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KEYNOTE SPEAKER

MARK JENNINGS
Senior Technical Leader, Vehicle Energy Management 
& Propulsion Systems Analysis; Research & Advanced 
Engineering, Ford Motor Company

ABSTRACT
Automotive Electrified Vehicle & Powertrain  
System Modeling, Simulation & Optimization
In recent years, key external drivers and technology trends including 
societal concern for climate change and emphasis on improvement 
of air quality, rapid expansion of renewable energy sources and 
emergence of vehicle connectivity have greatly accelerated the move 
towards electrification for on road vehicle propulsion. In response, 
Ford has greatly increased its investments in the electrification of its 
product portfolio. Core to Ford's product portfolio is a set of electrified 
powertrain system architectures encompassing HEV, PHEV and BEV 
systems spanning a range of vehicle applications with both lateral 
(front wheel drive) and longitudinal (rear wheel drive) driveline 
configurations. 

The aggressive move towards electrification has been accompanied 
by an equally aggressive move towards reliance on model-based 
system design, development and optimization. This has been driven by 
critical needs of the business: the need to reduce development costs; 
the need to reduce development time for delivery of new technologies 
to the marketplace; and the need to better understand, manage and 
optimize critical attribute trade-offs and system interactions in order to 
realize the full potential of powertrain electrification. 

Critical areas of importance to Ford for further expansion of powertrain 
system modeling and simulation capabilities and methodologies are 
highlighted and discussed. These include: 

• Better optimization of in-vehicle IC engine operation for HEV's

• Thermal management and climate system design optimization

• Energy efficiency trade-offs with drivability

•  On road energy management and emissions including interactions 
with driver assistance technologies and automated driving systems 

•  Leveraging connectivity for improved powertrain attributes

•  Establishment of an enterprise level virtual vehicle  
development process

BIO
Mark Jennings is Senior Technical Leader for Vehicle Energy 
Management & Propulsion Systems Analysis for Ford Motor Company 
working in Ford's Research & Advanced Engineering organization on 
electrified powertrain systems. Over the past 20 years, he has been 
leading efforts to establish and apply model-based development and 
optimization methodologies towards the advancement of electrification 
technologies for vehicle propulsion. This work has covered a range 
of modeling & simulation approaches spanning hardware capability 
assessments leveraging optimal control methods through direct 
simulation and optimization of complex, coupled feedback control 
and physical hardware systems. 

Mark's work on electrified powertrain systems has covered a range 
of system technologies encompassing mild/medium hybrid electric 
vehicle (HEV) systems, full HEV systems, plug-in HEV systems, battery 
electric vehicles and fuel cell electric vehicles. Throughout his years at 
Ford, he has led numerous efforts to define and assess new electrified 
powertrain system concepts. Through this work he has had played a 
significant role in defining Ford's powertrain electrification strategy.

Mark has pioneered the development of novel model based system 
engineering methods for electrified powertrain systems including 
the integration of SysML with highly detailed system simulation 
methodologies. Mark has led the development of model based 
calibration methods for HEV system controls. These methods have 
been successfully deployed in the development of Ford's production 
HEV systems and resulted in significant savings of engineering time and 
effort as well as reduction in the use of vehicle prototypes. Mark has 
also established novel model-based methods for early, pre-hardware 
development and optimization of new powertrain system technologies 
including assessing impact as and trade-offs with vehicle attributes.

Mark has BS, MS and PhD degrees in Mechanical Engineering. 
In addition to his experience in electrified powertrain systems and 
powertrain system simulation methodologies, Mark has extensive 
experience in multi-dimensional modeling & simulation of turbulent 
flows, heat transfer and combustion.
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KEYNOTE SPEAKER

CHRIS GEARHART
Director, Center for Integrated Mobility Sciences

ABSTRACT
Modeling and Simulation  
in Sustainability Research at NREL
Sustainable transportation research has evolved beyond vehicles 
and fueling systems to new, innovative, and integrated mobility 
strategies that have the potential to transform the movement of people 
and goods, enhance national energy security, boost the domestic 
economy, and save individuals and businesses both time and money. 
This can be achieved through an ecosystem that integrates technology 
advancements with a range of domestic energy resources, power grids 
and building systems, urban planning and efficient fleet operations. 
Modeling and simulation play a vital role in understanding these 
complex interactions. Dr. Gearhart will talk about the growing and 
evolving role of simulation in sustainability research at NREL’s Center 
for Integrated Mobility Sciences.

BIO
Chris Gearhart joined the National Renewable Energy Laboratory 
(NREL) in 2012 as director of the Hydrogen Technologies and Systems 
Center. In 2013 he was appointed to his current position as director 
of NREL’s Center for Integrated Mobility Sciences (formerly known 
as the Transportation and Hydrogen Systems Center), where he 
manages a staff of more than 150 scientists and engineers dedicated 
to understanding the science and engineering needed to efficiently 
and sustainably move people and goods in a highly integrated system 
of systems. 

Prior to joining NREL, Dr. Gearhart spent 16 years with Ford Motor 
Company. He started his career at Ford working in computer aided 
engineering developing finite element, CFD, and multi-body dynamics 
models. He went on to lead research and development teams in that 
company's Fuel Cell System, Stack, and Hydrogen Storage division as 
well as playing pivotal roles in product development, safety research, 
and reliability engineering.

He holds doctorate and master's degrees in physics from Washington 
University in St. Louis, where he used computational models to study 
heavy nuclei and neutron stars. He has bachelor's degree in physics 
and math from Drake University. Dr. Gearhart has also served on the 
faculty of Michigan State University and the School for Renewable 
Energy Science in Akureyri, Iceland.
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Multi-market Optimization of a Data Center
without Storage Systems

Yangyang Fu1 Wangda Zuo1,2 Kyri Baker1,2

1Department of Civil, Architectural and Environmental Engineering, University of Colorado Boulder, USA,
{yangyang.fu,wangda.zuo,kyri.baker}@colorado.edu

2National Renewable Energy Laboratory, USA

Abstract
Data centers have numerous opportunities to participate in
demand response programs considering their large capac-
ities, flexible working environments and work loads, re-
dundant design and operation, etc. Frequency regulation,
as one service provided in demand response programs, can
also benefits the data centers. This paper aims to develop a
real-time multi-market optimization framework for a data
center without storage systems to maximize their benefits
from participating in both the energy market and the reg-
ulation market. Then a case study is conducted to numer-
ically investigate the optimal bids at each hour by consid-
ering the energy cost, demand costs, and regulation rev-
enues using a virtual data center located in PJM. Simula-
tion results show that the proposed multi-market optimiza-
tion framework can help data centers maintain minimum
costs by getting maximum regulation revenues while sat-
isfying energy and demand goals.
Keywords: Frequency Regulation, Data Center, Multi-
market Optimization

1 Introduction
Data centers have numerous opportunities to participate
in demand response (DR) programs considering their
large energy capacities, flexible working environments
and work loads, redundant design and operation, etc. For
example, researches have shown that an optimized 30 MW
data center is comparable to 7 MWh large-scale storage in
providing DR service for the power grid (Wierman et al.,
2014). Besides, some delay-tolerant data centers are al-
lowed to have flexible work environment and workloads.
What’s more, the redundant design in data centers to meet
reliability standards in order to guarantee their uptime and
performance (Standards et al., 2005) can provide extra po-
tentials to DR-related controls.

Frequency regulation (FR), as one type of DR, is an
ancillary service that provides continuous, rapid, and au-
tomatic corrections for changes in electricity generation
or use on a second-to-second basis in order to maintain
the system frequency at its nominal value (e.g., 60 Hz in
U.S.). Typically, FR resources are generators. FR uses
certain amount of generators (e.g., about 1% of total gen-
eration) to continuously track the demand variations. The

frequency must be strictly maintained within a very nar-
row range in order to comply with the control performance
standards and the balancing authority area control error
limit reliability criteria. Besides generators, fast-ramping
demand side resources (DSRs) in buildings can also pro-
vide FR service to the grid by harnessing the demand flex-
ibility provided by the modulating loads. Typical modu-
lating loads on building side include energy storage sys-
tems such as flywheels, batteries and compressed-air en-
ergy system, electric boilers and heaters, and independent
systems with variable frequency drivers (VFDs).

Recently, awareness of these potentials has drawn at-
tention to the capabilities of data centers to participate in
DR programs. A survey conducted by the Lawrence Liv-
ermore National Laboratory in 2015 shows that about 50%
of the participating data centers have interest in smart pric-
ing demand side programs, such as load shedding to avoid
peak demand (Bates et al., 2015). However, data centers
are reluctant to participate in fast demand response pro-
grams such as providing frequency regulation (FR) in an-
cillary service market, for multiple reasons. One reported
concern is that data centers are still learning the process
of providing FR and that providing grid services on such a
fast timescale can be “outside of their visibility or control"
(Bates et al., 2015). This concern is well-founded con-
sidering that these programs provide novel and relatively
unexplored territory from the point of view of traditional
data center control and operations.

This paper aims to explore data centers’ ability of pro-
viding frequency regulation service to grids and maximize
their benefits from participating regulation market and en-
ergy market as a whole. First, a synergistic control strat-
egy together with a new regulation flexibility factor is pro-
posed to enable the provision of regulation services in data
center. Then, a real-time optimization framework is devel-
oped to maximize the data centers’ benefits from partici-
pating in both the regulation market and the energy mar-
ket. In Section 4, the optimization framework is evaluated
in a Modelica-based environment for typical days in Jan-
uary and July.

9
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2 Synergistic Strategy for Frequency
Regulation

In this section, we propose a synergistic control strategy
for data centers to provide FR service. This strategy is
composed of four major parts. The first one is Baseline
Routine, which predicts the baseline power usage when
the data center provides no FR. The second one is Bidding
Capacity, which is the capacity bid that the data center
submits to the electrical market. The third one is Server
Power Management, where an aggregator is adopted to
represent the aggregated performance of servers in the
data center. The clock frequency of the aggregator can
be directly changed by a Proportional-Integral-Derivative
(PID) controller in order to follow the regulation sig-
nal. Based on that, the desired frequencies for individ-
ual servers will be determined by a set of predefined as-
signment rules and then be propagated to all servers. The
forth one is Cooling Power Management, which adjusts
the chilled water supply temperature (CHWST) setpoint
to respond to the regulation signal.

