
An Unsupervised Query Rewriting Approach Using N-gram
Co-occurrence Statistics to Find Similar Phrases in Large Text Corpora

Hans Moen1, Laura-Maria Peltonen2, Henry Suhonen2,3, Hanna-Maria Matinolli2,
Riitta Mieronkoski2, Kirsi Telen2, Kirsi Terho2,3, Tapio Salakoski1 and Sanna Salanterä2,3

1Turku NLP Group, Department of Future Technologies, University of Turku, Finland
2Department of Nursing Science, University of Turku, Finland

3Turku University Hospital, Finland
{hanmoe,lmemur,hajsuh,hmkmat,

ritemi,kikrte,kmterh,sala,sansala}@utu.fi

Abstract

We present our work towards developing a
system that should find, in a large text cor-
pus, contiguous phrases expressing sim-
ilar meaning as a query phrase of arbi-
trary length. Depending on the use case,
this task can be seen as a form of (phrase-
level) query rewriting. The suggested ap-
proach works in a generative manner, is
unsupervised and uses a combination of
a semantic word n-gram model, a statisti-
cal language model and a document search
engine. A central component is a distri-
butional semantic model containing word
n-grams vectors (or embeddings) which
models semantic similarities between n-
grams of different order. As data we use
a large corpus of PubMed abstracts. The
presented experiment is based on man-
ual evaluation of extracted phrases for ar-
bitrary queries provided by a group of
evaluators. The results indicate that the
proposed approach is promising and that
the use of distributional semantic models
trained with uni-, bi- and trigrams seems
to work better than a more traditional uni-
gram model.

1 Introduction

When searching to see if some information is
found in a text corpus, it may be difficult to for-
mulate search queries that precisely match all rel-
evant formulations expressing the same informa-
tion. This becomes particularly difficult when the
information is expressed using multiple words, as
a phrase, due to the expressibility and complex-
ity of natural language. Single words may have
several synonyms, or near synonyms, which re-
fer to the same or similar underlying concept (e.g.
“school” vs “gymnasium”). When it comes to

multi-word phrases and expressions, possible vari-
ations in word use, word count and word order
complicate things further (e.g. “consume food” vs
“food and eating” or “DM II” vs “type 2 diabetes
mellitus”).

An important task for a search engine is to
try to bridge the gap between user queries and
how associated phrases of similar meaning (se-
mantics) are written in the targeted text. In this pa-
per we present our work towards enabling phrase-
level query rewriting in an unsupervised manner.
Here we explore a relatively simple generative ap-
proach, implemented as a prototype (search) sys-
tem. The task of the system is, given a query
phrase as input, generate and suggest as output
contiguous candidate phrases from the targeted
corpus that each express similar meaning as the
query. These phrases, input and output, may be
of any length (word count), and not necessarily
known as such before the system is presented with
the query. Ideally, all unique phrases with similar
meaning as the query should be identified. For ex-
ample, the query might be: “organizational char-
acteristics of older people care”. This exact query
phrase may or may not occur in the target corpus.
Regardless, a phrase candidate of related mean-
ing that we want our system to identify in the tar-
geted corpus could then be: “community care of
elderly”. In this example, the main challenges that
we are faced with are: 1) how can we identify
these four words as a relevant phrase, and 2) de-
cide that its meaning is similar to that of the query.
Depending on the use case, the task can be seen as
a form of query rewriting/substitution, paraphras-
ing or a restricted type of query expansion. Rel-
evant use cases include information retrieval, in-
formation extraction, question–answering and text
summarization. We also aim to use this functional-
ity to support manual annotation. For that purpose
the system will be tasked with finding phrases
that have similar meaning as exemplar phrases and

131
Proceedings of the 22nd Nordic Conference on Computational Linguistics (NoDaLiDa), pages 131–139

Turku, Finland, 30 September – 2 October, c©2019 Linköping University Electronic Press

queries provided by the user, and/or as previously
annotated text spans. An unsupervised approach
like we are aiming for would be particularly valu-
able for corpora and in domains that lack relevant
labeled training data, e.g. in the form of search
history logs, needed for supervised paraphrasing
and query rewriting approaches.

