
Proceedings of the
NoDaLiDa 2019 Workshop on Constraint

Grammar - Methods, Tools and
Applications

30 September 2019

Editors
Eckhard Bick and Trond Trosterud

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar - Methods, Tools and Applications
Edited by Eckhard Bick and Trond Trosterud

Linköping Electronic Conference Proceedings No. 168
ISSN: 1650-3686, eISSN: 1650-3740
Linköping, Sweden, 2019
NEALT Proceedings Series 43
ISBN: 978-91-7929-918-7
URL: http://www.ep.liu.se/ecp/contents.asp?issue=168

© 2019 The Authors

The publishers will keep this document online on the Internet – or its possible replacement –
from the date of publication barring exceptional circumstances.

For additional information about Linköping University Electronic Press and its procedures for
publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

Preface
This volume contains the articles presented at the Constraint Grammar workshop on methods,
tools and applications, co-located with the NoDaLiDa 2019 conference in Turku, held on 30
September 2019. This workshop series has been part of the NoDaLiDa conference since 2005,
and is the eight in the row, thereby emphasizing the Nordic roots of Constraint Grammar.

True to its tradition, the workshop may be characterised along two thematic lines: The
development of constraint grammars analysing individual languages or specific aspects of their
grammar, and presentations and discussions on practical language technology tools where CG is
the key component. Moreover the workshop also contained two more general papers, dealing
with theoretical issues relevant to any language.

As for the first theme, these proceedings contain papers presenting CG grammars for Tibetan
(Faggionato and Garret), Lithuanian (Jagiella), and Greenlandic (Molich). The one on Tibetan
looks at verb valency for texts from different historical phases of the Tibetan literary language,
whereas the one on Lithuanian presents the first version of a general disambiguator for the
language. Molich’s paper on Greenlandic looks at a particularly vexing problem of Greenlandic
grammar: The disambiguation of conjunctional and adverbial functions of enclitical particles. In
addition to being central in determining the overall structure of the Greenlandic sentence at
hand, they also affect the performance of current work on Greenlandic to Danish machine
translation. A paper with a similar scope is Schmirler and Arppe’s presentation of a set of rules
for dealing with negation in Plains Cree.

Relevant to the second theme are two papers on grammar checking: Aldezabal, Arriola and
Estarrona present a grammar-helping tool for Basque, and Wiechetek, Moshagen, Gaup and
Omma use the workshop to launch a brand-new grammar checker for North Saami. Grammar
checking tools have a long tradition within CG, but these two presentations introduce grammar
checking to languages with a much richer morphology than usual.

The workshop also contains some more general papers. Bick’s “Tagging What Isn’t There”
discusses methods for annotating information not explicitly present in the language under
analysis (here: Danish). Being set in the context of an MT project from Danish to Greenlandic
the paper could be seen under the two previous categories as well, but the approach is kept at a
general level, using Danish as an example language.

The two last papers look at interaction between CG and different machine learning approaches.
The paper by Yli-Jyrä shows that both CG and recursive neural networks have finite-state
properties, and discusses the theoretical implications of this observation. Finally, the paper by
Muischnek, Müürisep and Särg describe how CG is used to build gold standards for machine
learning, by tagging the Estonian Universal Dependency corpus with CG.

As can be seen from the presentation, CG holds its position as the dominant framework for
morphology-rich languages. Greenlandic, Plains Cree and North Saami all belong in the
morphology-rich corner of the typological spectre, and the rest of the languages under scrutiny
also possess more inflectional categories than the mainstream languages. Another characteristics
of CG, its ability of providing analyses good enough to be used for practical applications, is also
evident from the list of contributions.

On behalf of the workshop organizers
Eckhard Bick & Trond Trosterud

Workshop organizers:

• Eckhard Bick, Research lector, Institute of Language and Communication, University of
Southern Denmark

• Tino Didriksen, Developer, GrammarSoft ApS
• Kristin Hagen, Senior engineer, Tekstlaboratoriet, University of Oslo
• Inari Listenmaa, Ph.D. student, University of Gothenburg and Chalmers University of

Technology
• Kaili Müürisep, Senior research fellow, Institute of Computer Science, University of

Tartu
• Trond Trosterud, Assistant professor in Sámi computational linguistics, University of

Tromsø

Program Committee:

• Eckhard Bick (Chair)
• Kristin Hagen
• Inari Listenmaa
• Kaili Müürisep
• Anders Nøklestad
• Trond Trosterud

Workshop website:

https://visl.sdu.dk/nodalida2019.html

Table of Contents
A modular grammar-helping tool for Basque: work in progress
Izaskun Aldezabal, Jose Mari Arriola and Ainara Estarrona 1
Tagging What Isn't There: Enriching CG Annotation With Implicit Information
Eckhard Bick 5
Constraint Grammars for Tibetan Language Processing
Christian Faggionato and Edward Garrett 12
Developing a constraint grammar for Lithuanian
Francis Trey Jagiella 17
Disambiguating homonymous enclitics in Greenlandic
Liv Molich 19
CG Roots of UD Treebank of Estonian Web Language
Kadri Muischnek, Kaili Müürisep and Dage Särg 23
Modelling Plains Cree Negation with Constraint Grammar
Katherine Schmirler and Antti Arppe 27
Many shades of grammar checking - Launching a Constraint Grammar tool for North Sámi
Linda Wiechetek, Sjur Moshagen, Børre Gaup and Thomas Omma 35
Constraint Grammar is a hand-crafted Transformer
Anssi Yli-Jyrä 45

A modular grammar-helping tool for Basque: work in progress

Izaskun Aldezabal
IXA NLP group

University
of the Basque Country

izaskun.aldezabal@
@ehu.eus

Jose Mari Arriola
IXA NLP group

University
of the Basque Country
josemaria.arriola

@ehu.eus

Ainara Estarrona
IXA NLP group

University
of the Basque Country
ainara.estarrona

@ehu.eus

Abstract

In this article, we explain the first steps to-
wards a grammar-helping tool for Basque
from a ruled-based approach. Specifically,
we show the first steps carried out for help-
ing with verb agreement, some of the dif-
ficulties encountered, which linguistic is-
sues arise when new rules are designed,
and future perspectives.

1 Introduction

This article concerns the ongoing work of a Con-
straint Grammar (vislcg3) (Bick and Didriksen,
2015) based tool for helping with useful informa-
tion for dealing with verb agreement in sentences.
The evaluation report of the Basque Government
(Government, 2017) about grammar competence
at Primary School includes verb agreement and in-
correct use of ergative as grave errors if they occur
repeatedly. Based on this fact, the purpose of this
work is twofold: a) detecting agreement errors and
give help with that kind of grammatical informa-
tion; b) helping to develop a system to certify the
Basque level automatically, a similar approach to
Hancke et al. (2012). For the first purpose, we fol-
low similar steps proposed in DanProof (Bick and
Didriksen, 2015; Antonsen et al., 2009). Concern-
ing the second goal, the plan is to collaborate with
HABE (Institute for Adult Literacy and Basque
Learning) which certify Basque levels.

The underlying ideas for both goals are extend-
ing grammatical knowledge of the student and
helping to certify the language level correspond-
ing to each student. In this paper, we will focus on
the detection of some agreement errors.

SAROI (Oronoz et al., 2010) is one of the first
tools for detecting syntactic errors used in Basque

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0

based on the rule-based approach. Wiechetek
(2017) gives an overview of Constraint Grammar-
based grammar checkers for many languages.

In the preliminary study presented here, we
have started using the information provided by
the auxiliary verb in the sentence. In Basque, the
auxiliary verb carries information, among others,
about the arguments of the verb, including the
subject, the object and the indirect object; whether
they are first, second or third person, and whether
they are singular or plural (Laka, 1996). The
auxiliary verb must keep the agreement with such
arguments so that the sentence is grammatical.
However, it is known that errors that disturb
the syntax and semantics of the whole sentence
of running texts go beyond the morphological
concordance between the auxiliary verb and the
mentioned three arguments. For instance, for the
verb erosi (’to buy’) we find examples like:

(1) Mikelek tomateak 5 eurogatik erosi ditu
Mikel-Erg tomatoes-Abs 5 euro-Mot buy
have

’Mikel has bought tomatoes for 5 euros’

In (1) where the argument eurogatik ’for 5 eu-
ros’ expressing “asset” with the -gatik (’for’) mo-
tivative case is not considered suitable with the
verb erosi ’to buy’ (surely used incorrectly by the
interference of semantic equivalents of the Span-
ish preposition por). To deal with this type of er-
rors, other kinds of linguistic resources are needed,
such as verb lexicons containing information re-
garding valency and semantics of arguments, what
we find in the Basque Verb Index (BVI) (Estarrona
et al., 2018). Based on the information contain-
ing in this lexicon for the verb erosi ’to buy’, we
are able to determine that the third argument ex-
pressing “asset” is realized with the inessive case
instead of the motivative one.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

1

In this line, Wiechetek (2017) managed to de-
tect valency errors based on a deep syntactic and
semantic analysis using Constraint Grammar. For
the future, we plan to reuse the BVI lexicon fol-
lowing the same idea.

In the current approach, we have implemented
the first module of agreement rules using auxiliary
information, and we have studied the frame and
argument structure needed for a more global ap-
proach.

The paper is organized as follows. Section 2
deals with the adopted methodology and develop-
ment phase (the corpus, grammar formalism and
design principles), Section 3 describes the prelim-
inary evaluation and, Section 4 explains the fur-
ther steps and future work. Finally, Section 5 will
present some conclusions.

2 Methodology

In this section, we present the initial steps of our
methodology.

2.1 Compiling available corpora

For the construction of the grammar, we have used
a fragment of annotated corpora with agreement
error tags (Aldabe et al., 2007). The error cor-
pus for developing the grammar contains 8.368
words and the corpus for testing contains 14.257
words. It is a heterogeneous corpus, containing
different types of texts such as abstracts of final de-
gree reports of university students, compositions
of Basque learners of intermediate and high level,
compositions of students of Basque for special
purposes etc.

We have used the 8.368 word sample for de-
veloping the grammar and the other 14.257 word
sample for testing and controlling false positives.
For the later goal, we have also used a sample of
EPEC, the Reference Corpus for the Processing of
Basque (Aduriz et al., 2006), available in the Ixa
group. The sample contains the 10 most frequent
verbs in EPEC (covering the 85% of the corpus).

2.2 Analyzing available corpora

As starting point, we use the output of the morpho-
logical analyzer (naki Alegria et al., 1996) with all
the analyses. We did not use the disambiguation
module because it could eliminate correct infor-
mation that might be needed later to find the error.

2.3 Designing initial grammar
The initial grammar covers maintaining agreement
between finite verbs and subjects and objects.
In addition, the tool provides possible correct
alternatives for repairing those agreement errors.
The system uses morphological information, and
has a special focus on finite verbs, because we get
basic information for checking the verb agreement
with subject and object from them. For instance,
in (2):

(2) Diseinu inteligentearen bultzatzaileak
beste bide batetik sartu nahi dute
kreazionismo
Design intelligent-Gen the prime movers-
Erg another way from-Abl to lead wanted
creationism-Abs

’The prime movers of the intelligent de-
sign wanted to lead creationism from an-
other way’

Bultzatzaileak ’the prime movers’ (with the –ak
ergative third person singular or absolutive third
person plural mark) is grammatically incorrect,
because it does not agree with the auxiliary dute
which demands ergative case, third person and
plural.

This mistake is also common in native Basque
speakers, specially writing. In these cases, we
attach advice tags to finite verbs involved in the
agreement error and the words with the incorrect
morphological case for the agreement. For in-
stance, we add to the word containing the error
bultzatzaileak a helping message, such as “take
care of the agreement for ergative plural” as shown
in the next rule example:

(3) ADD (%Take care of agreement ERG PL)

TARGET (ERG) IF (0 ERG-SING) (NOT
*1 ERG-PL) (NOT *1 (NR HAIEK))
(*1 (NK HAIEK-K) BARRIER (NK-
HARK));

The above rule attaches to the singular ergative
bultzatzaileak the helping message, if there is an
auxiliary verb that needs third person plural erga-
tive (NK HAIEK-K) and there is not an auxiliary
verb that demands third person plural absolutive
(NR HAIEK) and the checking is delimited by an
auxiliary verb that involves third person singular
ergative (NK-HARK).

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

2

The current version of the grammar only han-
dles agreement errors of sentences where finite
verbs are involved.

3 Preliminary evaluation

The initial grammar rules to find errors describe
the conditions for valid structures for sentences
where finite verbs are involved, and if these con-
ditions are not accomplished the error tags are
added.

In order to evaluate the grammar, as mentioned
we have used the hand-annotated corpus (14.257
words). We chose to evaluate the agreement of
absolutive and ergative cases. In this section, we
give a preliminary evaluation:

• Annotated errors correctly detected: for
the absolutive case the 50% of the errors are
detected correctly. Concerning ergatives, we
are able to detect correctly the 28% of the an-
notated errors. We consider as erroneous an-
notations when the error tag is assigned to a
correct auxiliary verb and to a correct word
containing absolutive or ergative case.

Apart from uncorrect annotations there have
been detected a big amount of false positives.

From a qualitative point of view the main dif-
ficulties encountered by our grammar are the fol-
lowing:

• False positives: most of the false positives
encountered are due to the ellipsis of the
grammatical objects or subjects. In these
cases the helping messages are unnecesary
because there is not an error. But the mes-
sages are just attached to the auxiliary.

• Complex constructions: dealing with some
subordinating sentences is challenging in the
case that the barriers are properly established.
We need to improve barriers with a more sys-
tematic treatment.

• Ambiguity of the input: in the initial ap-
proach, we have used the output of the mor-
phological analyzer with all the information,
but the preliminary evaluation show us the
need of an adaptation of the POS disambigua-
tion module in order to discard verb/noun
ambiguity, but maintaining cases.

• Linguistic issues: dealing with errors where
–ak (absolutive plural / ergative singular)
case is involved. For instance in (4):

(4) Tabernak izugarrizko kutxak egiten dituzte
Bars-Erg-S/Nom-Pl great takings obtain

’Bars obtain great takings’

This kind of errors would ideally be solved with
more complex knowledge. Therefore, in these
cases we just can give as advice that the ergative
plural is missing according to the auxiliay verb.

• Bad or incomplete rules: in some cases we
should refine our rules, because we have not
taken into account some grammatical possi-
bilities of the language.

In order to improve the ongoing grammar we
need more corpora for a more exhaustive analysis.

4 Next steps and future workPreliminary
evaluation

Considering the preliminary evaluation and the
difficulties encountered, we have in mind the fol-
lowing steps:

• Try to find a solution to the phenomena ex-
plained in the previous section.

• Extend these small-scale studies on certain
error types to a large-scale analysis of real
word student’s errors, compiling the learner’s
corpora for each level.

• Analyze if this kind of agreement errors ap-
pear in all levels

• Include the BVI information in the grammar
and in the analyzed corpora, and see in which
extend could improve the results.

5 Conclusions

This paper has presented a preliminary constraint
grammar for helping Basque students with gram-
matical agreement. The preliminary evaluation in-
dicates the main strategies to improve the results.

The grammar can be in principle reused for
other applications that do not necessarily have
anything to do with error detection, such as In-
telligent Computer-Assisted Language Learning
(ICALL) systems.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

3

Acknowledgments

The research leading to these results has been
carried out as part of the DeepReading: Min-
ing, Understanding, and Reasoning with Multi-
lingual Content project (RTI2018-096846-B-C21
(MCIU/AEI/FEDER, UE)).

References
Itziar Aduriz, Maria Jesus Aranzabe, Jose Maria Ar-

riola, Aitziber Atutxa, Arantza Diaz de Ilarraza,
Nerea Ezeiza, Koldo Gojenola, Maite Oronoz, Aitor
Soroa, and Ruben Urizar. 2006. Methodology and
steps towards the construction of epec, a corpus of
written basque tagged at morphological and syntac-
tic levels for the automatic processing. Corpus Lin-
guistics Around the World. Book series: Language
and Computers, 56:1–15.

Itziar Aldabe, Bertol Arrieta, Arantza Diaz de Ilarraza,
Montse Maritxalar, Ianire Niebla, Maite Oronoz,
and Larraitz Uria. 2007. Basque error corpora: a
framework to classify and store it. In Proceedings
of the 4th Corpus Linguistic Conference, Birming-
ham, UK.

Iñaki Alegria, Xabier Artola, and Kepa Sarasola. 1996.
Automatic morphological analysis of basque. Liter-
ary and Linguistic Computing, 11(4):193–203.

Lene Antonsen, Saara Huhmarniemi, and Trond
Trosterud. 2009. Constraint grammar in dialogue
systems. In Northern European Association for
Language Technology, NEALT, pages 13–21.

Eckhard Bick and Tino Didriksen. 2015. Cg-3 beyond
classical constraint grammar. In Proceedings of
the 20th Nordic Conference of Computational Lin-
guistics, NODALIDA 2015, pages 31–39, Vilnius,
Lithuania.

Ainara Estarrona, Izaskun Aldezabal, and Arantza Diaz
de Ilarraza. 2018. https://doi.org/s10579-018-9440-
0 How the corpus-based basque verb index lexicon
was built. Language Resources and Evaluation.
First Online 05 December 2018, pages 1–23.

Basque Government. 2017. Idazmenaren ebalu-
azioa. Testuak zuzentzeko irizpideak. ISEI-IVEI,
Hezkuntza Saila, Eusko Jaurlaritza.

Julia Hancke, Detmar Meurers, and Sowmya Vajjala.
2012. Readability classification for german using
lexical, syntactic, and morphological features. In
Proceedings of the 24th international conference on
computational linguistics (COLING), pages 1063–
1080, Mumbai, India.

Itziar Laka. 1996. A Brief Grammar of Euskara, the
Basque Language. Office of the Vice-Rector for the
Basque Language, UPV/EHU.

Maite Oronoz, Arantza Diaz de Ilarraza, and Koldo Go-
jenola. 2010. Design and evaluation of an agreement
error detection system: Testing the effect of ambi-
guity, parser and corpus type. Proceedings of the
7th international conference on Advances in natural
language processing (IceTAL 2010), 6233:281–292.

Linda Wiechetek. 2017. When grammar can’t be
trusted - Valency and semantic categories in North
Sami syntactic analysis and error detection. Ph.D.
thesis, UiT The arctic university of Norway.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

4

Tagging What Isn't There:

Enriching CG Annotation With Implicit Information

Eckhard Bick
University of Southern Denmark
eckhard.bick@mail.dk

Abstract

This paper examines ways to make
existing Constraint Grammar (CG)
annotation grammatically more explicit,
allowing corpus users and application
programs, such as machine translation
(MT), to refer to context-implied
grammatical features in a more direct
fashion. Two types of categories are
addressed. First, morphological
categories are propagated to words that
leave them under-specified (e.g. number
and definiteness for Danish adjectives) or
unexpressed (e.g. person-number for
Danish verbs). Second, we also introduce
new categories, such as aspect and future
tense for Danish, that may be
morphologically explicit in a given MT
target language, but do not exist in the
source language. In a pilot evaluation of
four categories in the context of Danish-
Greenlandic MT, the implemented
enrichment grammar for Danish achieved
F-scores of 97% for propagated
categories and 85% for new categories.
In addition to feature tagging, structural
annotation is also made more explicit,
adding secondary dependency links for
e.g. the subjects of relative and infinitive
clauses, or attribute links between subject
complements and subjects.

1 Introduction

Arguably, every annotated corpus has specific
uses and target groups in mind, and the choice of
to-be-annotated categories, tag set and
granularity may hamper research the corpus

creators had not thought of. Missing information
may well be present in implicit form, but
difficult or impossible for the user to query.
Based on feedback from users of a Portuguese
treebank, Freitas et al. (2008) propose the
introduction of so-called searchables - secondary
tags that would allow the corpus equivalent of a
1-click order, subsuming in one new tag
information that would otherwise be distributed
across several tokens, e.g. complex tenses or np
definiteness.

The same rationale can be extended beyond the
corpus arena, to NLP pipelines where
grammatical annotation supports applications
such as proofing tools, computer-aided language
learning or machine translation, all of which may
be in need of specific information not explicitly
provided by the underlying parser.

The add-on feature enrichment grammar
presented here departs from a standard
DanGram1 CG annotation (Bick 2001) and
systematically addresses under-specified and
implicit information, progressing from simple
morphological categories to more complex
categories and dependency syntax. In sections 2
(morphology) and 4 (syntax), existing categories
are treated. Section 3 is about adding new
categories from distributed context clues, and
section 5 addresses dependency issues. Rules and
examples are for illustration purposes only. In
the actual grammar, there are up to 20 rules, and/
or additional context restrictions, for the more
difficult features.

1 For an online demo and documentation, cf.
http://visl.sdu.dk/da/

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

5

2 Inflection categories

2.1 Inflection morphemes

Traditional morphological analysis breaks down
a word into morphemes and assigns feature-
attribute pairs such as singular/plural for the
number category of Danish nouns. In some
cases, however, categories can be systematically
underspecified and need to be disambiguated
based on context. An example is the -e ending on
Danish adjectives2, wich is used independently of
gender (nG=no gender), for either singular (S)
definite (DEF) noun phrases (np's) or for plural
(P) np's, in which case definiteness is left
underspecified (nD):

store ('big')
"stor" ADJ nG P nD NOM ('[the] big cars')
"stor" ADJ nG S DEF NOM ('the big car')

One could say that the morphological categories
of gender, number and definiteness come in two
feature-bundles for the adjective ending -e. A
tagger with a minimalist disambiguation
approach would be content to choose one of the
two reading lines in the cohort from context.
However, a Danish np as a whole does have
explicit gender (a lexical feature of the head
noun, UTR3/NEU) and definiteness (marked
either as an inflexion feature on single nouns, or
by a lexically definite modifier in np's):

de P DEF store nG P nD ulve UTR P IDF
('the big wolfves)

In a first step, the new add-on grammar
propagates the definiteness information from the
article and the gender information from the noun,
resolving the adjective's nG as UTR, and nD as
DEF, making it possible to search for common
gender definite plural adjectives in an annotated
corpus.