Figure 1 shows the workflow of the proposed synergis-
tic control strategy. The Baseline Routine outputs the pre-
diction of the overall power profile for the data center Pbas
when no FR service is provided. In this paper, the predic-
tion is performed using detailed energy models, although
many other methods such as machine learning techniques
can also be used. The detailed energy models and baseline
settings can be referred to Section 4.1. The Bidding Ca-
pacity is a module that can calculate the optimal capacity
bid for the data center at each time step, and output raw
regulation power ∆Preg,raw based on the optimal capac-
ity bid and received regulation signal r from the electrical
market. Then, the reference power Pre f for the data center
to track is the summation of the predicted baseline power
Pbas together with the raw regulation power ∆Preg,raw.

The Server Power Management first determines the
number of required active servers in the aggregator Nact

based on the predicted workload λ ′
in the next time step

(e.g., one hour ahead). Then a closed-loop control using a
PID controller is utilized to minimize the error between
the measured total power usage Pmea and the reference
power Pre f by adjusting the aggregated frequency of the
server aggregator. Meanwhile, the Cooling Power Man-
agement applies an open-loop control to adjust the cooling
system power usage by resetting the CHWST setpoint in
response to the received regulation signal r.

The server aggregator receives the aggregated fre-
quency fagg and the required number of active servers Nact
from the FR controller. Assuming there are N0 number of
servers in the data center, the server aggregator then calcu-
lates the CPU frequency fi for an individual server i based
on predefined assignment rules. The cooling system re-
ceives CHWST setpoint from the FR controller. Both the
IT system and the cooling system respond in such a way
that their total power Pmea is adjusted to track the reference
power Pre f .

For the aggregator, there are several assignment rules to
control the individual server’s frequency (Li et al., 2013;
Wang et al., 2019). We can also represent the aggregated
server power Pservers of all servers under an assignment
rule using a simplified model (Li et al., 2013) and this ap-
proach is adopted by this paper and detailed in Section 2.1.
For the FR controller, more details are described in the rest
of this section.

2.1 Server Power Management
The servers in the data center can be considered as an ag-
gregator, which is characterized by the active number of
servers Na and the aggregated frequency f . These two pa-
rameters can be determined based on the regulation signal
r and incoming workload λ . The aggregrated frequency
can then be distributed to the single servers as fi using
a predefined assignment algorithm. The relationship be-
tween Na, f and r, λ is detailed in the rest of this section.

2.1.1 Server Aggregator Model
The IT equipment, especially the servers, are modelled as
an aggregator, which can predict the total IT power us-
age and the server response time based on CPU frequency,
workload arrival rate, and number of active servers (Li
et al., 2013). Details are shown as follows.

Pservers(t)= λ (t)
r

∑
0

bi f (t)i+
s

∑
0

c jNa(t) j,0≤ i≤ r,0≤ j ≤ s

(1)
where bi, c j are constant coefficients that can be obtained
from curve fitting techniques, λ (t) is the total arrival rate,
f is the aggregated relative frequency, ranging from 0 to
1, and Na is the active number of servers at current time. f
and Na can be optimally determined in order to minimize
cost.

Here we use the average response time to quantify the
service quality of a data center. The workloads are mod-
eled as GI/G/m queues, which assumes a general distribu-
tion with independent arrival times and a general distribu-
tion of service times. The total time that a job spends in
the queuing system is known as response time. The re-
sponse time usually consists of two parts: waiting time,
that is, the time that a job spends in a queue waiting to
be serviced; and service time, that is, the time that a job
needs to be executed. The average response time model
is adopted from (Bolch et al., 2006). Details are shown as
follows.

µ(t) = k f (t) (2)

ts =
1

µ(t)
(3)

ρ(t) =
λ (t)

Na(t)µ(t)
,0 ≤ ρ(t)≤ 1 (4)

Pm =

{ρ(t)m+ρ(t)
2 , ρ(t)≥ 0.7

ρ(t)
Na(t)+1

2 , ρ(t)< 0.7
(5)

9
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Figure 1. Data center frequency regulation control

tw =
C2

A +C2
B

2Na(t)
Pm

µ(t)(1−ρ(t))
(6)

tr = ts + tw (7)

In the above equations, µ is the mean service rate, k
is a constant parameter, assuming the service rate is pro-
portional to the frequency, ρ is the average utilization of
the server, representing the fraction of occupied time, Pm
is approximated probability that an arriving job is queued,
CA and CB are constant coefficients reflecting the varia-
tions of the inter-arrival times and request sizes, tr, ts, and
tw are the average response time, service time and waiting
time for the aggregator respectively.

2.1.2 Number of Active Servers

The number of servers in a data center needs to satisfy the
following condition in order to ensure the stability of the
queue. This condition means that the service rate in the
data center should be greater than the arrival rate.

Na(t)µ(t)> λ (t) (8)

Under design conditions, to guarantee reliability, a scal-
ing factor γ as defined in Eq.(9) is utilized here to de-
scribe the design redundancy of the servers. The γ is set
to greater than 1. If γ = 1, it means all the CPU clock
frequencies need to set at maximum level just to serve the
average workload, which limits the potential of FR. The γ
is described as

γ =
µ0N0

λ0
, (9)

where µ0 is the nominal service rate of a single server, N0
is the nominal number of servers in a data center room,
and λ0 is the nominal arrival rate to be served by the data
center.

When using a server aggregator model as described in
Eq. (1), the γ can then be rewritten as:

γ =
kN0

λ0
=

kNa(t)
λmean(t)

, (10)

where k is a constant parameter, assuming the service rate
is proportional to the aggregated frequency, Na is the num-
ber of active servers at current time step, and λmean is the
mean arrival rate at the current time step.

The number of active servers is calculated at an interval
of 1 hour because the servers have relatively long wakeup
time. The detailed formula is shown in Eq. (11), where
the operator �x� is the ceiling function which yields the
smallest integer greater or equal to x.

Na(t) = �γλmean(t)
k

� (11)

By adding a FR flexibility factor β during operation, we
can determine the number of active servers based on the
predicted coming arrival rate, as shown in Eq. (12). The
greater β is, the more servers are activated for a specific
workload.

Na(t) = �β
γλmean(t)

k
�,Na(t) ∈ [0,N0] (12)

2.1.3 Frequency Control
The aggregated frequency fagg is controlled by a PID con-
troller to track the reference power Pre f calculated from
the electrical market. The reference power Preg is calcu-
lated as

∆Preg,raw(t) = r(t)Creg (13)
Pre f (t) = Pbas(t)+∆Preg,raw(t) (14)

where ∆Preg,raw is the raw power signal and Creg is the reg-
ulation capacity that the data center bids in the market.

The frequency fagg is then determined by the PID con-
troller as follows.

fagg(t)=Kpe(t)+Ki

∫ t

0
e(x)dx+Kd

de(t)
dt

, fagg(t)∈ [ fmin, fmax]

(15)
e(t) = Pre f (t)−Pmea(t) (16)

In the above equations, Kp, Ki, and Kd denote the coef-
ficients for the term P, I and D, respectively. e is the error
between the reference power Pre f and the measured power

9
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Pmea. The maximum aggregated frequency is 1, while the
minimum frequency varies based on the number of active
servers due to the constraints of Quality of Service (QoS).
Details on how to determine fmin are described in Sec-
tion 2.1.4.

2.1.4 Minimum Aggregate Frequency

Using a service response time model shown in Eq. (2) and
Eq. (7), we know that the response time of the servers de-
pends on the aggregated frequency. If the frequency is
low, then it takes relatively long time for the servers to re-
spond to the arrival workload, which means the QoS of the
data center is compromised. To enable FR and guarantee
the QoS, the aggregated frequency should meet a mini-
mum value. The minimum can be obtained by solving the
following optimization problem.

min f (ρ(t)) =
λ (t)

kNa(t)ρ(t)
s.t. 0 ≤ ρ(t)≤ 1

tr(t)≤ tr,u

(17)

where ρ(t) is the utilization rate as defined in Eq. (4), tr(t)
is the service response time as calculated in Eq. (7) and tu
is the maximum response time allowed by the data center.

Rearranging Eq. (2) to Eq. (7), we can get the response
time tr(t) as a function of the utilization rate ρ(t) as fol-
lows.

tr(ρ(t)) =
ρ(t)
λ (t)

[Na(t)+
C2

A +C2
B

2(1−ρ(t))
Pm(ρ(t))] (18)

It is easy to show that

dtr(ρ)
dρ

> 0 (19)

Thus, the above-mentioned optimization problem can
be solved at each time step as:

fmin(t) =
λ (t)

kNa(t)ρ∗(t)
(20)

where ρ∗(t) is the optimal utilization rate, and ρ∗(t)
should satisfy the nonlinear relationship shown as:

tr(ρ∗(t))− tu = 0 (21)

2.2 Cooling Power Management
The cooling system power is managed by resetting the
chilled water supply temperature. The regulation sig-
nal from the electrical market is directly used to change
the chilled water supply temperature setpoint Tchws,set by
Eq. (22).

Tchws,set(t) = Tchws(t)−∆Tr(t) (22)

where Tchws is the chilled water temperature at current time
step, ∆T is the user defined regulation range for the tem-
perature, and varies based on the design supply tempera-
ture range of chillers. Here we set it to 2 °C. The negative
sign at the right term means when regulation up is needed,
the temperature setpoint is reduced, and vice versa.

3 Multi-market Optimization Frame-
work

A real-time optimization framework is applied for opti-
mizing the operation of the data center without thermal
storage system in the presence of real-time (or day-ahead)
energy prices, peak demand charges, and frequency regu-
lation revenue. For each optimization time step, the over-
all objective can be described as:

min J(Creg) = Ecost +Dcost −Rrevenue

s.t. 0 ≤Creg(t)≤Creg,max(t)
tr(t)≤ tr,u
S(Creg)≥ Sl

(23)

where Creg is the design variable, representing regulation
capacity bid at each hour, Creg,max is the maximum capac-
ity the data center can provide for regulation, tr is the re-
sponse time of the data center service, tr,u is the allowable
upper limit of the response time, S is the regulation per-
formance score defined by PJM as shown in Section 6.1,
and Sl is the lowest allowable performance score by PJM
to participate in regulation market.

The cost function J has three terms: energy cost Ecost ,
demand cost Dcost and regulation revenue Rrevenue. The
energy cost is calculated by Eq. (24).

Ecost =
∫ t+∆t

t
pem(t)PDC(t)dt (24)

where pem is the real-time price signals for energy use at
time t, PDC is the total power consumption for the data
center at time t. The calculation period starts from time t
and ends at t +∆t, where ∆t is the optimization step, and
is set to 1 hour in this study.

