
Matching Keys and Encrypted Manuscripts

Eva Pettersson and Beáta Megyesi
Department of Linguistics and Philology

Uppsala University
firstname.lastname@lingfil.uu.se

Abstract
Historical cryptology is the study of his-
torical encrypted messages aiming at their
decryption by analyzing the mathematical,
linguistic and other coding patterns and
their historical context. In libraries and
archives we can find quite a lot of ciphers,
as well as keys describing the method used
to transform the plaintext message into a
ciphertext. In this paper, we present work
on automatically mapping keys to ciphers
to reconstruct the original plaintext mes-
sage, and use language models generated
from historical texts to guess the underly-
ing plaintext language.

1 Introduction

Hand-written historical records constitute an im-
portant source, without which an understanding of
our society and culture would be severely limited.
A special type of hand-written historical records
are encrypted manuscripts, so called ciphers, cre-
ated with the intention to keep the content of the
message hidden from others than the intended re-
ceiver(s). Examples of such materials are political,
diplomatic or military correspondence and intel-
ligence reports, scientific writings, private letters
and diaries, as well as manuscripts related to se-
cret societies.

According to some historians’ estimates, one
percent of the material in archives and libraries are
encrypted sources, either encrypted manuscripts
called ciphertexts, decrypted or original plain-
text, and/or keys describing how the encryp-
tion/decryption is performed. The manuscripts are
usually not indexed as encrypted sources (Láng,
2018), which makes it difficult to find them un-
less you are lucky to know a librarian with exten-
sive knowledge about the selection of the partic-
ular library you are digging in. In addition, re-
lated ciphertexts, plaintexts and keys are usually

not stored together, as information about how the
encrypted sources are related to each other is lost.
If the key has not been destroyed over time – unin-
tentionally, or intentionally for security reasons –
it is probably kept in a different place than the cor-
responding ciphertext or plaintext given that these
were probably produced in different places by dif-
ferent persons, and eventually ended up in differ-
ent archives. Information about the origin of the
ciphertext and key, such as dating, place, sender
and/or receiver, or any cleartext in the manuscript,
might give some important clues to the probability
that a key and a ciphertext originate from the same
time, and persons. However, information about
metadata is far from enough to link the related en-
crypted sources to each other. It is a cumbersome,
if not impossible, process for a historian to try to
map a bunch of keys to a pile of ciphertexts scat-
tered in the archive in order to try to decrypt these
on the basis of the corresponding key. Further, the
cryptanalyst might reconstruct a key given a ci-
phertext, and the reconstructed key might be ap-
plicable to other ciphertexts as well thereby pro-
viding more decrypted source material.

In this paper, we present work on automatically
mapping ciphertext sequences to keys to return
the plaintext from the ciphertext based on sim-
ple and homophonic substitution from Early Mod-
ern times. We measure the output of the map-
ping by historical language models developed for
14 European languages to make educated guesses
about the correct decryption of ciphertexts. The
method is implemented in a publicly available on-
line user interface where users can upload a tran-
scribed key and a ciphertext and the tool returns
the plaintext output along with a probability mea-
sure of how well the decrypted plaintext matches
historical language models for these European lan-
guages.

In Section 2, we give a brief introduction to
historical cryptology with the main focus on en-

253
Proceedings of the 22nd Nordic Conference on Computational Linguistics (NoDaLiDa), pages 253–261

Turku, Finland, 30 September – 2 October, c©2019 Linköping University Electronic Press



crypted sources and keys. Section 3 describes the
method for mapping ciphers to their correspond-
ing keys. The experimental results are presented
in Section 4 and discussed in Section 5. Finally,
we conclude the paper in Section 6.

2 Historical Cryptology

Ciphers use a secret method of writing, based on
an encryption algorithm to generate a ciphertext,
which in turn can be used to decrypt the message
to retrieve the intended, underlying information,
called the plaintext. A cipher is usually operated
on the basis of a key. The key contains information
about what output the cipher shall produce given
the plaintext characters in some specific language.