2.2 Generalized inflection categories

However, it would still be difficult to search for
all definite/indefinite np's, because there is no
single np token that safely carries this
information as an inflection morpheme. The
logical candidate for a search target would be the

2 Adjectives with a baseform ending in -e, and all
comparative forms, do not inflect at all, and are thus
ambiguous in all categories.

3 Danish has a 2-gender system, NEU (neuter) and UTR
("utrum", common gender, historically a fusion of
masculine/feminine genders)

head of the np, since it is the only obligatory
part, but Danish nouns are only inflected for
definiteness, if there are no (pre)modifiers.
Therefore, in multi-word np's, an IDF tag on the
noun head is merely a morphological zero-
morpheme, while the definiteness information is
distributed across other constituents of the np.
This is a problem not only for corpus searches,
but also for other tasks, such as syntactic tagging,
topic/focus tagging, semantic role tagging and
machine translation (MT). For instance,
definiteness is one of several clues allowing a
parser to distinguish between subjects and
objects, or between agents and non-agents. In
Danish-Greenlandic MT, the case of direct
objects depends on definiteness (absolute
changed into instrumental case for indefinite
objects), and transitive Greenlandic verbs add a
special half-transitive affix, if the direct object is
indefinite.

In this case, because the noun already has a
morphological tag for definiteness (here: IDF),
our grammar adds a secondary <def> or <idf>
tag referring to the definiteness of the entire np:

SUBSTITUTE (N) (<def>) TARGET (N IDF)
*-1 DEF-EDGE BARRIER NON-ATTR (add

<def> to indefinite nouns, if there is a definite
np-edge word to the left with nothing but
attributes in between, where DEF-EDGE is a set
containing definite articles, demonstratives,
possessives, genitive nouns etc.)

2.3 Category propagation

In a further step, categories can be propagated to
words that do not have them in Danish. A case in
point are Danish verbs that only allow (1) tense
and (2) participle morphemes, but completely
lack person-number inflection common in many
other European languages and Greenlandic. The
example rule below harvests a person-number
variable (e.g. 1S, 3P) from subject pronouns,
unless they are conjuncts <cjt>, exploiting the c
(child/daughter) dependency relation between
subject and tense-carrying (finite) verb.

SUBSTITUTE (V) (V /$1/v)
TARGET V-TENSE
(c @SUBJ + (/\([123][SP]\)/r) - <cjt>)

Similar rules add 3S and 3P if the subject is a
singular or plural noun, respectively. Co-

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

6

ordinated subject trigger a plural marker, clausal
subjects a singular.

A special case are the relative pronouns som
and der that do not inflect in Danish, but may do
so in an MT target language. Here, the
dependency link from the relative clause to the
antecedent can be used to recover number,
gender or even semantic features from a noun,
allowing MT transfer rules to "see" the necessary
slot filler information in the relative clause itself.

2.4 Cross-level category transfer

Sometimes a morphological category in one
language is entirely absent in another (or
drastically under-specified), but still represented
at the syntactic or semantic level. For instance,
Danish cannot match the 6 cases used in
Greenlandic, but case can still be assigned by
identifying corresponding syntactic or semantic
tags on the Danish side.

(a) SUBSTITUTE (NOM) (REL)
TARGET N + @SUBJ
(p VFIN LINK *1S <mv> LINK c @ACC)

(b) SUBSTITUTE (NOM) (LOK)
TARGET §LOC

Thus, rule (a) assigns relative4 case (REL) to
subjects, if the parent (p) vp has a child daughter
dependent (c - child) that is a direct object
(@ACC). Rule (b) is an example of converting
Danish semantic role tags5 like §LOC (location)
into Greenlandic case (LOK - locative).

3 Distributed information

Category mapping gets more complex, if the
necessary information is distributed across
several words. In Danish, this is the case for
aspect, future tense and aktionsart, all of which
are difficult to determine and have to be inferred

4 Greenlandic is an ergative language, and uses the
neutral case (ABS) for subject of intransitive verbs and
for objects of transitive verbs, changing subject case
into (REL) in the latter scenario.

5 "Adverbial" roles, e.g. time and space, are often
realized by pp's in Danish. Greenlandic has no
prepositions, but because DanGram tags roles on the
semantic head of the pp rather than its syntactic head
(the preposition), there is a simple one-on-one
correspondence between Danish semantic role and
Greenlandic case

from auxiliaries, framenet and semantic role tags
(Bick 2011), adverbial particles and other clues.
In our MT system, we introduced the secondary
tags <fut> (future tense) and <iter> (iterative) in
order to match special Greenlandic affixes, SSA
and TAR, respectively.

(a) SUBSTITUTE (V) (<fut> V)
TARGET ("ville" PR &AUX)
(*1 @ICL-AUX< LINK 0 ("få") OR <ve>

OR V-NONCONTROL LINK *1 @<ACC
CBARRIER VV)

(NEGATE *1 @ICL-AUX< LINK 0
("have") LINK *-1 @SUBJ> + HUM-person)

(b) SUBSTITUTE (V) (<fut> V)
TARGET ("ville" PR &AUX)
(c ROLE-NONCONTROL + @SUBJ) ;

The two rules above select the futures tense
meaning of the Danish auxiliary "ville" over its
other meaning 'want_to'. (a) looks for main verbs
with frames that are -CONTROL (e.g.
<fn:bodystate>, <fn:undergo>, <fn:worsen>)6,
with a safety condition of having a direct object,
and an exception for "vil have" ('wants to have')
with a human subject.

(b), on the other hand, looks for a -CONTROL
subject, e.g. semantic roles like §TH (theme),
§EXP (experiencer) or §STI (stimulus). At the
time of writing, the add-on grammar contains
about 20 rules about future tense, using hints like
the following:

 always <fut> with <fn:become_be>, blive
('become'), komme (komme til at - 'shall')

 <fut> with future-triggering adverbs, dates,
weekdays, months, unless the latter are
modified by hver ('each') or the containing
clause is headed by a preposition + at ('that')

 never <fut> with <fn:be_attr>, omfatte
('include'), tilhøre ('belong to'), være ('be'),
kunne ('can'), burde ('should'), måtte ('must')

 never <fut> with generic present tense (e.g.
substances or celestial bodies as subjects)

Another difficult category is aspect, since
Danish does not explicitly mark any aspect
categories. Telicity has a strong lexical bias
and for many verbs it is possible to infer a
default tag from a given verb frame. In our

6 Some 30 frames in all

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

7

telicity scheme we use a 5-way distinction,
with ±static, ±telic and ±time. In the table,
±control (±C) is added.

-Time (0) +Time (1)

-Static

Telic
(t)

+C goal-action goal-activity

-C result-event result-process

Atelic
(a)

+C do-action do-activity

-C pass-event pass-process

+Static state (s)

Table 1: Telicity

The 5 lexical aspect categories are tagged as
<aa:t0>, <aa:t1>, <aa:a0>, <aa:a1> and <aa:s>7.
Because of the (partial) overlap between tense
and aspect, and because Greenlandic verbs do
not mark tense, these categories can be used to
choose a Danish translation tense in the absence
of more specific clues (such as time adverbs).
For instance, <aa:t0> and <aa:a0> verbs like
'ramme' (hit), eksplodere' (explode) and 'opdage'
(notice) are much more likely to occur in the past
tense than in the present tense.

An example of grammatical aspect is the
Greenlandic morpheme category of iterative,
which corresponds to the suffix TAR and the
Danish support verb 'pleje at' (use to). In most
cases, however, the category is unmarked in
Danish and has to be inferred from context:

(a) SUBSTITUTE (V) (<iter> V) TARGET V
(c §LOC-TMP LINK c ("hver")) ;

(b) SUBSTITUTE (V) (<iter> V) TARGET V
(c ("om" PRP) LINK c §LOC-TMP
LINK 0 (<weekday>) OR (<season>)) ;

The first example marks a verb (V) as iterative
(<iter>) if it has a dependent (c)8 with a temporal
semantic role (§LOC-TMP) modified by the
determiner pronoun 'hver' (each). Rule (b) asks
for the preposition 'om' (at/on/about) with a
temporal argument (weekdays or seasons).

7 'aa' stands for aspect/aktionsart

8 The CG3 implementation of Constraint Grammar uses
'c' (child) rather than the traditional 'd'
(dependent/daughter).

4 Secondary syntactic tags

Pronouns are often subdivided into syntactic or
semantic sub-classes such as relative, determiner,
interrogative and quantifier. However, these are
not necessarily lexeme classes. Thus, in Danish,
the syntactic category of reflexive is only
lexeme-bound in the 3rd person forms 'sig'
(accusative 'him-/herself') and 'sin' (his/her own),
and otherwise identical with ordinary personal
object pronouns and possessives. For 1./2. person
the <refl> mark can be safely added (a) and for
3. ps. plural it can be guessed (b):

SUBSTITUTE (<poss>) (<refl> <poss>)
TARGET (<poss> @>N)
(0 (<\([12][SP]\)>r))
(p (*) LINK *p VFIN
 LINK c @SUBJ LINK 0 (VSTR:$1)) ;

SUBSTITUTE (<poss>) (<refl> <poss>)
TARGET (<poss> 3P @>N)
(*p VFIN LINK c @SUBJ
 LINK 0 (3P) OR (P) OR <cjt-head>) ;

In a feature propagation step, the <refl> tag can
then be exploited to mark reflexivity on
transitive verbs, in the presence of a <refl>
@ACC tag. This mechanism is part of a more
general method: valency instantiation. From its
lexicon, the DanGram parser draws tags for
valency potential, such as <vt> for
monotransitive, <vdt> for ditransitive or <vr> for
reflexive. The add-on grammar "instantiates"
these tags by adding a '¤'-sign to it, e.g. <¤vt> if
there, in fact, is a direct object corroborating the
monotransitive tag. In the case of reflexive verbs
(<¤vr>) this is useful in our MT setting, because
Greenlandic verbs need to be inflected for
reflexivity.

In Danish, with the exception of object-elliptic
relative clauses and non-interrogative object
clauses, all subclauses must begin with a
subordinator. This is an obvious MT advantage
with Danish as source language (SL), because
the subordinator serves as a surface clue
classifying the subclause and for choosing the
right target language (TL) conjunction (e.g.
English) or mood (e.g. Greenlandic). Thus, the
conjunction 'hvis' (if) translates into conditional
mood inflection in Greenlandic. However, a
little-known quirk in Danish syntax does allow
conjunction-less conditional clauses, if they are
fronted and SV is inverted to VS: Kommer han
ikke, må vi udskyde mødet. ('If he doesn't come,

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

8

we will have to postpone the meeting.') Here,
because word order is the only clue, a secondary
marker tag is needed:

SUBSTITUTE (V) (<if> V) TARGET VFIN
1: (0 @FS-ADVL>)
2: (*-1 >>> BARRIER NON-KC)
3: ((*1 KOMMA BARRIER CLB OR VV -
@ICL-AUX< LINK 1 VFIN)
4: OR (*1 @<SUBJ-ALL BARRIER NON-
PRE-N/ADV LINK *1 @FMV BARRIER CLB-
ORD LINK *1 @<SUBJ-ALL BARRIER NON-
PRE-N/ADV)) ;

The rules asks for an adverbial subclause tag (1),
beginning-of-sentence (2), and - to the right (*1)
- either (3) a comma followed directly by a finite
verb (VFIN) or (4) a left-pointing subject
followed by a finite main verb (@FMV) and
another left-pointing subject.

5 Secondary dependencies

Dependency relations (between content words)
are the backbone of semantic disambiguation, be
it frame annotation, semantic roles or the transfer
stage of a rule-base MT system. Thus, choosing
one translation of a verb over another often
depends on the semantic class of its subject or
object. For instance, ride needs 2-3 different
translations in many languages, depending on its
object dependent, i.e. whether you ride a horse,
bicycle or train. But what do you do, if the
necessary dependent either is not there,
semantically empty or too far away in the
syntactic tree? This is the case in Danish
infinitive clauses (missing subject) and can be
the case in relative clauses (missing object):

Den forsikring, han tegnede, var meget dyr.
('The insurance he took out, was very expensive')

Unlike in section 2.3, in this example there is
no relative pronoun, a secondary tag could be
added to. Therefore, a more structural solution is
in order: Secondary dependencies. These can of
course be added by the application program, MT
or otherwise, that take the CG annotation as
input - by following dependency paths and
duplicating them where necessary. However, it is
also possible to address the problem CG-
internally, using the ADDRELATION(S)
operator introduced in CG3 (Bick & Didriksen
2015). It allows a two-way relation, here named
'c-acc' (accusative object child), when seen from

the dependent (*, the antecedent of the relative
clause's "invisible" object), and 'p-acc' (parent-
of-accusative), when seen from the relative
clause verb (@FS-N<).

ADDRELATIONS (c-acc) (p-acc) TARGET (*)
TO (c @FS-N<)
(*-1 @SUBJ>

BARRIER <rel> OR _TARGET_)
(NEGATE *1S <mv>

LINK c PRP LINK NONE c @P<);

In order to make sure that there is indeed an
elliptic object, the rule asks for a surface subject
in the relative clause and the absence of a
stranded preposition, i.e. a preposition without
it's argument child (c @P<), that could also be
elliptic in Danish relative clauses.

Other candidates for secondary dependencies are

 subject relation between the object of a
sensory or controlling verb and a
dependent infinitive (see/let someone
buy a ticket)

 attributive relation between subject
complement and subject, or between
object complement and object

 coordination, linking conjuncts both to
each other and to their joint head

Expanding our example sentence to cover all
these cases, automatic (DanGram) annotation9

will look like this:

Konsulenten lod ham vide, at den forsikring,
han havde tegnet, var både dyr og dårlig. ('The
consultant let him know that the insurance he had
taken out was both expensive and bad.)

Konsulenten [konsulent] <Hprof> N UTR S DEF
NOM @SUBJ> #1->2 (The consultant)

lod [lade-1] V IMPF AKT @FS-STA #2->0 (let)
ham [han] <aci-subj> PERS UTR 3S ACC @<ACC

#3->2 R:c-subj:4 (him)
vide [vide] <mv> V INF AKT @ICL-<OA #4->2

R:p-subj:3 (know)
$, [,] PU @PU #5->0
at [at] <clb> KS @SUB #6->14 (that)
den [den] <dem> DET UTR S @>N #7->8 (the)
forsikring [forsikring] <f-right> N UTR S IDF NOM

@SUBJ> #8->14 R:c-acc:11 R:p-attr:16 R:p-
attr:18 (insurance)

$, [,] PU @PU #9->0

9 The annotation was somewhat simplified by omitting
valency and certain other secondary tags.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

9

han [han] PERS UTR 3S NOM @SUBJ> #10->11
(he)

havde [have] <aux> V IMPF AKT @FS-N< #11->8
R:p-acc:8 (had)

tegnet tegne] V PCP2 AKT @ICL-AUX< #12->11
$, [,] PU @PU #13->0 (taken out)
var [være] <mv> V IMPF AKT @FS-<ACC #14->4

(was)
både [både] ADV @FOC> #15->17 (both)
dyr [dyr] <cjt-head> <jval> ADJ UTR S IDF NOM

@<SC #16->14 R:p-cjt:18 R:c-attr:8
(expensive)

og [og] <co-sc> KC @CO #17->16 (and)
dårlig [dårlig] <cjt> <jqual> ADJ UTR S IDF NOM

@<SC #18->14 R:c-cjt:16 R:c-attr:8 (bad)
$. [.] PU @PU #19->0

(wordform [lemma] <secondary tags> POS
INFLECTION @SYNTACTIC_FUNTION
#id[dep]->id[head])

Secondary relations are appended as R: tags on
both tokens involved in a (binary) relation, and
contain a relation name followed by the id of the
other token. 'R:c-attr:8', for instance, means the
child end of an attributive relation, where 8 is the
id of the (attributed) parent token. The latter here
gets the same10 relation name, but with a 'p-'
(parent) prefix. Similarly, conjunction is tagged
as c/p-cjt, and the subject and object relations as
subj and acc, respectively.

It should be noted that all of the above are meant
as primarily syntactic dependencies and that they
are secondary in the sense that the child tokens
in question unorthodoxically are allowed two
dependency heads, where an ordinary syntactic
tree would allow them either one or the other, but
never both.

This is different from systematically adding a
completely new, non-syntactic layer of
dependency, as is the case when DanGram
assigns semantic dependencies for frame- and
role-carrying tokens (Bick 2011). In this case, a
second, semantic tree is constructed, and the
individual relations may or may not coincide
with primary or secondary syntactic relations:

Den[den] <dem> DET UTR S @>N #1->2
forsikring [forsikring] <f-right> N UTR S IDF NOM

@SUBJ> R:sd-TH:5 R:sd-TH:7 §TH #2->7
$, [,] PU @PU #3->0
han [han] PERS UTR 3S NOM @SUBJ> R:sd-

AG:5 §AG #4->5

10 CG3 allows arbitrary relation names, for both ends of a
relation, so using prefixes and a common relation name
is just a convention chosen here.

tegnede [tegne] <fn:buy> <mv> V IMPF AKT @FS-
N< R:sd-ATR:2 §ATR #5->2

$, [,] PU @PU #6->0
var [være] <fn:be_copula> <mv> V IMPF AKT

@FS-STA #7->0
meget [meget] <aquant> ADV @>A #8->9
dyr [dyr] <jval> <Deco> ADJ UTR S IDF NOM

@<SC R:sd-ATR:7 §ATR #9->7
$. [.] PU @PU #10->0
(sd=semantic dependency, fn: = framenet class,

§AG=agent, §TH=theme, §ATR=attribute

6 Evaluation and statistics

Some preliminary, inspection-based11, evaluation
was carried out for four categories: (1) number
propagation and disambiguation, (2) person-
number tagging for finite verbs (from scratch),
(3) future tense marking (<fut>) and (4) iterative
marking (<iter>). In order to provide well-mixed
attributes for these features, we used a section
from Korpus 201012 containing blog/internet
data.

R P F
number 95.8% 100% 97.9
v pers/num 97.1% 97.5% 97.3
<fut> 83.3% 88.2% 85.7
<iter> 92.9% 78.8% 85.3

Table 2: Category tagging accuracy

Results indicate that the propagation and
specification of morphological features (such as
number and person) works best (F scores above
97%), most likely because they are mostly
already inflection-marked on some other word in
the sentence tree. Truly implicit features, that are
never marked morphologically in Danish, are
much harder to determine (F scores around
85%). Interestingly, <fut> suffered more from
false negatives (low recall), while <iter> had
more problems with false positives (low
precision).

11 Inspection is a fairly safe method for morphological
categories, because there are few clear categories and
clear morphological clues elsewhere in the sentence.
The <fut> and <iter> categories are more likely to
cause controversy in a multi-annotator scenario. As a
"hard" criterion we plan to use the Greenlandic
translation, that must make these categories explicit.

12 Korpus 2010 was compiled by the Danish Society of
Language and Literature (DSL) as part of the DK-
CLARIN project.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

10

7 On-the-fly corpus search markers

The focus of this paper has been the enrichment
of an ordinary annotation run, feeding into an
application (like MT) that needs implicit
information made explicit (as tags) for specific
purposes, or simply providing complete
annotation of a category that does exist in the
language in question, but is often left under-
specified.

However, the same method can be put to a
rather different use - on-the-fly marking of
"corpus searchables". In this scenario, it is up to
the (expert) user of an annotated corpus to
formulate a search as a CG mapping rule, rather
than an ordinary tag field query. In other words,
the search engine interprets a 1-rule mini-CG at
run time. Obviously, such a rule can exploit any
existing annotation in a fully context-capable
way, handling complexities far beyond any
ordinary search. The example below presupposes
a dependency tree and semantic role annotation,
and also exploits two of the secondary tags
introduced above (<fut> and <if>), but in
principle, rules could even be written for raw
text, using CG3's regular expression format.

"Find verbs with an experiencer subject, and
check which ones are modified by conditional
clauses in the future tense."

MAP (£mark) TARGET <mv> (*-1S VFIN
LINK c @SUBJ + §EXP) (c @FS-<ADVL +
<fut> LINK (c ("fordi")) OR (0 <if>)) ;

For smaller corpora, this is possible in real time,
but for larger corpora, live processing and the
ensuing impossibility of an optimized search
structure (such as a database) means that search
results cannot be piped to a GUI, but need to be
written to a file for later inspection.

8 Conclusions and outlook

We have shown, how an existing CG annotation
can be enriched without changing the original

grammar, in a modular and application-driven
fashion. Obviously, for both scenarios discussed
here, corpus linguistics and machine translation,
the choice of categories is task-dependent. For
instance, propbank-style ARG0, ARG1, ...
annotation could be added for a corpus user, and
a different target language would require
different categories. Thus, "non-factuality" is an
inflection category in Romance languages
(subjunctive), but not explicitly marked in
Danish.

Future work should explore and evaluate
which categories can be inferred from a standard
(Danish) CG annotation with a reasonable level
of accuracy, and which would need alterations in
the original grammar or lexica.

References

Bick, Eckhard & Tino Didriksen. 2015. CG-3 -
Beyond Classical Constraint Grammar. In: Beáta
Megyesi: Proceedings of NODALIDA 2015, May
11-13, 2015, Vilnius, Lithuania. pp. 31-39.
Linköping: LiU Electronic Press. ISBN 978-91-
7519-098-3

Bick, Eckhard (2011). A FrameNet for Danish. In:
Proceedings of NODALIDA 2011, May 11-13,
Riga, Latvia. NEALT Proceedings Series, Vol 11,
pp.34-41. Tartu: Tartu University Library. (ISSN
1736-6305)

Bick, Eckhard. 2001. En Constraint Grammar Parser
for Dansk, in Peter Widell & Mette Kunøe (eds.),
8. Møde om Udforskningen af Dansk Sprog, 12.-
13. oktober 2000, pp. 40-50, Århus University

Freitas, Cláudia & Rocha, Paulo & Bick, Eckhard.
2008. "Floresta Sintá(c)tica: Bigger, Thicker and
Easier", in: António Teixeira et al. (eds.)
Computational Processing of the Portuguese
Language (Proceedings of PROPOR 2008, Aveiro,
Sept. 8th-10th, 2008), pp.216-219. Springer

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

11

Constraint Grammars for Tibetan Language Processing

Christian Faggionato
SOAS, University of London

10 Thornhaugh St, Bloomsbury
WC1H 0XG

cf36@soas.ac.uk

Edward Garrett
SOAS, University of London

10 Thornhaugh St, Bloomsbury
WC1H 0XG

eg15@soas.ac.uk

Abstract

This paper describes the diverse and
distinctive ways that Constraint Grammar
has been used within a Tibetan verb
lexicon project. We present three CG3
grammars and how they fit into our
workflow, along with the practical
problems they were designed to solve.*

1 Introduction

The aim of our work is to develop a corpus-
based verb lexicon of Tibetan covering the three
major periods in the history of the language: Old,
Classical and Modern Tibetan. The starting point
for this work is a manually annotated corpus of
Tibetan texts. This is obtained by importing part-
of-speech tagged Tibetan texts into the BRAT
annotation tool, where human annotators then
draw labeled dependency arcs between verbs and
their arguments. Here’s an example:

Figure 1. Verb-argument annotation.