The presented system relies on a combination
of primarily three components: A distributional
semantic model of word n-gram vectors (or em-
beddings), containing unigrams, bigrams and tri-
grams; A statistical language model; And a doc-
ument search engine. Briefly explained, the way
the system works is by first generating a set of
plausible phrase (rewrite) candidates for a given
query. This is done by first composing vector rep-
resentation(s) of the query, and then searching for
and retrieving n-grams that are close by in the se-
mantic vector space. These n-grams are then con-
catenated to form the phrase candidates. In this
process, the statistical language model helps to
quickly discard phrases that are likely nonsensi-
cal. Next the phrases are ranked according to their
similarity to the query, and finally the search en-
gine checks which phrase candidates actually exist
in the targeted corpus, and where.

Similar to Zhao et al. (2017) and Gupta et al.
(2019) we explore the inclusion of word n-
grams of different sizes in the same semantic
space/model. One motivation for this is that they
both found this to produce improved unigram rep-
resentations compared to only training with uni-
gram co-occurrence statistics. Another motivation
is that we want to use the model to not only re-
trieve unigrams that are semantically close to each
other, but also bigrams and trigrams.

2 Related Work

Unsupervised methods for capturing and modeling
word-level semantics as vectors, or embeddings,
have been popular since the introduction of La-
tent Semantic Analysis (LSA) (Deerwester et al.,
1990) around the beginning of the 1990s. Such
word vector representations, where the underlying
training heuristic is typically based on the distri-
butional hypothesis (Harris, 1954), usually with
some form of dimension reduction, have shown
to capture word similarity (synonymy and relat-
edness) and analogy (see e.g. Agirre et al. (2009);
Mikolov et al. (2013)). Methods and toolkits like
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-

nington et al., 2014) are nowadays commonly used
to (pre-)train word embeddings for further use
in various NLP tasks, including supervised text
classification with neural networks. However, re-
cent methods such as ELMo (Peters et al., 2017)
and BERT (Devlin et al., 2018) use deep neural
networks to represent context sensitive word em-
beddings, which achieves state-of-the-art perfor-
mance when used in supervised text classification
and similar.

Further, there are several relatively recent works
focusing on using and/or representing n-gram in-
formation as semantic vectors (see e.g. Bo-
janowski et al. (2016); Zhao et al. (2017); Po-
liak et al. (2017); Gupta et al. (2019)), possibly
to further represent clauses, sentences and/or doc-
uments (see e.g. Le and Mikolov (2014); Pagliar-
dini et al. (2018)) in semantic vector spaces.

A relatively straight forward approach to iden-
tify and represent common phrases as vectors in
a semantic space is to first use some type of col-
location detection. Here the aim is to identify se-
quences of words that co-occur more often than
what is expected by chance in a large corpus. One
can then train a semantic model where identified
phrases are treated as individual tokens, on the
same level as words, like it is done in Mikolov
et al. (2013).

In the works mentioned so far, the focus is on
distributional semantics for representing and cal-
culating semantic similarity and relatedness be-
tween predefined lexical units and/or of predefined
length (words/n-grams, collocations, clauses, sen-
tences, etc.). Dinu and Baroni (2014) and Tur-
ney (2014) take things a step further and approach
the more complex and challenging task of us-
ing semantic models to enable phrase generation.
Their aim is similar to ours: given an input query
(phrase) consisting of k words, generate as output
t phrases consisting of l words that each expresses
its meaning. Their approaches rely on applying
a set of separately trained vector composition and
decomposition functions able to compose a single
vector from a vector pair, or decompose a vector
back into estimates of its constituent vectors, pos-
sibly in the semantic space of another domain or
language.

Dinu and Baroni (2014) also apply vector com-
position and decomposition in a recursive man-
ner for longer phrases (t ≤ 3). Their focus is
on mapping between unigrams, bigrams and tri-

132

grams. As output their system produce one vec-
tor per word which represent the (to be) generated
phrase. Here the evaluation primarily assumes
that t = 1, i.e. the nearest neighbouring word
in the semantic model, belonging to the expected
word class, is extracted per vector to form the out-
put phrase. However, no solution is presented for
when t > 1 other than independent ranked lists of
semantically similar words to each vector.

Turney (2014) explores an approach targeting
retrieval of multiple phrases for a single query (i.e.
t > 1), evaluated on unigram to bigram and bi-
gram to unigram extraction. Here he applies a su-
pervised ranking algorithm to rank the generated
output candidates. For each input query, the eval-
uation checks whether or not the correct/expected
output (phrase) is among the list of top hundred
candidates.