The electric demand during the current optimization
horizon is penalized by the demand price pdm as shown
in Eq. (25).

Dcost = pdm ·max((Pdm −Pdm,lim),0) (25)

where pdm is the demand price, Pdm is the power demand
calculated as the average power for each 30-min interval,
and Pdm,lim is the limit of required demand. This function
means if the demand in current step exceeds a predefined
demand value, then the optimization cost function is pe-
nalized by the demand difference. Otherwise, no penal-
ization is applied. Note that pdm and Pdm are both utility
specific, and may vary from this definition.

The revenues from regulation service is computed as
follows.

9
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Rrevenue =
∫ t+∆t

t
prm(t)Creg(t)dt (26)

where prm is the real-time price signal from the regulation
market, and Creg(t) is the regulation capacity bid for each
time step.

The price signals such as pem and prm need to be pre-
dicted one optimization step ahead, e.g. 1 hour in this
study. Many researches have been conducted for this pur-
pose. In this paper, historical prices of these two electrical
markets are used, which means the hourly ahead prices
are assumed to be perfectly predicted. The demand limit
Pdm,lim can also be predefined by the data center opera-
tors based on historical operation conditions. The maxi-
mum regulation capacity at each optimization step is set
to 798.2 kW (20% of the nominal power). Note this max-
imum regulation capacity setting is not the feasible capac-
ity the data center can provide at each hour, because the
regulation capacity is related to data center operational
conditions such as arrival rate, and weather conditions
etc. This simplification has limited influence on the op-
timization results when the lower limit of performance
score sl is set to a high value, because if the data cen-
ter makes a bid that exceeds its capacity, it cannot track
the reference signal, thus the regulation performance will
be low. By setting sl to a high value can help data cen-
ter make a reasonable bids when the regulation capacity is
hard to predict. The optimization problem is solved using
the pattern search algorithm in the optimization engine,
GenOpt (Wetter et al., 2001).

4 Case Study
A data center as shown in Figure 2 is used to investigate
the benefits from participating in different electrical mar-
kets. The data center is considered as a price taker only.
This case study investigates the maximum benefits that
data centers can obtain from both the real-time energy
market and the regulation market in PJM. For the regu-
lation service, only dynamic regulation is studied here,
because its price is usually much higher than traditional
regulation.

4.1 Case Description
The data center is located in Chicago, which is in
ASHRAE Climate Zone 5A and within the PJM market
territory. For the cooling system, there are two chillers and
one integrated waterside economizer providing cooling to
the data center room. This cooling system can operate
in three modes: Free Cooling (FC) mode when only the
WSE is enabled for cooling, Partial Mechanical Cooling
(PMC) mode when the chiller and WSE are both triggered,
and Full Mechanical Cooling (FMC) mode when only the
chiller is activated. There are also two cooling towers,
two constant-speed condenser water pumps, two variable-
speed chilled water pumps, and one variable speed fan.
The cooling system and its control are modelled using
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Figure 2. Modelica implementation of the studied data center
for FR service: FR controller (top) and data center system (bot-
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an open-source equation-based Modelica environment (Fu
et al., 2018, 2019a,c,b).

For the IT system, the design number of servers is 8000.
The design factor γ is set to 1.5 (Li et al., 2013). The total
nominal electrical load is about 2700 kW. The calibrated
coefficients for Eq. (1) are b0 = 0.0154, b1 = 1.5837,
b2 = 0.1373, c0 =−22.3540 and c1 = 121.0212 using the
method mentioned in Ref. (Li et al., 2013). When not pro-
viding FR, the server aggregator operates at a frequency
of 0.8 with a regulation flexibility factor of 1.0, and the
CHWST setpoint is set to 8 °C. For the internet data cen-
ter, the constants CA and CB are set to 1 as in Ref. (Li et al.,
2013).

For the multi-market optimization, all the settings are
the same as the baseline except that an additional FR con-
troller as designed in Section 2 is used to provide regula-
tion service for the grids by adjusting the CPU frequency
and CHWST setpoint. The FR flexibility factor is set to
1.1 when providing regulation services. The QoS when
providing regulation services is guaranteed by constrain-
ing the average response time of the data center service to
6 ms. The lower limit of the performance score in PJM to
disqualify a regulation resource is 0.4 (LLC, 2019). Here
we set it to a higher value, 0.9. The real-time optimiza-
tion is performed at a one-hour interval for 2 days in both
January (1/20 ∼ 1/21) (when cooling system operates at
FC mode) and July (7/20 ∼ 7/21) (when cooling system
operates at FMC mode).

The price signals of the real-time energy market and
the regulation service market in January and July 2018
are posted in Ref. (PJM, 2019), and the price during the
optimization period is plotted as shown in Figure 4. An
example of one-hour historical RegD signal is plotted in
Figure 3. A real-time web service in Wikipedia (Wang
et al., 2019) is used as the workload arrival profile during
optimization, which is shown in Figure 5.

4.2 Results and Discussions
Table 1 compares the total cost of the data center in terms
of baseline operation and multi-market optimization. The
baseline system is denoted as Base, and the multi-market
optimization is denoted as OPT . In both January and July,
the data center without energy storage systems, using the
proposed optimization framework, can benefit from par-
ticipating in both energy market and regulation market. In
the two days considered, OPT can save $123.6 in July,
while the saving is $24.8 in January.

The savings mainly come from the revenues in the reg-
ulation market, and the cost for energy use and demand
charge are almost the same in the Base and OPT . Be-
cause the sum of the RegD signal over a long time pe-
riod (e.g. 1 hour) is almost 0, providing regulation service
in the OPT leads to the similar energy use, thus similar
energy cost compared with the Base where no regulation
service is provided. By utilizing the demand cost defined
in Eq. (25), the data center can provide regulation service
without increasing monthly demand, thus no extra demand
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Figure 4. Historical real-time prices of PJM energy market and
regulation market in January (top) and July (bottom)
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Table 1. Multi-market optimization of data centers

Costs January July

Base OPT Base OPT

Energy Cost ($) 1043.3 1042.9 1591.4 1590.6
Demand Cost ($) 10459.3 10457.5 12063.9 12062.8

Regulation Revenue ($) 22.6 121.7
Total Cost ($) 11502.6 11477.8 13655.3 13531.7

Total Savings ($) 24.8 123.6
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charge would be added to utility bills. The revenue from
July is much higher than that in January because the price
for dynamic regulation (RegD) resources is higher in July.
As shown in Figure 4, during the studied two days, the
average price from regulation market in July is about 21
$/MW, while that in January is only about 5.8 $/MW.

Figure 6 shows the hourly capacity bids in 1/21 and
7/21. The demand for each 30 minutes is denoted as the
thin solid line. The demand limit used for demand cost
as shown in Eq. (25) is denoted as the dashed line. The
optimal capacity bid at each hour is denoted as the shaded
area. At non-peak hours (e.g., 3:00 - 6:00), the optimal
bid is mainly influenced by the price from energy market,
price from regulation market and detailed shape of RegD
signal. Because the demand is lower than the demand
limit, the tradeoff between the energy cost and revenues
from regulation market determines the optimal bid. The
energy cost is highly influenced by the energy use, which
is determined by the detailed shape of the RegD signal. If
the sum of the RegD signal is larger than 0, then more en-
ergy would be consumed when providing frequency reg-
ulation service, thus the energy cost would increase. Al-
though the energy cost increases in this case, the data cen-
ter can get revenues from regulation market. If the sum of
the RegD signal is no larger than 0, then at that hour, the
data center can bid at their maximum capacity.

At peak hours (e.g., 12:00 - 16:00), the optimal bid is
mostly influenced by the demand limit and the RegD sig-
nal. Figure 6 shows that at these hours, the bid is small so
that the demand cannot exceed the required demand limit
to avoid demand penalty. At 13:00, the bid is about 69
kW, but it is only about 5 kW at 14:00. The difference is
caused by the detailed shapes of the RegD signals in these
two hours. At 13:00, the sum of the RegD signal in first
30 minutes is slightly greater than 0, but in the second 30
minutes it is much smaller than 0. This means that reg-
ulation capacity bid in this hour can increase the demand
in the first 30 minutes, but the demand in the second 30
minutes can be decreased compared with the same time
in the baseline system. Therefore, at this hour, the data
center can bid a large capacity as long as the demand in
the first 30 minutes will not exceed the demand limit. The
same situation happens at 14:00 but with a large sum of
RegD signal at first 30 minutes. Also because the power
at 14:00 is much closer to the demand limit, the data center
can only bid a small capacity at this hour.

In summary, the proposed real-time optimization
framework can help the data center without energy storage
system harness the benefits from the energy market and
the regulation market. However, the benefits are insignif-
icant compared with the large baseline power in data cen-
ters. One of the reason is that data centers without energy
storage system are difficult to limit their power demand
during FR service, which contributes to a large portion of
the utility bill. In the future, we will consider retrofit strat-
egy (e.g., installing thermal storage energy system) in the
data center to limit the power demand to maximize the

benefit from the multi-markets

5 Conclusions
This paper developed a real-time multi-market optimiza-
tion framework for the data center without storage systems
to maximize their benefits from participating in both en-
ergy market and regulation market. Then, a case study
was conducted to numerically investigate the optimal bids
at each hour by considering the energy cost, demand costs
and regulation revenues using a virtual data center located
in PJM. Simulation results shows that using the proposed
multi-market optimization framework can minimize the
operational cost. Compared with the baseline system, pro-
viding frequency regulation service over the considered
two days can save $24.8 in January and $123.6 in July.