In Figure 1, translated as “Who wrote the text of
your testament?” (Wylie transliteration: khod kyi
kha chems kyi yi ge sus bris/), the verb “write” is

* This work is licensed under a Creative Commons
Attribution 4.0 International License. License details:
https://creativecommons.org/licenses/by/4.0/

linked to its two arguments, the writer (arg1) and
the thing written (arg2).

Although Tibetan sentences typically follow
Subject-Predicate (Miller, 1970) or more
specifically SOV word-order (DeLancey, 2003),
deviation is permitted, as shown by Figure 1.
Moreover, Tibetan case-marking does not
provide a failsafe way of identifying verb
arguments (Tournadre, 2010). Therefore, we
hand-annotate these relations, but narrowly so,
resulting in texts whose syntactic dependency
structure is only partially annotated, as Figure 1
makes clear with its many unlinked words. This
creates an opportunity for automated annotation
methods to fill in the gaps. Section 2 of this
paper describes a CG3 grammar that does just
that.

Section 3 of the paper turns to the challenge of
incorporating Old Tibetan materials into our
workflow. Our Classical Tibetan annotators had
the luxury of working with previously POS-
tagged texts. However, no manually POS-tagged
texts exist for Old Tibetan. We present some of
the orthographic differences between Classical
and Old Tibetan, and then describe the CG3
grammar we developed to normalize Old Tibetan
texts into Classical Tibetan. By first applying this
grammar, we can POS-tag our Old Tibetan texts
using a tagger trained on Classical Tibetan
materials.

In Section 4, we describe ongoing work on a
third CG3 grammar, which has broader aims than
the first two grammars. We wish to draw
examples for our verb lexicon not just from
manually annotated texts, but also from a wide

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

12

range of additional Tibetan texts. To do so, we
must automatically annotate these further texts.
The grammar described in Section 4 does just
this, taking a POS-tagged text as input and
outputting a text enhanced with the dependency
relations we find essential.

We conclude the paper in Section 5. Because
of the practical role these grammars currently
play in our project, it would be both premature
and improper to carry out a formal evaluation at
this time. Instead, we make some concluding
remarks and discuss the future direction of our
work.

2 Other Dependencies

As illustrated in Figure 1, our project’s manual
annotations do not come close to providing full
dependency parses for Tibetan sentences. In light
of the project’s primary goals, such complete
parses may be unnecessary. Annotating certain
relations, however, is essential. For example, in
Figure 1, arg1 is su ‘ who’. The fact that it is
followed by the ergative case marker suffix ས་ is
important to us, because understanding how a
Tibetan verb is used includes knowing how its
arguments are case-marked.

We assert that it is possible to establish this
particular case-marking relation, among other
dependency relations, using automated methods.
This is where Constraint Grammar 1 (G1) fits in.
G1 consists of around a hundred hand-crafted
rules which ensure that most words of a sentence
have a non-root parent. G1 links modifiers such
as adjectives, determiners and demonstratives to
nouns, and converbs, punctuation and adverbs to
verbs. We rely on Tibetan’s relatively strict
noun-phrase internal word-order (Garrett and
Hill, 2015). Unsurprisingly, G1 consists largely
of SETPARENT and MAP rules. Here is an
example:

#genitive + pron:
SETPARENT (Case=Gen) (NONE p
ALLPOS) TO (-1 (PRON));
MAP (@case) TARGET (ADP) -
TAGS (p Head_NOUN OR (ADV));

In Tibetan, if a genitive case marker follows a
pronoun, then it must depend on that pronoun via
the case relation. The SETPARENT rule

establishes this dependency, and the MAP rule
assigns the tag @case to the genitive
adposition.

Other examples are more complex, but in the
end, the rules of G1 combine together to assign a
near complete dependency parse for a Tibetan
sentence, provided the starting point is text
which has been manually annotated for verb-
argument structure. Figure 2 shows the result of
applying G1 to the sentence in Figure 1.

Figure 2. G1 applied to Figure 1.

The first two words of this sentence are the
second person pronoun yོད་ ‘you’ and the genitive
case marker kིy་. The dependency relations
between them are established by the rules just
mentioned.

Refinements and further additions to G1 may
in time make it possible for us to offer a version
of our hand-annotated texts that incorporates
automatically inserted additional relations which
fill in the gaps for a complete dependency parse.
However, some relations are likely to require
human adjudication, and so for now we content
ourselves with lesser aspirations for G1.

3 Old Tibetan Normalization

Old Tibetan was initially introduced for
administrative purposes and includes detailed
historical accounts of the Tibetan Empire from
the 7th to the 10th century (Hill, 2010). Although
its vocabulary and grammar are strikingly similar
to Classical Tibetan, it has many differences in
spelling and orthography (Dotson & Helman-
Ważny, 2016). For example, the Classical
Tibetan genitive case marker kིy་ may be written in
Old Tibetan as kྀy་. Instead of the standard gigu
vowel we get a reverse gigu. In other cases, Old
Tibetan words have characters that do not occur
in their Classical Tibetan equivalents. Not only
does the Old Tibetan form mྀy་ ‘person’ have a

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

13

reverse gigu, but it also has a ya-btags: in
Classical Tibetan the word would be much more
simply མི་.

Our second CG3 grammar was developed to
deal with these and other differences between
Old and Classical Tibetan. We call it the Old
Tibetan Normalization Grammar (G2), and its
purpose is to make Old Tibetan look like
Classical Tibetan. The differences just described
can be characterized at the syllable level. It is
possible in such cases to define simple regular-
expression based SUBSTITUTE rules like the
following rule. (Note that reverse gigu has been
referenced using its Unicode escape value since
superscript vowels display awkwardly when not
attached to a base character.)

#Replace the reverse gigu
with gigu everywhere
SUBSTITUTE ("([^<]*)\\
u0F80(.*)"r) ("$1ི$2"v)
TARGET (σ);

SUBSTITUTE rules do not always suffice to
capture the differences between Old and
Classical Tibetan. Traditionally in Classical
Tibetan, syllables are separated by a tsheg (the
dot seen in the above examples). In Old Tibetan
texts, syllable margins are not so clear and often
a syllable (verb, noun and so on) is merged
together with the following case marker or
converb: stགི་ > stག་གི་, dusu་ > duས་su་, བkuམོ་ > བkuམ་མ་ོ.
To handle these cases, we came up with a
cascading series of SPLITCOHORT rules, where
initial rules split specific complex syllables into
separate syllables, and later rules apply
generically to syllables of a particular type. Here
is an example of a specific SPLITCOHORT rule:

SPLITCOHORT (
 "<མཆ>ི" "མཆིས་" σ
 "<sn$1>"v "ན$1"v σ
) ("<མཆིsn(་?)>"r);

And here is an example of a more general and
therefore less readable rule that applies to cases
like གཅlོt་ > གཅལད་ཏོ་:

SPLITCOHORT (
 "<$1>"v "$1$3 ད་"v σ
 "<$2>"v "ཏ$4"v σ

) ("<(.+)((.)\\u0F9F([\\
u0F7C\\u0F7A]་?))>"r);

The SPLITCOHORT rules reveal the form of
the input that is passed to G2. Instead of passing
word tokens, the grammar is passed syllable
tokens. Any syllable which G2 normalizes is
added in its original form as a new reading with
the tag ↑OT by the following rule near the end of
the grammar.

APPEND ("$1"v ↑OT)
("<(.*)>"r) (NOT 0 ("$1"v));

G2 concludes with a choice between two rules,
depending on whether the user wants to select
Old Tibetan “readings” (i.e. Old Tibetan
syllables and syllables that didn’t require
normalization) or Classical Tibetan “readings”
(i.e. Classical Tibetan normalizations as well as
syllables not requiring normalization).

#Uncomment one rule:
#SELECT (↑OT);
#SELECT (σ);

Thus, each syllable of the input is treated as a
CG3 cohort, whose different readings are the
different syllable forms (Old or Classical) that it
can take. Syllable readings are then joined
together in their Classical Tibetan form in order
to make a Classical Tibetan normalization.

The approach we are taking has three merits.
First, we have carefully characterized the
orthographic differences between Old Tibetan
and Classical Tibetan, which is valuable in itself.
Second, we can apply Meelen and Hill’s (2017)
tagger to the Classical Tibetan normalizations,
rather than struggle with tagging Old Tibetan
texts. And third, preserving a record of which
syllables have been transformed enables us to
reverse the process and denormalize back to Old
Tibetan, after our Old Tibetan texts have been
hand-annotated. After all, Tibetan scholars do
not in general want Old Tibetan texts to look like
Classical Tibetan.

4 Verb-Argument Annotation

So far we have described a workflow that
consists of the following steps, which may not all
be necessary for a given text:

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

14

text normalization → POS-
tagging → BRAT import →
manual verb-argument
annotation → automated other
dependency annotation

We would prefer to create a verb lexicon that is
informed by and draws examples from Tibetan
texts that have not been manually annotated, and
not just those that have. To this end, we are
pursuing various strategies for automatically
annotating verb-argument structure.

The Verb Argument Dependencies grammar
(G3) attempts to solve this problem with CG3.
The input to G3 is a POS-tagged text without
dependency annotations. G3 starts by inserting
“helper” tags, such as tags which identify
candidate constituent junctures. For example, the
following rule tags those words which, if they
occur to the left of a word, could not be part of a
noun phrase with that word.

SET LEFT_NP_BOUNDARY =
(VERB) OR (ADP) OR (PUNCT)
OR (SCONJ) OR (PART);

The grammar then proceeds through dozens of
SETPARENT and MAP rules, which set and label
the verb-argument dependencies. These rules are
rather intricate and will not be exemplified here.

G3 concludes with a series of “fixing rules”
which SUBSTITUTE or remove mistaken tags.
For example, if a noun preceding a genitive case
marker has been marked as an argument, this
cannot be correct, since a word to the right of the
genitive would always be the argument.

SUBSTITUTE (@arg2) (*)
TARGET Head_NOUN + (@arg2)
(1 (Case=Gen)) (p (VERB));

In other cases, the fixing rules relate to specific
verbs or verb classes that behave differently from
the norm. For example, verbs of movement
cannot take arg2:

SUBSTITUTE (@arg2) (@arg1)
TARGET Head_NOUN + (@arg2)
(p (VERB) + VMOVE - ("མཆི་"));

In general, G3 has worked very well with
transitive verbs, where arg1 is marked with
ergative case. The main challenge has been to
detect the argument structure of verbs with
multiple arguments lacking case-marking.

5 Conclusion

In this paper we described three grammars that
have proved helpful to our Tibetan verb lexicon
project. By automating predictable dependency
annotations, G1 has allowed our annotators to
focus narrowly on verb-argument annotation.
G2’s treatment of Tibetan syllables as CG3
tokens has replaced haphazard search and replace
with an accountable and reversible approach to
text normalization. Finally, G3 is tackling the
challenging task of automating verb-argument
annotation. This remains a work in progress,
subject to further improvement and comparison
with alternative methods.

In future, we hope to address some missing
elements of the work presented here. As regards
G1, it will always be valuable to reduce the
number of words outside the dependency
structure. In addition, it may be worth evaluating
the correctness of those dependencies which are
not obvious against a reference set of hand-
annotated examples. In terms of G2, the software
processing pipeline including denormalization
remains to be released. Finally, the status of G3
in our pipeline needs to be clarified; from there,
evaluative metrics may well follow.

The texts and grammars discussed in this
paper are freely available for anybody to
examine and use. For further details, see our
“Tibetan NLP” page on GitHub, in particular the
tibcg3 repository.

References
Scott DeLancey. 2003. Classical Tibetan. In The

Sino-Tibetan Languages, edited by Graham
Thurgood and Randy J. LaPolla, pp. 255-269.
Routledge, London and New York.

Brandon Dotson and Agnieszka Helman-Ważny.
2016. Codicology, Paleography, and Orthography
of Early Tibetan Documents: Methods and a Case
Study. Wiener Studien Zur Tibetologie und
Buddhismuskunde, Vol. 89. University of Vienna:
Vienna.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

15

Edward Garrett and Nathan Hill. 2015. Constituent
order in the Tibetan noun phrase. SOAS Working
Papers in Linguistics 17:35-48.

Nathan Hill. 2010. An overview of Old Tibetan
synchronic phonology. Transactions of the
Philological Society 108(2):110-125.

Marieke Meelen and Nathan Hill. 2017. Segmenting
and POS tagging Classical Tibetan using a
memory-based tagger. Himalayan Linguistics
16(2).

Roy Miller. 1970. A grammatical sketch of Classical
Tibetan. Journal of the American Oriental Society
90(1):74-96.

Nicolas Tournadre. 2010. The Classical Tibetan cases
and their transcategoriality: From sacred grammar
to modern linguistics. Himalayan Linguistics 9(2).
http://dx.doi.org/10.5070/H99223480. Retrieved
from https://escholarship.org/uc/item/94d0447c.

Turrell Wylie. 1959. A standard system of Tibetan
transcription. Harvard Journal of Asiatic Studies
22:261-267.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

16

Developing a constraint grammar for Lithuanian

Trey Jagiella
Indiana University Bloomington
fjagiell@indiana.edu

1 Introduction

This paper presents a preliminary constraint gram-
mar for Lithuanian. The main objective in de-
veloping this constraint grammar was precision.
The corpus used to develop this constraint gram-
mar with the Lithuanian ALKSNIS treebank from
the Universal Dependencies Project (Bielinskiene
et al., 2016). The pipeline consists of a morpho-
logical analyser of all possible interpretations for
the wordforms in the corpus as well as a constraint
grammar. In the test corpus, the constraint gram-
mar has a precision of .9205, a recall of .1845, and
an F1 score of .3074.

The paper is organized as follows: section 2
contains a brief review of literature, section 3 de-
scribes the analysis pipeline, section 4 describes
the development process, section 5 evaluates the
results, and section 6 presents the conclusion.

2 Review of literature

There has not yet been a constraint grammar
developed for the Lithuanian language. There
has, however, been a fair amount of linguis-
tic research on the language. Since the fall
of the Soviet Union, there has been greater
study into other areas of the Lithuanian lan-
guage. Little of this work, however, has been
translated into other languages (Usoniene et al.,
2012). Nevertheless, there are English-language
books and translations on Lithuanian grammar
as well as Lithuanian dictionaries readily avail-
able, which were consulted in the development
of this constraint grammar (Mathiassen, 1997;
Ramoniene and Pribusauskaite, 2008; Piesarkas,
2006; Piesarkas and Svecevicius, 1995).

3 Analysis pipeline

3.1 Morphological analyser
To create a list of wordforms and their possible in-
terpretations, I used a Python program, which cre-

ates a list of all interpretations for a single word-
form found in an input.

3.2 Rule writing

The constraint grammar, lt.cg3, is composed of 79
rules, 26 of which are remove and 53 of which
are select. These rules were developed by run-
ning a sentence of the train CoNLL-U file through
the morphological analyser to find a list of its out-
puts. Based on the ambiguities of the output and
the correct lemma in the corpus, rules were written
to make the constraint grammar pick the correct
interpretation.

4 Development process

To test the rules in the constraint grammar and fur-
ther develop it a script was run. It took the dev
CoNLL-U file of the Lithuanian ALKSNIS tree-
bank and ran it through the analyser and lt.cg3
files and then compared the output of this process
to the annotation in the dev file. This script out-
puts the true and false positives for each rule; the
number of input, output, and reference analyses;
input, output, and reference ambiguity; total true
and false positives and negatives; and precision,
recall, and F-score.

From the rule by rule output of the script, poorly
performing rules could be eliminated or modified
accordingly.

5 Evaluation

5.1 Corpus analysis

The next table summarizes the ambiguity left in
the test corpus after being run through the con-
straint grammar:

Ambiguity in the test corpus
Input Reference Output

Analyses 12629 10118 10932
Ambiguity 1.25 1.0 1.08

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

17

From the table above, it can be seen that while
there was a noticeable reduction in ambiguity,
whether correctly or incorrectly, there still remains
a large portion ambiguity within the corpora.

The following table demonstrates the perfor-
mance of the constraint grammar through preci-
sion and recall.

Precision and Recall
dev test

Precision .87 .92
Recall .66 .18

F1 Score .75 .31

As can be seen in the table above, the rules are per-
forming relatively accurately. However, the recall
is still fairly low, particularly in the test corpus.The
F1 score shows that overall, the constraint gram-
mar has a modest performance in disambiguating
the corpus.

In the following table the number of true and
false positives and negatives for the test corpus are
presented:

Positives and Negatives in the test corpus
Positives Negatives

True 1563 3367
False 135 6915

From the table above, we can see that the num-
ber of true positives is significantly higher than the
number of false positives. On the other hand, this
is not the case for true and false negatives.

The difference in recall between corpora is in-
triguing. Given the fact each corpus is relatively
small, just over 10,000 tokens each, there is plenty
of room for variability and building rules using
one corpus may not cover the language sufficiently
to allow for effective rule making.

6 Conclusion

Although the precision is not bad at 92% in the test
corpus, with a recall of 18% , there is still much
work to be done. Any future rules written should
be more accurate than the current ones in addition
to the rewriting of current rules to increase their
accuracy.

References
Agne Bielinskiene, Loic Boizou, Jolanta Ko-

valevskaite, and Erika Rimkute. 2016. Lithuanian
Dependency Treebank ALKSNIS. I. Skadia and R.
Rozis (Eds.): Human Language Technologies The
Baltic Perspective.

Terje Mathiassen. 1997. Short Grammar of Lithua-
nian. Slavica Publishers, Inc., Columbus, OH.

Bronius Piesarkas. 2006. Didysis Lietuviu-Anglu Kalb
Zodynas. Zodynas Publishers, Vilnius, Lithuania.

Bronius Piesarkas and Bronius Svecevicius. 1995.
Lithuanian Dictionary English-Lithuanian
Lithuanian-English. Zodynas Publishers, Vil-
nius, Lithuania.

Meilute Ramoniene and Joana Pribusauskaite. 2008.
Practical Grammar of Lithuanian. Baltos Lankos,
Lithuania.

Aurelija Usoniene, Nicole Nau, and Ineta Dabasin-
skiene. 2012. Multiple Perspectives in Linguistic
Research on Baltic Languages. Cambridge Schol-
ars Publishing, Newcastle upon Tyne, UK.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

18

Disambiguating homonymous enclitics in Greenlandic

Liv Molich
Oqaasileriffik / The Language Secretariat of Greenland

livm@oqaasileriffik.gl

Abstract

In Greenlandic ambiguities are very com-
mon. Some of them concern enclitics
which are widely used and can be inter-
preted as both conjunctional and adverbial
particles. The disambiguation of such ho-
mographic enclitics was not attempted be-
fore 2018, even though a Greenlandic con-
straint grammar (CG) was initiated more
than a decade ago.

In this paper I shall deal with the dis-
ambiguational challenges of enclitic par-
ticles and discuss where the disambigua-
tion rules should be placed in the CG, and
show how some disambiguation problems
can be solved by looking at the combina-
tion of inflection and enclitic.

This is an important issue, because dif-
ferent renderings of enclitics – like many
other morphemes – can change the syntax
of the sentence completely.

1 Credits

The Greenlandic CG was initiated in 2008 by Per
Langgård in collaboration with Eckhard Bick and
Tino Didriksen. The grammar has continuously
been improved, especially by Per Langgård, as-
sisted by changing colleagues. A Greenlandic-
Danish-Greenlandic machine translation project
running from 2017 till the end of 2021 under the
auspices of the Language Secretariat of Greenland
(Oqaasileriffik 2016) has speeded up the improve-
ment of the CG. Thanks to this work, the Green-
landic CG is now performing better than ever be-
fore, but some major issues still need attention.

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

2 Introduction

Greenlandic is a polysynthetic, agglutinative,
split-ergative pro-drop language with a rich mor-
phology. The level of ambiguity is high, with
an average number of 3-4 readings per cohort
on the morphological level alone (Oqaasileriffik
2010; Molich 2019:4). Most Greenlandic words
consist of a root and several derivational mor-
phemes followed by inflection and sometimes one
or more enclitics. When the morphemes are com-
bined, a number of morphophonological pheno-
mena (Langgård 1997) blur the morpheme bound-
aries, raising the level of ambiguity and resulting
in a hard job of disambiguation.

In addition to ambiguities caused by mor-
phophonology, there are also ambiguities at the
word class level: Common nouns are not distin-
guishable from adjectives,1 and nominal partici-
ples are often homonymous to verbal participles.
Additionally, enclitics can be interpreted as ad-
verbs or conjunctions, but graphically they do not
differ. However, a correlation between participles
and enclitics can be found, facilitating the disam-
biguation.

3 The enclitic particles can be
conjunctions or adverbs

Three enclitic particles, {luunniit}, {lu} and {li},
share some features: They can be added to any
word and may function as conjunctions or adverbs,
without changing the syntactic potential or word
class of the word they are added to. If the enclitic
particle is conjunctional, it coordinates the phrase
itself with the phrase to the left of it – disjunc-
tively, additively, or adversatively. If the enclitic is
adverbial, it only modifies the clause that it is part
of.

The adverbial enclitics often lead to translations
1For this reason common nouns and adjectives are treated

as belonging to the same word class, nouns.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

19

with subordinate conjunctions if they are added to
verbs in the participle or contemporative mood.
Such enclitics may therefore be equated to con-
junctions, even though they are adverbial seen
from a purely Greenlandic point of view.