It is unclear how well these two latter ap-
proaches potentially scale beyond bigrams or tri-
grams. Further, they assume that the length of the
input/output phrases is known in advance. How-
ever, the task that we are aiming for is to develop
a system that can take any query phrase of arbi-
trary (sub-sentence) length as input. As output it
should suggest phrases that it identifies in a large
document corpus which express the same or sim-
ilar information/meaning. Here the idea is that
we only apply upper and lower thresholds when
it comes to the length of the output phrase sugges-
tions. In addition, we do not want to be concerned
with knowledge about word classes in the input
and output phrases. We are not aware of previous
work presenting a solution to this task.

In the next section, Section 3, we describe how
our system works. In Section 4 we present a pre-
liminary evaluation followed by discussion and
plans for future work directions.

3 Methods

3.1 Semantic Model Training

In order to train a semantic n-gram model of un-
igrams, bigrams and trigrams, we initially ex-
plored two approaches. First using the Word2Vecf
(Levy and Goldberg, 2014) variation of the origi-
nal Word2Vec toolkit, where one can freely cus-
tomize the word-to-context training instances as
individual rows in the training file – each row con-
taining one source word and one target context to
predict. We opted for a skip-gram representation
of the training corpus, meaning, for each row in

the customized training file, we put the source n-
gram and one of its neighboring n-grams as target
context. The size of the sliding window is decided
by how many neighboring (context) n-grams we
include for each source n-gram. Overlap between
the source n-gram and target n-grams is allowed.

However, we found that Word2Vecf only allows
training using negative sampling. As an alternative
approach we simply used the original Word2Vec
toolkit, with the skip-gram architecture, hierarchi-
cal softmax optimization and a window size of
one, to train on the same word-to-context orga-
nized training file intended for Word2Vecf. This
means that it sees and trains on only two n-grams
(cf. word–context pair) at a time. Based on pre-
liminary testing we found this latter approach to
produce semantic models that seemed to best cap-
ture n-gram semantics for our use case.

The text used for training the semantic model is
first stemmed using the Snowball stemmer. This
is done to normalize inflected word forms, re-
duce the number of unique n-grams and conse-
quently the size of the model, as well as creat-
ing more training examples for the remaining n-
grams. Mapping back to full-form words and
phrases is later done using a document search en-
gine, as explained below.

3.2 Phrase-Level Query Rewriting System
Our system works in a generative way when trying
to find phrases from a target corpus that are seman-
tically similar to a query phrase. We describe this
as a five-step process/pipeline.

Step 1: As a first step we generate a set of query
vectors for each of the different n-gram orders
in the model – uni, bi and tri. We simply gen-
erate these vectors by normalizing and summing
the associated n-gram vectors from the semantic
model. In addition, if a word (or all words in a
n-grams when n > 1) is found in a stopword list1,
we give these vectors half weight. As an example:
given the query “this is a query”, we generate three
query vectors, # »q1-g, # »q2-g and # »q3-g as follows:

»q1-g = sum(
1

2

»

this,
1

2

#»

is,
1

2
#»a , # »query) (1)

»q2-g = sum(
1

2

»

this is,
1

2

»

is a, # »a query) (2)

»q3-g = sum(
1

2

»

this is a,
»

is a query) (3)

1We use the NLTK (Bird et al., 2009) stopword list for
English.

133

If, let’s say, the query only contains one word,
we can not generate query bigram or trigram vec-
tors. Also, not all n-grams might be found in the
semantic model. To compensate for this possibil-
ity, we keep track of the coverage percentage of
each composed vector. This is later used when
calculating similarity between the query and the
generated phrase candidates (see step 4).

Step 2: Having composed the query vectors, the
second step focuses on using the semantic model
to extract the most similar n-grams. For each
query vector, # »q1-g, # »q2-g and # »q3-g, we extract se-
mantically similar unigrams, bigrams and trigrams
that are near in the semantic space. As a distance
measure we apply the commonly used cosine sim-
ilarity measure (cos). We use a cut-off threshold
and a max count as parameters to limit the num-
ber of retrieved n-grams and further the number of
generated phrase candidates in step 3.

Step 3: The third step focuses on generating
candidate phrases from the extracted n-grams.
This is primarily done by simply exploring all pos-
sible permutations of the extracted n-grams. Here
we apply the statistical language model, trained
using the KenLM toolkit (Heafield, 2011), to ef-
ficiently and iteratively check if nonsensical can-
didate phrases are being generated. For n-grams
where n > 1 we also combine with overlapping
words – one overlapping word for bigrams and
one or two overlapping words for trigrams. As
an example, from the bigrams: “a good” and
“good cake”, we can construct the phrase “a good
cake” since “good” is overlapping.