6 Appendix
6.1 FR Performance Score
In the PJM market, new resources aiming to enter the reg-
ulation market need to pass an initial test by obtaining at
least 0.75 for a defined performance score. The initial test
signals of RegA and RegD are available at (PJM, 2019).
The performance score is calculated as a composite score
of accuracy, delay and precision, which are shown below
(LLC, 2019).

csig,res =
COV (reg,res)

σregσres
(27)

Saccuracy = max
δ=0−5 min

(creg,res(δ )) (28)

Sdelay =

∣∣∣∣
5 min−δ ∗

5 min

∣∣∣∣ (29)

Sprecision = 1− 1
n ∑

∣∣∣∣
res− reg

reg

∣∣∣∣ (30)

S =
Saccuracy +Sdelay +Sprecision

3
(31)

In the above equations, reg represents the regulation
signal the DSRs receive from the electrical markets, and
res represents the response signal the DSRs generate after
control actions. c, COV and σ are the correlation coeffi-
cient, covariance, standard deviation of these two signals.
In PJM, the response signal res is recalculated with a time
shift δ ranging from 0 to 5 minutes in an increment of 10
seconds, which leads to 31 response signals res(δ ). The
accuracy score Saccuracy is the maximum correlation coef-
ficient c between reg and res(δ ). The delay score Sdelay is
calculated based on the delay time δ ∗ when the maximum
accuracy score is obtained using Eq. (29). The precision
score Sprecision is defined as the relative difference between
regulation signal and response signal, where n is the num-
ber of samples in the hour, and reg is the hourly average
regulation signal. The final performance score S in that
hour is calculated as the weighted average of the three in-
dividual scores.
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Figure 6. Optimal hourly regulation capacity bids in 1/21 (top) and 7/21 (bottom)
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Abstract 
This paper describes the modeling of the National 
Research Council of Canada (NRC) Micro-Grid Testing 
and Training Facility, which will be used to advance 
energy generation and storage technologies and 
optimize integrated system operations for a variety of 
micro-grid applications. First, integrated system models 
were assembled using the Microgrid Modelica library, 
developed by Modelon. Next, three use cases were 
defined based on a scaled down version of the Whale 
Cove, Nunavut micro-grid operating in: ‘island mode’ 
without renewables (present mode), island mode with 
renewables, and grid-connected mode. Various 
simulations, as well as design and economic 
optimizations were then performed. Through these 
analyses, it was shown that each parameter domain 
could be successfully assessed using this modeling 
framework, demonstrating the flexibility of both the 
modeling platform and the potential of the physical test 
facility to support in-depth analysis for different micro-
grid configurations, technologies, and applications. 
Keywords: Micro-grid, remote area, distributed energy 
resources, renewables, model, optimization.  

1 Introduction 
Canada has an estimated 280 remote communities and 
commercial sites where power is predominantly 
supplied by standalone diesel generators (NRCan 1, 
2018). Because of their high reliance on diesel, these 
remote micro-grids generate significant emissions and 
are expensive to operate. Introducing renewable energy 
sources provides an opportunity to reduce both 
operating costs and emissions but, due to their variable 
energy output, they can add operational complexity with 
respect to maintaining the overall control and stability 
of the electrical system. New and emerging technologies 
are continuously being developed to address these and 
other challenges, but in order to reduce risk during 
deployment, it is essential that both the technologies and 
their applications are well understood. Even then, the 
successful integration of these technologies is not 
guaranteed, particularly if they require a high initial 

investment, have limited reliability, are not easy to 
operate, maintain, or repair, or if sufficient training is 
not provided. 

Presently, a substantial amount of research is being 
directed at analyzing new and innovative micro-grid 
configurations and technologies. This includes 
evaluating micro-grids operating as a stand-alone 
system, as a building block in a flexible electric micro-
grid ‘network’ consisting of various distributed energy 
resources and customer loads, or as a compliment to a 
centralized grid. Particularly, in the case of micro-grid / 
grid integration, challenges associated with switching 
between grid-connected and island modes, as well as 
reliability, power quality, and protection requirements, 
have received limited investigation (Ackeby, 2017). In 
all cases, these new and emerging components and 
micro-grid configurations will need to be analyzed and 
demonstrated to ensure that they are safe, reliable, and 
can meet the strict performance and operational 
requirements of the communities or applications they 
support. For this reason, the NRC is currently building 
a physical micro-grid testing and training facility as well 
as a complimentary virtual facility prototyping 
capability using the Microgrid Modelica library 
developed by Modelon. Although this initial study has 
focused on high level design and cost optimization, 
future model developments will include the use of 
Modelon’s Electric Power Modelica library, for control, 
stability, and transient analysis (Modelon, 2019).  

2 Background 
2.1 Micro-Grid Facility 
The NRC micro-grid testing and training facility has 
been designed to enable the analysis of the systems / 
technologies that support remote community micro-
grids, grid-connected stand-by power plants, and off-
grid residential, military, or commercial sites. This 
facility will allow the flexible integration of a range of 
power generation and storage technologies into an 
existing power network, to support their assessment 
under a variety of real-world conditions. Testing will 
include evaluating different power / energy 
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configurations, simulating transient conditions and 
events, supporting micro-grid control system design and 
optimization, and performing accelerated lifetime 
testing to optimize the reliability of the system and 
components. Results of this testing will support the 
understanding, advancement, and deployment of micro-
grid technologies, interfaces, and configurations, and 
will be used to inform new policies and safety 
regulations. The facility also offers a reduced-risk 
training environment for personnel to familiarize 
themselves with the operation and maintenance of new 
systems and provide practical feedback to technology 
developers. 

The facility power network will consist of a unique 
set of distributed energy resources (NRC, 2019) 
including a:  
 Biomass Combined Heat and Power (CHP) unit, 

~40 kW of electricity (kWe) and ~100 kW of heat 
(kWth) 

 Flat-panel (~10 kW) building-integrated solar 
photovoltaic (PV) system  

 Concentrating mirror (~10 kW) Photovoltaic (CPV) 
system 

 Diesel generator  
 Energy storage system  

The facility will also have the ability to operate in grid-
connected or island mode (i.e., as an isolated micro-
grid). 

2.1.1 Biomass Combined Heat and Power (CHP) Unit 
The Biomass CHP unit, shown in Figure 1, uses 
renewable biomass as an alternative to fossil fuels to 
generate both heat and power. The unit converts wood 
chips to synthetic gas (“syngas”), which is then cooled, 
filtered, and mixed with air before being supplied to an 
internal combustion engine. The engine is coupled to an 
electric generator to produce ~40 kWe, as well as ~100 
kWth as warm water (Volter, 2019).  

               
Figure 1. Biomass Combined Heat and Power Unit 
(Volter, 2019) 

Biomass can be viewed as carbon neutral, in that the 
CO2 the biomass removes from its environment during 
growth is equal to the CO2 released during its 

combustion, resulting in ‘net-zero’ carbon emissions; 
however, because carbon storage in wood products only 
occurs gradually over a long period of time, compared 
with the rapid release of CO2 that occurs when these 
feedstocks are processed, the environmental benefits of 
this approach are still the subject of much debate 
(Harvey, 2018). For this reason, only low value biomass 
feedstocks are typically used (e.g., wood chips or pellets 
generated from forestry waste streams).    

2.1.2 Diesel Generator (DG) 
The NRC micro-grid facility will include a variable 
speed diesel generator. Although not yet selected, a 
candidate 80 kWe diesel generator is shown in Figure 2.  

 
Figure 2. Variable Speed 80 kW Diesel Generator 
(Caterpillar, 2010) 

Conventional diesel generators are the most common 
and reliable systems for power generation; however, due 
to low ramp rates, fixed speed generators may struggle 
to adjust to the variable power output from renewables 
(e.g., PVs and wind turbines). Fixed speed generators 
also have a minimum loading requirement (typically 30-
50% of maximum loading) that they cannot operate 
below without reducing the life of the generator, 
preventing these systems from being significantly 
ramped down to reduce fuel consumption and / or 
accommodate an increase in renewable energy 
production. In addition, the fuel efficiency of a fixed 
speed diesel generator drops significantly when the 
system is operating at or near minimum loading. 
(NRCan 1, 2018). 

Although more complex than conventional fixed 
speed diesel generators, variable speed generators have 
the ability to ramp up quickly and efficiently, and 
operate more efficiently at lower minimum loads 
compared to fixed speed generators. They also provide 
greater flexibility for simulating different test conditions 
in the context of the micro-grid testing facility.   

2.1.3 Solar Photovoltaic Systems 
The solar PV arrays, shown in Figure 3, include both a 
concentrating mirror PV (CPV) system and a 
conventional building-integrated flat panel PV system. 
Where conventional PV cells generate electricity from 
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both direct and diffuse radiation, CPV systems use 
stationary mirrors to concentrate a large area of direct 
sunlight onto a small area of (typically) higher capacity 
PV cells to generate electricity. Throughout the day, the 
solar cell collector moves based on the sun’s position to 
maximize the direct sunlight that can be collected.  

 
Figure 3. NRC concentrating mirror and flat panel solar 
PV systems 
The advantages of CPV systems is that they require 
fewer expensive solar photovoltaic cells relative to flat 
panel PVs to generate the same amount of electricity. 
Disadvantages of CPV systems include the need for 
moving parts (compared with non-tracking PV systems) 
and large amounts of direct solar radiation. During cloud 
cover, CPVs will experience a significant drop in energy 
production, whereas a conventional PV system will still 
produce electricity from diffuse radiation (Kraemer, 
2017).  By including both types of PV systems in the 
facility power network, both approaches can be assessed 
to determine how each technology can be used to best 
support optimal micro-grid operation.  

Challenges for all solar power generation systems 
include changes in the availability of sunlight that can 
occur seasonally (e.g., in northern communities, there is 
little to no sunlight during the winter). Under more 
favorable conditions, energy production can still vary on 
the order of seconds to minutes as the result of shading 
caused by cloud cover, resulting in momentary energy 
shortfalls that need to be made up by other energy 
sources. For a surplus of solar energy production, if 
using a fixed speed diesel generator, PV output may 
need to be curtailed or wasted because the generator is 
operating at minimum loading and cannot be ramped 
down further to accommodate the additional energy. 
This is where incorporating energy storage systems, 
such as batteries, can improve both the flexibility, 
performance, and reliability of micro-grid operation. 
(NRCan 1, 2018).   

2.1.4 Energy Storage System (ESS) 
The ESS can play a key role for micro-grid systems that 
incorporate renewable energy sources. For example, 
batteries have the ability to efficiently store surplus 
energy (from renewables as well as from diesel 
generator systems) and reliably provide energy during 
an energy shortfall at rates that a conventional fixed 
speed generator cannot. In this way, batteries can rapidly 
balance power generation with demand, resulting in 
improved power quality, system flexibility, and 
stability.   

 
Figure 4. Battery Energy Storage System (single module 
shown) (EV Shop, 2019) 

Although the ESS for the micro-grid facility has not 
yet been selected, for the purpose of this study, a battery 
system consisting of eight series-connected 12S1P 
modules with 120Ah lithium ion cells has been modeled 
(see Figure 4). Based on NRC’s evaluation of these 
batteries, they have been specified to have an available 
discharge rate of up to 2C, a charge rate of 2C (between 
20-80% state of charge (SoC)) and C/3 (>80% SoC), a 
nominal pack voltage of 352 V, and a total pack energy 
of 42.2 kWh.   