3.1 An example: {luunniit}

The following quote2 is an example of adverbial
and conjunctional use of {luunniit} and shows
that disambiguation between the two functions is
needed:

EX Maleruagassa-t
rule-N.Abs.P3

@SUBJ>

UX suminngaanneer-aluar-aanni-luunniit
be.from.where-even-V.Par.Im-even.Encl.Adv
@CL-ADVL>

UX atuup-put,
be.in.use-V.Ind.3P,
@PRED

UX franski-u-gaanni
Frenchman-be-V.Par.Im
@CL-<ADVL

UX tyrkeri-u-gaanni
Turk-be-V.Par.Im
@CL-<ADVL

UX kalaali-u-gaanni-luunniit.
Greenlander-be-V.Par.Im-or.Encl.Conj
@CL-<ADVL

“The rules apply no matter where you
are from, [no matter] if you are a
Frenchman, a Turk or a Greenlander.”

Both {luunniit} enclitics are added to an imper-
sonal participle -gaanni, “you” or “one”, but they
clearly have different functions, the first being ad-
verbial “no matter where you are from” and the
second conjunctional, “or if you are a Greenlan-
der”. Formerly, both {luunniit}s were translated
by “even though” (selvom in Danish). This is
clearly not what we intend, especially not where
{luunniit} should be translated as a coordinating
conjunction.

2KNR 2005. The example has been shortened.
3N=noun; Abs=absolutive case; P=plural; V=verb;

Ind=indicative mood; Par=verbal participle; Im=impersonal;
3=3rd person; Encl=enclitic particle; Adv=adverbial;
Conj=conjunctional.

3.2 Writing disambiguational rules for
{luunniit}

As the example shows, the syntactic function of
the enclitic cannot be deduced from morphology
alone, and syntactic rules must therefore be writ-
ten in order to be able to do the disambiguation.
The syntactic function of the enclitic is shown by
adding a secondary tag to the word, Gram/Adv-
encl or Gram/Conj-encl. These secondary tags
facilitate correct translations of the enclitics into
other languages.

If conjunctional, {luunniit} must coordinate
two similar phrases. In the following rule, used in
the example above, the secondary tag Gram/Conj-
encl is added to the enclitic, if a verb in the same
mood appears to the left of the enclitic, as well as
to the right of or in the same word as the enclitic.

SUBSTITUTE:conj1luun
(LUUNNIIT) (LUUNNIIT Gram/Conj-encl)
TARGET LUUNNIIT + $$MOOD
IF (-*1 $$MOOD - Gram/Exclm
BARRIER (*) - KOMMA) ;

3.3 Placing the rules for {luunniit}

Rules such as the above one work well, but of-
ten word class disambiguation prior to enclitic dis-
ambiguation could be advantageous. The most
logical thing to do is therefore to place the rules
for {luunniit} after the word class disambigua-
tion rules. However, this is problematic because
the disambiguation of enclitics is useful for dis-
ambiguation of word class, and word class disam-
biguation is useful for the disambiguation of en-
clitics. Both wishes of course cannot be met at the
same time.

Disambiguation of nominal and verbal parti-
ciple is not done until late in the grammar because
of the complexity of the task – as shown later. Be-
cause of these and other unsolved ambiguities, I
have decided to place the enclitic disambiguation
rules in the top of the grammar, rather than in the
bottom.

Not being able to disambiguate word class be-
fore enclitic, I have decided to divide the rules
for the conjunctional and adverbial enclitics into
groups of safe, less safe and unsafe rules and ar-
range them by turns: The group of safe conjunc-
tional, safe adverbial, less safe conjuctional and so
on. The outcome of this strategy is a reliable dis-
ambiguation, as shown in the evaluation below.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

20

3.4 Running the rules for {luunniit}
The Greenlandic CG is run twice, the first time
only using the disambiguation rules and the sec-
ond time using disambiguation rules as well as
mapping rules.4 This feature is useful for proof-
reading the enclitic disambiguation rules: If the
secondary tag in the first run is different from the
one in the second run, the rules might need an ad-
justment, or the difference may point to a true am-
biguity.

At last, the secondary tag is used for the trans-
lation of the enclitic. In cases of true ambiguity
or enclitics that for some reason have not been tar-
geted by any of the disambiguation rules, the dis-
ambiguation must be performed in a later grammar
or directly in the translation lexicon rules.

4 An inflectional suffix homonymous to a
derivational morpheme

While the impersonal participle -gaanni in the ex-
ample above can be ambiguous, a much more se-
rious problem is represented by the personal parti-
ciple written -toq or -soq, identical to a deriva-
tional morpheme, the nominal participle {tuq}.5

4.1 An example of -toq

The various possibilities of interpreting words
ending in the ambiguous -toq call for radically dif-
ferent syntactic analyses. A word like atuartoq
can mean either “that he6 is7 reading” or “a pupil”:

EX Atuar-toq ————— taku-ara
read-Nzr.N.Abs.S see-V.Ind.1S.3SO8

The pupil I saw him
@OBJ> @PRED
“I saw the pupil.”

EX Atuar-toq ————— taku-ara
read-V.Par.3Sg see-V.Ind.1S.3SO9

That he was reading I saw it
@CL->CIT @PRED

4According to Tino Didriksen, 97,5% of the disambigua-
tion is done in the first run, and most of the remaining dis-
ambiguation is done on the basis of the syntactic tags. The
grammar could therefore easily have been split into a disam-
biguating grammar and a mapping grammar (personal com-
munication, August 2019).

5u and o are orthographic variations of the phonemic
vowel /u/.

6In Greenlandic, gender is not a grammatical category.
Here and later, “he” could just as well have been “she” or
“it”.

7Present and past tense is normally not marked morpho-
logically, so depending on the context, it could be translated
as “was”.

“I saw that he was reading / I saw him read.”

Both interpretations are equally possible and
depend on the context alone. Therefore, in cases
such as this one, the choice between nominal and
verbal participle should only be made with context
taken into account.

4.2 Combination of participle -toq and
enclitic {lu}

Fortunately, real ambiguities are rare. In some
cases the ambiguities can be solved by looking at
the combination of inflection and enclitic:

EX Taama ——— oqar-tor-lu
That.Part say-V.Par.3S-when.Encl.Adv10

That when he said
@ADVL> @ADVL>

EX paatsiveerup-punga
become.confused-V.Ind.1S
I became confused
@PRED

EX “When he said that, I became confused.”

Here, the adverbial, enclitic particle {lu} and
the verbal participle -toq are used in combination
to show that the first two words form a temporal
subordinate clause, ”when he said that”, which is
not coordinated, and should therefore not be trans-
lated as *”and when he said that”.

This combination of enclitic and participle can
be written in a simple rule:

SUBSTITUTE:Adv02lux
(LU) (LU Gram/Adv-encl)
TARGET LU + Par
IF (NEGATE *-1 V) ;

Here, {lu} is marked adverbially if it is added to a
verbal participle, and if no other verb is found to
the left of it.

In this way, the word class can sometimes be de-
termined by looking at the combination of enclitic
and inflection.

5 Evaluation

The disambiguation of enclitic {luunniit}, {lu}
and {li} is in most cases done in the first run of

8Nzr=nominalizer; N=noun; Abs=absolutive case;
S=singular; V=verb; Ind=indicative mood; 1=1st person;
3=3rd person; O=object.

9V=verb; Ind=indicative moor; Par=participle mood;
1=1st person; 3=3rd person; S=singular; O=object.

10Part=particle; V=verb; Ind=indicative mood;
Par=participle mood; 1=1st person; 3=3rd person;
S=singular; Encl=enclitic particle; Adv=adverbial.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

21

the grammar. In a minor test corpus (Lynge 1976)
of 16,400 tokens in 1,951 sentences, 1,395 of the
tokens contained one of the three enclitics – al-
most one per sentence. Among these were 118
{luunniit}s.

Disambiguation of enclitic {luunniit}
Total Correct Incorrect Not disamb.
118 98 3 17

Of the 17 {luunniit}s that could not be disam-
biguated after the implementation of my rules, 7
had no morphological analysis at all, and 2 lacked
a morphological analysis of the next word in the
sentence concerned. 2 were differently marked in
the first and the second run of the grammar, and 1
was not disambiguated until the second run. I ex-
pect that the rate of correctly disambiguated encl-
itics will increase when completely analyzed text
becomes available.

The effectiveness of the {luunniit} rules in the
top of the grammar was tested by the use of a min-
imal grammar only consisting of {luunniit} rules.
The tagging was here very similar to that of the
full grammar, but of course without the word dis-
ambiguation. This shows that the internal rule or-
der is effective, and that the potential advantage of
running the grammar twice is minimal.

As regards the correlation between enclitic
{luunniit} and participle, the table below clearly
shows that the combination of nominal participle
and adverbial enclitic is the least probable one.11

Correlation between participle and enclitic
Nominal Verbal

Conjunctional 611 456
Adverbial 318 429

This knowledge can be used for disambiguating
the last enclitics and/or participles, on a statistical
basis.

6 Conclusion

Disambiguation problems abound in Greenlandic,
and they sometimes call for creative thinking.
Some of the problems can be solved by distin-
guishing between adverbial and conjunctional en-
clitics. Disambiguation of word class and dis-
ambiguation of enclitic are interdependent, and
when the disambiguation rules for enclitics are

11In Oqaasileriffik’s big corpus with more than 13,000,000
words, 2,614 words contain the combination of participle and
{luunniit}. Not all enclitics were analyzed or disambiguated
so the numbers in the table do not sum up to the total.

put in the right order, reliable disambiguations can
be achieved, resulting in better disambiguation of
participles, and more correct translations.

Acknowledgements

My dear husband Flemming A. J. Nielsen deserves
big thanks for correcting linguistic errors, and for
always cheering me up.

References

Kleist, Mira, Juana Petrussen and Carla Rosing
Olsen. 2017. Ataqqinartuaraq. Nuuk: Milik
Publishing. Translated from Antoine de Saint-
Exupéry. 1943. Le Petit Prince. New York:
Reynal & Hitchcock.

KNR (Kalaallit Nunaata Radioa). 2005.
Birthe Rønn Hornbech: Siunnersuut
akuersaarneqarsinnaanngilluinnarpoq,
https://knr.gl/kl/nutaarsiassa
t/birthe-r%C3%B8nn-hornbech-s
iunnersuut-akuersaarneqarsinna
anngilluinnarpoq.

Langgård, Per. 1997. Forsøg til en Forbedret
Grønlandsk Pædagogisk Grammatica. Nuuk:
Atuagkat.

Lynge, Hans Anton. 1976. Seqajuk. Atuakkiorfik.
Molich, Liv. 2019. Solving translational problems

through constraint grammar - a practical case
study of possession homographs. Bachelor
thesis. Nuuk: University of Greenland.
https://uni.gl/media/4822434/
solving-translational-problem
s-through-constraint-grammar-a
-practical-case-study-of-posse
ssion-homographs-official.pdf.

Oqaasileriffik. 2010. A bit of History.
https://oqaasileriffik.gl/la
ngtech/a-bit-of-history/.

Oqaasileriffik. 2016. Ukiumoortumik
nalunaarut 2016-imoortoq. https:
//oqaasileriffik.gl/wp-content
/uploads/2018/08/2016-Oqaasil
eriffik-final.pdf.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

22

https://knr.gl/kl/nutaarsiassat/birthe-r%C3%B8nn-hornbech-siunnersuut-akuersaarneqarsinnaanngilluin narpoq
https://knr.gl/kl/nutaarsiassat/birthe-r%C3%B8nn-hornbech-siunnersuut-akuersaarneqarsinnaanngilluin narpoq
https://knr.gl/kl/nutaarsiassat/birthe-r%C3%B8nn-hornbech-siunnersuut-akuersaarneqarsinnaanngilluin narpoq
https://knr.gl/kl/nutaarsiassat/birthe-r%C3%B8nn-hornbech-siunnersuut-akuersaarneqarsinnaanngilluin narpoq
https://uni.gl/media/4822434/solving-translational-problems-through-constraint-grammar-a-practical-case-study-of-possession-homographs-official.pdf
https://uni.gl/media/4822434/solving-translational-problems-through-constraint-grammar-a-practical-case-study-of-possession-homographs-official.pdf
https://uni.gl/media/4822434/solving-translational-problems-through-constraint-grammar-a-practical-case-study-of-possession-homographs-official.pdf
https://uni.gl/media/4822434/solving-translational-problems-through-constraint-grammar-a-practical-case-study-of-possession-homographs-official.pdf
https://uni.gl/media/4822434/solving-translational-problems-through-constraint-grammar-a-practical-case-study-of-possession-homographs-official.pdf
https://oqaasileriffik.gl/langtech/a-bit-of-history/
https://oqaasileriffik.gl/langtech/a-bit-of-history/
https://oqaasileriffik.gl/wp-content/uploads/2018/08/2016-Oqaasileriffik-final.pdf
https://oqaasileriffik.gl/wp-content/uploads/2018/08/2016-Oqaasileriffik-final.pdf
https://oqaasileriffik.gl/wp-content/uploads/2018/08/2016-Oqaasileriffik-final.pdf
https://oqaasileriffik.gl/wp-content/uploads/2018/08/2016-Oqaasileriffik-final.pdf

CG Roots of UD Treebank of Estonian Web Language

Kadri Muischnek
University of Tartu

Estonia
kadri.muischnek@ut.ee

Kaili Müürisep
University of Tartu

Estonia
kaili.muurisep@ut.ee

Dage Särg
University Of Tartu

Estonia
dage.sarg@ut.ee

Abstract

This paper describes a method building
UD Treebank of Estonian Web Language
from scratch. First, the texts were parsed
using Estonian CG parser and the parser
output was manually checked by two hu-
man annotators. After that, the CG annota-
tions were converted into UD annotations
by means of CG rules and external scripts.
Apart from providing a detailed overview
of this method, the paper also discusses
benefits and limitations of this approach.

1 Introduction

This contribution reports on a project of building
a preliminary version of the UD Treebank of Esto-
nian Web Language (EWTB) and lessons learnt in
the course of this effort.

Universal Dependencies (UD) is an open com-
munity effort to create cross-linguistically con-
sistent treebank annotation for many languages
within a dependency-based lexicalist framework
(Nivre et al., 2016).

As the Estonian UD Treebank (EDTB) has been
part of the UD treebank collection since its Ver-
sion 1.2 (Muischnek et al., 2014b), the corpus of
web language has been included since Version 2.4.
The main Estonian UD Treebank contains 30,723
trees, 434,245 tokens. EDTBs texts represent the
“classical” genres of written language: fiction,
newspaper and scientific texts. EWTB (1660 trees,
27,000 tokens) includes a small sample of texts
from the corpus Estonian Web 2013.

The main aim of the UD effort is to facilitate
developing better parsing techniques and better
parsers. By “better” one also bears in mind bet-
ter coverage of texts that are “out there” and need
to be parsed for practical purposes. These texts in-
clude also the user-generated internet content con-
taining a large variety of genres, differing from the

normed language usage of the “classical” texts and
also from each other in orthography, lexicon and
even in the preferred syntactic structures. So we
are extending the coverage of Estonian UD and as
a pilot project we have annotated a small collec-
tion of web texts and published it as a UD Tree-
bank of Estonian Web Language (EWTB) in UD
Version 2.4.

In the UD repository different internet genres
(blogs, web, social, reviews) are distinguished. Of
those, EWTB contains blogs, social (forum posts)
and other web texts, but no reviews.

2 UD Treebank of Estonian Web
Language (EWTB)

EWTB includes a small sample of texts from the
corpus Estonian Web 20131. Estonian Web 2013
belongs to the so-called Ten-Ten corpus family.
The texts have been crawled from the web, cleaned
from non-textual material, tokenized and analysed
morphologically (lemmatized). The same tools
were used for tokenizing and lemmatizing classi-
cal written texts and more informal web texts, so
the quality of the original morphological analysis
was not reliable. Thus we preserved the tokeniza-
tion but created new morphological annotation, in-
cluding lemmas.

The creation of EWTB proceeded in two steps.
First, the texts were annotated using the Esto-
nian Constraint Grammar annotation scheme for
morphological analysis and dependency parsing
(Muischnek et al., 2014a). The annotation stan-
dard was the same as used for annotating the Es-
tonian Dependency Treebank (Muischnek et al.,
2014b), but one additional syntactic label has been
introduced, namely that of discourse particle. The
initial annotations were created using the Con-
straint Grammar parser for Estonian and the parser
output was manually checked by two human anno-

1
DOI:10.15155/1-00-0000-0000-0000-0011FL

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

23

tators. The preliminary Constraint Grammar style
treebank of web texts is described by Särg et al.
(2018) and is freely available2.

3 The conversion procedure

The CG annotations were converted into UD an-
notations by means of Constraint Grammar rules.
The conversion rules and conversion process are
discussed in detail in Muischnek et al. (2016).
Resulting UD annotations were again manually
checked, but this time by one person. Also, several
consistency checks were made using the Udapi
tool (Popel et al., 2017).

Such a procedure - creating UD treebank by
converting Constraint Grammar annotations into
UD annotations - has also been used while creat-
ing the North Sámi UD treebank (Sheyanova and
Tyers, 2017).

The annotation scheme of UD has been en-
hanced on each release, as well as the developers
of the corpora are becoming more and more de-
manding for the correctness and consistency of the
annotation.

3.1 Clausal dependencies

Estonian CG annotation scheme is quite fine-
grained for annotating intra-clausal phenomena,
and thus the transfer of annotation is not very com-
plicated inside the clause. But although we an-
notate the dependency relations that hold between
the clauses, our scheme does not distinguish the
names of those relations, and the annotation only
shows that there is a dependency relation between
the clauses. That should be considered one of the
main shortcomings of our CG annotation scheme.
The heads of subclauses have been annotated by
label dep and then corrected manually. Figure 1
illustrates the sentence (1) in the CG scheme and
its correct syntactic counterparts in the UD schema
are presented in Figure 2 (the column of morpho-
logical features is omitted). The label of the 5th
token has been corrected manually.

(1) Usutakse
believe-IMPRS

et
that

puud
trees

suudavad
can

talletada
strore

piisavalt
enough

CO2

CO2

.

.

It is believed that trees can store enough
CO2.

Figure 1: CG annotation of the sentence.

Figure 2: UD annotation of the sentence.

When converting the new corpus from CG to
UD, we found that in addition to known problems
in determining the function of clauses, it was also
necessary to check determiners, names, copulas,
elliptical constructions etc.

3.2 Determiners

Estonian CG annotation employs only pronoun
part-of-speech, while UD also uses determiners.
Although the transfer is mostly straightforward
and lexicon based, there are some cases which
only human could solve. In example (2), word-
form nende can be determiner these or modifier
their.

(2) nende
this-PL-GEN

they-PL-GEN

hindade
price-PL-GEN

price-PL-GEN

puudumisel
missing
missing

...

...

...

Missing of these/their prices ...

3.3 Names and appositions

The annotation of names and appositions is differ-
ent in CG and UD. The leftmost part of a multi-
word name is the head in UD while Estonian CG

2https://github.com/EstSyntax/EDT

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

24

annotates the last part of a multi-word name as the
head. As for appositions, Estonian CG annotation
scheme treats them as attributes. So, in example
(3), the head of the name phrase is the rightmost
node (comitative case of Malouli) in the CG anno-
tation, and the leftmost (finalist) in UD.

(3) Lahing
battle

Nordecon
Nordecon

Openi
Open-GEN

finalisti
finalist-GEN

Laurent
Laurent

Malouliga
Malouli-COM

Battle with Laurent Malouli, the finalist of
Nordecon Open

3.4 Copular constructions
The annotation of copula clauses is different in Es-
tonian CG. Also, the definition of copula clause is
wider as it is in CG and the straightforward rule-
based conversion is not possible (Muischnek and
Müürisep, 2017). CG annotation considers verb
be as a root of the sentence (4), while it is a cop-
ula in the UD annotation. Figure 3 illustrates the
differences of trees.

(4) Homasho
Homasho-GEN

õige
right

koht
place

on
be-3.SG

Goeido
Goeido-GEN

järel
after

Homasho’s right place is after Goeido.

Figure 3: Copular constructions.

3.5 Elliptical constructions
CG-based treebank does not have any special la-
bel for ellipsis or orphan nodes. This annota-
tion has been included into UD by special rule-
based detector that can recognize some elliptical
clauses but not all. As atypical elliptical clauses
are quite frequent in the corpus of web language,
they needed manual reannotation. Empty nodes
have been included into UD syntax trees and the

whole clause has an extra annotation of enhanced
dependencies. In the sentence (5), the verb pay is
omitted in the coordinated clause. Enhanced de-
pendencies are marked as dotted arcs in figure 4.

(5) ja
and

siis
then

jälle
again

maksab
pay-3.SG

mees
man

ja
and

siis
then

jälle
again

mina
I

jne.
etc.

And then the man (husband) will pay and
then I (will pay) again etc.

Figures 5 and 6 illustrate the format of CG and
UD annotation of the EWTB sentence (5).

Figure 5: CG annotation of the sentence.

4 Future plans and conclusion

The conversion rule set consists of approximately
1000 rules which transfer texts from CG format to
UD. Some conversion steps need human knowl-
edge and their rule-based automation is impossi-
ble (or hard). As for future research, we plan to
increase the treebank and improve it by adding
coreference annotation.

Acknowledgments

This study was supported by the Estonian Ministry
of Education and Research (IUT20-56), and by the
European Union through the European Regional
Development Fund (Centre of Excellence in Esto-
nian Studies).

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

25

Figure 4: Elliptical constructions.

Figure 6: UD annotation of the sentence.

References
Kadri Muischnek and Kaili Müürisep. 2017. Estonian

copular and existential constructions as an UD an-
notation problem. In Proceedings of the NoDaLiDa
2017 Workshop on Universal Dependencies, pages
79–85. Linköping University Electronic Press.

Kadri Muischnek, Kaili Müürisep, and Tiina Puo-
lakainen. 2014a. Dependency Parsing of Estonian:
Statistical and Rule-based Approaches. In Baltic
HLT, volume 268 of Frontiers in Artificial Intelli-
gence and Applications, pages 111–118. IOS Press.