The generation of a phrase will end if no ad-
ditional n-grams can be added, or if the length
reaches a maximum word count threshold rela-
tive to the length of the query2. If, at this point,
a phrase has a length that is below a minimum
length threshold3, it will be discarded. Finally, we
also conduct some simple rule-based trimming of
candidates by mainly removing stopwords if they
occur as the rightmost word(s).

Step 4: After having generated a set of candidate
phrases, we now rank these by their similarity to
the query. For each phrase candidate we compose
phrase vectors (# »pn-g) in the same way as we did
for the query. That said, we observed that the tri-
gram coverage of the semantic model is relatively

2
max length = query length + 2 if query length ≤ 2 else query length × 1.50

3
min length = 1 if query length ≤ 2 else query length × 0.50

low compared to unigrams and bigrams. This is a
result of us using a minimum n-gram occurrence
count threshold of 20 when training the semantic
model. Thus, for the presented experiment, we de-
cided to exclude trigrams in the similarity scoring
function.

As already mentioned, not all n-grams may be
found in the semantic model. Thus, we also incor-
porate what we refer to as coverage information
for each # »qn-g – # »pn-g pair. The underlying intuition
is to let query vectors and phrase candidate vec-
tors with low model coverage have a lower influ-
ence on the overall similarity score. For example,
if phrase p is “this is a phrase”, which consist of
three bigrams, but the semantic model is missing
the bigram “a phrase”, the coverage of # »p2-g, i.e.
cov(# »p2-g), becomes 2/3 = 0.66. The coverage of
a # »qn-g – # »pn-g pair is simply the product of their
coverage, i.e. cov(# »qn-g)× cov(# »pn-g).

The overall similarity function sim(q, p) for a
query q and a phrase candidate p is as follows:

sim(q, p) =
1

covsum

2∑

n=1

2∑

m=1

(
cos(# »qn-g, # »pm-g)

× cov(# »qn-g)× cov(# »pm-g)
)

(4)

Where cos is cosine similarity, cov(# »qn-g) and
cov(# »pm-g) refer to their coverage in the semantic
model, and covsum is:

(5)covsum =

2∑

n=1

2∑

m=1

(
cov(# »qn-g)×cov(# »pm-g)

)

Finally, all candidate phrases generated from a
query are ranked in descending order.

Step 5: In the final step we filter out the can-
didate phrases that are not found in the targeted
text corpus. To do this we have made the cor-
pus searchable by indexing it with the Apache Solr
search platform4. Since the candidate phrases are
at this point stemmed, we use a text field ana-
lyzer that allows matching of stemmed words and
phrases with inflected versions found in the orig-
inal text corpus. In this step we also gain infor-
mation about how many times each phrase occur
in the corpus, and where. By starting with the
most similar candidate phrase, the search engine
is used to filter out non-matching phrases until the

4http://lucene.apache.org/solr

134

desired number of existing phrases are found, or
until there are no more candidates left.

In addition, the system checks to see if an ex-
act match of the query exist in the corpus. If this
is the case, it removes any phrase candidate that
are either a subphrase of the query or contains the
entire query as a subphrase. This is a rather strict
restriction, but for evaluation purposes it ensures
that the system does not simply find and suggest
entries of the original query phrase (with some ad-
ditional words), or subphrases of it.

4 Experiment

Evaluating the performance of such a system is
challenging due to the complexity of the task and
the size of the text corpus. We are not aware of
evaluation data containing gold standards for this
task. Also, the complexity of the task makes it dif-
ficult to apply suitable baseline methods to com-
pare against.

We decided to conduct a relatively small ex-
periment, relying on manual evaluation, with the
aim of getting an insight into strengths and weak-
nesses of the system. As text corpus we use a
collection of PubMed abstracts consisting of ap-
proximately 3.6B tokens. Since our approach is
unsupervised, we use this same data set for both
training and testing. Six people (aka evaluators)
with background as researchers and practitioners
in the field of medicine were asked to provide 10
phrases of arbitrarily length, relevant to their re-
search interests. The requirements were that the
phrases should be intended for PubMed, more or
less grammatically correct, and preferably consist
of two or more words. This resulted in 695 phrases
of different topics, length and complexity, with an
average word count of 4.07. These serve as query
phrases, or simply queries, for the remainder of
this experiment.