Historical cryptology is the study of encoded
or encrypted messages from our history aiming at
the decryption by analyzing the mathematical, lin-
guistic and other coding patterns and their histo-
ries. One of the main and glorious goals is to de-
velop algorithms for decryption of various types of
historical ciphers, i.e. to reconstruct the key in or-
der to retrieve the corresponding plaintext from a
ciphertext. The main focus for cryptanalysts has
been on specific ciphers, see e.g. (Bauer, 2017;
Singh, 2000) for nice summaries, while systematic
decryption of various cipher types on a larger scale
has been paid less attention to (see e.g. Knight
et al. (2006); Nuhn and Knight (2014); Ravi and
Knight (2008)). Historians, on the other hand, are
searching for ciphertexts and keys in libraries to
reveal new, important and hitherto hidden infor-
mation to find new facts and interpretations about
our history. Another, less observed goal within
historical cryptology is therefore to map the en-
crypted sources, the original keys and correspond-
ing ciphertexts.

There are many different types of ciphers
used throughout our history (Kahn, 1996). In
early modern times, when encryption became fre-
quently used in Europe, ciphers were typically
based on transposition, where the plaintext charac-
ters are reordered in a systematic way, or substitu-
tion of plaintext characters to transform each char-
acter in the plaintext to another symbol from exist-
ing alphabets, digits, special symbols, or a mixture
of these (Bauer, 2007). More advanced substi-
tution ciphers include homophonic, polygraphic,
and polyalphabetic substitution. In Figure 1, we
show a homophonic substitution cipher with a key,
a short ciphertext and the corresponding plaintext

generated by the key. Each plaintext character,
written in capital letter, has one or several corre-
sponding symbol(s) by which the plaintext char-
acters are substituted to encrypt the message. To
make decryption difficult, the most frequently oc-
curring plaintext characters are usually substituted
with one of several possible symbols.

Figure 1: Ciphertext, key, and the corresponding
plaintext for a homophonic substitution cipher.

Ciphertexts contain symbol sequences with
spaces, or without any space to hide word bound-
aries. Similar to historical text, punctuation marks
are not frequent, sentence boundaries are typically
not marked, and capitalized initial characters in
the beginning of the sentence are usually missing.
We can also find nulls in ciphertexts, i.e. symbols
without any corresponding plaintext characters to
confuse the cryptanalyst to make decryption even
harder.

Keys might contain substitution of not only
characters in the plaintext alphabet, but also
nomenclatures where bigrams, trigrams, syllables,
morphemes, common words, and/or named enti-
ties, typically referring to persons, geographic ar-
eas, or dates, are substituted with certain sym-
bol(s). Diacritics and double letters are usually
not encoded. Each type of entity to be encrypted
might be encoded by one symbol only (unigragh),
two symbols (digraph), three symbols (trigraph),
and so on. For example, the plaintext alphabet
characters might be encrypted with codes using
two-digit numbers, the nomenclatures with three-
digit numbers, space with one-digit numbers, and
the nulls with two-digit numbers, etc. Figure 2
illustrates a key based on homophonic substitu-
tion with nomenclature from the second half of
the 17th century. Each letter in the alphabet has
at least one corresponding ciphertext symbol, rep-
resented as a two-digit number (digraph), and the
vowels and double consonants have one additional

254



graphical sign (unigraph). The key also contains
encoded syllables with digraphs consisting of nu-
merals or Latin characters, followed by a nomen-
clature in the form of a list of Spanish words en-
coded with three-digit numbers letters or graphical
signs.

Figure 2: A key from the second half of the 17th
century (Algemeen Rijksarchief, 1647-1698) from
the DECODE database (Megyesi et al., 2019).

One of the first steps, apart from digitization of
the encrypted source, is the transcription of keys
and ciphertext images, before cryptanalysis can be
applied, aiming at the decryption of the ciphertext
to recover the key. However, there are other chal-
lenges that also need attention depending on what
document types that are available and what docu-
ments that need to be recovered. These are:

1. generate ciphertext given a plaintext and a
key (i.e. encryption)

2. reconstruct plaintext from a ciphertext and
a key (less trivial due to unknown plaintext
language and ambiguous code sequences and
nulls)

3. map key and ciphertexts

Next, we will describe our experiments on re-
trieving plaintext from keys given a ciphertext
with the goal to be able to automatically find ci-
phertexts that belong to a particular key.