Kadri Muischnek, Kaili Müürisep, and Tiina Puo-
lakainen. 2016. Estonian Dependency Treebank:
from Constraint Grammar Tagset to Universal De-
pendencies. In Proc. of LREC 2016.

Kadri Muischnek, Kaili Müürisep, Tiina Puolakainen,
Eleri Aedmaa, Riin Kirt, and Dage Särg. 2014b.
Estonian Dependency Treebank and its annotation
scheme. In Proceedings of the Thirteenth In-
ternational Workshop on Treebanks and Linguis-
tic Theories (TLT13), pages 285–291. University of
Tübingen.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D.
Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal Dependencies v1: A Mul-
tilingual Treebank Collection. In LREC. European
Language Resources Association (ELRA).

Martin Popel, Zdeněk Žabokrtský, and Martin Vojtek.
2017. Udapi: Universal API for universal depen-
dencies. In Proceedings of the NoDaLiDa 2017
Workshop on Universal Dependencies (UDW 2017).
Linköping University Electronic Press.

Dage Särg, Kadri Muischnek, and Kaili Müürisep.
2018. Annotated Clause Boundaries’ Influence on

Parsing Results. In Proceedings: 21st International
Conference on Text, Speech and Dialogue.

Mariya Sheyanova and Francis M. Tyers. 2017. Anno-
tation schemes in North Sámi dependency parsing.
In Proceedings of the 3rd International Workshop
for Computational Linguistics of Uralic Languages,
pages 66–75.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

26

Modelling Plains Cree Negation with Constraint Grammar

Katherine Schmirler
University of Alberta

Department of Linguistics
schmirle@ualberta.ca

Antti Arppe
University of Alberta

Department of Linguistics
arppe@ualberta.ca

Abstract

This paper explores negation in a Plains
Cree corpus, using Constraint Grammar
to model various aspects of negation (ver-
bal, nominal, particle). Plains Cree, an
Algonquian language of North America,
displays rich morphological marking on
nouns and verbs, but also makes use of
a large class of indeclinable particles,
including negative markers. Combined
with non-configurational syntax and few
strict word order patterns, modelling syn-
tactic relationships involving particles is
far from straightforward. Using previ-
ous grammatical descriptions and corpus
observations, we describe the process of
modelling relationships involving negative
particles in Plains Cree, present the pat-
terns that emerge, and identify issues for
further modelling.

1 Introduction

Previous work on Plains Cree syntactic modelling
has aimed to identify basic syntactic relationships
between verbs and core arguments (e.g. Schmir-
ler et al., 2018), which can, for the most part, be
identified on the basis of previously marked lex-
ical features (i.e. noun class or verb class) and
morphological features output by a morphologi-
cal model (cf. Snoek et al., 2014; Harrigan et al.,
2017). For further development, considerations
beyond simple morphological features need to be
made. In the present work, we detail the ongo-
ing process of modelling relationships involving
Plains Cree negative particles.

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

2 Background

2.1 Plains Cree

Plains Cree is a member of the Algonquian lan-
guage family, which ranges across much of North
America, from the Blackfoot and Cree languages
spoken as far west as Alberta, Canada and Mon-
tana, USA, to a number of languages spoken on
the eastern coast of the continent. Plains Cree
is the westernmost member of the Cree language
continuum, which includes Cree dialects across
Alberta, Saskatchewan, northern Montana, north-
ern Manitoba, and northern Ontario, as well as the
closely related Montagnais-Naskapi dialects, spo-
ken in Quebec and Labrador (Wolvengrey, 2011).

Algonquian languages are known for their rich
morphology and non-configurational syntax, such
that syntactic roles are determined by morphologi-
cal agreement rather than word order. Of their var-
ious typological features, the noun classification
system of animacy and the hierarchical alignment
system are of particular interest for syntactic mod-
elling. Animacy refers to the noun classification or
gender system in Plains Cree, which divides nouns
into two classes: animate and inanimate. Though
this system corresponds closely to conceptual an-
imacy (i.e., all humans, animals, and trees are an-
imate, while most other objects are inanimate),
many nouns demonstrate that it is a grammati-
cal classification: for example, asikan ‘sock’ and
ayôskan ‘raspberry’ are animate, while maskisin
‘shoe’ and otêhimin ‘strawberry’ are inanimate.

The animacy of nouns also bears on the types of
verbs with which they can occur. The verbal sys-
tem of Plains Cree includes four classes of verbs,
determined by their transitivity and the animacy
of the nouns they license. Thus, intransitive and
transitive verbs each have two subclasses for each
animate and inanimate nouns. Inanimate intransi-
tive verbs (VII) take one inanimate participant and
include attributive verbs for describing inanimate

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

27

nouns and zero-place predicates such as weather
terms. Animate intransitive verbs (VAI) take one
animate participant and include intransitive ac-
tions and attributive verbs for animate nouns. The
terminology for transitive verbs differs slightly; it
is assumed that the actor1 is animate, and so the
classification refers to the animacy of the goal.
Transitive inanimate verbs (VTI) take an animate
actor and an inanimate goal. Transitive animate
verbs (VTA) take two animate participants. Ex-
amples of different classes are given in (1) and
(2); note the pairs of verbs for nouns of differ-
ing animacy. Detailed morphological breakdowns
are presented in these examples to demonstrate the
rich morphology of Plains Cree, but are not in-
cluded in later examples, as morphology is not the
focus of the present work.2

(1) Intransitive clauses

a. VII
otêhimin mı̂hkwâw
otêhimin mı̂hkwâ- -w
strawberry.N.IN be.red.VII 0SG

‘the strawberry is red’
b. VAI

ayôskan mı̂hkosiw
ayôskan mı̂hkosi- -w
raspberry.N.AN be.red.VAI 3SG

‘the raspberry is red’

(2) Transitive clauses

a. VTI
wâpahtam maskisin
wâpaht- -am maskisin
see.VTI 3SG shoe.N.IN

‘she/he/it (animate) sees a shoe’
b. VTA

niwâpamâw asikan
ni- wâpam- -âw asikan
1 see.VTA 1/2SG>3SG sock.N.AN

‘I see a sock’

Alongside the transitivity/animacy classes of
verbs, we also briefly introduce verbal orders, or

1In accordance with Algonquianist tradition, we use actor
and goal to label syntactic roles in place of the more common
subject and object (Bloomfield, 1946).

2Grammatical abbreviations: N = noun, IN = inanimate,
AN = animate, VII = inanimate intransitive verb, VAI = ani-
mate intransitive verb, VTI = transitive inanimate verb, VTA =
transitive animate verb, 0SG = singular inanimate agreement,
3SG = third person singular animate, 1 = first person prefix,
1/2SG>3SG = first or second person singular acting on third
person singular animate.

inflectional patterns with different semantic and
syntactic functions. Wolfart (1973) describes three
orders for Plains Cree: independent, conjunct, and
imperative. As is frequent in other descriptions of
Plains Cree, our morphological model also iden-
tifies a subclass of the conjunct order, the future
conditional, so we include this as a fourth or-
der herein. The functions of the orders are sum-
marised briefly here. The independent order is
generally used for matrix clauses while the con-
junct order can be used for either matrix or sub-
ordinate clauses. Cook (2014) identifies these as
indexical and non-indexical clauses respectively:
in very simple terms, independent clauses require
no prior knowledge or context, while conjunct
clauses, if they occur as matrix clauses, are not
syntactically embedded but instead pragmatically
“embedded” in an established context (in the real
world or established within a discourse). Fu-
ture conditional verbs are generally subordinate
clauses, as they occur with meanings such as ‘if,
when, whenever’. Finally, imperative verbs may
be either immediate (“do action now”) or delayed
(“do action later”) and are not considered subor-
dinate clauses. With the exception of imperatives,
which do not occur for VIIs, all verb classes can
occur in all verbal orders.

The rich agreement morphology allows for
straightforward modelling of core argument rela-
tionships while particles, the most frequent word
class evidenced in texts, bear essentially no in-
flectional morphology, and include words with a
variety of different functions, which have not yet
been given a detailed classification for Plains Cree.
Without such a classification, development of par-
ticle constraints in the Plains Cree parser is an on-
going process, such as that described for negative
particles in section 3.

2.2 A Plains Cree corpus

The texts to which the Plains Cree CG parser is
applied are referred to herein as the Ahenakew-
Wolfart (A-W) corpus (Arppe et al., in press).
The A-W corpus consists of several texts (totalling
∼73,000 words of Plains Cree) collected in the
1980s and 1990s, which have been transcribed,
edited, and in some cases translated, then pub-
lished in several volumes (Ahenakew, 2000; Bear
et al., 1998; Kâ-Nı̂pitêhtêw, 1998; Masuskapoe,
2010; Minde, 1997; Vandall and Douquette, 1987;
Whitecalf et al., 1993). Digital versions, which

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

28

display less editing than the published texts (e.g.
more fragments, commas representing pauses,
etc.), have been supplied for the digital corpus
by H.C. Wolfart. This corpus has been mor-
phosyntactially analysed using a finite-state parser
(Snoek et al., 2014; Harrigan et al., 2017), the
results of which have been hand-verified by two
researchers, and subsequently tentatively disam-
biguated and parsed for core arguments (Schmir-
ler et al., 2018) using CG-3 (Bick and Didrik-
sen, 2015). The corpus is available upon request
at URL: http://altlab.ualberta.ca/korp. The cor-
pus contains a variety of genres, including histor-
ical narratives, personal narratives, funny stories,
speeches/lectures, and dialogues; future research
is planned to explore the ways in which genre af-
fects morphosyntactic patterns in Plains Cree.

3 Considering negation in the Plains
Cree CG parser

3.1 Negative particles

The initial implementation of negative particles
in the CG parser was straightforward. First, a
LIST of negative particles was created, and nega-
tive particle phrases were similarly identified; ex-
amples of particles are given in (3) and exam-
ples of phrases are given in (4).3 These were
assigned a morphological tag Neg for reference
in later constraints and in corpus searches. The
same morphemes appear repeatedly in these par-
ticles: namôy, môya, and môy are reduced forms
of namôya; kâwiya, êkâya, êkây, kâya, and êkâ of
êkâwiya; and mwâc of namwâc.4 The other form
in this list, nama, occurs only particle phrases in
the A-W corpus, though older texts demonstrate
that it was once a common negative particle; addi-
tionally, namôya is historically derived from nama
plus a focus or emphatic particle wiya. Simi-
larly, though only a subset of the negative parti-
cle phrases are given in (4), the same phrases also
occur with the reduced forms of namôya.5

(3) Negative particles

3The LIST approach was implemented for the initial de-
velopment stage described herein; in future development,
tags for particle functions can be added in the morphologi-
cal model.

4All of these are glossed as ‘no, not’.
5Parser abbreviations: Neg = negative, Ipc = particle,

Iph = particle phrase, @Neg = any negative tag, @Neg-V>
= negative dependent on a verb to the right, @Neg-N> = neg-
ative dependent on a noun to the right, @Neg-Ipc> = nega-
tive dependent on a particle to the right.

LIST NEG = "namôya" "namôy"
"môya" "môy" "êkâwiya"
"kâwiya" "êkâya" "êkây" "kâya"
"êkâ" "nama" "namwâc" "mwâc" ;

(4) Negative particle phrases
"namôya wı̂hkâc" Iph Neg ‘never’
"namôya ahpô" Iph Neg ‘not even’
"namôya cı̂" Iph Neg ‘it is not so?’

Though not relevant to the initial implementa-
tion of negation relationships in the present parser,
the distribution of these different negative parti-
cle types (namôya-type, êkâwiya-type, namwâc-
type) is referenced throughout section 4 below.
Two main accounts are given for the distribution
of namôya-type and êkâwiya-type negative parti-
cles.6 The most common of these is a syntactic
explanation: namôya-types (generally) occur with
matrix clauses and êkâwiya-types (generally) oc-
cur with subordinate clauses. Additionally, imper-
atives are always negated with êkâwiya-type parti-
cles (e.g. Dahlstrom, 1991; Wolfart, 1996).

Further investigations have noted that this de-
scription, while an excellent starting point, does
not fully capture the distribution of namôya-types
and êkâwiya-types. Instead, this distribution can
be explained in terms of realis and irrealis con-
texts. However, conveniently, we can use the mor-
phosyntactic features of verbal order to approxi-
mate this distinction in the present work. Thus, in-
dependent verbs, as matrix clauses, are most likely
realis; conjunct verbs, just as they can be either
matrix or subordinate clauses, they can represent
situations with either realis or irrealis semantics;
future conditional verbs are subordinate clauses,
but can be either realis or irrealis; and finally im-
perative verbs are considered always irrealis (and
thus the only verbal order that is negated only by
êkâwiya-types) (e.g. Cook, 2014).

3.2 Constraint development
After a LIST of negative particles was created,
an initial constraint then assigned the function tag
@Neg> when any of these words or phrases ap-
peared immediately before a verb. While this does
produce adequate results, it does not by any means
fully capture negation in Plains Cree. First, there
can be some intervening material between the neg-
ative particle or particle phrase and the verb, some

6Little is said for Plains Cree on the namwâc-type parti-
cles.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

29

of these negative particles can modify nouns or
other particles as well as verbs, and some of these
particles modify only particular elements. For
example, variations of êkâwiya modify particular
conjugation patterns, and nama only occurs in par-
ticle phrases in the A-W corpus.

A cursory exploration of the A-W corpus be-
gins to demonstrate the complexities of negation:
of the ∼1510 negative particles (excluding particle
phrases), ∼580 occur immediately before verbs,
which are identified by the original simple con-
straint. Of the remaining particles, ∼25 occur im-
mediately before nouns, ∼100 before pronouns,
∼550 before particles, ∼160 before punctuation,
and the remainder before as-yet-unlabelled ele-
ments. While an exploration of how negatives in-
teract with all of these categories is beyond the
scope of this paper, those before nouns can be ex-
plored readily. Several occur before a noun (or
noun phrase) which is followed by punctuation,
and so the negative particle does appear to mod-
ify the noun. In other cases, however, the noun
is followed by a verb, without intervening punc-
tuation, suggesting that the verb is negated. One
sentence displays a series of negated elements, in-
cluding nouns and a verb; a portion is given in (5).

(5) ...namôya nipiy,
not water
namôya sâkahikana k-âtâmitân,
not lakes I buy from you
namôya kinosêw; ...
not fish
‘...I do not buy the water, nor the lakes, from
you, nor the fish...’ (Kâ-Nı̂pitêhtêw, 1998,
pp. 110-13)

In example (5), where namôya occurs before
nipiy ‘water’ or kinosêw ‘fish’, it is straightfor-
ward to analyse each negative as dependent on the
following noun. Before sâkahikana ‘lakes’, how-
ever, the verb is negated (cf. the English transla-
tion, where the verb is negated once and the re-
maining nouns are preceded by ‘nor’). With this
observation in mind, a constraint was written for
nouns that makes use of clause boundaries, and
the verbal constraint was modified to allow for in-
tervening nominals.

A similar constraint was also written for parti-
cles, and the verbal constraint modified once again
to allow for any intervening material, excluding
clause boundaries. The current three negation con-

straints are given in (6). While these three con-
straints allow for many of the negative particles to
receive a dependency tag, further examination of
the corpus is required to determine their accuracy.7

(6) Negation constraints for Plains Cree
MAP:NegV @Neg-V> TARGET Neg
IF (*1 V BARRIER CLB) ;
MAP:NegN @Neg-N> TARGET Neg
IF (1 N) ;
MAP:NegIpc @Neg-Ipc> TARGET
Neg IF (1 Ipc) ;

This empirical approach quickly reveals issues
of scope: often, a negative particle appears to
negate a verb later in a sentence, rather than the
immediately following noun or particle, regardless
of punctuation. While these constraints can be-
gin to give some idea of how negation works in
Plains Cree, and can be used to further develop
more accurate constraints, additional research into
the scope of negation is also required.

4 Negation in a Plains Cree corpus

4.1 Negative particles and other word classes
The parser identifies 1732 negative particles, of
which 1480 receive an @Neg tag (of any type, V,
N, or Ipc). Of those that receive a syntactic func-
tion tag, 1249 are identified as modifying a verb,
25 as modifying a noun, and 206 as modifying
a particle. Details for each type of negative par-
ticle (namôya-type, êkâwiya-type, and namwâc-
type) are given in Table 1 (with a significant co-
occurrence distribution (χ2 (4, N = 1470) = 33.76,
p< .001)). In Table 2,8 the posthoc analysis of this
significant distribution is presented, demonstrat-
ing the likelihood of each negative particle type to
modify verbs, nouns, or particles.9 Verbs are more
likely to be modified by êkâwiya-types, while par-
ticles are more likely to be modified by namôya-
types or namwâc-types.

For these negative particles, we can also explore
how they modify different subclasses. In Table 3,

7As negation in Plains Cree is symmetric (negation does
not strictly occur with other clausal changes from positive
utterances, such as the addition of an auxiliary verb in En-
glish) (Miestamo, 2013), we cannot use clues from other mor-
phosyntactic features when modelling negation.

8Here, ‘+’ indicates a positive association (signficant
over-co-occurrence), ‘-’ a negative association (signifi-
cant under-co-occurrence), and ‘0’ a non-significant co-
occurrence. See also Table 6.

9See Arppe (2008, p. 82-4), based on standardised Pear-
son residuals as described in e.g. Agresti (2002, p. 81).

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

30

namôya êkâwiya namwâc
Total 1347 331 54
@Neg 1150 305 25
@Neg-V 945 290 14
@Neg-N 21 4 0
@Neg-Ipc 184 11 11

Table 1: Negative particles and negative syntactic
tags for all word classes.

namôya êkâwiya namwâc
@Neg-V - + -
@Neg-N 0 0 0
@Neg-Ipc + - +

Table 2: Posthoc analysis of the co-occurrences
of negative particle types with verbs, nouns and
particles.

the frequency of each verbal transitivity/animacy
class with each negative particle type is presented.
There was no significant preference for a partic-
ular negative type for any verb class (χ2 (6, N =
1280) = 11.09, p = .086). However, as seen in Ta-
ble 4, VTIs are negated nearly twice as often as
other verb classes (significantly so, (χ2 (3, N =
21332) = 112.59, p < .001): a pattern worth ex-
ploring in future research.

namôya êkâwiya namwâc
VII 84 21 0
VAI 342 128 8
VTI 313 75 3
VTA 229 73 4

Table 3: Negative particle types and verbal transi-
tivity classes.

Verbal order, which we use here as a (very
rough) approximation of realis and irrealis,
presents more readily interpretable results, as
given in Table 5 (with a significant co-occurrence
distribution (χ2 (6, N = 1249) = 374.33, p <
.001)). We see, not surprisingly, the majority of
independent verbs (matrix clause verbs, roughly
equivalent to realis) are negated with namôya-
types far more often than êkâwiya-types. For
conjunct verbs, which may be either matrix or
subordinate clauses (and either realis or irrealis),
are negated ∼60% of the time by namôya-types
and ∼39% of the time by êkâwiya-types. Condi-
tional forms, which are always considered subor-

Negated In corpus %

VII 105 1989 5.28
VAI 478 9269 5.16
VTI 391 4100 9.54
VTA 306 5974 5.12

Table 4: Negative particle types and verbal transi-
tivity classes.

dinate and often irrealis are most often negated by
êkâwiya-types (∼76%), though namôya-types are
not infrequent at ∼24%. Finally, as described in
the literature, we see that all of the negated im-
perative verbs in the corpus occur with êkâwiya-
type negative particles. The posthoc analysis is
presented in Table 6, confirming the above obser-
vations. As seen for verb classes, we can also ex-
plore the percentage of each order that is negated.
In Table 7, independent verbs are seen to be the
most frequently negated, while conjunct verbs are
the least frequently negated. These patterns may
suggest that matrix clauses are more likely to be
negated than subordinate clauses, though further
investigation into conjunct subtypes is required.

namôya êkâwiya namwâc
Independent 561 4 5
Conjunct 377 244 9
Conditional 5 16 0
Imperative 0 28 0

Table 5: Negative particle types negating verbs by
order.

namôya êkâwiya namwâc
Independent + - 0
Conjunct - + 0
Conditional - + 0
Imperative - + 0

Table 6: Posthoc analysis of the co-occurrences of
negative particle types with verbal orders.

Nominal features (both class, animate or inan-
imate, and number, singular or plural) are pre-
sented with respect to negative particles in Table 8.
Inanimate nouns are negated more often than an-
imate nouns, though animate nouns are more fre-
quent in the A-W corpus. An explanation for this
pattern is not immediately evident and as such fur-
ther investigation is required. However, when it

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

31

Negated In corpus %

Independent 570 6181 9.22
Conjunct 630 13995 4.50
Conditional 21 331 6.34
Imperative 28 374 7.50

Table 7: Negative particle types and verbal transi-
tivity classes.

comes to number, singular nouns are more com-
mon than plural (though animate plural are far
more common than inanimate plural), and so these
results align well with overall corpus results. Still,
future examination would not be amiss.

namôya êkâwiya namwâc
Inanimate 12 2 0
Animate 7 1 0
Singular 17 2 0
Plural 3 1 0

Table 8: Negative particle types negating nouns by
feature.

Finally, results for negated particles are given in
Table 9. As these particle classifications are only
rudimentary, little can be said at this time. Tempo-
rals and quantifiers are more likely to be negated
than locatives; one can readily imagine phrases
such as “not long ago” and “not much”, which
might arise from negating these subclasses. It is
perhaps also worth noting that namôya-type parti-
cles are considerably more common for negating
other particles, though the proportion of namôya
-types compared to all particles with an @Neg tag
in the overall corpus (∼80%) is not dissimilar to
the proportion of namôya-types compared to all
particles with an @Neg-Ipc tag (∼90%).

namôya êkâwiya namwâc
Locatives 5 1 0
Quantifiers 14 1 1
Temporals 21 0 5
Other 141 9 0

Table 9: Negative particle types negating particles
by function.

4.2 Comments on êkâwiya and namwâc

In the above results, we see that for some curious
patterns, there are but few cases that can easily be

explored in more detail. Two of these patterns we
briefly note here, though fuller investigations are
beyond the scope of the present work.