Next, we use three different versions of the
system, Ngram, Unigram and Ngramrestr (de-
scribed below) to separately generate and suggest
20 candidate phrases for each query. The evalu-
ators were then given the task of assessing/rating
if these phrases expressed the same information,
similar information, topical relatedness or were
unrelated to the query. Each evaluator assessed the
suggestions for the query phrases they provided
themselves6. The five-class scale used for rating

5One person submitted 19 phrases.
6No overlapping evaluation were conducted, so no inter-

Class Description
1 Same information as the query.
2 Same information as the query

and has additional information.
3 Similar information as the query

but is missing some information.
4 Different information than the query

but concerns the same topic.
5 Not related to the query.

Table 1: Classes used by the evaluators when rat-
ing phrases suggested by the system.

the phrase suggestions can be seen in Table 1. In
total, 1380 phrases were assessed for each system
(69 × 20).

System - Ngram: Here the system is employed
as it is described in Section 3.2. We prepared the
training data for the semantic n-gram model with
a window size equivalent to 3. Minimum occur-
rence count for inclusion was 207. A dimension-
ality of 200 was used and otherwise default hyper
parameters.

System - Unigram: Here we use a more tradi-
tional semantic model containing only unigrams.
We trained the model using Word2Vec with skip-
gram architecture, a dimensionality of 200, win-
dow size of 3, minimum inclusion threshold of
20, and otherwise default hyper parameters. This
model was used to both extract relevant words
and to calculate similarity between phrases and
the query. Comparing this to the Ngram vari-
ant should provide some insight into the effect
of training/using semantic models with word n-
grams.

System - Ngramrestr: Here we add an addi-
tional restriction to the default setup (Ngram) by
removing any generated phrase candidates con-
taining one or more bigrams found in the query
(based on their stemmed versions). The intention
is to see if the system is still able to find phrases of
related information to a query, despite not allowed
to use any word pairs found in it.

In all system versions we use a statistical lan-
guage model (KenLM (Heafield, 2011)) trained
on the mentioned text corpus with an order of 3.
We set the phrase inclusion likelihood threshold to

rater agreement information is available.
7Unique unigrams = 0.8M, bigrams = 6.5M, trigrams = 15.7M.

135

Class System
Ngram Unigram Ngramrestr

1 13.99% 9.78% 8.48%
2 17.61% 12.54% 16.30%
3 24.13% 23.04% 16.23%
4 22.61% 25.14% 24.06%
5 21.67% 29.49% 34.93%

1+2 31.59% 22.32% 24.78%
1+2+3+4 78.33% 70.51% 65.07%

Table 2: Manual evaluation results.

−11.2. We strived to select parameters that made
the system variants produce, on average, approxi-
mately the same number of phrase candidates (step
2 and 3). The number of phrase candidates gener-
ated in step 3 varied significantly depending on the
query and system, from some thousands to some
tens of thousands.

5 Results, Discussion and Future Work

Table 2 shows how the evaluators rated the
(rewrite) phrases extracted by the various system
setups. With the Ngram variant, when allowed to
suggest 20 phrases, 31.59% of these contain the
same information as the query phrases – possi-
bly with some additional information (rated class
1+2). 78.33% of the suggested phrases concerns
the same topic as the query phrases, i.e. rated
class 1+2+3+4. The latter indicate the percent-
age of phrases that could be relevant to the user
when it comes to query-based searching. Overall
the results show that the system is indeed capa-
ble of generating, finding and suggesting (from the
PubMed abstracts corpus) phrases that expresses
similar meaning as the query. Table 3 shows ex-
amples of a few queries, rewrite suggestions by
the system and their ratings by the evaluators.

Using a semantic model trained on word n-
grams of different orders simultaneously (Ngram)
achieves better results than using a unigram model
(Unigram). This supports the findings in Zhao
et al. (2017) and Gupta et al. (2019).

Naturally, the restricted Ngramrestr variant
achieves lower scores than Ngram. However,
the performance differences are not that great
when looking at the percentage of phrases rated
as class 2. This suggests that the system finds
phrases containing some additional information
and/or phrases with words and expressions de-
scribing other degrees of specificity. Further, de-

spite not allowed to suggest phrases containing
bigrams found in the associated queries, it still
achieves a higher 1+2 score than Unigram.