3 Mapping Ciphers to Keys

3.1 Data
For our experiments on automatically mapping ci-
phertext sequences to key-value pairs, we need ac-
cess to four kinds of input files:

1. a transcribed ciphertext

2. its corresponding key

3. its corresponding plaintext (for evaluation
purposes)

4. a set of language models (for language detec-
tion)

A collection of several hundreds of ciphers and
keys from Early Modern times can be found in the
recently developed DECODE database (Megyesi
et al., 2019).1 The database allows anyone to
search in the collection, whereas upload of new
encrypted manuscripts may be done by registered
users only. The collected ciphertexts and keys
are annotated with metadata including informa-
tion about the provenance and location of the
manuscript, transcription, possible decryption(s)
and translation(s) of the ciphertext, images, and
any additional material of relevance to the partic-
ular manuscript.

Currently, most of the ciphertexts in the DE-
CODE database are still unsolved. Even though
the overall aim of the cipher-key mapping algo-
rithm (CKM) is to automatically try to match these
unsolved ciphertexts to existing keys, we need pre-
viously solved ciphertexts, connected to a key and
a plaintext file, to conduct our experiments. In our
experiments, we thus make use of three previously
broken keys and their corresponding ciphertexts,
written originally during Early Modern times. For
all three manuscripts, the transcribed ciphertext as
well as the key and a plaintext version of the con-
tents are available through the DECODE database.
We also add a fourth decrypted file, the Copiale
cipher (Knight et al., 2011),2 for which both the
ciphertext and the plaintext are accessible through
the DECODE database. This cipher will only be
used for evaluation of the language detection part
of the algorithm. The data collection used for the
experiments is summarized in Table 1, where each
manuscript is described with regard to its cipher
type and plaintext language.

In our experiments, we will use the Barb ci-
pher for initial tests during the development of the
CKM algorithm, hence-forth the training set. This
cipher is based on homophonic substitution with

1https://cl.lingfil.uu.se/decode/
2https://cl.lingfil.uu.se/~bea/

copiale/

255



Name Cipher type Plaintext Use
Barb.lat.6956 homophonic, nulls, nomenclature Italian training
Francia-64 homophonic, nulls, nomenclature Italian evaluation
Borg.lat.898 simple substitution Latin evaluation
Copiale homophonic German evaluation (lang. detection)

Table 1: Datasets used for training and evaluation of the CKM algorithm.

nomenclatures, and consists of codes with num-
bers. The codes are 2-digit numbers representing
plaintext characters, syllables and some function
words, and three-digit codes for place and person
names and common words. The cipher also con-
tains two one-digit codes denoting word bound-
aries. The evaluation set on the other hand, con-
sists of two ciphers:

1. the Francia cipher, which has the same cipher
type (homophonic substitution with nulls and
nomenclature) and underlying plaintext lan-
guage (Italian) as the Barb cipher used during
training

2. the more divergent Borg cipher, which is in-
stead a simple substitution cipher with Latin
as the underlying plaintext language

The transcription of the ciphertexts was also re-
trieved from the DECODE database. Each tran-
scription file of a particular cipher (which may
consist of one or multiple images) starts with
comment lines (marked by "#") with information
about the name of the file, the image name, the
transcriber’s id, the date of the transcription, etc.
The transcription is carried out symbol by sym-
bol and row by row keeping line breaks, spaces,
punctuation marks, dots, underlined symbols, and
cleartext words, phrases, sentences, paragraphs, as
shown in the original image. In case cleartext is
embedded in the ciphertext, the cleartext sequence
is clearly marked as such with a language id. For
a detailed description of the transcription, we refer
to Megyesi et al. (2019).

Original and reconstructed keys also follow a
common format, starting with metadata about the
key followed by a description of the code groups.
Each code is described in a separate line followed
by the plaintext entity (character, syllable, word,
etc), delimited by at least one space character.

Figure 3 shows a few lines from the key file be-
longing to the Barb cipher, with codes 1 and 8 de-
noting a word boundary, codes 00 and 02 denoting
the letter a, code 03 denoting the letter o, code 04

#Key
#homophonic with nomenclature
#null = space (word boundary)
1 <null>
8 <null>
00 a
02 a
03 o
04 u/v
...
232 ambasciatore di Spagna

Figure 3: Example format for a transcribed key file
in the Decode database.

denoting either the letter u or the letter v (since
there was often no distinction between these two
letters in historical texts), and code 232 denoting
the whole phrase ambasciatore di Spagna (ambas-
sador of Spain).