The first of these is the occurrence of êkâwiya-
type particles negating nouns, for which only three
instances occur. Two of these occur in the con-
text of conjunct verbs, which we can interpret as
irrealis; due to the clause boundaries in the text,
the negative particle was simply identified as de-
pendent on the noun. In the third case, given in
(7), however, there is no morphosyntactic means
of identifying an irrealis context: instead, the se-
mantics of the particle tapiskôc ‘as if’ and the neg-
ative êkây must be taken into account.

(7) kiwayawı̂tisahokawin
you (sg.) are sent away
tapiskôc êkây âskı̂hkân
as if not reserve
‘you are sent away as if it were not a reserve’
(Bear et al., 1998, pp. 300-1)

The second question is the occurrence of
namwâc, in particular where it modifies another
word rather than occurring in isolation as ‘no’.
The namwâc-types are by far the least frequent
negative particle type discussed here and, unlike
namôya- and êkâwiya-types, over half occur in
isolation. Additionally, no information on the use
of namwâc can be found in the literature for Plains
Cree. Of those 25 that do occur with an @Neg tag,
over half occur in clauses the bear an interesting
feature: some degree of uncertainty, conveyed ei-
ther through evidential particles (êsa, êtikwê ‘ap-
parently’) or the combination of the negative par-
ticle and the verbs kiskêyihtam ‘s/he knows (it)’ or
kiskisiw ‘s/he remembers (it)’. While an investiga-
tion of these features with other negative particle
types has not yet been conducted, these patterns
offer a number of questions for future investiga-
tion of Plains Cree syntax and semantics.

5 Discussion

5.1 Modelling process
The straightforward modelling process outlined in
section 3.2 ignores key facts of negation in Plains
Cree. First, in only looking at nouns, verbs, and
particles, we exclude pronouns (e.g. môy nı̂sta ‘me
neither’), which has certainly led to other inaccu-
racies in our results. Our primary reason for ex-
cluding pronouns at this time is that the third per-
son singular pronoun wiya also occurs as a focus

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

32

or emphatic particle and we have yet to determine
the best course of action for handling this ambi-
guity in the parser. Currently, a crude technique
is implemented that identifies wiya as a pronoun
when a verb with third person features occurs in
the same clause and as a particle otherwise, though
this is known to be inaccurate. This ambiguity has
likely led to over-generation of @Neg-Ipc> tags,
as these have been applied to wiya even in cases
where it behaves as a pronoun. While a solution
for the disambiguation of wiya may not be im-
mediately apparent, constraints to identify negated
pronouns will be a priority in future modelling.

Second, recent research has noted discontinu-
ous particle phrases in Plains Cree (Wolvengrey,
2019); for example, the phrase namôya wı̂hkâc
‘never’ may occur with intervening material, in-
cluding the verb. While we have not explored
phrases in the current paper, such discontinuous
phrases will have resulted in the over-application
of the negative tag constraints, applying to namôya
as though it were a lone particle rather than a mem-
ber of a phrase. Future model development must
determine the best course of action for identifying
such phrases automatically.

These are but two issues we have identified in
the process of modelling negation in Plains Cree.
These issues, among general scope issues as men-
tioned in section 3.2 are left to future research.

5.2 Morphosyntactic vs. semantic patterns

In the results presented above, we make reference
to morphosyntactic features (i.e., those referred
to in the morphological and syntactic models and
overtly presented in the results), but also com-
ment on broader syntactic features such as ma-
trix and subordinate clauses, as well as seman-
tic features, namely the realis/irrealis distinction.
While the morphosyntactic features of verbal or-
der can represent some of the distinctions between
matrix and subordinate clauses and realis and ir-
realis semantics, much is not captured. At mini-
mum, other morphosyntactic features can be used
to further refine the distinction; Plains Cree makes
use of a class of morphemes known as preverbs,
which occur before the verb stem within a verb
and bear a number of functions (e.g. tense, ad-
verbial, modal). Among these preverbs we find
those that mark different type of conjunct clauses:
ê- marks basic clauses, kâ- marks relative clauses,
others bear tense and aspect information. While

not all of these are well-defined, their interactions
with conjunct suffixes and the realis/irrealis dis-
tinction have been investigated to some degree
(e.g. Déchaine et al., 2018). Using such research
as a base, we can further identify syntactic and se-
mantic functions of conjunct verbs and their rela-
tionships with negative particles and phrases.

5.3 Future considerations

Future research is planned to explore how negative
particles interact with different verbal morphology
patterns beyond those discussed herein, as well as
more detailed looks at nouns, particles, and pro-
nouns. This also requires a deeper investigation
of particle phrases and their functions; of par-
ticular interest are negative particle phrases with
kı̂kway ‘thing’, as these often function as nomi-
nals. Many phrases also seem to negate clauses,
and thus verbs, rather than nouns or particles—
an impressionistic observation that requires fur-
ther consideration.

Beyond negative particles, overall improve-
ments and further developments in the syntactic
model will also be necessary. For example, to bet-
ter understand negation and the interclausal rela-
tionships and semantic patterns discussed in sec-
tion 5.2 above, we will need to undertake an im-
portant yet daunting step in the syntactic model:
modelling interclausal relationships, including rel-
ative clauses. Thus far, we have limited ourselves
to clauses as delineated by punctuation, though in-
terclausal and text-level relationships will be in-
strumental in corpus investigations of Plains Cree.

6 Conclusions

Despite their morphological simplicity, negative
particles in Plains Cree have presented an interest-
ing exercise in modelling their relationships with
nouns, verbs, and other particles. The combina-
tory freedom of particles and flexible word order
of Plains Cree present an ongoing challenge for
the development of a parser. However, the identifi-
cation of broad functions within the particle class,
such as negation, has revealed various avenues for
further modelling, and has been an important step
toward more detailed and accurate syntactic func-
tion tags for Plains Cree.

7 Acknowledgements

This research was supported by the Social
Sciences and Humanities Research Council of

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

33

Canada (SSHRC) through a Doctoral Fellowship
(752-2017-2105) and a Partnership Grant (895-
2019-1012). We also thank H.C. Wolfart for pro-
viding the digital files of the A-W corpus.

References
Alan Agresti. 2002. Categorical data analysis, second

edition. John Wiley & Sons, Hoboken.

Alice Ahenakew. 2000. âh-âyı̂taw isi ê-kı̂-
kiskêyihtahkik maskihkiy / They Knew Both Sides of
Medicine: Cree Tales of Curing and Cursing Told
by Alice Ahenakew. University of Manitoba Press,
Winnipeg.

Antti Arppe. 2008. Univariate, bivariate, and multi-
variate methods in corpus-based lexicography: A
study of synonymy. Publications of the Department
of General Linguistics, University of Helsinki, No.
44. http://urn.fi/URN:ISBN:978-952-10-5175-3.

Antti Arppe, Katherine Schmirler, Atticus G. Harrigan,
and Arok Wolvengrey. in press. A morphosyntacti-
cally tagged corpus for Plains Cree. In Papers of the
49th Algonquian Conference.

Glecia Bear, Minne Fraser, Mary Wells, Alpha La-
fond, and Rosa Longneck. 1998. Our Grandmoth-
ers’ Lives: As Told in Their Own Words, bilingual
edition edition. University of Regina Press, Regina.

Eckhard Bick and Tino Didriksen. 2015. Cg-
3—beyond classical constraint grammar. In Pro-
ceedings of the 20th nordic conference of com-
putational linguistics, NoDaLiDa 2015, May 11-
13, 2015, Vilnius, Lithuania, 109, pages 31–39.
Linköping University Electronic Press.

Leonard Bloomfield. 1946. Algonquian. In Linguis-
tic structures of Native America, volume 6, pages
85–129. Viking Fund Publications in Anthropology,
New York.

Clare Cook. 2014. The Clause-Typing System of Plains
Cree: Indexicality, Anaphoricity, and Contrast. Ox-
ford University Press, Oxford ; New York.

Amy Dahlstrom. 1991. Plains Cree morphosyntax.
Garland Pub.,, New York :.

Rose-Marie Déchaine, Monique Dufresne, and Char-
lotte Reinholtz. 2018. (In)variance in the Cree di-
alect continuum: evidence from (IR)REALIS syn-
tax. Paper presented at the 50th Algonquian Confer-
ence, October 27, 2018, Edmonton, AB.

Atticus G. Harrigan, Katherine Schmirler, Antti Arppe,
Lene Antonsen, Trond Trosterud, and Arok Wolven-
grey. 2017. Learning from the computational mod-
elling of Plains Cree verbs. Morphology, 27(4):565–
598.

Jim Kâ-Nı̂pitêhtêw. 1998. ana kâ-pimwêwêhahk
okakêskihkêmowina / The Counselling Speeches of
Jim Kâ-Nı̂pitêhtêw. University of Manitoba Press,
Winnipeg.

Cecilia Masuskapoe. 2010. piko kı̂kway ê-nakacihtât:
kêkêk otâcimowina ê-nêhiyawastêki. Algonquian
and Iroquoian Linguistics, Winnipeg.

Matti Miestamo. 2013. Symmetric and asymmet-
ric standard negation. In Matthew S. Dryer
and Martin Haspelmath, editors, The World At-
las of Language Structures Online. Max Planck
Institute for Evolutionary Anthropology, Leipzig.
https://wals.info/chapter/113.

Emma Minde. 1997. kwayask ê-kı̂-pê-
kiskinowâpatihicik / Their Example Showed
Me the Way: A Cree Woman’s Life Shaped by Two
Cultures. University of Alberta Press, Edmonton.

Katherine Schmirler, Antti Arppe, Trond Trosterud,
and Lene Antonsen. 2018. Building a Constraint
Grammar Parser for Plains Cree Verbs and Argu-
ments. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Conor Snoek, Dorothy Thunder, Kaidi Lõo, Antti
Arppe, Jordan Lachler, Sjur Moshagen, and Trond
Trosterud. 2014. Modeling the Noun Morphology
of Plains Cree. In Proceedings of the 2014 Work-
shop on the Use of Computational Methods in the
Study of Endangered Languages, pages 34–42, Bal-
timore, Maryland, USA. Association for Computa-
tional Linguistics.

Peter Vandall and Joe Douquette. 1987.
wâskahikaniwiyiniw-âcimowina / Stories of the
House People, Told by Peter Vandall and Joe Dou-
quette. University of Manitoba Press, Winnipeg.

Sarah Whitecalf, H. C. Wolfart, and Freda Ahenakew.
1993. kinêhiyawiwiniwaw nêhiyawêwin / The Cree
Language is Our Identity: The La Ronge Lectures
of Sarah Whitecalf. University of Manitoba Press,
Winnipeg.

H. Christoph Wolfart. 1973. Plains Cree: A Grammati-
cal Study, volume 63.5 of Transactions of the Amer-
ican Philosophical Society, New Series. American
Philosophical Society, Philadelphia.

H. Christoph Wolfart. 1996. Sketch of Cree, an Algo-
nquian Language. In Handbook of American Indi-
ans. Volume 17: Languages, pages 390–439. Smith-
sonian Institute, Washington.

Arok Wolvengrey. 2019. tānispı̄hk wı̄hkāc ōma kē-
āpatahk!?: wı̄hkāc as a Polarity Item In Plains Cree.
Paper presented at the 51st Algonquian Conference,
October 24-27, 2019, Montreal, QC.

Arok Elessar Wolvengrey. 2011. Semantic and prag-
matic functions in Plains Cree syntax. Netherlands
Graduate School of Linguistics.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

34

Many shades of grammar checking –
Launching a Constraint Grammar tool for North Sámi

Linda Wiechetek linda.wiechetek@uit.no
Sjur Moshagen sjur.n.moshagen@uit.no

Børre Gaup borre.gaup@uit.no
Thomas Omma thomas.omma@uit.no

Divvun UiT Norgga árktalaš universitehta

1 Introduction

This paper discusses the characteristics and evalu-
ation of the very first North Sámi spell- and gram-
mar checker. At its launch it supports MS Word
and GoogleDocs1, cf. Figure 1. We describe
its component parts, the technology used, such
as Constraint Grammar (Karlsson, 1990; Karlsson
et al., 1995; Bick and Didriksen, 2015) and Hfst-
pmatch (Hardwick et al., 2015), and its evaluation
with a new evaluation tool specifically designed
for that purpose.

Only the modules of the full-scale grammar
checker described in Wiechetek (2017) that have
been tested and improved sufficiently for the pub-
lic to use are released in this launch. More
advanced syntactic errors will be included at
a later stage. The grammar checker modules
are an enhancement to an existing North Sámi
spellchecker (Gaup et al., 2006), following a phi-
losophy of release early, release often, and using
continuous integration (ci) and continuous deliv-
ery (cd) to deliver updates with new error correc-
tion types, as new parts of the grammar checker
are sufficiently tested. Releasing at an early stage
of development gives the user community early
access to improved and much needed tools and al-
lows the developers to improve the tools based on
the community’s feedback, essentially preferring
early and frequent releases over feature-based re-
leases to allow for a close feedback-based relation
between developers and users.2

We started moving towards a “release early, re-
lease often” strategy in 2018 when working on
the Divvun installer. The Divvun installer is a
tool to simplify the installation and updates of the

1https://gsuite.google.com/
marketplace/app/divvun_grammar_checker/
611280167256

2https://medium.com/@warren2lynch/
scrum-philosophy-release-early-release-
often-a5b864fd62a8

Version Date
Divvun 1.0 (2007-12-12)
Divvun 1.0.1 (2007-12-21)
Divvun 1.1 (2008-12-17)
Divvun 2.0 (2010-12-08)
Divvun 2.1 (2011-03-21)
Divvun 2.2 (2011-11-23)
Divvun 2.3 (2013-02-08)
Divvun 2.3 (2013-02-08)
Divvun 3.0 (2013-06-13)
Divvun 4.0 (2015-12-17)
Divvun 4.0.1 (2016-03-17)
Divvun 4.1 (2016-12-15)
Divvun 4.2 (2018-12-20)
GramDivvun 1.0 beta (2019-09-27)

Table 1: Divvun release history (2007-2019)

tools developed by the Divvun group. The users
only have to install the Divvun installer app, and
then select the languages they are interested in –
everything is then installed and configured auto-
matically. It also checks for updates to the in-
stalled tools with regular intervals, and allows us
to provide updates to our users automatically. That
makes it the center-piece of our release early, re-
lease often strategy.

This is a change of strategy based on previous
experience with the feature-based release strategy,
which presupposed extensive manual testing to
avoid regressions. This leads to long release cycles
and up to two years between the releases as can be
seen in table 1. It also leads to less word coverage
for the users while the system had already access
to a larger lexicon.

Over the years, we have introduced automatic
testing methods to maintain quality and avoid re-
gressions. The automatic tests are integrated into
our CI/CD system and cover errors we have ex-
perienced earlier, and as we find new, uncovered

https://gsuite.google.com/marketplace/app/divvun_grammar_checker/611280167256
https://gsuite.google.com/marketplace/app/divvun_grammar_checker/611280167256
https://gsuite.google.com/marketplace/app/divvun_grammar_checker/611280167256
https://medium.com/@warren2lynch/scrum-philosophy-release-early-release-often-a5b864fd62a8
https://medium.com/@warren2lynch/scrum-philosophy-release-early-release-often-a5b864fd62a8
https://medium.com/@warren2lynch/scrum-philosophy-release-early-release-often-a5b864fd62a8

Figure 1: GramDivvun 1.0 beta in GoogleDocs

areas, we add tests for these as well. Automatic
CI/CD means that if new commits do not break
our tests, a new version of our software is built and
released automatically. If tests fail, the nightly re-
leases will not be built before the tests pass again.
This assures us that the nightly releases will not
contain regressions compared to earlier releases,
and yet incorporates new words and features.

North Sámi is a Uralic language spoken in
Norway, Sweden and Finland by approximately
25 700 speakers (Simons and Fennig, 2018).
These countries have other majority languages,
making all Sámi speakers bilingual. Bilingual
users frequently face bigger challenges regarding
literacy in the lesser used language than in the ma-
jority language due to reduced access to language
arenas (Outakoski, 2013; Lindgren et al., 2016).
Therefore, tools that support literacy, like spelling
and grammar checkers, are more important in a
minority language community than in a majority
language community.

The released grammar checker is a light gram-
mar checker in the sense that it detects and corrects
errors that do not require rearranging the whole
sentence, but typically just one or several adjacent
word forms based on a grammatical analysis of
the sentence. Additionally, a number of format-
ting errors are covered. The main new features
are implemented by means of several Constraint
Grammar-based modules. These include correc-

tion of formatting and punctuation errors, filtering
of speller suggestions, much improved tokenisa-
tion and sentence boundary detection, as well as
advanced compound error analysis and correction.

This paper shows how a finite-state based
spellchecker can be upgraded to a much more
powerful spelling and grammar checking tool by
adding several Constraint Grammar modules.

2 Framework

2.1 Language tools

An open-source spelling checker for North Sámi
has been freely distributed since 20073, the be-
ginnings of which have been described by Gaup
et al. (2006). The tool discussed in this paper
includes the open-source spelling checker refer-
enced above, but further developed and using the
hfst-based spelling mechanism described in Piri-
nen and Lindén (2014). The spelling checker is
enhanced with five Constraint Grammar modules,
cf. Figure 2. It should be noted that the spelling
checker is exactly the same as the regular North
Sámi spelling checker used by the language com-
munity, but with the added functionality that all
suggestions are returned to the pipeline with their
full morphological analysis. The analyses are then
used by subsequent Constraint Grammar rules dur-
ing disambiguation and suggestion filtering.

3http://divvun.no/korrektur/korrektur.
html

http://divvun.no/korrektur/korrektur.html
http://divvun.no/korrektur/korrektur.html

Figure 2: System architecture of GramDivvun 1.0 beta, the North Sámi grammar checker

All components are compiled and built us-
ing the GiellaLT infrastructure (Moshagen et al.,
2013). Five constraint grammar modules, i.e. a
valency grammar (valency.cg3), a tokenizer (mwe-
dis.cg3), a morpho-syntactic disambiguator (grc-
disambiguator.cg3), a disambiguation module for
spellchecker suggestions (spellchecker.cg3) and a
module for more advanced grammar checking
(grammarchecker-release.cg3) are included in the
spelling and grammar checker.

The current order of the modules has shown
to be the most optimal one for our use and has
been established during the work with the gram-
mar checker. It follows the principle of growing
complexity, and information necessary to subse-
quent modules is made available to them. Va-
lencies for example are used in the disambigua-
tion of compounds, which is why the module pre-
cedes the multi-word disambiguation module. The
first whitespace tagging module precedes sentence
boundary disambiguation because it is used to in-
sert hints about the text structure. It marks, for ex-
ample, first and last words in the paragraph, which
is relevant when deciding if a period marks the end
of sentence or is part of an abbreviation or a nu-
meric expression. The second whitespace anal-
yser is applied after the multiword disambigua-
tion, but could also be applied later. Its purpose
is to tag potentially wrong use of whitespace, and
must be added before the final grammar checking
module, but any position between the multiword

disambiguation and grammar checking is going to
work. Spellchecking is performed before disam-
biguation so that more sentence context is avail-
able to the syntactic analyser and disambiguator.

It should be noted that we do not use a guesser
for out-of-vocabulary words. A major part of new
words are formed using productive morphology of
the language, like compounding and derivation,
both of which are encoded in the morphological
analyser. Also, the lexicon is constantly being up-
dated, so that proper nouns and other potential out-
of-vocabulary words will quickly be covered. As
updates are made available frequently, this should
not be a major issue for users, but some issues are
discussed towards the end of this article.

There are both language specific and language
independent parts in the GiellaLT infrastructure.
The GiellaLT infrastructure is developed at UiT
The Arctic University of Norway to support the de-
velopment of language technology for the Sámi
languages. It covers language independent com-
ponents,4 as well as language-specific code with a
supporting build system.5 Although initially de-
veloped for the Sámi languages, the infrastruc-
ture has been built with language independence
in mind, and presently there are about a hun-
dred languages in various stages of development
in our infrastructure. The linguistic code is gen-

4cf. https://github.com/divvun
5cf. https://gtsvn.uit.no/langtech/

trunk/

https://github.com/divvun
https://gtsvn.uit.no/langtech/trunk/
https://gtsvn.uit.no/langtech/trunk/

erally language-specific. However, the annotation
of syntactic functions and dependencies is gener-
alized for several related languages (South Sámi,
Lule Sámi, North Sámi, and Pite Sámi) (Anton-
sen et al., 2010). The technical code on the other
hand is language-independent. The infrastructure
is not only valid for North Sámi, but can directly
be used by any language in the GiellaLT system,
e.g. other Sámi languages as well as any other
language. Presently there is an early version of
a working Faroese grammar checker in addition to
the North Sámi one, and initial work has started
for a number of the other Sámi languages.

The system does error detection at four differ-
ent stages of the pipeline. Non-word typos are
marked by means of the spellchecker. Secondly,
a Constraint Grammar module marks whitespace
errors in punctuation contexts based on input from
the second whitespace analyser. Compound errors
are identified by means of a Constraint Grammar-
based tokenisation disambiguation file. And a
fourth Constraint Grammar module for advanced
grammatical errors and punctuation marks quota-
tion errors.

As a tool intended to be used in production by
regular users, it targets all types of errors, from
technical typesetting errors such as wrong quota-
tion marks and faulty use of spaces, via spelling
errors to advanced grammatical error detection
and correction. In the evaluation all of these are
counted as grammar checker errors, as we want to
evaluate the overall performance of the tool. The
only errors not included in the evaluation are those
that we do not target at all (which are quite a few
in this first beta release).

The sentence in ex. (1) includes a typo (Norgag
should be Norgga ‘Norway’ (Gen.)), a space er-
ror (before ‘.’) and a compound error (iskkadan
bargguin should be iskkadanbargguin) ‘survey’
(Loc. Pl.). In addition, there is a congruence er-
ror, i.e. dáid (Gen. Pl.) ‘these’ should be dáin
(Loc. Pl.), i.e. it should agree in case and num-
ber with iskkadan bargguin. The launched gram-
mar checker can detect the first three errors, but
not the last one, since syntactic error rules are
not included in this initial launch of the grammar
checker.

(1) Oktiibuot
altogether

13
13

Norgag
Norway.GEN

doaktára
doctor.GEN

leat
have

leamaš
been

mielde
with

dáid
these.GEN

iskkadan bargguin_.
testing work.LOC.PL
‘Altogether 13 Norwegian doctors have
participated in these surveys.’

