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Abstract
Extremum Seeking (ES) is an optimization scheme that
has become a popular tool for addressing decision-making
problems in settings where system models are unavailable
or inaccurate and communications are unreliable. This pa-
per presents an open source Modelica Extremum Seeking
library that introduces different continuous and discrete
ES controllers and examples for possible ES control appli-
cations. The controllers are available for Modelica and in
the Functional Mock-up Interface (FMI) standard, which
allows the models to be used in a variety of different soft-
ware environments.

1 Introduction
Black-box optimization methods are an important class
of algorithms used in situations where objective functions
are difficult or expensive to evaluate, or are, perhaps, un-
known to the optimizer. Many black-box optimization
techniques rely on a local exploration of the action space
to determine the best action to take. Within this subclass of
algorithms, Extremum Seeking (ES) approaches are par-
ticularly useful as they require no knowledge of the system
over which they are optimizing.

This “model-free" property of ES has made it attrac-
tive in a variety of applications, including homogeneous
charge compression ignition (HCCI) engine optimiza-
tion (Killingsworth et al., 2009), maximum power point
tracking (MPPT), wind turbine optimization (Krstic et al.,
2014), and control of autonomous robots (Zhang et al.,
2007). Additionally, several books have been written on
the topic (Zhang and Ordonez, 2012), (Ariyur and Krstic,
2003). Many of the authors of this work have utilized ES
to manage power injections of distributed generation de-
vices in the smart grid (Arnold et al., 2018).

In the ES scheme the optimizer (e.g., mobile robot,
power generation source, parameter to be tuned) injects
a small sinusoidal perturbation into the local action space.
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This perturbation, in turn, introduces an oscillation in the
objective function value. With proper filtering to extract
the oscillatory component of the objective function, the
decision-maker can extract the gradient of the control in-
put with respect to the objective. No explicit knowledge of
the structure of the objective function is needed to obtain
the gradient information, only a time series of measure-
ments of the objective.

Our past research has explored several extensions of the
family of ES algorithms, such as the simultaneous control
of two setpoints using a single controller (Arnold et al.,
2018), and the introduction of a decaying probe (Sankur
and Arnold, 2019). More recently we started studying
the impacts of communication delays and missing data in
the system’s measurements on the performances of ES,
following feedback from experimental implementation of
the ES scheme in power system applications. This kind
of studies requires a modeling environment that can eas-
ily implement more complex systems including both dis-
crete and continuous dynamics. The Modelica language
natively supports the modeling and simulation of com-
plex cyber-physical systems and features many existing li-
braries containing models from many physical domains. It
offers an attractive platform to further develop and study
new variants of ES algorithms and their interaction with
systems featuring more realistic characteristics (e.g., com-
munication delays). This motivated the development of
an ES library in Modelica. In this work, we present the
library and examples of ES used to address several con-
trol/optimization problems. Models of different physical
domains from the Modelica Standard Library were used
to build a set of application examples, which are briefly
highlighted in this paper.

The remainder of this paper is organized as follows.
First, the working principle of ES control is introduced,
followed by an overview of several examples of ES ap-
plied to domain-specific problems. Specifically, we dis-
cuss the optimization of a quadratic map, control of a
spring-mass damper, speed control of a rolling wheel, and
optimization of power injections in the smart grid. The
paper concludes with a brief discussion of plans for future
extensions to the ES Modelica library. The ES library was
published as an open source project, and made available
at https://github.com/LBNL-ETA/ESL.
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2 ES Control Overview
In this section, we discuss the different types of ES con-
trollers in our library. We provide an overview of a con-
ventional ES controllers, and two types of fixed-step ES
controllers (e.g. where the control action space is uni-
formly discretized).

The reader should note that the terms “continuous” and
“discrete” can refer to continuous time or discrete time
implementations of the controllers, and to refer to the pos-
sible values the controller setpoint and probe signal may
take (i.e. action space). For clarity purposes, we will
reserve the terms “continuous” and “discrete” to refer to
continuous or discrete time. We will use “ES” or “conven-
tional ES” for controllers using a continuous action space,
and “fixed-step ES” for controllers using a discrete action
space. Fixed-step ES controllers are inherently discrete
controllers.