For some expressions used in the queries, there
might not exist any good alternatives. Or, these
might not exist in the PubMed abstracts cor-
pus. For example, given the query “hand hy-
giene in hospitals”. Since Ngramrestr is not al-
lowed to suggest phrases containing the expres-
sion “hand hygiene”, or even “hygiene in”, it has
instead found and suggested some phrases con-
taining somewhat related concepts such as “hand-
washing” and “hand disinfection”. However, for
other queries the system had an arguably easier
time. For example, for the query “digestive tract
surgery” it suggests phrases like “gastrointestinal
(GI) tract operations” (rated as class 1) and “gas-
trointestinal tract reconstruction” (rated as class
2). In other cases, the same meaning of a phrase
is more or less retained when simply changing the
word order (e.g. “nurses’ information needs” vs
“information nurses need”).

We observed that step 5 typically took less time
to complete for Ngram compared to Unigram.
This could indicate that Ngram – using the n-
gram model – is better at producing phrases that
are likely to exist in the corpus. Another factor
here is the effect of using the n-gram model in the
ranking step (step 4), which retains some word or-
der information from the queries.

A weakness of the conducted experiment is that
we do not have a true gold standard reflecting if
there actually exist any phrases in the corpus of
similar meaning to the queries, or how many there
potentially are. Still, the results show that the
proposed system is indeed able to generate and
suggest phrases whose information expresses the
same or similar meaning as the provided queries,
also when there are no exact matches of the query
in the corpus. A planned next step is to look into
other evaluation options. One option is to create
a gold standard for a set of predefined queries us-
ing a smaller corpus. However, it can be difficult
to manually identify and decide which phrases are
relevant to a given query. Another option is to
use the system to search for concepts and entities
that has a finite set of known textual variants – e.g.
use one variant as query and see if it can find the
others. Alternatively, an extrinsic evaluation ap-
proach would be to have people use the system in
an interactive way for tasks related to phrase-level

136

Query phrase Rewrite suggestions by the system Rating
infection prevention and control • prevent and control hospital infections 1
in hospital • control and prevent nosocomial infection 2

• infection control and preventative care 4
information system impact • information system influence 1

• impact of healthcare information systems 2
• health information system : effects 2

attitude and hand hygiene • knowledge and attitude towards hand hygiene 2
• Hand Hygiene : Knowledge and Attitudes 2
• handwashing practices and attitudes 3

assessment of functional capacity • the functional assessment of elderly people 1
of older people • functional capacity of the elderly 3

• the functional status of elderly individuals 4
facial muscle electromyography • electromyography of facial muscles 1

• electromyography (EMG) of masticatory muscles 2
• facial muscle recording 3

treatment of post-operative nausea • postoperative nausea and vomiting (PONV) treatment 1
and vomiting • control of postoperative nausea and vomiting (PONV) 1

• treatment of emesis , nausea and vomiting 4
fundamental care • fundamental nursing care 2

• palliative care is fundamental 2
• holistic care , spiritual care 4

pain after cardiac surgery • postoperative pain after heart surgery 1
• postoperative pain management after cardiac surgery 2
• discomfort after cardiac surgery 4

Table 3: Examples of a few queries, rewrite suggestions by the system and their ratings by the evaluators.

searching and matching, and then collect qualita-
tive and/or quantitative feedback regarding impact
on task effectiveness.

So far, not much focus has been placed on sys-
tem optimization. For example, no multithreading
was used in the phrase generation steps. The av-
erage time it took for the system to generate and
find 20 phrases in the PubMed abstracts corpus for
a query was about 30 seconds. This varied quite a
bit depending on the number of n-grams extracted
in step 2, the semantic model used and the length
of the query. One bottleneck seems to be step 5
which is dependent on the size and status of the
document index. However, it is worth noting that
we have observed this to take only a few seconds
for smaller corpora. For use in search scenarios
where response time is critical, offline generation
for common queries is an option. Further, this
could for example serve to produce training data
for supervised approaches.