The whitespace analyser detects an erroneous
space before ‘.’ The suggested correction is
"<iskkadan bargguin.>". The tokenisation dis-
ambiguation module detects the compound error
and suggests the combination of lemma and tags
iskkadanbargu+N+Sg+Com resulting in the form
iskkadanbargguin. The tokeniser is used to disam-
biguate between syntactically related n-grams and
misspelled compounds, where the misspelling is
an erroneous space at the word boundaries.

This module is clearly checking more than
spelling conventions, i.e. grammar, as writing,
for example, two consecutive nouns as one or two
words has syntactic implications. Such noun-noun
combinations do not necessarily need to be com-
pounds even if the first element is in nominative
case. They can also be syntactically related as in
the agent construction in ex. (2) where addin ‘giv-
ing’ is a (nominalized) non-finite verb that modi-
fies the second noun, vuod̄d̄u ‘basis’.

This grammar checker finds compound errors
by distinguishing between syntactic readings as
the previous one and compound readings as addin-
vejolašvuod̄a ‘giving possibility (Gen.)’.

(2) luossabivdu
salmon.fishing

lea
is

lunddolaš
natural

Golf-rávnnji
Golf-stream.GEN

addin
give.ACTIO.NOM

vejolašvuod̄a
possibility.GEN

vuod̄d̄u
basis

‘salmon fishing is a natural resource for a
possibility given by the Golf-stream’

2.2 Evaluation tools

Previously, we had evaluated our tools manually,
but now we wanted to be able to measure the im-
provement of our tools more consistently.

2.2.1 Annotated corpus
An evaluation tool presupposes an annotated cor-
pus. The corpus we use for evaluation contains
226 336 words and is manually annotated by a
North Sámi speaker/linguist according to the fol-
lowing principles.6

6The raw corpus texts for the openly accessible corpus can
be found at https://gtsvn.uit.no/freecorpus/
orig/sme. The corpus used for the evaluation in this
article can also be found at https://gtsvn.uit.no/

https://gtsvn.uit.no/freecorpus/orig/sme
https://gtsvn.uit.no/freecorpus/orig/sme
https://gtsvn.uit.no/freecorpus/orig/nodalida2019

The tokens involved in the error are enclosed
in parenthesis followed by a sign for their gen-
eral error type (orthographic, real word, morpho-
syntactic, syntactic, lexical, formatting, foreign
words), which is followed by another parenthesis
containing error subclassification and the expected
correction. The subclassification may contain an-
notation that is customized for the main six dif-
ferent error types. Sometimes part of speech, and
morpho-syntactic criteria are specified or the error
is further explained, e.g. regarding congruence.
The description is followed by a correction of the
error after the pipe sign. In ex. (3), the tokens
involved in the error are nouns, the syntactic er-
ror is a compound error and the correction is ri-
ikkačoahkkinmáhpas.

(3) Áššebáhpáriid gávn-
nat (riikkačoahkkin máh-
pas)¥(noun,cmp|riikkačoahkkinmáhpas)

Orthographic errors (marked by $) include non-
words only. They are traditional misspellings con-
fined to single (error) strings and the traditional
speller should detect them. Real word errors
(marked by ¢) cannot be detected by a traditional
speller. Morpho-syntactic errors (marked by £) are
case, agreement, tense, mode errors. They require
an analysis of (parts of) the sentence or surround-
ing words to be detected. Syntactic errors (marked
by ¥) require a partial or full analysis of (parts
of) the sentence or surrounding words; word or-
der, compound errors, missing words, redundant
words and so on. Lexical errors (marked by e) in-
clude wrong derivations. Foreign words (marked
by 8) include single words in other languages like,
for example, Norwegian og and august. Format-
ting errors (marked by ‰) include spacing errors
in combination with punctuation.

(4) an.lávdegoddi
?.committee

When doing error mark-up, it can be challeng-
ing to find the appropriate corrections in cases like
ex. (4), where a copy-paste error results in the first
part of the word missing. Without the original text,
it can be close to impossible to reconstruct the in-
tended form from the remaining text.

freecorpus/orig/nodalida2019

2.2.2 Evaluation tool
The evaluation tool is written in python. It reads
the corpus files, runs the grammar checker on the
original version of each paragraph, compares the
output with the gold standard markup in the cor-
pus, and collects the results. The output is written
to a text file, with a report for each paragraph and
also the overall evaluation measures.

The paragraph report covers mark-up errors that
do not correspond to grammar checker errors (usu-
ally false negatives) and grammar checker errors
that do not correspond to mark-up errors (false
positives or missing mark-up). When mark-up
and grammar checker errors align, the report cov-
ers whether or not the mark-up errors correction
is among the grammar checker suggestions, and
reports any missing suggestions by the grammar
checker.

The overall report provides precision, recall and
F-score for all errors and also breaks these num-
bers down for the respective error classes.

As the grammar checker does not presently
cover neither lexical, morpho-syntactic nor real
word errors, these error types are filtered away as
they are read in by the evaluation tool, such that
the expected correct text as given by the corpus
mark-up is the text used as input to the testing. As
we expand the coverage of the grammar checker,
new error types will be used in testing it as well.

3 Evaluation

3.1 Quantitative evaluation

We calculate both precision and recall.

Precision =
number of items correctly retrieved
number of items actually retrieved

Recall =
number of items correctly retrieved

number of items that should have been retrieved

A previous (manual) evaluation of compound
error detection, which is the linguistically most
advanced error type in GramDivvun, has re-
sulted in a precision of 76.6% and a recall of
78.6% (Wiechetek et al., 2019). The development
of the grammar checker evaluation tool presented
in this paper has been informed by the previous
evaluation, and many errors in the infrastructure
and in the Constraint Grammar modules have been
corrected. Therefore, higher precision and recall
are expected in this evaluation.

https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019
https://gtsvn.uit.no/freecorpus/orig/nodalida2019

As opposed to the evaluation done in Wiechetek
et al. (2019), the evaluation of GramDivvun 1.0
beta is automatic. The evaluation is based on ver-
sion r183544 of the grammar checker7. An au-
tomatic evaluation is meaningful as the error cor-
rections intended in this launch typically include
a limited amount of adjacent word forms, which
is relatively straightforward. Reference-less ap-
proaches as proposed in Napoles et al. (2016) are
not an option as they require pre-existing and in-
dependently developed tools that are sensitive to
grammatical errors, a luxury not available to most
minority languages.

A part of the North Sámi SIKOR cor-
pus (SIKOR2016) containing manual error mark-
up for orthographical and grammatical errors is
used as the evaluation corpus. It consists of
226 336 words. The genres represented in the
evaluation corpus are news, blogs, and teaching
materials.8

In the evaluation, we only consider spelling er-
rors (only non-words), compound errors, space er-
rors and punctuation errors (only quotation marks
for now), i.e. only the error types we actually
try to correct. The performance of the grammar
checker is measured by means of precision and
recall. Good precision has typically priority over
good recall as users tend to react more critically to
flagging correct input as errors as opposed to not
flagging error input.

The results are presented in Table 2. Both pre-
cision and recall are above 85%, i.e. above the
previous results for compound error detection. As
a reference, when Bick (2015) evaluates his full-
fledged grammar checker DanProof, for correct-
ing both, spelling and compounding errors preci-
sion is 90.8% and recall is 86.8%. While our re-
call is close to Bick’s results, precision can defi-
nitely be improved. Orthographic error detection
(spell checking) performs best (87.3%), a good

7To obtain this version run: svn co -r183544
https://gtsvn.uit.no/langtech/trunk
langtech; cd langtech/giella-core;
./autogen.sh; ./configure; cd
../giella-shared; ./autogen.sh;
./configure; cd ../langs/sme;
./autogen.sh; ./configure -with-hfst
-without-xfst -enable-grammarchecker
-enable-tokenisers -enable-alignment
-enable-reversed-intersect; make -j

8https://giellalt.
uit.no/proof/nordplus/
StavekontrolltestingOgNorplusprosjektet.
html (Retrieved 2019-06-19)

improvement compared to earlier results.9 For-
matting error detection performs slightly worse
(82.2%). The results for syntactic (compound) er-
ror detection are lowest of all error types (73.9%),
and slightly lower than the results in Wiechetek
et al. (2019). This may be partly due to a smaller
amount of compound errors in this corpus (344)
compared to the one in Wiechetek et al. (2019)
(458). The qualitative evaluation below will shed
light on other possible reasons for GramDivvun
shortcomings.

Measure Overall Orth Format Syn
Precision 85.4% 86.1% 85.0% 75.0%
Recall 85.8% 88.5% 79.6% 72.9%
F-Score 85.6% 87.3% 82.2% 73.9%
TP 1.319 991 277 51
FP 226 160 49 17
FN 219 129 71 19

Table 2: Precision, recall and F-Score of Gram-
Divvun 1.0 beta (TP = true positives, FP = false
positives, FN = false negatives)

3.2 Qualitative evaluation

In this section we analyse and discuss reasons for
shortcomings in precision and recall in different
modules of the grammar checker. Common rea-
sons for false positives and false negatives are
lexicon- and fst-related issues. These are, for ex-
ample, missing items in the lexicon, cited frag-
ments in other languages that do not receive an
analysis and errors the treatment of clitics. Fur-
thermore, there are named entity related issues
(427 cases), misspelled compounds (i.e. written
apart) that are not listed as such in the lexicon,
and misspelled compounds that are not listed as
such (split compounds with an error in the first
part). In addition to lexicon-related issues, there
are shortcomings in the disambiguation rules and
in the error detection modules of the grammar
checker, where Constraint Grammar rules do not
recognize syntactically related words, and analy-
ses them as compounds. Other reasons are related
to the whitespace analyser, where space errors are
erroneously detected because we do not recognize
first/last words in a sentence.

9https://gtsvn.uit.no/biggies/trunk/
techdoc/proof/spelling/testing2/sme/to/
goldstandard/20180207-1355-corpus-gs-
results.html

https://giellalt.uit.no/proof/nordplus/StavekontrolltestingOgNorplusprosjektet.html
https://giellalt.uit.no/proof/nordplus/StavekontrolltestingOgNorplusprosjektet.html
https://giellalt.uit.no/proof/nordplus/StavekontrolltestingOgNorplusprosjektet.html
https://giellalt.uit.no/proof/nordplus/StavekontrolltestingOgNorplusprosjektet.html
https://gtsvn.uit.no/biggies/trunk/techdoc/proof/spelling/testing2/sme/to/goldstandard/20180207-1355-corpus-gs-results.html
https://gtsvn.uit.no/biggies/trunk/techdoc/proof/spelling/testing2/sme/to/goldstandard/20180207-1355-corpus-gs-results.html
https://gtsvn.uit.no/biggies/trunk/techdoc/proof/spelling/testing2/sme/to/goldstandard/20180207-1355-corpus-gs-results.html
https://gtsvn.uit.no/biggies/trunk/techdoc/proof/spelling/testing2/sme/to/goldstandard/20180207-1355-corpus-gs-results.html

3.2.1 False positives
To identify shortcomings in precision false posi-
tives need to be analysed.

One issue are shortcomings in the compound
disambiguation rules, where in the case of two
correct alternative spellings (hyphenated vs. non-
hyphenated version and one word vs. two-word
version), a correct one is replaced by the other cor-
rect one. In ex. (5), Riddu Rid̄d̄u is written without
a hyphen (which is correct). However, the gram-
mar checker corrects it to Riddu-Rid̄d̄u. This issue
can be resolved by explicitly tagging the multi-
word spellings in the lexicon and making an ex-
ception in the Constraint Grammar rules that an-
notate an error.

(5) Guollefestivála
fish.festival

geassemánus
june.LOC

ja
and

Riddu Rid̄d̄u
Riddu Rid̄d̄u

suoidnemánus.
July.LOC

‘The fishing festival in June and Riddu
Rid̄d̄u in July’

In the case of first and last names, hyphenated
and non-hyphenated versions of the same name
are very common. The spelling of human names
exhibits a great variation, and names are hard to
standardize.

In ex. (6), Inger Anna is falsely corrected to
Inger-Anna by the compound error detection mod-
ule. Because of the great productivity of names,
Constraint Grammar rules should contain special
exceptions for human names.

(6) Sámegillii:
Sámi.ILL:

Inger Anna
Inger Anna

Gaup
Gaup

Gustad.
Gustad

‘In Sámi: Inger Anna Gaup Gustad.’

In ex. (7), rahppo receives an error tag by
GramDivvun even though it is correct. The form
rahppo receives a regular derived analysis (i.e. the
passive analysis of rahpat ‘open’) and an under-
ived lexical error analysis (i.e. the indicative anal-
ysis of rahppot ‘be opened’) by the morpholog-
ical analyser. The disambiguator should ideally
remove the lexical error analysis in favour of the
correct one. The solution is an adaption of the dis-
ambiguator so that possible error-tag analyses that
compete with correct readings are removed.

(7) Go
when

Norga
Norway

rahppo
open.up

"Europái"
Europe.ILL

‘When Norway opens up to Europe’

There are also syntactic issues as in ex. (8). The

grammatical tokeniser does not recognize syntac-
tically related words like prošeakta ‘project’ and
virggálaččat ‘professionally’, but analyses them
as a compound prošeaktavirggálaččat ‘?project
professionally’ based on the fact that it is a denom-
inal derivation of prošeaktavirgi ‘project position’.
Constraint Grammar rules should be changed as
to recognizing the syntactic relation between the
words. An alternative solution is blocking the
compound reading of two-word expression for
derivations in the lexicon.

(8) Dát
this

lea
is

čielga
clear

hálddahuslaš
administrative

dássi,
level,

gos
where

prošeakta
project

virggálaččat
professionally

registrerejuvvo
register.PASS.3SG

ja
and

álggahuvvo.
start.PASS.3SG

‘This is a clear administrative level, where
a project is registered and started profes-
sionally.’

3.2.2 False negatives
In order to find the reasons for shortcomings in
recall we have to look at false negatives. In ex.
(9), the proper noun compound Sámiid Hilat is
not hyphenated as it should be according to the
norm. However, Sámiid is in genitive case, and
in this case the compound disambiguation module
removes the error reading, as genitive nouns can
be prenominal modifiers. A possible solution is
to list and error-mark the non-hyphenated Sámiid
Hilat in the lexicon.

(9) Artihkkal
Article

aviissas
newspaper.LOC

Sámiid
Sámi.GEN

Hilat,
Hilat,

nr.
nr.

2
2

-
-

1978
1978

‘The article in the newspaper Sámiid-Hilat,
nr. 2 - 1978’

Lexicon issues include the treatment of cli-
tics. We treat clitics and stand-alone particles in
the same way. That means that certain words
get erroneously analysed as combinations with
stand-alone particles even if these are never to be
found in combination with other words. In ex.
(10) dálkadat has a spelling error, and should be
dálkkádat. However, since it receives an analysis
based on dálkká and the particle dat, the spelling
error is not found.

(10) Suohkanis
county.LOC

lea
is

buorre
good

dálkadat
climate

‘The county has a good climate.’

Another problem is the exact span of the
marked-up area. Space errors, for example, can-
not be marked on the (potentially missing) space
itself. Instead, the surrounding words are marked.
Since the Constraint Grammar rule for tagging
these errors are not properly constrained, error
tags are erroneously added to further words. In
ex. (11), the double space error between šat and
ságastallat is not found.

(11) ja
and

dalle
then

dáid
these.GEN.PL

birra
about

eat
not.3PL

dárbbaš
need

šat__ságastallat
anymore talk

‘and then we don’t need to talk about
these things anymore’

This is an instance of error overlapping, i.e., two
errors have overlapping contexts, and only the last
error is flagged and corrected. This is another re-
sult of mixing user interface considerations with
error detection and correction code. We encode
the linear scope of the visual error marking in the
Constraint Grammar rules, including the relevant
surrounding words. This should better be left to
a component closer to the user interface, and the
Constraint Grammar rules should only tag the er-
ror strings themselves. Then two consecutive er-
rors would not get conflicting mark-up, and the
user interface component can resolve adjacent er-
rors in the most appropriate way.

3.3 Discussion of the automatic evaluation

There is a certain amount of discrepancy between
the identified errors reported by GramDivvun, and
the manually marked-up errors in the corpus.

The manual markup of ex. (12) classifies sku-
vla(‘school(’ as missing space before the paren-
thesis and Oahpit ‘students’ as a typo. Gram-
Divvun does also find these two errors, but does
not distinguish between them in the string posi-
tions for the errors: it uses the same area for both
of them. That means that the identified typo in-
cludes the opening parenthesis as well in the iden-
tified erroneous part of the input, even though
technically only Oahpit should be a typo.

However, as mentioned above, the manual
mark-up marks skuvla(‘school(’ and Oahpit ‘stu-
dents’ as separate errors with different string
spans. The evaluation tool reformats and adjusts
the spans of the GramDivvun output to match the
manual markup. It is therefore possible to do
meaningful and usable comparisons, which is nec-

essary for an automatic evaluation.

(12) skuvla(Oahpit
school(students

The major insight from the automatic evaluation
is that our present grammar checker design is not
optimal. We currently encode user interface infor-
mation together with error detection and correc-
tion information at an early stage, adding informa-
tion of the span of the error. This complicates the
Constraint Grammar rules for error markup and
correction. Rules extend the error span to neigh-
bouring words, which themselves can have errors,
creating a spaghetti of interdependences.

Untangling this mess has been a major effort
during the evaluation. A cleaner design that avoids
these problems is one of the objectives for the fi-
nal release of GramDivvun 1.0. This means mark-
ing the span of an error at a later state, closer to
the user interface, so it does not interfere with the
rules for the actual error identification and correc-
tion.

For now, the automatic evaluation tool identifies
the proper span of the errors. However, some er-
rors may remain, both, in the evaluation and in the
reported results.

4 Conclusion

In this paper we have presented GramDivvun 1.0
beta, the first released combined spelling and
grammar checker tool for North Sámi that, in addi-
tion to spelling errors, detects and corrects punc-
tuation errors, compound errors and white space
errors. Additionally, this work also describes the
complete infrastructure for a full-scale grammar
checker and facilitates the implementation of any
kind of grammatical error correction as soon as
these are considered to be working well enough
to be released. The infrastructure is available for
any language within the GiellaLT framework.

We have exploited many shades of Constraint
Grammar at all stages of the grammar checking
process. Constraint Grammar is used in most error
detection and correction. This includes context-
aware filtering of spelling suggestions. The overall
F-Score is 85.6%. Based on the qualitative evalu-
ation and systematic error-debugging many (fre-
quent) error types could be resolved after evalu-
ating GramDivvun 1.0 beta, and better results are
expected for future evaluations. Overall precision
(85.4%) is at the moment not better than overall

recall (85.8%).
In addition, we have developed an automatic

evaluation method, which will facilitate quality
maintenance and allow us to release updated ver-
sions of the grammar checker more frequently.
We have learned that manual corpus mark-up can
get substantial support from the automatic testing,
as the grammar checker often finds more errors
than the ones visible to the human eye. We have
also learned that the evaluation tool needs constant
surveillance to ensure concordance with the de-
sired features to be evaluated. Finally, diverging
principles of error mark-up and grammar checker
error detection pose challenges to the automatic
evaluation.

Future plans include adding a name guesser,
improving lexicon coverage, adding Constraint
Grammar rules for variations in the lexicon (avoid-
ing false positives) and refining the syntactic rules
in the compound error detection module. Ad-
ditionally, we plan to remove the user-interface
elements from the present Constraint Grammar
rules. As the infrastructure is ready, a wide range
of real word errors and syntactic error detection
rules will be included in future releases and turn
GramDivvun into a full-scale North Sámi gram-
mar checker.

Acknowledgments

We want to thank Kevin Brubeck Unhammer for
his profound work with the grammar checker in-
frastructure, for very valuable discussions regard-
ing the design of the grammar checker, for help-
ing out with certain types of advanced Constraint
Grammar rules, and for building our first proto-
type in LibreOffice.

References
Lene Antonsen, Linda Wiechetek, and Trond

Trosterud. 2010. Reusing grammatical resources
for new languages. In Proceedings of the 7th
International Conference on Language Resources
and Evaluation (LREC 2010), pages 2782–2789,
Stroudsburg. The Association for Computational
Linguistics.

Eckhard Bick. 2015. DanProof: Pedagogical spell and
grammar checking for Danish. In Proceedings of the
10th International Conference Recent Advances in
Natural Language Processing (RANLP 2015), pages
55–62, Hissar, Bulgaria. INCOMA Ltd.

Eckhard Bick and Tino Didriksen. 2015. CG-3 – be-
yond classical Constraint Grammar. In Proceed-

ings of the 20th Nordic Conference of Computa-
tional Linguistics (NoDaLiDa 2015), pages 31–39.
Linköping University Electronic Press, Linköpings
universitet.

Børre Gaup, Sjur Moshagen, Thomas Omma, Maaren
Palismaa, Tomi Pieski, and Trond Trosterud. 2006.
From Xerox to Aspell: A first prototype of a north
sámi speller based on twol technology. In Finite-
State Methods and Natural Language Processing,
pages 306–307, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Sam Hardwick, Miikka Silfverberg, and Krister
Lindén. 2015. Extracting semantic frames using
hfst-pmatch. In Proceedings of the 20th Nordic
Conference of Computational Linguistics, (NoDaL-
iDa 2015), pages 305–308.

Fred Karlsson. 1990. Constraint Grammar as a Frame-
work for Parsing Running Text. In Proceedings
of the 13th Conference on Computational Linguis-
tics (COLING 1990), volume 3, pages 168–173,
Helsinki, Finland. Association for Computational
Linguistics.

Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and
Arto Anttila. 1995. Constraint Grammar: A
Language-Independent System for Parsing Unre-
stricted Text. Mouton de Gruyter, Berlin.

Eva Lindgren, Kirk P H Sullivan, Hanna Outakoski,
and Asbjørg Westum. 2016. Researching literacy
development in the globalised North: studying tri-
lingual children’s english writing in Finnish, Nor-
wegian and Swedish Sápmi. In David R. Cole
and Christine Woodrow, editors, Super Dimensions
in Globalisation and Education, Cultural Studies
and Transdiciplinarity in Education, pages 55–68.
Springer, Singapore.