While the ES algorithm requires no knowledge of the
objective function, it does require measurements of the
objective function value. The reader should note that the
mapping from input to objective function must be locally
convex for the ES algorithm to converge to a minimizer,
or locally concave to converge to a maximizer.

Without loss of generality, we consider the parallel op-
eration of many ES controllers, and index each controller
by the subscript m.

2.1 Conventional ES Controllers
Figure 1 shows a conventional ES controller within the
dashed red rectangle. Consider the setpoint of the mth ES
controller, ûm. The controller adds a sinusoidal perturba-
tion with amplitude au,m, frequency ωu,m, and phase θu,m
to the setpoint ûm, producing the controller output um. The
controller output um, along with all other controller out-
puts, form the input to an unknown system. One or more
entities take measurements of the system y, and a central
entity computes objective function Ψ(µµµ).

The ES controller collects measurements of the ob-
jective function Ψ(µµµ). Objective function measurements
Ψ(µµµ) pass through a high-pass filter, attenuating low fre-
quency content of the objective function, such as content
due to controller setpoints, and then pass through a low-
pass filter, to attenuate measuerement noise and high fre-
quency content, such as content produced by the discrete
ES controller’s perturbations and setpoint updates, pro-
ducing ρu,m.

The controller demodulates the signal ρu,m through
multiplication with a sinusoidal function with the same
frequency ωu,m, amplitude 2a−1

u,m, and phase shift θu,m +
φu,m, giving σu,m. The demodulated signal σu,m passes
through a low-pass filter, to attenuate high frequency con-
tent, producing a numerical estimate of the gradient of
Ψ(µµµ) with respect to ûm, ξ̂u,m. The gradient estimate
ξ̂u,m passes through an averaging operator (AO), produc-

ing ξ̂ u,m. One example of an AO is to average the gradient
estimate over the last probe cycle, to further reduce high

frequency content, such as probing frequency oscillations.
The averaged gradient estimate, ξ̂ u,m, is integrated with

negative gain −ku,m to update the setpoint ûm. The set-
point may be limited by a minimum and/or maximum
value, which are typically set such that a complete probe
cycle is feasible at any setpoint; this is not shown in Fig-
ure 1.

2.2 Single Fixed-Step ES Controller
Figure 1 shows a Single Fixed-Step ES controller (SFSES)
within the dashed green rectangle. This controller oper-
ates on two timescales. The first timescale is that of per-
turbation and filtering. The second is the setpoint update
timescale, which is slower than the perturbation and filter-
ing timescale. We index each setpoint update period with
the subscript b.

We start with the setpoint of the mth Single Fixed-
Step ES Controller for the bth update period v̂m,b. The
controller holds its setpoint v̂m,b constant over period b.
Throughout the bth update period, the mth SFSES adds a
square wave perturbation with frequency ωv,m, zero-peak
amplitude av,m, and phase θv,m to its setpoint to produce
the controller output vm,b. The controller collects mea-
surements of the objective function Ψ(µµµ). Objective func-
tion measurements Ψ(µµµ) pass through a high-pass filter, to
attenuate low frequency content of the objective function,
such as those due to controller setpoints, producing ρv,m.

The controller demodulates the signal ρv,m, by multi-
plying with a square wave with the same frequency ωv,m,
amplitude a−1

v,m, and phase θv,m + φv,m, giving σv,m. This
signal passes through a low-pass filter, to attenuate high
frequency content, producing an estimate of the gradient
of Ψ(µµµ) with respect to v̂m,b, ξ̂v,m.

At end of the bth update period, the gradient estimate
is averaged over b by the averaging operator (AO), giving
ξ̂ v,m,b. The setpoint change is an integer multiple of the
probe amplitude multiplied by the sign of the averaged
gradient. The setpoint is then updated such that:

v̂m,b+1 = v̂m,b − kv,mav,m sgn
(

ξ̂ v,m,b

)
, (1)

and held constant over the update period b+ 1. The set-
point may be limited by a minimum and/or maximum
value, which are typically set such that a complete probe
cycle is feasible at any setpoint; this is not depicted in Fig-
ure 1.