3.2 Storing code-value pairs

In the first step of the CKM algorithm, the key file
is processed and the code-value pairs, as well as
the length of the longest code, are stored for fu-
ture reference. The key file is required to be in
plain text format, and with one code-value pair
on each line. Furthermore, the code and its value
should be separated by at least one white space
character. If the key file contains values denot-
ing word delimiters, the script will recognise these
as such if they are written as "null" (in any com-
bination of upper-case and lower-case characters,
so for example "Null" and "NULL" will also be
recognised as word delimiters). Any lines initial-
ized with a hashtag sign ("#") will be ignored, as
containing comments, in accordance with the for-
mat illustrated in Figure 3.

3.3 Mapping ciphertexts to code-value pairs

In the second step, the transcribed ciphertext is
processed, and its contents matched against the
code-value pairs stored in the previous step, to re-

256



#002r.jpg
<IT De Inenunchi? 14 Maggio 1628.>
6239675017378233236502343051822004623?

Figure 4: Example of a ciphertext segment in the
Decode database.

veal the underlying plaintext message. In this pro-
cess, three types of input are ignored:

1. text within angle brackets (presumed to con-
tain cleartext segments)

2. lines starting with a hashtag (presumed to be
comments)

3. question marks (presumed to denote the an-
notator’s uncertainty about the transcription)

The first lines from a transcribed ciphertext
file in the Decode database is shown in Figure
4, where the name of the image from which the
transcription has been made is given as a com-
ment (preceded by a hashtag), cleartext is given
within angle brackets, and the annotator’s uncer-
tainty about transcribing the last character on the
line as the digit "3" is signalled by a question
mark.

If the transcribed ciphertext contains word
boundaries in the form of space characters, or if
the code-value pairs stored in the previous step
contain codes for denoting word boundaries, the
ciphertext is split into words based on this infor-
mation, and the remaining mapping process is per-
formed word by word. If no such information ex-
ists, the whole ciphertext is treated as a single seg-
ment, to be processed character by character.

If word boundaries have been detected, for ev-
ery word that is shorter than, or equal in length
to, the longest code in the key file, we check if
the whole word can be matched towards a code.
If so, we replace the ciphertext sequence with the
value connected to that code. If not, or if the word
is longer than the longest code in the key file, we
iterate over the sequence, character by character,
and try to match each character against the key
file. If not successful, we merge the current char-
acter(s) with the succeeding character, and try to
match the longer sequence against the key file,
until we reach a sequence equal in length to the
longest code in the key file. If nothing can be
matched in the key file for the maximum length
sequence, we replace this sequence by a question
mark instead, and move on to the next character.

If sequence equals a code:
Replace sequence by matched value

Else:
While characters in sequence:

If char(s) equals a code:
Replace char(s) by matched value

Else if char length equals
longest code length:

Replace char(s) by ? and
move on to next character

Else:
Merge char with next char
and try again

Figure 5: Algorithm for mapping ciphertext se-
quences to code-value pairs.

This non-greedy search-and-replace mechanism is
applied for the whole word, except for the end of
the word. Since we know that the key in the train-
ing file contains code-value pairs for representing
suffixes, the script checks, in each iteration, if the
remaining part of the word is equal in length to the
longest code in the key file. If so, we try to match
the whole sequence, and only if this fails, we fall
back to the character-by-character mapping. The
whole algorithm for the matching procedure is il-
lustrated in Figure 5.

3.4 Language identification

When the plaintext has been recovered, the next
task is to guess what language the decrypted text is
written in, and present hypotheses to the user. This
is done based on language models for historical
text, derived from the HistCorp collection of his-
torical corpora and tools (Pettersson and Megyesi,
2018).3 We use word-based language models cre-
ated using the IRSTLM package (Federico et al.,
2008), for the 14 languages currently available
from the HistCorp webpage: Czech, Dutch, En-
glish, French, German, Greek, Hungarian, Ice-
landic, Italian, Latin, Portuguese, Slovene, Span-
ish and Swedish. For this particular task, we only
make use of the unigram models, i.e. the sin-
gle words in the historical texts. The plaintext
words generated in the previous steps, by match-
ing character sequences in the ciphertext against
code-value pairs in the key file, are compared to
the words present in the language model for each
of these 14 languages. As output, the script pro-
duces a ranked list of these languages, presenting
the percentage of words in the plaintext file that
are also found in the word-based language model

3https://cl.lingfil.uu.se/histcorp/

257



for the language in question. The idea is that if
a large percentage of the words in the decrypted
file are also present in a language model, there is a
high chance that the key tested against the cipher-
text is actually an appropriate key for this particu-
lar text.