As future work, system optimization will aim
towards having the system generate as few non-
relevant phrase candidates as possible while avoid-

ing leaving out relevant ones. This includes mak-
ing the search in the vector space (semantic model)
to be as precise as possible (query vector com-
position) with a wide enough search for semanti-
cally similar n-grams (cos similarity cutoff thresh-
old). Also, the similarity measure used to rank the
phrase candidates relative to the query (sim(q, p))
is important for the performance of the system. As
future work we also plan to look into the possibil-
ity of incorporating ways to automatically exclude
non-relevant phrase candidates, e.g. by using a
similarity cut-off threshold. Other text similarity
measures and approaches could be tried, such as
some of those shown to perform well in the Se-
mEval STS shared tasks (Cer et al., 2017). In our
relatively straight forward vector composition ap-
proach, each word/n-gram are weighted equally
(except for stopwords). Improvements may be
gained by incorporating some sort of statistical
word weighting, like TF-IDF (Salton and Buck-
ley, 1988). Other vector composition approaches
could also be considered. Further, we also plan to
explore other approaches to generating semantic

137

text representations, such as Sent2Vec (Pagliardini
et al., 2018). Also approaches like ELMo (Peters
et al., 2017) and BERT (Devlin et al., 2018) could
be applicable for this purpose. Additionally, one
could also explore the use of cross-lingual seman-
tic models for tasks related to translation.

Some times the system had a hard time finding
phrases reflecting all the information in some of
the more lengthy and complex queries – possibly
referring to multiple topics. For example, “means
to reduce the duration of surgical operations” and
“a systematic approach to infection control”. For
some of the queries one can assume that no con-
tiguous (sub-sentence) phrases exist among the
PubMed abstracts that expresses the same mean-
ing. However, something that is missing from our
current pipeline is some kind of query segmenta-
tion step. We are now treating each query as a
single expression. As future work, especially in
the context of query-based free-text searching, we
aim to incorporate some sort of query segmenta-
tion which may split the query into smaller parts
dependent on its complexity and the number of
topics it refers to. Here we also want to explore
the possibility of having wildcards in the query.

Overall we find these initial results to be
promising. Further exploration and evaluation of
the presented approach and system is needed. This
includes looking into potential improvements and
extensions, such as those mentioned above.

6 Conclusion

In this paper we have described a prototype sys-
tem intended for the task of finding, in a large text
corpus, contiguous phrases with similar meaning
as a query of arbitrary length. For each of the
69 queries provided by a group of evaluators, we
tested the system at finding 20 phrases expressing
similar information. As corpus a large collection
of PubMed abstracts were used. The results indi-
cate that using a semantic model trained on word
n-grams of different orders (1–3) simultaneously
is beneficial compared to using a more traditional
word unigram model. Further, when restricting
the system from suggesting phrases containing bi-
grams from the corresponding queries, the results
indicate that the system is still able to find and sug-
gest relevant phrases.

Acknowledgments

This research was supported by the Academy of
Finland (315376). We would like to thank Suwisa
Kaewphan for helping out with the preprocessing
of the PubMed abstracts data set.

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In Proceed-
ings of Human Language Technologies: NAACL
2009, pages 19–27. Association for Computational
Linguistics.

Steven Bird, Edward Loper, and Ewan Klein. 2009.
Natural Language Processing with Python. OReilly
Media Inc., Sebastopol, California, USA.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard A. Harsh-
man. 1990. Indexing by latent semantic analysis.
Journal of the American Society for Information Sci-
ence, 41(6):391–407.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Georgiana Dinu and Marco Baroni. 2014. How to
make words with vectors: Phrase generation in dis-
tributional semantics. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 624–633.

Prakhar Gupta, Matteo Pagliardini, and Martin Jaggi.
2019. Better word embeddings by disentangling
contextual n-gram information. arXiv preprint
arXiv:1904.05033.

Zellig S. Harris. 1954. Distributional structure. Word,
10:146–162.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, WMT
’11, pages 187–197, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

138

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188–
1196.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 302–308.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2018. Unsupervised Learning of Sentence Embed-
dings using Compositional n-Gram Features. In
NAACL 2018 - Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 528–540. Association for Computa-
tional Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1756–1765.

Adam Poliak, Pushpendre Rastogi, M Patrick Martin,
and Benjamin Van Durme. 2017. Efficient, com-
positional, order-sensitive n-gram embeddings. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 503–508.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval.
IPM, 24(5):513–523.

Peter D Turney. 2014. Semantic composition and de-
composition: From recognition to generation. arXiv
preprint arXiv:1405.7908.

Zhe Zhao, Tao Liu, Shen Li, Bofang Li, and Xiaoyong
Du. 2017. Ngram2vec: Learning improved word
representations from ngram co-occurrence statistics.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
244–253.

139