2.3 Multiple Fixed-Step ES Controller
Figure 1 shows the Multiple Fixed-Step ES controller
(MFSES) within in the blue dashed box. We start with the
setpoint of the mth MFSES for the bth update period ŵm,b,
which is held constant over the period. Throughout the bth

update period, the controller adds a square wave perturba-
tion with frequency ωw,m, zero-peak amplitude aw,m, and
phase θw,m to the setpoint to produce the controller out-
put wm,b. The controller collects measurements of the ob-
jective function Ψ(µµµ). Objective function measurements
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All Other ES Controllers

Figure 1. Parallel operation of multiple ES Controllers of multiple types, to demonstrate the operational principles. For clarity,
only one conventional ES controller, one Single Fixed-Step ES controller (SFSES), and one Multiple Fixed-Step ES controller
(MFSES) are shown. However, this figure does not imply anything about the number or types of ES controllers that are present in
an optimization or control scenario.

Ψ(µµµ) pass through a high-pass filter, to attenuate low fre-
quency content of the objective function, such as those due
to the setpoint, producing ρw,m.

The controller demodulates the signal ρw,m, by multi-
plying with a square wave with the same frequency ωw,m,
amplitude a−1

w,m, and phase θw,m +φw,m, giving σw,m. This
signal passes through a low-pass filter, to attenuate high
frequency content, producing an estimate of the gradient
of Ψ(µµµ) with respect to ŵm, ξ̂w,m.

At end of the bth update period, the gradient estimate
is averaged over b by the averaging operator (AO), giving
ξ̂ w,m,b. The gradient estimate is multiplied by gain kw,m,
and rounded to the nearest integer multiple of the probe
amplitude, giving the setpoint change, such that:

ŵm,b+1 = ŵm,b −aw,m�kw,ma−1
w,mξ̂ w,m,b� , (2)

and held constant over the update period b+ 1. The set-
point may be limited by a minimum and/or maximum
value, which are typically set such that a complete probe
cycle is feasible at any setpoint; this is not shown in Fig-
ure 1.

2.4 Remarks on ES Controllers
In our library, the high-pass (HPF1) low-pass (LPF1) filter
combination of the conventional ES controller typically
takes two forms, depending on the use case. When only
conventional ES controllers are used, the high-pass filter
cutoff frequency is typically 1/10 of the probe frequency,
and the low-pass filter is omitted. When it is used in con-
junction with one or more fixed-step ES controllers, the

high-pass filter and low-pass filter cutoff frequencies are
typically set to the probe frequency, and a rectification
gain is applied such that the band-pass filter gain at the
probe frequency is unity.

In our description of SFSES and MFSES, and in Fig-
ure 1, we have assumed that the probe zero-peak ampli-
tude (av for SFSES, and aw for MFSES) is the smallest
possible discrete step. The reader should note that the
probe amplitude may be an integer multiple of this value.

The reader should also note that the setpoint update of
MFSES does not necessarily need to be rounded to the
nearest integer multiple of aw. Instead, a step size larger
than aw can be applied for the setpoints, so that the set-
points will be rounded to the nearest integer multiple of
nwaw where nw can be chosen as any integer (e.g., if the
stepsize is 5, the update size can be rounded to the nearest
15).

Finally, the reader should note that the setpoint updates
of multiple discrete ES controllers are generally not syn-
chronized.

3 Library Implementation
Our library includes several variants of the ES control al-
gorithm. In our previous work, we considered a decentral-
ized approach of the control scheme, where the objective
is computed by a central entity, and the ES controller(s)
use the common objective to manage their distributed re-
sources. Therefore, we separated the objective function
from the core ES control logic into a set of different blocks
in this library. The control scheme combines a block for
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(a) Continuous time implementation (ES_BASIC).

(b) Discrete time implementation (discrete_ES_BASIC).

Figure 2. Block diagrams for basic conventional ES Controllers.

the objective function and at least one ES logic block. con-
tains several blocks for both the objective function and the
ES logic. The objective function blocks allow the track-
ing of a target signal, or the regulation to keep the con-
trolled variables within a defined interval. The different
blocks also let the user include one or multiple signal(s) in
the objective function. The ES logic blocks propose dif-
ferent implementations that are detailed in the upcoming
sections. Finally, the library also features examples that
are presented in Section 4.