2.2 Micro-Grid Use Cases 
 

 
Figure 5. Qulliq Energy Corporation (QEC) partial 
service area map showing Whale Cove (QEC, 2018) 
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For the purposes of this study, three use cases were 
defined and analyzed based on a remote northern 
community: Whale Cove, Nunavut (see Figure 5): 
1. ‘Island mode’ operation of the Whale Cove micro-

grid without renewables (present mode). 
2. ‘Island mode’ operation of the Whale Cove micro-

grid with renewables (and energy storage). 
3. Operation of the Whale Cove micro-grid including 

renewables and energy storage with a grid 
connection to the Manitoba Electrical Grid.  

For the use cases that involve renewables, technologies 
that are currently integrated into the NRC facility power 
network were explored to see how they might benefit the 
existing Whale Cove micro-grid. Multiple design and 
economic optimizations were performed. 

2.3 Micro-Grid Integrated System Model 
Although there are multiple modeling tools available for 
micro-grid design, simulation, and optimization, the 
platform selected to model the micro-grid test and 
training facility was the commercial Microgrid 
Modelica library developed by Modelon, a web based 
modeling and simulation platform that uses the 
Optimica Compiler Toolkit for model simulation and 
optimization (Windahl, 2019). This platform was 
selected based on its flexible, multi-physics, and highly 
customizable modeling / optimization framework, its 
ability to accommodate models of varying levels of 
fidelity, its ability to provide physical (rather than only 
mathematical) representation of micro-grid 
components, and its ability to support acausal analysis. 
Note that a review of this and other modeling and 
optimization tools has been provided by (Windahl, 
2019).  

 
Figure 6. Micro-Grid Integrated System Model 

Using the Microgrid library component models, an 
integrated system model (see Figure 6) was assembled 
including a diesel generator model, PV model, battery 
energy storage system model, a generator model for the 
biomass CHP system, and a simplified representation of 
a grid connection, conversion components, and a 
configurable resistive load.  

2.3.1 Diesel Generator 
The diesel generator model can be configured to 
represent both a fixed or variable speed diesel generator, 
as AC power is generated based on a control input signal 
and representative fuel consumption curve. The 
operational differences between the two types of 
generators can be defined as a function of acceptable 
ramp rates and load limits using the ‘microgridManager’ 
(see Section 2.3.8). For the purposes of this study, 
however, the diesel generator was modeled as a fixed 
speed generator (to best represent the generators 
currently operating at Whale Cove) and scaled to the 
maximum capacity of the NRC micro-grid facility. 

Three generators currently provide power to Whale 
Cove: two 300 kW Caterpillar D3412 units, and one 150 
kW Caterpillar D3406 unit (Nunavut, 2001). Although 
it is likely that at least one of these generators operates 
in standby at any given time, for simplicity, fuel 
consumption correlations from (Das, 2017) were used to 
compute the total fuel consumption (L/h) at max loading 
(100% capacity) and min loading (30% capacity) for all 
three generators. This value was then scaled to the rated 
capacity of the NRC micro-grid diesel generator to 
provide an equivalent fuel consumption correlation for 
the three generators operating as a single diesel 
generator (see Figure 7).    

 
Figure 7. Diesel Fuel Consumption for Scaled (80 kW) 
Micro-grid Fixed Speed Generator  

The parameters for the diesel generator model are 
summarized in Table 1. Although the peak load defined 
for Whale Cove is 402 kW, with the generator operating 
at a load factor of 56% (QEC, 2017), a scaled peak load 
was used based on an 80 kW generator operating at 56% 
loading (44.8 kW). 
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Table 1. Diesel Generator Parameters and Constraints 

Whale Cove Value 
Rated Capacity2 750 kW 
Remaining Capacity1 718 kW 
Max Load1 402 kW 
Load factor at Max Load1 56% 

Micro-grid Test Facility Value 
Max Capacity 80 kW 
Generator Min Loading 30% 
Max Load (at 56% load factor) 44.8 kW 
Min Load (at 30% gen. min loading) 24.0 kW 
Fuel Consumption at Max Capacity2 23.4 L/h 
Fuel Consumption at Max Load2 13.2 L/h 
Fuel Consumption at Min Load2  7.2 L/h 

1(QEC, 2017), 2(Nunavut, 2001) and (Das, 2017) 

From (NRCan 1, 2018), the capacity to add 
renewables to this micro-grid was taken as the 
difference between the min loading output of the scaled 
diesel generator (24.0 kW) and the max scaled loading 
for Whale Cove (44.8 kW). Based on this, the resulting 
combined PV and CHP maximum power output was 
limited to ~ 21 kW.  

For cost optimizations, the total cost of diesel based 
electricity generation was $0.827 per kWh (QEC, 2017).  

2.3.2 Solar PV Model 
The Micro-Grid solar PV model can be configured to 
represent both flat panel PV and CPV systems, using 
panel surface area, solar irradiance data, system 
capacity, and efficiency; however, for the purposes of 
this study, one system model was developed to represent 
the combined capacity of the PV and CPV systems. DC 
power estimates were used based on actual solar 
irradiance data from (NREL, 2019) for a flat panel solar 
installation at Rankin Inlet (located in close proximity 
to Whale Cove, see Figure 5) and scaled to produce the 
desired net PV output (see Figure 8).  

 
Figure 8. PV Power Output Approximation for Whale 
Cove (NREL, 2019) – Scaled for NRC Micro-Grid  
Note that temperature effects on solar cell power 
generation were not considered. 

2.3.3 Battery System Model 
The battery system model was defined based on battery 
capacity, minimum and maximum state of charge, and 
maximum charge and discharge rates. These and other 
relevant battery system data are shown in Table 2. Note 
that a detailed thermal model was not included. 

Table 2. Battery Model Parameters 

Parameter Description Value 
Nominal Capacity1  120 Ah 
Max SoC 95 % 
Min SoC  20 % 
Discharge C-Rate1 2C 
Charge C-Rate (20-80% SoC) 1 2C 
Charge C-Rate (>80% SoC) 1 C/3 
Total Pack Energy Capacity1 42.2 kWh 
Voltage1  352 V 
Configuration 12S1P 

1Data based on the characterization of a real-world battery 
system performed at the NRC Vancouver battery test 
facility. 

2.3.4 Biomass CHP Model 
Parameters for the CHP system are shown in Table 3. 
For the purposes of this study, the biomass CHP model 
was approximated as an electric generator only (i.e., 
thermal energy production was not considered). The 
unit power output was scaled (constrained) to ~ 13.8 
kW, 3 phase, 480 VAC power. Fuel consumption was 
taken as 1:1 with energy output (i.e., 1 kg/h biomass to 
generate 1 kWh electricity) with an efficiency of 20%. 
For cost optimizations, CHP based electricity generation 
was estimated at $0.20 per kWh. 

Table 3. CHP Model Parameters 

Micro-grid Test Facility  Value 
Rated CHP capacity1  40 kW 
Scaled CHP system  Value 
Rated CHP capacity  13.8 kW 
Fuel consumption1 13.8 kg / hr 
Electric Efficiency1 20 % 
Fuel cost $0.20 / kWh 

1(Volter, 2019) 

2.3.5 Ideal Grid Model 
For the use case where the Whale Cove micro-grid 
includes a connection to the Manitoba electrical grid, an 
ideal grid model was used (constant voltage and 
frequency). The Manitoba grid capacity was constrained 
at 45% of the full power demand for Whale Cove, with 
a cost of $0.13 per kWh (see Table 4). Note that to install 

18



23DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

the 1,000 km of transmission lines needed to complete 
the grid connection to multiple Nunavut communities in 
the area, the estimated cost (in 2015) was ~ $900 
million, with $40 million in diesel savings estimated per 
year. This cost is assumed to have been reflected in the 
$0.13 per kWh rate, given an estimated purchase price 
of $0.075 per kWh for QEC from Manitoba Hydro and 
the project’s estimated 40 year lifetime to achieve a 
return on investment. (Karanasios, 2016). 

Table 4. Grid Parameters 

Manitoba Grid Connection  Value 
Rated Grid capacity  45% 
Grid energy costs1 $0.13 / kWh 

1(Karanasios, 2016). 

2.3.6 Load Model 

The load for each simulation was modeled as a variable 
input following a real-world load profile derived from 
an NRC building on March 3, 2016 (see Figure 9). This 
load data was scaled to allow the reduced load capacity 
of the micro-grid diesel generator (~80 kW) to be used 
to provide the baseline for evaluating the impact of 
introducing consumables into a Whale Cove power grid.  

 
Figure 9. Load Profile for NRC-Van Building Mar, 2019 

Note that the load data above has been used to represent 
‘scaled’ daily use load variability only and does not 
reflect actual load profiles for Whale Cove, both in 
terms of daily use or seasonal load variations.  

2.3.7  Transformer and Inverter Models 
Transformers and inverters were characterized using 
efficiency based models, selectable for voltage or 
current type units. For this study, voltage units were 
used and all efficiencies were assumed to be 95%. 

2.3.8 Micro-grid Manager 
The micro-grid manager contains the control rules and 
constraints for the various controllable integrated micro-
grid components. Using external sources, this manager 
was also used to support micro-grid optimization. 
Details related to configuration of the control algorithm 
for each simulation / optimization has been defined in 
each corresponding analysis below. 

3 Micro-Grid Analysis 
3.1 Use Case 1 Simulation 
The first simulation performed evaluated the present 
diesel generator’s ability to meet the power demand at 
Whale Cove. This simulation was performed as an 
initial validation of the integrated system model and to 
establish a baseline for cost and performance 
comparisons with subsequent use cases.  

3.2 Use Case 2 Simulation 
The second analysis was based on the present operating 
configuration at Whale Cove with renewables and 
energy storage added. This includes the biomass CHP 
system, flat panel PVs, CPVs, and batteries (with all 
components specified and scaled in relation to the NRC 
micro-grid test facility configuration).  

The first analysis centered around the system’s ability 
to match power generation and load curves based on the 
test facility configuration and a rule based simulation 
approach. For micro-grid reliability, the diesel generator 
was operated at minimum loading or higher, with the 
CHP system and combined PVs / CPVs meeting the 
remaining demand. Batteries were used to provide any 
additional power where there was power shortfall from 
all other sources. Once fully discharged, batteries were 
recharged from available sources. 