3.5 Evaluation

We evaluate our method for cipher-key mapping
based on the percentage of words in the evalua-
tion corpus that are identical in the automatically
deciphered text and in the manually deciphered
gold standard version (taking the position of the
word into consideration). Casing is not considered
in the comparison, since lower-case and upper-
case words are usually not represented by differ-
ent codes in the key files used in our experiments.
Furthermore, some codes may refer to several (re-
lated) values, such as in the example given in Fig-
ure 3 (see further Section 3.2), where the code 04
could correspond either to the letter u or to the
letter v. This also holds for different inflectional
forms of the same lemma, such as the Italian word
for ’this’, that could be questo, questa or questi,
depending on the gender and number of the head
word that it is connected to, and therefore would
typically be represented by the same code. In these
cases, we consider the automatic decipherment to
be correct, if any of the alternative mappings cor-
responds to the form chosen in the gold standard.

The language identification task is evaluated by
investigating at what place in the ranked list of
14 potential languages the target language is pre-
sented.

4 Results

4.1 Cipher-Key mapping

In the first experiment, we tested the CKM algo-
rithm on the Francia cipher (see further Section
3.1); a cipher of the same type as the cipher used
as a role model during the development of the
method. This cipher shares several characteristics
with the training text: (i) it is written during the
same time period, (ii) it is collected from the Vat-
ican Secret Archives, (iii) it is a numerical cipher
with homophonic substitution and nomenclatures,
and (iv) word delimiters are represented in the key.

When comparing the automatically decrypted
words to the words in the manually deciphered
gold standard, approximately 79% of the words
are identical. The cases where the words differ

could be categorized into four different types:

1. Incomplete key: Diacritics
(36 instances)
The key only contains plain letters, without
diacritics. The human transcriber has how-
ever added diacritics in the manually deci-
phered text, where applicable. For example,
the code 9318340841099344 has been inter-
preted by the script as the word temerita. The
human transcriber has added a diacritic to
the last letter a, resulting in the word temer-
itá (’boldness’), even though the key states
a (without accent) as the value for the code
"44".

2. Character not repeated
(27 instances)
In cases where a character should be repeated
in order for a word to be spelled correctly (at
least according to present-day spelling con-
ventions), the human transcriber has in many
cases chosen to repeat the character, even
though this is not stated in the key.

3. Human reinterpretation
(2 instances)
In a few cases where the text contains unex-
pected inflectional forms, such as a singular
ending where a plural ending would be ex-
pected, the human transcriber has chosen the
grammatically correct form, even though the
code in the ciphertext actually is different.

4. Wrong interpretation by the script
(16 instances)
Due to the non-greedy nature of the algo-
rithm, it will sometimes fail to match longer
codes in the key file, when it finds a match for
a shorter code. This could be seen for exam-
ple for prefixes such as buon- in buonissima
(’very good’), and qual- in qualche (’some’).

In a second experiment, we tested the script
against a cipher of another type, the Borg cipher,4

based on simple substitution with a small nomen-
clature, encoded by 34 graphical signs with word
boundaries marked by space. Since this cipher is
based on simple substitution, rather than homo-
phonic substitution, and with word boundaries al-
ready marked, it is less ambiguous than the Fran-
cia cipher. Accordingly, approximately 97% of the

4https://cl.lingfil.uu.se/~bea/borg/

258



words in the output from the cipher-key mapping
script are identical to the words in the gold stan-
dard. The mismatches are mainly due to some
word-initial upper-case letters in the ciphertext be-
ing written as the plaintext letter, instead of being
encoded. As an example, the Latin word nucem
(inflectional form of the word ’nut’) would nor-
mally be enciphered as ’9diw1’ in the Borg cipher,
but in one case it occurs instead as ’Ndiw1’. There
are several similar cases for other words through-
out the cipher.