3.1 Conventional Extremum Seeking Con-
troller

The conventional Extremum Seeking controller (ES) is the
most straightforward implementation of ES, as described
in (Ariyur and Krstic, 2003). We built the block using the
Modelica Standard Library, assembling the components as
in similar fashion to Figure 1.

We have created several versions of this controller, im-
plementing both continuous time and discrete time ver-
sions (see Figure 3). ES_BASIC is the basic version of ES
in continuous time, shown in Figure 2a. discrete_ES_
BASIC is a basic version of ES in discrete time, shown in
Figure 2b. Both versions replace the bandpass filter with a
high-pass filter, omit the gradient averaging operator, and
omit setpoint limits.
ES_ADV is an advanced version of ES in continuous

time, shown in Figure 3a. discrete_ES_ADV is an ad-
vanced version of ES in discrete time, shown in Figure 3b.
Both ES_ADV and discrete_ES_ADV have a bandpass
filter before demodulation, and a setpoint limiter. The user
can choose to average the gradient in ES_ADV.
ES_ADV_2D is a 2-dimensional ES controller, in

which two ES_ADV probe on the same frequency, with
sinusoid phase offset by π/2 (Arnold et al., 2018; Sankur
and Arnold, 2019).

The reader is invited to read (Choi et al., 2002) for an
analysis of a discrete time implementation.

3.2 Single Fixed-Step Extremum Seeking
Controller

discrete_ES_SFS is the Single Fixed-Step Extremum
Seeking Controller (SFSES), and is shown in Figure 3c.
We based our implementation on the Modelica Standard
Library and developed a new square wave for the probe
and demodulation signals.

The SFSES updates its setpoint by a fixed step size,
with the direction determined by a sign function inside the
convergence block. The convergence block con-
tains thresholds, set by the user, for switching, such that
if the magnitude of the input signal is too small, the sign
function will return 0. The user can implement a minimum
setpoint limit and/or a maximum setpoint limit.

3.3 Multiple Fixed-Step Extremum Seeking
Controller

discrete_ES_MFS is the Multiple Fixed-Step Ex-
tremum Seeking controller (MFSES), and is shown in Fig-
ure 3d. We based our implementation on the Modelica
Standard Library and developed a new square wave for
the probe and demodulation signals.

The MFSES is similar to the SFSES, but its setpoint
update is an integer multiple of the step size. The round
block in the MFSES rounds its input, which is the gra-
dient estimate multiplied by a gain, to the nearest integer
multiple of the step size. The round block may round
its input to zero, such that the setpoint is held constant.
The user can implement a minimum setpoint limit and/or
a maximum setpoint limit.

3.4 Functional Mock-up Units
Modelica also supports the Functional Mock-up Interface
(FMI) standard. The FMI standard is an independent stan-
dard for model-exchange (ME) and co-simulation (CS).
It establishes a standard binary format, the Functional
Mock-up Unit (FMU), that can be imported into other
FMI compliant software tools. It allows to combine mod-
els from different languages / tools in a single simula-
tion (Blochwitz et al., 2012).

We exported the controller models as FMUs, to extend
the outreach of the library to users outside of the Modelica
community. Each FMU was exported for both CS and ME
simulation modes that are defined in the FMI standard.

4 Examples
In this section, we present several examples in which one
or more ES Controllers are employed to optimize an ob-
jective function, or implement control of an mechanical or
electrical system.

4.1 Quadratic Objective Function minimized
by a Single ES Controller

In our first example, a single ES controller optimizes its
setpoint to minimize the following quadratic function:

Ψ(u) = (u−1)2 ,
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(a) Continuous ES (ES_ADV).

(b) Discrete ES (discrete_ES_ADV).

(c) Discrete Single Fixed-Step ES (discrete_ES_SFS).

(d) Discrete Multiple Fixed-Step ES (discrete_ES_MFS).

Figure 3. Block diagrams of several ES controllers of the library.

where u is the output of the ES controller. We ran
three scenarios: one where a conventional ES minimizes
the quadratic function, one where SFSES minimizes the
quadratic function, and one where a MFSES minimizes
the quadratic function, as seen in Figure 4. The controllers
do not have knowledge of the system or objective function,
but receive measurements of the objective function value.