The second analysis looked at the optimization of the 
micro-grid configuration with renewables and energy 
storage, to see how it could further improve upon the 
rule based simulation approach. 

3.3 Use Case 3 Optimization and Analysis 
The third use case included the addition of a grid 
connection (to the Manitoba electric grid). First an 
economic optimization was performed with electricity 
rates of $0.827 / kWh for diesel and $0.13 / kWh for the 
grid, and grid supply constrained to 20 kW. Using the 
same model, a design optimization was performed, 
where battery size was a degree of freedom.  

4 Results & Discussion 
4.1 Use Case 1 Simulation  

 
Figure 10. Use Case 1 – Whale Cove power generation 
using diesel generators only 
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The results for the use case 1 simulation are shown in 
Figure 10. Diesel power is shown to correctly track load 
over the course of the simulation, with a slightly higher 
power output level than demand (to cover transformer 
losses).  

Based on the diesel electricity generation cost of 
$0.827 per kWh, the total baseline cost for (scaled) 
power using the current configuration is ~ $3800. Note 
that these costs are only defined for comparison 
purposes with other use cases (as the load data used is 
not representative of Whale Cove).  

 
Figure 11. Use Case 1 Simulation – Baseline cost for 
diesel only power generation 

4.2 Use Case 2 Simulation and Optimization 
The results for the use case 2 simulation are shown in 
Figure 12.  

 
Figure 12. Use Case 2 Simulation – Whale Cove micro-
grid with renewables and energy storage 
The simulation above was configured to: 
 Keep diesel generator operation to a minimum (not 

less than 30%, to prevent damage to the generator) 
to ensure the reliability of the remote community 
micro-grid. 

 Use PV power directly, as generated. 
 Engage the CHP and ESS systems, as required, to 

provide the remaining power. 
 No contribution from the grid (island mode). 
 Recharge the battery using available sources when 

the battery was discharged to its lower SoC limit 
(subject to C-rate constraints) – see Figure 13. 

During high demand periods (Day 1 to 3), it can be seen 
that the battery is cycled much more than the on the 
weekend (Day 4 and 5), where the diesel generator, 
CHP, and PV systems are able to satisfy most of the 
demand. Also, where maximum PV and CHP capacity 
were required to satisfy the load during high demand 
periods, the diesel generator was required to ramp up to 
full capacity in order to recharge the batteries (where the 
battery power drops below zero, the battery is charging).  

 
Figure 13. Use Case 2 Simulation - Battery charge and 
discharge cycles 

 
Figure 14. Use Case 2 Simulation – Cost of micro-grid 
operation with renewables and energy storage added 

Based on the diesel generation cost of $0.827 / kWh 
and a CHP cost of $0.20 / kWh, the new total cost to 
satisfy the same demand dropped to $3200 (almost 
16%). Note that this was a rule based simulation (not an 
optimization). 

For the economic optimization of the use case 2 
configuration, the objective function shown in Figure 15 
was used:  

 
Figure 15. Use Case 2 Optimization – Economic 
Objective Function (placeholder) 
The results from the optimization of the micro-grid with 
renewables and energy storage are shown in Figure 16 
(load balancing) and Figure 17 (economic analysis).  
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Figure 16. Use Case 2 Optimization (placeholder)  

 
Figure 17. Comparative cost (placeholder) of Use Case 2 
sim (dashed lines) and Use Case 2 optimization (solid)   

It can be seen that the optimization reduces the total 
cost to $XX00 compared to the rule based simulation 
(~XX% compared to diesel only and ~XX% compared 
to the rule based simulation). 

4.3 Use Case 3 Optimization and Analysis 
The objective function for the use case 3 economic 
optimization is shown in Figure 18. 

 
Figure 18. Use Case 3 Economic Optimization Objective 
Function (placeholder) 

 
Figure 19. Use Case 3 Econ. Optimization – Whale Cove 
micro-grid with renewables, energy storage, and grid tie 

The results from the economic optimization for use case 
3 are shown in Figure 19. It can be seen that the micro-
grid system is almost able to completely satisfy the 
demand using renewables, energy storage and the grid, 
without increasing the diesel generator operation 
beyond minimum loading (30%). Also, the CHP system 
operation is much less erratic (smooth ramp up and 
down). 

 
Figure 20. Comparative cost of Use Case 2 sim and Use 
Case 3 economic optimization   
Figure 20 shows that the results of the optimization 
reduces the total cost to $2500 compared to the rule 
based simulation (~34% compared to diesel only and 
~17% compared to the rule based simulation) with only 
10 kW power supplied from the grid.  

For the design optimization performed for use case 3, 
the objective function shown in Figure 21 was used. The 
results, shown in Figure 22, Figure 23, and Figure 24, 
show that with a grid connection present (with 20 kW 
max grid capacity), the original battery was oversized 
by 24 kWh for the same total energy cost.  

 
Figure 21. Use Case 3 Optimization – Economic 
Objective Function (placeholder for equation) 

  
Figure 22. Use Case 3 Design Optimization with 
renewables, energy storage, and 20kW from grid 
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Figure 23. Use Case 3 Design Optimization  

  
Figure 24. Comparative cost (placeholder) of Use Case 2 
sim and Use Case 3 design optimization   

5 Conclusions  
The move towards increasing renewables for micro-
grids operating in remote communities has provided the 
opportunity to investigate the potential to reduce fuel 
costs and emissions compared with traditional 
standalone diesel power plants. Additional work needs 
to be done to support the advancement and integration 
of new micro-grid technologies and to optimize overall 
integrated system design, performance, and overall 
costs. By using the Microgrid Modelica library models, 
many high level optimizations can be performed to 
answer initial questions on equipment sizing and 
economic dispatch. This, coupled with access to a 
physical micro-grid test environment, provides the 
added benefit of being able to eventually validate model 
results and develop higher fidelity models that can be 
integrated into a similar model framework.  

5.1 Future Work 
Plans for future work include: 
 Generating data from the NRC Micro-grid Testing 

and Training facility using a configuration that 
mirrors this study in order to validate model results. 

 Performing a design optimization of a combined PV 
and CPV system. 

 Defining a more detailed co-generation model for 
the CHP system (i.e., with thermal energy 
generation considered). 

 Integrating higher fidelity models from Modelon’s 
Electric Power Modelica library into a comparable 
model framework to analyze the micro-grid’s 
response to transient conditions on both the supply 
and demand side with respect to performance, 
stability, and reliability (e.g., analyzing stability 
during switching from grid connected to island 
mode, system performance and limitations during 
rapid demand changes, etc.).  

 Using the above detailed integrated model 
framework to support micro-grid control system 
design and optimization.     
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Abstract
In this paper, a benchmark between solvers and Mod-
elica tools for time-domain simulations of a power sys-
tem model is presented. A Python-based approach is em-
ployed to automate Modelica simulations and compute
performance metrics. This routine is employed to com-
pare the performance of a commercial (Dymola) against
an open-source (OpenModelica) simulation tool with dif-
ferent solver settings. Python scripts are developed to exe-
cute a dynamic simulation of a common model for power
system studies with 49 states and 420 variables in three
different scenarios. This degree of automation makes it
easier to change solver settings and tools during execution.
The performance of each of the tools is assessed through
metrics such as execution time and CPU utilization. The
quantitative comparison results provide a clear reference
to the performance of the tools and solvers for the execu-
tion of time-domain simulations with a significant degree
of complexity. The commercial tool offers better perfor-
mance for variable-step solver, but the performance of the
open-source software shows significantly faster results for
fixed-step solvers.
Keywords: Modelica, Python-Dymola Interface, Python-
OpenModelica Interface, CPU performance.

1 Introduction

List of Acronyms and Definitions

Definitions

ST · Simulation Time: the simulation time is under-
stood as the time it takes for the program to translate, com-
pile and integrate a model.

ET · Execution Time: the execution time is the elapsed
time to complete the numerical integration of the compiled
model. It also known as integration time. Note that exe-
cution time is included as a part of Simulation Time in the
context of this paper.

NMT · Normalized Minimum Execution Time: per-
formance metric taken as a function of the execution time
of each of the tools. It is defined as

NMT[solver] =
min(ETD,ETOM)

ETobserved

where ETD are the execution times for Dymola and OM,
respectively, and ETobserved is the corresponding integra-
tion time of each tool for a given solver obtained from the
simulation log.

Acronyms

ET · Execution Time
MSE · Mean Square Error
NAE · Normalized Absolute Error
OM · OpenModelica
OMPython · OpenModelica Python Interface
OpenIPSL · Open-Instance Power System Library
PDI · Python-Dymola Interface
ST · Simulation Time

Motivation
Modeling and simulation of power systems have been a
habitual practice in the energy industry since the 1960s.
The complexity of a power system is steadily increasing
to accommodate modern technologies into the existing
grid. A more complex system leads to more elaborated
models. High-complexity models are directly correlated
with computationally expensive tasks (Milano, 2010). In
this context, the Modelica language represents an ac-
curate, equation-based, multi-domain solution modeling
and simulation alternative. Numerous initiatives such as
OpenIPSL have been taken to incorporate into the power
system workflow the benefits of the Modelica language
(Baudette et al., 2018).

On the other hand, the academic, scientific and indus-
trial communities have come to acknowledge the intrinsic
benefits of the Modelica language. An outcome of this
trend is that the user base has increased significantly dur-
ing the last years. This has led to the development of many
libraries with users coming from a very wide domain spec-
trum. Nowadays, Modelica stakeholders include students,
consulting firms, big laboratories, and industry agents.

Free tools such as OpenModelica are fundamental for
learning the language at little to no cost and to set a ref-
erence for the Modelica language (Fritzson et al., 2006).
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Commercial tools such as Dymola, SystemModeler or
SimulationX provide advanced functionalities that satisfy
particular requirements from the industry. However, there
is no clear guidance for a user on how to select the tool-
solver based on its simulation performance exclusively.

This paper intends to provide this guidance. It aims to
compare the time-domain simulation performance of the
solvers from both Dymola and OpenModelica when sub-
jected to different solver settings (see (Braun et al., 2017)
for a detailed analysis of the potential of OpenModelica
to solve large-scale models). Since these tools do not have
the same features and solvers, we have chosen some of the
ones they have in common for benchmarking purposes.