4.2 Language identification

For the language identification task, we can see
from Table 2 that both the Barb cipher and the
Francia cipher are correctly identified as written
in Italian by the CKM algorithm, and the Copiale
cipher is correctly identified as written in German.
These guesses are based on the fact that 79.17%
of the tokens in the automatically recovered ver-
sion of the Barb plaintext, and 80.05% of the to-
kens in the Francia text, could also be found in the
Italian language model, whereas 86.55% of the to-
kens in the Copiale cipher could be matched in the
German language model. As could be expected,
the second best guess produced by the algorithm
for the Italian manuscripts is for the closely re-
lated languages Spanish and Portuguese respec-
tively. More surprisingly, the third best guess
for both these texts is German, with a substantial
amount of the tokens found in the German lan-
guage model as well. A closer look at the German
language model used in our experiments reveals
a possible explanation to this. The German lan-
guage model is based on data from the time period
1050–1914, where the oldest texts contain a sub-
stantial amount of citations and text blocks actu-
ally written in Latin, a language closely related to
Italian. This might also explain why the Borg text,
written in Latin, is identified by the script as writ-
ten in German. The third guess for the Borg text
is Swedish, for which the language model is also
based on very old text (from 1350 and onwards),
with blocks of Latin text in it. The Latin language
model on the other hand is rather small, contain-
ing only about 79,000 tokens extracted from the
Ancient Greek and Latin Dependency Treebank.5

Due to the small size of this language model as
compared to the language models for the other lan-

5https://perseusdl.github.io/treebank_
data/

guages in this study, in combination with the fact
that Latin words occur in older texts for many lan-
guages, it is hard for the script to correctly identify
Latin as the source language.

For the German Copiale cipher, the second best
guess is for Slovene, and the third best guess is for
Swedish. This could be due to the fact that both
Slovene and Swedish were strongly influenced by
the German language in historical times, meaning
that many German and German-like words would
appear in historical Slovene and Swedish texts.

4.2.1 Present-day language models

So far, we have presumed that language models
based on historical text would be best suited for
the task of language identification in the context of
historical cryptology. This is based on the assump-
tion that spelling and vocabulary were different
in historical times than in present-day text, mean-
ing that some words and their particular spelling
variants would only occur in historical text. It
could however be argued that it is easier to find
large amounts of present-day text to build lan-
guage models from. As a small test to indicate
whether or not present-day text would be useful
in this context, we downloaded the Spacy lan-
guage models for present day Italian6 and Ger-
man,7 trained on Wikipedia text, and compared the
coverage in these language models to the coverage
in the historical language models, when applied
to the plaintexts of the Barb, Francia and Copiale
manuscripts.

As seen from Table 3, the percentage of word
forms found in the language models based on
present-day data is considerably lower than for
the historical language models, even though the
present-day data sets are larger. The preliminary
conclusion is that language models based on his-
torical text is better suited for the task at hand,
but present-day language models could also be
useful, in particular in cases where it is hard to
find suitable historical data to train a language
model. More thorough experiments would how-
ever be needed to confirm this.

6https://github.com/explosion/
spacy-models/releases//tag/it_core_news_
sm-2.1.0

7https://github.com/explosion/
spacy-models/releases//tag/de_core_news_
md-2.1.0

259



Name Top 3 language models Gold language
Barb-6956 Italian 79.17% Italian

Spanish 66.77%
German 65.73%

Francia-64 Italian 80.05% Italian
Portuguese 72.40%
German 70.22%

Borg.lat.898 German 56.73% Latin
Spanish 55.01%
Swedish 51.50%

Copiale German 86.55% German
Slovene 69.95%
Swedish 57.76%

Table 2: Language identification results.

Name Historical LM Present-day LM
Barb-6956 79.17% 64.11%
Francia-64 80.05% 66.23%
Copiale 86.55% 81.44%

Table 3: Language identification results, comparing language models based on historical text to language
models based on present-day text.

5 Discussion

From our experiments, we can conclude that the
implemented algorithm makes it possible to re-
store the hidden plaintext from ciphertexts and
their corresponding key. For one of the ci-
phers evaluated, 79% of the words were correctly
mapped to the gold standard plaintext words, and
the mismatches were mainly due to diacritics and
repeated characters not being part of the key. This
knowledge could easily be taken into consider-
ation in further development of the algorithm,
where the script could test to add diacritics in
strategic positions and to repeat certain charac-
ters in cases where a specific word could not be
found in a language model (provided that we al-
ready have an educated guess on what language
the underlying plaintext is written in). For the
other cipher evaluated, being an out-of-domain
manuscript of a different cipher type and another
underlying language than the manuscript used dur-
ing training, we got very encouraging results with
97% of the words in the manuscript being cor-
rectly matched, and the mismatches in the remain-
ing words mainly being due to plaintext characters
occurring as part of ciphertext words.