Figure 5 shows simulation results of the three scenarios.
All three ES controllers optimize their setpoint to mini-
mize the objective function. SFSES takes the longest time
to converge, as it can only update its setpoint by one probe
amplitude at a user defined rate, in this case 2 probe cy-
cles. Its oscillatory behavior after reaching the optimal
value is due to the setpoint update switch algorithm, and
can be eliminated by implementing a switching threshold
on the averaged gradient estimate.

4.2 Single Quadratic Objective Function Min-
imized by Three ES Controllers in Parallel

In this example, shown in Figure 6, one conventional ES
controller, one SFSES controller, and one MFSES con-
troller operate in parallel to minimize the following func-
tion:

Ψ(u,v,w) = (u−1)2 +(v−2)2 +(w−3)3 ,

where u is the ES output, v is the SFSES output, and w
is the MFSES output. The controllers do not have knowl-
edge of the objective function, but receive measurements
of its value. Simulation results are given in Figure 7. This
example shows that multiple ES controllers, and multiple
types of ES controllers, can detect their own impact on
an objective and optimize themselves, as long as the fre-
quency of each controller is not equal to, or a multiple of,
the frequency of any other controller.
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Figure 4. Block diagram for ES, SFSES, and MFSES con-
trollers minimizing identical quadratic functions.

4.3 ES Control of Mass-Spring-Damper Sys-
tem

This example is an extension of the mass-spring-
damper example from Modelica.Mechanics.
Translational.Examples.Damper from the
Modelica Standard Library. We extended the model
with a position sensor, and a force applied to the mass
and regulated by conventional ES, as in Figure 8. The
objective function is:

Ψ = (y(u)−5)2 ,

where y(u) is the position of the mass, and is a function
of the ES regulated force u. Figure 9 shows that the con-
troller converges to the optimal force value for the mass
to be nearest to the desired position after roughly 100 sec-
onds. The long rise time is due to the “slow” probe fre-
quency, chosen to be a factor of 10 times slower than the
natural frequency of the mass-spring-damper system, so as
to avoid exciting the system at the natural frequency. ES
convergence speed is dependent on several factors, one of
which being probe frequency.

4.4 ES Control of Rolling Wheel Speed
The following example is an extension of the Model-
ica Standard Library model Modelica.Mechanics.
Rotational.Examples.RollingWheel. The ex-
ample features a wheel with an input torque, and a nonlin-
ear friction torque, applied to it, as in Figure 10.

We replaced the torqueStep block with a control-
lable torque, regulated by ES. The translational speed of
the wheel is measured by a speed sensor. The controller
operates to minimize difference between the wheel’s rota-
tion speed and a target speed by controlling the torque as
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Figure 5. ES controller setpoints, and ES controller outputs for
three separate simulations in which a single ES controller mini-
mizes a simple quadratic function.

in:
Ψ(u) = (y(u)−1)2 ,

where y(u) is the wheel speed, which is a function of the
torque applied to the wheel u, regulated by ES.

To compare the performance of the ES, SFSES, and
MFSES controllers, we performed three separate simula-
tions in which each type of ES controller optimized the
torque applied to the wheel. Figure 11 shows the results
of this experiment. All three types of controllers are able
to regulate the torque to achieve the desired wheel speed.
The conventional ES controller converged to the optimal
torque as its setpoint can be updated by any size. The SF-
SES controller exhibited oscillatory behavior around the
optimal torque value, as its setpoint update consists of a
fixed step in either direction, depending on the sign of the
gradient value. The MFSES controller overshot the op-
timal torque value, and eventually converged to a steady
value near the optimal. This is due to the gradient value
threshold for setpoint updates.

4.5 Power System: Distribution Feeder
In the last example, the ES library was used to
build a power system example similar to our previous
works (Sankur and Arnold, 2019), where the aim was to
track a reference for the active (P) and reactive (Q) power
injections at the feeder head. We used models from the
OpenIPSL project (Baudette et al., 2018), in particular a
three-phase implementation of the IEEE 13 test model.

The example was build to show the possibility to com-
bine several ES resources into a single control scheme.
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Figure 6. Block diagram of ES, SFSES, and a MFSES con-
trollers operating in parallel to minimize a common quadratic
objective function.