Contribution
This work is relevant to any user of the Modelica lan-
guage. The tool performance analysis is based on the sim-
ulation of a power system model (IEEE 14 bus system),
that serves as a representation of a dynamic nonlinear sys-
tem. We consider three simulation scenarios: an initial-
ization, a line-opening (one discrete event) and two bus
faults (two discrete events). The paper reveals the differ-
ence in performance within the tools and helps users make
an educated choice about the tools to use. The main con-
tributions of the paper are the following:

• Quantitative evaluation of Dymola and OpenModel-
ica simulation performance for time-domain simula-
tion of complex dynamic systems (power systems).

• Benchmark of different solvers in a dynamic simula-
tion with discrete events.

• Implementation of simple Python routines to auto-
mate Dymola and OpenModelica time-domain sim-
ulations.

Paper Organization
The paper is broken down in the following sections: Sec-
tion 2 describes the test system and the Modelica library
employed to construct it. The experiment setup regarding
hardware characteristics and software setup is described
in Section 3. In Sections 4 and 5, we discuss performance
results of each of the tools with respect to each solver and
the corresponding performance metrics. Finally, Section
6 concludes the work.

2 Modelica Power System Model
The IEEE14 bus system1 represents a part of the Midwest-
ern USA American Electric Power System as of February
of 1962. The single-line diagram of the system can be
seen in Figure 1. This model was chosen because it is
a widely used testing system for an initial assessment in
power system dynamical studies since it has a significant
number of variables and states (420 and 49, respectively)
which makes it a common factor in such simulation-based

1https://icseg.iti.illinois.edu/ieee-14-bus-system/

studies (Milano, 2010). For this reason, its dynamic sim-
ulation a challenge to the tools and the CPU.
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<11><11>
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<6><6>

<5><5> <4><4>

<3><3><2><2>
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pwLinepwLine

Figure 1. IEEE 14 bus model.

The test power system model (Figure 2) is built using
the components from the open-source OpenIPSL library,
a Modelica-based power system component library cur-
rently developed and maintained by ALSETLab at Rens-
selaer Polytechnic Institute. The library includes all the
components to build a large power system model and per-
form dynamic analysis in time- and phasor-domain. The
version of the library used in this paper is release 1.5.02.

Figure 2. Implementation of the IEEE 14 bus model in Dymola
using OpenIPSL.

3 Experiment Specifications
To make sure that the results are reproducible, this section
details the conditions under which the experiments were
performed regarding hardware setup and software charac-
teristics.

2The version of the library employed for this paper is included in the
GitHub repository of the project. For the latest release of OpenIPSL,
see: https://github.com/OpenIPSL/OpenIPSL
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3.1 Hardware and Software Setup

The characteristics of the computer used to run the simu-
lations are shown in Table 1.

Characteristic
Operating

System Ubuntu Server 18.04 LTS

RAM 128 GB

Processor Intel(R) Xeon(R) CPU E-1650 v4
12 Cores @ 3.60 GHz

15 MB Cache
Storage 1 TB SSD

Graphics
Cards

4 x NVIDIA GTX 1080 Ti
(CUDA Capable)

11 GB GDDR5X (each)
Dymola

Distribution Dymola 2020x

OpenModelica
Distribution 1.14.0

Python
Release 3.6.8

Dymola
Compiler MinGW CC

OpenModelica
Compiler MinGW CC

Table 1. Hardware characteristics and software specifications of
the computer used to run the experiment.

To assess solver performance correctly, numerical
integration must run in only one processor. While
this is a default option in Dymola, we need to
specify this option explicitly in OpenModelica be-
fore starting any simulation since it defaults to multi-
core execution. This is done thanks to the flag
setCommandLineOptions("-n=1").

3.2 Simulation Scenarios

To properly measure solver performance in diverse dy-
namic conditions, we will consider the following three
scenarios of the IEEE14 bus model: system initialization,
time-domain simulation with one line opening, and sys-
tem response with two faults.

IEEE14 System Initialization (S1)

This scenario corresponds to a system with no disturbing
events. The power flow of the model is modified so that
the numerical simulation has problems during initializa-
tion. The provided initial conditions are such that the dy-
namic system is not initially at an equilibrium point, thus
forcing the system to look for an acceptable steady-state
condition at the beginning of the integration process. This
increases the computational task and challenges the solver
since the integration does not start with all state derivatives
equal to zero.

Line Opening (S2)

Besides the aforementioned bad initialization condition,
we introduce a line opening to disturb the system from
steady-state and excite nonlinear dynamics. This kind
of scenario is used to study system-wide stability when
two sub-areas are disconnected from each other. The line
opening corresponds to the connection between buses 2
and 4 (B2 and B4). The line will open from both ends at
time t = 60 s and will re close at t = 61.5 s.

Bus Faults (S3)

In this case, the system will face two three-phase to ground
faults at different times. This configuration is used to
test the resiliency and stability of the system. By having
two faults, the numerical complexity of the simulation in-
creases, creating a more adverse scenario for the solvers
to come up with a solution. Fault 1 occurs at bus 4 (B4)
starting at t = 20 s and being removed at t = 21.2 s. Fault
2 takes place at bus 14 (B14) at t = 80 s, being cleared at
t = 81.2 s. The parameters of the two faults are R = 0 pu
and X = 1×10−5 pu.

3.3 Solver Selection
The performance of the time-domain simulation depends
not only on the dynamic condition to be analyzed but also
on the solver selection. In this regard, OpenModelica
and Dymola contain a wide variety of different integration
methods and three of them are going to be used and thus
briefly described in this study. The Differential Algebraic
System Solver (dassl) is an implicit, high-order, variable-
step solver with time-step control. This solver is set as
default solver in both OpenModelica and Dymola. The
Euler method is another solver available in both software
packages and it is an explicit (Forward Euler), first-order,
fixed time-step solver. Finally, the last solver used in this
study is the runge kutta. Dymola allows the user to chose
between second, third and fourth order Runge-Kutta meth-
ods but in this work, only the fourth order is used since it
is also available in OpenModelica. This solver is an ex-
plicit, fourth-order, fixed time-step solver. This paper will
benchmark the performance of the tools with each of the
mentioned solvers for the different scenarios of the test
power system.

3.4 Time-step Selection
Since dassl is a variable-step solver with step-size con-
trol, there is no need to select a specific time-step
for the solver. The selection of an adequate number
of intervals is necessary to plot and analyze the re-
sults. For both tools, 5000 was found to be a rea-
sonable number of simulation intervals. Moreover, to
use the capabilities of a DAE solver to their full extent,
we enable the newly incorporated DAEmode in Dymola
by enabling the flag Advanced.Define.DAEsolver
= true (Henningsson et al., 2019). In OpenMod-
elica, to set similar settings we use the command
setCommandLineOptions("daeMode=true").
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On the other hand, it is important to select an adequate
step size Ts for fixed-step solvers in order to guarantee
that the algorithm is operating in its region of conver-
gence. To get an upper bound for Ts, we performed a linear
analysis of the system in Dymola employing the library
Modelica_LinearSystems2. After determining the
time constant of the fastest mode (τ ≈ 1 ms), we found
that Ts = 0.5 ms was a reasonable value to capture the
effects of the fastest mode, guaranteeing numerical con-
vergence for both solvers, Euler and Runge Kutta. The
selected time-step size implies that 240,000 simulation in-
tervals are going to be needed for a simulation time of
120 s.

3.5 Benchmark Metrics
In order to understand and accurately compare the two
tools the paper focuses on two simulation features to com-
pare:

• Simulation Time (ST) corresponds to the time it takes
for a program to complete all of the routines for each
scenario comprising model translation, compilation
and execution. The discussion of the results of the
simulation time are found in Section 4.1, with special
remark on Execution Time (ET).

• CPU Utilization is the percentage of central process-
ing unit (CPU) that is being used at any time dur-
ing the execution. Results for CPU utilization can be
found in Section 4.2.

3.6 Code Structure
The complete code to perform the experiments and ana-
lyze the resulting data can be found in GitHub3. The ex-
ecution of the simulations is automated through Python
using the Dymola API (Python-Dymola Interface) and
the OpenModelica Python Interface (OMPython) (Lie
et al., 2018). The details of the Dymola routine can
be seen in the file dymola_simulation.py. Like-
wise, the OpenModelica commands are included in the file
om_simulation.py.

To measure performance we execute the routine in
the script measurement_performance.py. It mea-
sures each of the performance metrics every 0.2 s
while the code is running in a different parallel pro-
cess. The main program is contained in the file
01_modelica_tool_performance_benchmark.py.

4 Performance Results
Before presenting the performance results, we validate the
simulation outputs of the three scenarios for Dymola and
OpenModelica for all solvers. We employed the Normal-
ized Absolute Error (NAE) and the Mean Square Error
(MSE) defined in Equation (1) to quantify the numerical
difference between the outcomes of each tool.

3https://github.com/ALSETLab/Time-Domain-Simulation-
Performance-Benchmark

NAE =
|xi − yi|

n

MSE =
n

∑
i=1

(xi − yi)
2

n

(1)

NAE shows how different the Dymola and OpenMod-
elica results are throughout the simulation. MSE outputs a
quantitative validation of the results of both tools (Devore
and Berk, 2012). Full details can be seen in Table 3.

The numerical behavior of the simulation during initial-
ization (runge kutta solver) can be observed in Figure 3 for
the voltage magnitude signal at Buses 2 and 4. An initial
transient behavior can be seen at the beginning of the inte-
gration time. This is not desired in a dynamic simulation
since numerical convergence to a steady-state solution is
not guaranteed given the fact that the solver starts from a
guessing point with non-zero derivatives.

Figure 3. Comparison between Dymola and OpenModelica re-
sults for the initialization scenario using the runge kutta solver

The non-steady state behavior at the on-set of the simu-
lation is due to the fact the initial guess used in the model
(the so-called power flow) is not close enough to an equi-
librium for the initialization routine to solve for a more
precise set of initial values. A more complex initializa-
tion problem will better benchmark the capabilities of the
tools. Despite this, Dymola and OM produce almost the
same results, with an NAE in the order of 10−3.

Likewise, for the runge kutta solver, Figures 4 and 5
show the simulation results for the line opening (voltage
magnitude at buses 2 and 4) and the double bus fault (volt-
age at affected buses 4 and 14) scenarios, respectively.
Both Figures reveal how there is a minimal error between
the results of both tools. Based on these results, it is con-
cluded that fixed-step solvers can be applied to reduce dis-
crepancies between different Modelica tools.
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Figure 4. Comparison between Dymola and OpenModelica re-
sults for the line opening scenario using the runge kutta solver

Figure 5. Comparison between Dymola and OpenModelica re-
sults for the double bus fault scenario using the runge kutta
solver

The complete collection of plots for all solvers and sim-
ulation scenarios can be found online in the GitHub repos-
itory in the Notebook 02_Data_PostProcessing_
SimulationResultPlotting.ipynb.

