Maja Buljan, Marie Candito, Polona Gantar, Voula
Giouli, et al. 2018. Edition 1.1 of the parseme
shared task on automatic identification of verbal
multiword expressions. In the Joint Workshop on
Linguistic Annotation, Multiword Expressions and
Constructions (LAW-MWE-CxG-2018), pages 222–
240.

Omid Rohanian, Shiva Taslimipoor, Samaneh
Kouchaki, Le An Ha, and Ruslan Mitkov. 2019.
Bridging the gap: Attending to discontinuity in
identification of multiword expressions. arXiv
preprint arXiv:1902.10667.

Agata Savary, Carlos Ramisch, Silvio Cordeiro, Fed-
erico Sangati, Veronika Vincze, Behrang Qasem-
iZadeh, Marie Candito, Fabienne Cap, Voula Giouli,
and Ivelina Stoyanova. 2017. The parseme shared
task on automatic identification of verbal multiword
expressions.

Nathan Schneider, Emily Danchik, Chris Dyer, and
Noah A. Smith. 2014. Discriminative lexical se-
mantic segmentation with gaps: running the MWE
gamut. TACL, 2:193–206.

Nathan Schneider, Dirk Hovy, Anders Johannsen, and
Marine Carpuat. 2016. Semeval-2016 task 10: De-
tecting minimal semantic units and their meanings
(dimsum). In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 546–559.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim

95

Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Woliński, Alina Wróblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL 2013
shared task: A cross-framework evaluation of pars-
ing morphologically rich languages. In Proceed-
ings of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Regina Stodden, Behrang QasemiZadeh, and Laura
Kallmeyer. 2018. Trapacc and trapaccs at parseme
shared task 2018: Neural transition tagging of ver-
bal multiword expressions. In Proceedings of the
Joint Workshop on Linguistic Annotation, Multi-
word Expressions and Constructions (LAW-MWE-
CxG-2018), pages 268–274.

Shiva Taslimipoor and Omid Rohanian. 2018. Shoma
at parseme shared task on automatic identifica-
tion of vmwes: Neural multiword expression tag-
ging with high generalisation. arXiv preprint
arXiv:1809.03056.

Veronica Vincze, István Nagy, and Gábor Berend.
2011. Multiword expressions and named entities in
the Wiki50 corpus. In Proc. of RANLP 2011, pages
289–295, Hissar.

Jakub Waszczuk. 2018. Traversal at parseme shared
task 2018: Identification of verbal multiword
expressions using a discriminative tree-structured
model. In Proceedings of the Joint Workshop on
Linguistic Annotation, Multiword Expressions and
Constructions (LAW-MWE-CxG-2018), pages 275–
282.

96