The modified model including the ES control scheme is
shown in Figure 12. The scheme was designed arbitrarily
to include ES resources throughout the feeder, connected
to one, two, or three phases. In total, we added two three-
phase resources (at nodes 632 and 680), one two-phase
resource (at node 646), and one single-phase resource (at
node 611) that were configured to be ES managed re-
sources. These were connected to nine instances of the
continuous 2D-ES (ESADV_2D) to manage both P and
Q for each phase / resource Each individual ES was con-
figured with the same gain corresponding to 0.2 kVA and
a probing amplitude of 10 kVA. The probing frequencies
were selected as

√
2,

√
3,

√
5/2,

√
7/2,

√
11/3,

√
13/3,√

17/4,
√

19/4,
√

23/4.
The objective considered in this experiment was to

reach different P and Q targets for each phase at the feeder
head. We prepared a block to compute and extract the P
and Q measurements of each phase, and placed it at the
feeder head (node 650). The objective block was added
and connected to constant targets that were set for P and
Q for each phase respectively. The target values for Pa, Pb,
Pc, Qa, Qb, and Qc are chosen arbitrarily to 1, 1.5, 2 MW
and −0.2, −0.3, −0.1 MVAr respectively for the purpose
of the example, yielding the following objective function:

Ψ =(Pa −1)2 +(Pb −1.5)2 +(Pc −2)2

+(Qa +0.2)2 +(Qb +0.3)2 +(Qc +0.1)2

The common objective was broadcast to every ES re-
sources.

The example was initialized with all ES resources at
zero The simulation was executed to reach time instant
t = 60s to let all the variables reach their target value.
Figure 13 shows that the ES control sccheme is work-
ing as expected and all target values are reached. Note
that the computation time of this particular example can

Figure 7. Controller setpoints, controller outputs, and objec-
tive function value for the scenario in which ES, SFSES, and
MFSES controllers operate in parallel to minimize a quadratic
objective function. Dashed lines represent the optimal value for
the corresponding controller.

be sharply reduced by toggling the DAEsolver mode in
Dymola, which speeds up larger differential and algebraic
equation systems, such as that of power system models

5 Conclusion
In this paper, we introduce an open-source Modelica pack-
age that implements several variants of Extremum Seeking
(ES). ES offers an attractive solution for model-free opti-
mization and control, and is applicable to a wide range
of problems. In this paper we introduced an open-source
package that implements several variants of ES stemming
from the Author’s previous work in grid applications. The
implementation was carried out in Modelica, providing a
flexible framework to model multiple types cyber-physical
systems. The Modelica ES implementation allowed us to
prepare examples for different domains that we included
in the library. Thanks to Modelica’s ability to combine
continuous and discrete models, it was also possible to
compare different ES variants in practical applications and
its impact on the physical systems being controlled.

Our efforts focused on using a generic design to
broaden the target audience to different domains. The ES
control scheme was broken down into blocks that sepa-
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Figure 8. Block diagram of the Mass-Spring-Damper example.
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Figure 9. Force applied to the mass, mass position, and objec-
tive function value for the mass-spring-damper example.

rate the objective function from the ES logic. This allows
a flexible assembly of the inter-compatible blocks to suit
the needs of different research communities of various do-
mains. Finally, we included compiled versions of the ES
blocks in the form of FMUs to further extend the possible
applications of the library to any FMI compliant simula-
tion tools.

We plan to extend and further develop our Modelica
ES library in several key ways. We plan to add equilib-
rium based switching for probe amplitude decay, as in the
work of several of this work’s authors (Sankur and Arnold,
2019). A second key area is to add an estimator for the
phase difference between controller output (system input)
and objective function measurements, This is especially
important when using ES to optimize or control dynamic
systems. It also has applications for control systems that
rely on digital network communications that introduce non

Figure 10. Block diagram of the rolling-wheel example.
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Figure 11. Torque, translational wheel speed, and objective
function for the rolling wheel example, for three scenarios with
ES, SFSES, or MFSES.

deterministic delays. We also plan to implement more
examples in different domains, including optimization of
heat and fluid models.
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