For the language identification task, the results
are mixed. The German and Italian manuscripts

are correctly identified as being written in German
and Italian respectively, whereas the algorithm as-
sumes the Latin text to be written in German. This
indicates that we need to be careful about what
texts to put into the language models. In the cur-
rent experiments, we have simply used the lan-
guage models at hand for historical texts for dif-
ferent languages, without taking into account dif-
ferences in time periods and genres covered, nor
the size of the text material used as a basis for the
language model. Thus, the language models used
in the experiments are very different in size, where
the Latin language model contains about 79,000
tokens, as compared to approximately 124 million
tokens in the German language model. Further-
more, since the language in very old texts is typi-
cally quite different from the language in younger
texts, language models only containing texts from
the time period in which the cipher is assumed to
have been created would better suit our purposes.
In addition, many old texts contain blocks of Latin
words, since this was the Lingua Franca in large
parts of the world in historical times. This re-
sults in many Latin words being found in language
models for other languages as well.

The language detection evaluation also shows
that using language models based on historical text
has a clear advantage over using state-of-the-art

260



language models based on present-day language.

6 Conclusion

In this paper, we have presented a study within the
field of historical cryptology, an area strongly re-
lated to digital humanities in general, and digital
philology in particular. More specifically, we have
introduced an algorithm for automatically map-
ping encrypted ciphertext sequences to their cor-
responding key, in order to reconstruct the plain-
text describing the underlying message of the ci-
pher. Since ciphertexts and their corresponding
keys are often stored in separate archives around
the world, without knowledge about which key be-
longs to which ciphertext, such an algorithm could
help in connecting ciphertexts to their correspond-
ing keys, revealing the enciphered information to
historians and other researchers with an interest in
historical sources.

Acknowledgments

This work has been supported by the Swedish Re-
search Council, grant 2018-06074: DECRYPT -
Decryption of historical manuscripts.

References
Belgium Algemeen Rijksarchief, Brussels. 1647-1698.

cl.lingfil.uu.se/decode/database/record/960 [link].

Craig Bauer. 2017. Unsolved! The History and Mys-
tery of the World’s Greatest Ciphers from Ancient
Egypt to Online Secret Societies. Princeton Univer-
sity Press, Princeton, USA.

Friedrich Bauer. 2007. Decrypted Secrets — Methods
and Maxims of Cryptology. 4th edition. Springer.

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. IRSTLM: an open source toolkit for han-
dling large scale language models. In Proceedings
of Interspeech 2008, pages 1618–1621.

David Kahn. 1996. The Codebreakers: The Compre-
hensive History of Secret Communication from An-
cient Times to the Internet. New York.

Kevin Knight, Beáta Megyesi, and Christiane Schae-
fer. 2011. The copiale cipher. In Invited talk at ACL
Workshop on Building and Using Comparable Cor-
pora (BUCC). Association for Computational Lin-
guistics.

Kevin Knight, Anish Nair, Nishit
Rathod, and Kenji Yamada. 2006.
https://www.aclweb.org/anthology/P06-2065
Unsupervised analysis for decipherment prob-
lems. In Proceedings of the COLING/ACL 2006

Main Conference Poster Sessions, pages 499–506,
Sydney, Australia. Association for Computational
Linguistics.

Benedek Láng. 2018. Real Life Cryptology: Ciphers
and Secrets in Early Modern Hungary. Atlantis
Press, Amsterdam University Press.

Beáta Megyesi, Nils Blomqvist, and Eva Pettersson.
2019. The DECODE Database: Collection of Ci-
phers and Keys. In Proceedings of the 2nd Inter-
national Conference on Historical Cryptology, His-
toCrypt19, Mons, Belgium.

Malte Nuhn and Kevin Knight. 2014. Cipher type de-
tection. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1769–1773. Association for Com-
putational Linguistics.

Eva Pettersson and Beáta Megyesi. 2018. The Hist-
Corp Collection of Historical Corpora and Re-
sources. In Proceedings of the Digital Humanities
in the Nordic Countries 3rd Conference, Helsinki,
Finland.

Sujith Ravi and Kevin Knight. 2008. Attacking de-
cipherment problems optimally with low-order n-
gram models. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 812–819. Association for Com-
putational Linguistics.

Simon Singh. 2000. The Code Book: The Science of
Secrecy from Ancient Egypt to Quantum Cryptogra-
phy. Anchor Books.

261