Sjur N. Moshagen, Tommi A. Pirinen, and Trond
Trosterud. 2013. Building an open-source de-
velopment infrastructure for language technology
projects. In NODALIDA.

Courtney Napoles, Keisuke Sakaguchi, and Joel R.
Tetreault. 2016. There’s no comparison: Reference-
less evaluation metrics in grammatical error correc-
tion. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4,
2016, pages 2109–2115.

Hanna Outakoski. 2013. Davvisámegielat čálamáhtu
konteaksta [The context of North Sámi literacy].
Sámi died̄alaš áigečála, 1/2015:29–59.

Tommi A. Pirinen and Krister Lindén. 2014. State-
of-the-art in weighted finite-state spell-checking. In
Proceedings of the 15th International Conference on
Computational Linguistics and Intelligent Text Pro-
cessing - Volume 8404, CICLing 2014, pages 519–
532, Berlin, Heidelberg. Springer-Verlag.

http://aclweb.org/anthology/W/W15/W15-1842.pdf
http://aclweb.org/anthology/W/W15/W15-1842.pdf
http://aclweb.org/anthology/D/D16/D16-1228.pdf
http://aclweb.org/anthology/D/D16/D16-1228.pdf
http://aclweb.org/anthology/D/D16/D16-1228.pdf

SIKOR2016. 2016-12-08. SIKOR UiT The Arc-
tic University of Norway and the Norwegian
Saami Parliament’s Saami text collection. URL:
http://gtweb.uit.no/korp (Accessed 2016-12-08).

Gary F. Simons and Charles D. Fennig, editors. 2018.
Ethnologue: Languages of the World, twenty-first
edition. SIL International, Dallas, Texas.

Linda Wiechetek. 2017. When grammar can’t be
trusted – Valency and semantic categories in North
Sámi syntactic analysis and error detection. PhD
thesis, UiT The Arctic University of Norway.

Linda Wiechetek, Kevin Brubeck Unhammer, and
Sjur Nørstebø Moshagen. 2019. Seeing more than
whitespace – Tokenisation and disambiguation in a
North Sámi grammar checker. In Proceedings of the
third Workshop on the Use of Computational Meth-
ods in the Study of Endangered Languages, pages
46–55.

http://www.ethnologue.com (Accessed 2018-10-09)
https://www.aclweb.org/anthology/W19-6007
https://www.aclweb.org/anthology/W19-6007
https://www.aclweb.org/anthology/W19-6007

Constraint Grammar as a Hand-Crafted Transformer

Anssi Yli-Jyrä
Helsinki Centre for Digital Humanities (HELDIG)
P.O. Box 24, 00014 University of Helsinki, Finland

anssi.yli-jyra@helsinki.fi

Abstract

The differences between the rule-based
NLP such as CG and the deep neu-
ral networks, such as the Transformer
(Vaswani et al., 2017) are so striking
that it is really hard to see any rel-
evant conceptual links between them.
However, this paper sketches a thought
experiment that assumes an equiva-
lent input-output behaviour by both
systems and aligns certain structural
aspects of the computation behind a
practical Constraint Grammar with the
computation structure of Transformer.
Based on this scene, several findings
are presented that state some func-
tional similarities in the computation
graphs of the systems.

1 Introduction

The Transformer architecture (simply Trans-
former) (Vaswani et al., 2017), and Constraint
Grammar parsing framework (simply CG) are
currently in the opposite ends of the contin-
uum for different NLP technologies (Table 1).
The main contrasts between these relate to the
representation of word senses and the way in
which the systems implement machine learn-
ing. Learning in both systems is error-driven,
but CG can use transformation-based learn-
ing algorithms (Brill, 1995; Lager, 2001) that
differ greatly from the backpropagation algo-
rithm used as a part of the gradient descent
optimisation of Transformer. A more strik-
ing, but superficial difference is the way how
the systems traditionally represent their lexi-
cons. A Transformer network (a Transformer)

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

assumes a lexicon of word parts. This maps
the word parts, or tokens, directly to a high-
dimensional vector space. A Constraint Gram-
mar parser (a CG) has typically access to a
finite-state based lexicon that assigns, to each
word, a set of morpho-syntactic readings and
categories. These sets are called cohorts.

Since there is no obvious link between con-
straint grammars and deep neural networks,
the two methods are seldom studied in paral-
lel. If there are some links, they are hardly
ever been pointed out. One harmful conse-
quence of this state of affairs is that it is not
known how to combine these technologies in
a synthetic design. Therefore, it is especially
valuable to investigate how these unrelated
technologies could be aligned and even mar-
ried with one another. Accordingly, the aim
of the current paper is to start a discussion
that seeks for cross-design understanding and
synthesis. This discussion may lead to ideas
that allow us to create NLP that takes advan-
tage of both expert knowledge and big data.

2 Premise and Methodology
Talman et al. (2019) compared the perfor-
mance of a CG-based machine translation
(MT) system and a Transformer-based sys-

Table 1: Some contrasts
Transformer CG

based on: neural networks restarting automata
data need: large moderate

tokens: word parts inflected words forms
input sequence: word embeddings cohorts of readings

word senses: continuous discrete tag sequences
features: learned feature

representations
template or lattice
based features

special use: pretrained embeddings gold annotation
learning: backpropagation and

stochastic gradient
descent (SGD)

composition and
transformation-based
learning (TBL)

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

45

http://creativecommons.org/licenses/by/4.0/

tem, bringing them thus to the same table for
comparison in terms of their respective trans-
lation quality. Our aim is to consider the theo-
retical consequences of a different comparison
that is based on a thought experiment, a pow-
erful method mastered by G. Galilei and A.
Einstein in particular.

The Premise of Equivalence. Accord-
ing to our thought experiment, we assume the
imaginary situation where both systems would
happen to compute the same, nontrivial func-
tion. Although this state of affairs is unlikely
to be generally achievable, there is a realistic
posibility that a Transformer is able to learn
to compute the same input-output mapping as
a typical CG.

The Computation Graph Method. In
such a world where the same mapping would
be computed by two kinds of systems, it is nat-
ural to ask whether the equivalent behaviour
has something to do with a similar structure
that is shared by both systems. Perhaps the
kind of structure with most promising parallels
is the high-level computation graph of both
systems. A computation graph is a directed
graph that shows the flow of information in a
system that consists of several connected pro-
cessing modules.

The Alignment Hypothesis. The cur-
rent hypothesis is that both systems actually
have corresponding computation steps that
can be functionally aligned with each other.

Since the experiment facilitates the detec-
tion of analogies in design, it has potential
value for further research: we may want to
build robust systems where CG and statisti-
cal models complement one another, or hybrid
systems that contain some computation steps
from CG and some other steps from a neural
encoder-decoder architecture.

3 Aligned Encoders

To argue for conceptual connections between
Constraint Grammar and Transformer, we
start from very general observations.

The encoder-decoder components. A
Transformer is a composition of a stack of en-
coder networks and a stack of decoder net-
works: enc ◦ dec. The layers of the en-
coder networks (enc) build an internal repre-
sentation for the input string. Then, a multi-

layer decoder network (dec) produces an out-
put string based an internal representation.
Finding 1. Both systems contain an encoder
component that embeds the input sequence to a
sequence of contextually disambiguated feature
representations of tokens at each position.

Proof. This is clearly true for Transformer.
Constraint Grammar is an encoder that maps
the sequences of ambiguous cohorts to se-
quences of (nearly) unambiguous cohorts that
represent the contextual reading of each token
in a sentence.

The existence of a decoder component in
both systems can also discussed. CG does
not usually have a decoder component, but
it has sometimes been extended with mod-
ules that can be seen as decoders. For ex-
ample, Hurskainen (1999) and (Hurskainen
and Tiedemann, 2017) describe CG-based sys-
tems where the disambiguated input string
is processed further by “decoding” modules.
These modules implement a mapping from the
contextualised token representations to a rep-
resentation of the corresponding target lan-
guage tokens, and a mapping from the orig-
inal word order to the target word order, etc.
Since the internal structure of these modules
is still somewhat different from the decoders of
the Transformer architecture, their similarities
cannot be demonstrated in the current work.

Information reduction. By design, the
encoder stack of Transformer is a multi-layer
neural network. The information content of
the output is a subset of the information con-
tent that is available in the input. The rest
of the input information is irrelevant for the
output and is thrown out during the encoding
process.
Finding 2. The encoders of both systems are
functions and thus reductionistic: the amount
of information that is relevent for the output
representation is not increasing inside the en-
coders.

Proof. The output layer of a Transformer is
a function of the input layer. A Constraint
Grammar is generally known to be an iterated
function that transforms the input sequence to
a less ambiguous one.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

46

Feature vectors. Although the tokens are,
in many ways, ambiguous in the beginning,
Transformer assumes a finite lexicon of tokens.
It embeds the tokens to a space of continuous
representations.
Finding 3. Both systems represent the input
tokens as feature vectors.

Proof. Yli-Jyrä (2011a) has demostrated how
to embed the input cohorts of a CG system
into finite vectors. These vectors contain the
values of those hand-engineered features that
are used in rule conditions and are thus rele-
vant for the function defined by the CG gram-
mar. Such vectors can be extended to a loss-
less representations from which the input co-
horts in a finite lexicon can be decoded. Such
a representation is comparable with the token
embedding vectors used by Transformer.

A finite number of layers. The encoder
network in Transformer contains typically 6–
64 similar layers (with different weights).1

Finding 4. The number of layers in both en-
coder architectures is potentially finite.

Proof. The finite bound for layers holds for
Tranformer by definition. Yli-Jyrä (2017b)
conjecture that, in practice, each CG can be
viewed as a finite-visit Turing machine, which
is known to be equivalent to a functional one-
way finite-state automaton or transducer, see
Yli-Jyrä (2017a). Such a machine model has a
reading-writing head that does not cross any
position in the sentence more than k times.
According to the argument, this optimisation
is made possible by the assumption that at
most a finite amount of information needs to
be communicated across each sequence posi-
tion. Hulden (2011), Peltonen (2011) and Yli-
Jyrä (2011a) present similar analyses for sep-
arate CG rules but they do not reach the con-
jecture that finite visits and bounded cross-
ings per position would be sufficient for the
correct function semantics of the whole CG
parser where the rules are supposed to ap-
ply iteratively. Once the equivalence with a
finite-state transducer is established, it is easy
to see that a multi-layer composition of sev-
eral finite-state transducers can be much more

1This raises a question, could the encoder network
have recurrent layers that share their weights. This
would make the encoder even more similar to a CG.

CG: Transformer:
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

rule FST
...

rule FST
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

encoder layer
...

encoder layer
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

Figure 1: Alignment of the encoders

succinct way to compute the same function.
Thus, both encoders have a finite number of
layers in the case where the finite-visit conjec-
ture holds.

Given these four observations, we can draw
a diagram (Figure 1) that aligns the computa-
tional structure of the encoder of Transformer
with a CG system.

4 Aligned Sublayers

The alignment inside the corresponding lay-
ers of the encoders requires us to dig into the
more detailed structure inside both CG and
Transformer. There are at least four ways to
approach a CG parser, but only the last one
helps us to see the analogy between the two
systems:

(i) Iterative Rule Application. Some
CG parsers have a control mechanism that it-
erates over the positions of the sentence and
over the disambiguation rules, trying to ap-
ply each rule at each position at a time. If
non-monotonic rules are included, the parser
becomes Turing complete (Kokke and Listen-
maa, 2017; Yli-Jyrä, 2017b). Since Trans-
former has been specifically designed to have
a bounded number of layers, the iterative rule
application differs too much from it.

(ii) Constraint Programming. Another
view on constraints treats the constraints con-
juctively, requiring the output sequence to sat-
isfy all the constraints. For some inputs, the
system can be over-constrained, which would
make the parser to fail, unless some constraints
are relaxed (Listenmaa, 2019). Such con-
straint programming approach is quite differ-
ent from the Transformer architecture whose
encoders are position-wise, without any con-
straint relaxation.

(iii) Maximum Subgraph Parsing. A
new approach to constraint relaxation is to re-

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

47

formulate the constrained parsing as a maxi-
mum subgraph problem over encoded graphs.
Yli-Jyrä and Gómez-Rodríguez (2017) con-
sider complete dependency graphs with arc-
factored weights and sketches an efficient pars-
ing algorithm for maximun weighted noncross-
ing subgraphs that satisfy some hard con-
straints, such as acyclicity and connectivity.
The weights are needed because the system is
under-constrained. With a more general en-
coding (Yli-Jyrä, 2019), it is possible to re-
move the limitation of noncrossing parses from
the parsing algorithm.

(iv) Separate Context Queries. In Yli-
Jyrä (2011a), the context conditions of CG
rules are represented by an efficient query-
FSA (Figure 2) that can match thousands of
complex conditions in parallel. The position-
wise satisfaction of context conditions is en-
coded into strings using position-wise flag di-
acritics (Yli-Jyrä, 2011b), a generalisation of
Liang’s hyphenation algorithm (Liang, 1983).
These diacritics of the query-FSA encode a po-
sitionwise vector that tells which contexts are
present at each position.
Finding 5. The two subnetworks of the en-
coder in Transformer can be compared with the
computation steps used in Yli-Jyrä (2011a).

Proof. In Transformer, each encoder network
consists of two position-wise networks: (1) a
self-attention network and (2) a feed-forward
(FF) network. The first network queries, in
parallel for every input position, an attention-
weighted average vector that describes an as-
pect of its context in the sentence. After this,
the FF network manipulates the vector that
encodes the contents of each position based on
the information gathered via self-attention.

The computation structure of Transformer
corresponds to the fourth way to implement
Constraint Grammar. The CG implementa-
tion of Yli-Jyrä (2011a) tests firsts the the con-
text conditions of all disambiguation rules in
all positions. After this, the systen chooses an
input cohort, manipulates its feature represen-
tation (and the cohort), and updates the tests
around the changed cohort. The system could
also take some risk of suboptimal search and
change multiple cohorts at the same time.

If sufficiently many positions are changed
during one iteration, the CG parser can be im-

0

•
1

715.(NNom)+
715.(NNom)?

6
821.NSg?

2
•

3

3.CLB-
3.CLB?

4821.NSg?

715.(NNom)?
715.(NNom)-

5

@2.865@ •

7
@1.865@

8•

820.(VSg3)?
820.(VSg3)+

9

3.CLB-
3.CLB?

820.(VSg3)?
820.(VSg3)-

Figure 2: a small portion of a “self-attention”
query network in CG

CG: Transformer:

Feature-based cohort
manipulations

Recurrent “self-atten-
tion” query network

FF network for position-
wise manipulations

Non-recurrent self-
attention network

Figure 3: Sublayers of the encoders

plemented with a finite cascade of finite-state
transductions. This is the general case where
the system becomes quite Transformer-like. A
special case of similar, cascaded application
of parallel rules has been explored by Hulden
(2011).

The alignment of the sublayers gives us a
picture (Figure 3). Further analysis is needed
to check whether the conditions of CG rules
are simple enough to be simulated with the
self-attention mechanism.

5 Conclusion
In this paper, we have aligned the high-level
computational structures of CG parser and
a Transformer under their functional equiva-
lence. This resulted in findings

1. on their encoder-decoder decomposition,
2. on their reductionistic nature,
3. on their vectorized token representations,
4. on their finite number of layers, and
5. on the two steps in each encoder layer.

We also noted that the alignment is not per-
fect. For example, it is probable that the co-
hort vectors and the word embedding vectors
do not represent the lexical or morphologi-
cal ambiguity in the same way. Understand-
ing the significance of this difference would be
crucial for the discussion about interpretabil-
ity and invertibility of token representations.
Nevertheless, the alignment suggests the pos-
sibility of hybrid parsing models that would
combine these architectures and their comple-
mentary strengths in NLP.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

48

References
Eric Brill. 1995. Transformation-based error-

driven learning and natural language processing:
A case study in part-of-speech tagging. Comput.
Linguist., 21(4):543–565.

Mans Hulden. 2011. Constraint grammar parsing
with left and right sequential finite transducers.
In Proceedings of the 9th International Work-
shop on Finite State Methods and Natural Lan-
guage Processing, pages 39–47, Blois, France.
Association for Computational Linguistics.

Arvi Hurskainen. 1999. SALAMA Swahili Lan-
guage Manager. Nordic Journal of African Stud-
ies, 8(2):139–157.

Arvi Hurskainen and Jörg Tiedemann. 2017.
Rule-based machine translation from english to
finnish. In Proceedings of the Second Con-
ference on Machine Translation, WMT 2017,
Copenhagen, Denmark, September 7-8, 2017,
pages 323–329. Association for Computational
Linguistics.

Pepijn Kokke and Inari Listenmaa. 2017. Explor-
ing the expressivity of constraint grammar. In
Proceedings of the NoDaLiDa 2017 Workshop on
Constraint Grammar - Methods, Tools, and Ap-
plications, 22 May 2017, pages 15–22, Gothen-
burg, Sweden. Linkoping University Electronic
Press.

Torbjörn Lager. 2001. Transformation-based
learning of rules for constraint grammar tagging.
In NODALIDA.

Franklin Mark Liang. 1983. Word Hy-phen-a-tion
by Com-pu-ter. Ph.D. thesis, Stanford Univer-
sity, Department of Computer Science.

Inari Listenmaa. 2019. Formal Methods for Testing
Grammars. Ph.D. thesis, Department of Com-
puter Science and Engineering, Chalmers Uni-
versity of Technology and University of Gothen-
burg, Gothenburg, Sweden.

Janne Peltonen. 2011. Rajoitekielioppien toteu-
tuksesta äärellistilaisin menetelmin (On finite-
state implementation of Constraint Grammars).
Master’s thesis, University of Helsinki, Depart-
ment of Modern Languages, Helsinki.

Aarne Talman, Umut Sulubacak, Raúl Vázquez,
Yves Scherrer, Sami Virpioja, Alessandro Ra-
ganato, Arvi Hurskainen, and Jörg Tiedemann.
2019. The university of Helsinki submissions
to the WMT19 news translation task. In Pro-
ceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers,
Day 1), pages 412–423, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Proceedings of the 31st
International Conference on Neural Information
Processing Systems, NIPS’17, pages 6000–6010,
USA. Curran Associates Inc.

Anssi Yli-Jyrä. 2011a. An efficient constraint
grammar parser based on inward deterministic
automata. In Proceedings of the NODALIDA
2011 Workshop Constraint Grammar Applica-
tions, volume 14 of NEALT Proceedings Series,
pages 50–60.

Anssi Yli-Jyrä. 2011b. Explorations on position-
wise flag diacritics in finite-state morphology.
In Proceedings of the 18th Nordic Conference of
Computational Linguistics, NODALIDA 2011,
May 11-13, 2011, Riga, Latvia, pages 262–269.
Northern European Association for Language
Technology (NEALT) / Tartu University Li-
brary (Estonia) / ACL.

Anssi Yli-Jyrä. 2017a. Forgotten islands of regu-
larity in phonology. In K + K = 120: Papers
dedicated to László Kálmán and András Kornai
on the occasion of their 60th birthdays.

Anssi Yli-Jyrä. 2017b. The power of Constraint
Grammar revisited. In Proceedings of the
NoDaLiDa 2017 Workshop on Constraint Gram-
mar - Methods, Tools, and Applications, 22
May 2017, pages 23–31, Gothenburg, Sweden.
Linkoping University Electronic Press.

Anssi Yli-Jyrä. 2019. Transition-based coding and
formal language theory for ordered digraphs. In
Proceedings of the 14th International Conference
on Finite-State Methods and Natural Language
Processing, pages 118–131, Dresden, Germany.
Association for Computational Linguistics.

Anssi Yli-Jyrä and Carlos Gómez-Rodríguez. 2017.
Generic axiomatization of families of noncross-
ing graphs in dependency parsing. In Proceed-
ings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 1745–1755. Association
for Computational Linguistics.

Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar -
Methods, Tools and Applications, 30 September 2019, Turku, Finland

49

http://dl.acm.org/citation.cfm?id=218355.218367
http://dl.acm.org/citation.cfm?id=218355.218367
http://dl.acm.org/citation.cfm?id=218355.218367
https://www.aclweb.org/anthology/W11-4406
https://www.aclweb.org/anthology/W11-4406
https://aclanthology.info/papers/W17-4731/w17-4731
https://aclanthology.info/papers/W17-4731/w17-4731
http://www.ep.liu.se/ecp/140/004/ecp17140004.pdf
http://www.ep.liu.se/ecp/140/004/ecp17140004.pdf
https://www.aclweb.org/anthology/W19-5347
https://www.aclweb.org/anthology/W19-5347
http://dl.acm.org/citation.cfm?id=3295222.3295349
http://dl.acm.org/citation.cfm?id=3295222.3295349
http://hdl.handle.net/10062/19302
http://hdl.handle.net/10062/19302
http://hdl.handle.net/10062/19302
https://www.aclweb.org/anthology/W11-4636
https://www.aclweb.org/anthology/W11-4636
http://clara.nytud.hu/~kk120/
http://clara.nytud.hu/~kk120/
http://www.ep.liu.se/ecp/140/005/ecp17140005.pdf
http://www.ep.liu.se/ecp/140/005/ecp17140005.pdf
https://www.aclweb.org/anthology/W19-3115
https://www.aclweb.org/anthology/W19-3115
https://doi.org/10.18653/v1/P17-1160
https://doi.org/10.18653/v1/P17-1160

	Title_pages
	Preface
	Table of Contents

	ecp19168001
	ecp19168002
	ecp19168003
	ecp19168004
	ecp19168005
	Credits
	Introduction
	The enclitic particles can be conjunctions or adverbs
	An example: {luunniit}
	Writing disambiguational rules for {luunniit}
	Placing the rules for {luunniit}
	Running the rules for {luunniit}

	An inflectional suffix homonymous to a derivational morpheme
	An example of -toq
	Combination of participle -toq and enclitic {lu}

	Evaluation
	Conclusion

	ecp19168006
	ecp19168007
	ecp19168008
	ecp19168009
	Introduction
	Premise and Methodology
	Aligned Encoders
	Aligned Sublayers
	Conclusion

	ecp19168009.pdf
	Introduction
	Premise and Methodology
	Aligned Encoders
	Aligned Sublayers
	Conclusion

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