4.1 Simulation Time
The information regarding simulation time is presented for
all scenarios and solvers in Table 2. We must underline
that simulation time includes compilation, translation and
actual integration (execution time).

A clear conclusion from this information is that the
variable-step solver is the most convenient for an initial
analysis of the conditions of the system with an important
amount of detail. Nevertheless, considering the informa-
tion about MSE, a fixed-step solver shows advantages to
reduce the numerical discrepancy between tools running
the same model. The cost is a considerable increase in
simulation time.

4.2 CPU Utilization
Since each instance of Dymola/OpenModelica was con-
strained to run only on one core, we expect exactly
one processor to be responsible for numerical integration
while a simulation is being carried out. The CPU usage
of the assigned execution core is 100% due to the heavy
numerical task of the simulation.

Figure 6. CPU Utilization for Dymola during bus fault scenario
with runge kutta solver.

Figure 7. CPU Utilization for OpenModelica during line open-
ing scenario with euler solver.

An interesting outcome of our experiments is that sev-
eral CPUs are involved in the execution process but just
one is performing the simulation tasks at a given time. We
can detail this behavior in Figure 6 for a Dymola simu-
lation using the runge kutta method of the bus fault sce-
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nario. Simulation starts in Core 1 where the CPU usage is
at a 100% at the beginning of the running time. Afterward,
it is delegated to Core 5. Finally, Core 10 completes the
execution of the program. This behavior is due to a task
scheduling routine in the processor level that dispatches
to different cores the compilation, translation, and inte-
gration sub tasks.

Similar behavior happens with another solver and
OpenModelica (Figure 7) in which the simulation started
in Core 2, then was briefly assigned to Core 5 and was
finished in Core 6. All the graphics can be detailed in
the GitHub repository inside the Jupyter Notebook called
03_DataPostprocessing_CPU_Usage.ipynb.

5 Performance Evaluation Metrics
A score was proposed to quantify the performance dif-
ferences between the tools and the solvers. The score is
obtained from the data generated for all simulations and
solvers. This single metric makes it simpler to directly
compare the performance of Dymola versus OpenMod-
elica. From Table 2 the Execution Time (ET) for each
scenario and solver were employed. These metrics were
obtained directly from the program logs and measured in
Python. Notice that the time registered using OMPython
is slightly larger than the reported by the simulation log
due to the communication interface between Python and
OM. The translation and compilation time were not taken
into account since this information is only available in the
Dymola developer version, not in the release version.

The Normalized Minimum Execution Time score
(NMT) of each scenario per solver is computed as

NMT[solver] =
min(ETD,ETOM)

ETobserved
(2)

where ETobserved is the ET for a particular solver in Dy-
mola or OpenModelica), and min(ETD,ETOM) is the min-
imum execution time between both tools for a specific
solver. Clearly, NMT[solver] lies between 0 and 1. The
higher the NMT is, the faster the simulation will run for
a particular selected solver. At a first glance, this metric
might be counter-intuitive since a better solver/tool com-
bination would reduce execution time. However, we pro-
pose an increasing score metric due to the fact that users
are more familiar to higher scores for better performance.
Therefore, the larger the NMT is, the faster a particular
solver will run.

The NMT metric results are presented in Table 4. The
performance of Dymola is remarkably better using dassl.
Nevertheless, OM shows a smaller execution time than
Dymola for fixed-step solvers (as can be seen from Table
2, the NMT scores and 5). This conclusion can be further
detailed in Table 5 where a direct comparison between the
execution time for the tools with the different solvers for
each scenario is presented.

The NMT scores highlight that the performance of Dy-
mola in terms of execution time is remarkably better for

variable-step solvers. The relative advantage of select-
ing one tool with respect to the other can be computed
from the NMT directly. For instance, Dymola runs 47.3x
faster than OM for the first scenario using dassl which can
be computed by a direct comparison of the ET listed in
Table 5. The NMT score of OM for S1 is 0.0211 which
is 1/0.0211 = 47.3 times smaller than the corresponding
Dymola metric reflecting the relative difference in execu-
tion time.

For the variable-step solver, the discrepancy between
the tools can be attributed to the performance of the dassl
solver in all simulations thanks to the aforementioned im-
provements for DAEMode inside Dymola (Henningsson
et al., 2019).

The execution time of OM is faster than the one of Dy-
mola for all scenarios when a fixed-step solver is used.
The NMT scores show a relative advantage between 3.4
and 6.8 times favoring OM. We have contacted Dassault
Systèmes about the performance of the simulations of the
IEEE 14 Bus System using runge kutta methods (includ-
ing euler) as integrator and GCC for compilation. Das-
sault reports that bug fixes have been made in the GCC
runtime libraries, leading to CPU times are about 3 – 4
times faster, on par with the run times given when com-
piling with Visual Studio under Windows 10. Dassault
informs that the updated libraries will be part of Dymola
2021.

We should point out that the scope on the po-
tential optimization features has been limited to the
use of the flag Evaluate = true in Dymola and
-d=evaluateAllParameters in OM, which is stan-
dard practice when attempting to improve simulation per-
formance.

The detailed step-by-step computations of the
scores can be found in GitHub in the Notebook
05_BenchmarkMetrics.ipynb.

6 Conclusions and Future Work
The paper presents a concrete analysis of the time-domain
simulation performance of Modelica-based tools for dif-
ferent solvers in the context of large-scale nonlinear dy-
namic systems. The presented results can help a user to
choose a tool depending on the final application, and lead
to improvements in Modelica tools. The methodology of
this benchmark can be extended to virtually any platform
or Modelica tool.

We benchmarked the time-domain simulation perfor-
mance of two popular Modelica tools, Dymola and Open-
Modelica, for a dynamic power system simulation using
the IEEE 14 bus system. We considered several scenar-
ios that challenge numerical solvers differently. Thanks
to Python scripting, we were able to change automatically
the simulation settings while directly measuring the per-
formance of the computer instead of relying on simulation
logs. Python functions also made it quicker to analyze
straightforwardly the big set of data regarding simulation
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results and computer performance.
For the proposed heuristic score, we found out that

OpenModelica performs better than Dymola in terms of
execution time for fixed-step solvers while Dymola shows
faster results when using a variable-step solver (see Ta-
ble 5). Despite this, we must warn the reader that this
conclusion is based upon only a particular system. Fur-
ther research has to be done to include more test systems.
Moreover, the use of a fixed-step solver has the main ad-
vantage of

The tool and solver benchmark results are expected to
be reproduced in a larger system such as the Nordic 44
with ≈ 1300 states and 6300 variables. This system re-
quires a considerable amount of RAM given its large num-
ber of states. Therefore, future work is related to the per-
formance analysis in a 64-core machine with 512 GB of
RAM for the N44 system considering different types of
simulations and various initialization parameters.
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Appendix
In this appendix, all performance results of the different simulation experiments are presented. In Table 5, runge-kutta
is abbreviated as rk.

Simulation Time OpenModelica (OM)
Translation Compilation Execution Total Time (OM log) OMPython

S 1

dassl 2.3204 s 6.6270 s 7.8690 s 16.8164 s 19.3451 s
euler 2.5432 s 6.5845 s 277.5495 s 286.6772 s 289.2878 s

rk 2.3495 s 6.6213 s 783.0159 s 791.9867 s 794.6805 s

S 2

dassl 2.6079 s 6.6411 s 13.4004 s 22.6494 s 25.2542 s
euler 2.4023 s 6.6437 s 310.1061 s 319.1521 s 321.7222 s

rk 2.3489 s 6.6591 s 1086.3958 s 1095.4040 s 1098.0253 s

S 3

dassl 2.1952 s 6.7301 s 163.4884 s 172.4137 s 175.2962 s
euler 2.3248 s 6.7801 s 378.6069 s 387.7118 s 390.3140 s

rk 2.3960 s 6.7332 s 1344.6808 s 1353.8100 s 1356.2994 s

Simulation Time Dymola Simulation Time Dymola
Translation
+ Compila-

tion
Execution Measured

Python

Translation
+ Compila-

tion
Execution Measured

Python

S 1

dassl 20.186 s 0.1664 s 20.3524 s
S3

dassl 20.2161 s 14.4098 s 34.6260 s
euler 24.7791 s 1880.0109 s 1904.7900 s euler 16.4581 s 1820.0119 s 1836.47 s

rk 21.2389 s 4420.0125 s 4441.2514 s rk 17.9956 s 4590.0129 s 4608.0085 s

S 2

dassl 20.2363 s 0.34082 s 20.5772 s
euler 19.6561 s 1850.0129 s 1869.6690 s

rk 24.6567 s 4410.0119 s 4434.6686 s

Table 2. Execution time for Dymola and OpenModelica for each simulation scenario using different solvers.

Mean Squared Error (MSE) Mean Squared Error (MSE)
B2 B4 B1 B4

S 1

dassl 3.0011×10−11 4.6482×10−11

S3

dassl 0.0067 0.0002
euler 1.2894×10−11 3.7950×10−11 euler 0.0025 0.0002

rk 1.2853×10−11 3.7828×10−11 rk 0.0018 0.0002

S 2

dassl 1.1728×10−8 1.1267×10−7

euler 2.3598×10−10 3.2470×10−9

rk 2.3579×10−10 3.2473×10−9

Table 3. Mean Square Errors between voltage magnitude signals at different buses for each simulation scenario.

Dymola OpenModelica
NMT[S1] NMT[S2] NMT[S3] NMT[S1] NMT[S2] NMT[S3]

dassl 1 1 1 0.0211 0.0254 0.0880
Euler 0.148 0.168 0.208 1 1 1

rk 0.177 0.296 0.293 1 1 1

Table 4. Normalized Minimum Execution Time scores.

Execution Time (ET) Execution Time (ET)
OM Dymola Result OM Dymola Result

S 1

dassl 7.869 s 0.1664 s D > OM (47.3x)
S3

dassl 163.48 s 14.40 s D > OM (11.3x)
euler 277.54 s 4420.01 s OM > D (6.8x) euler 378.60 s 1820.01 s OM > D (4.8x)

rk 783.01 s 1880.01 s OM > D (5.6x) rk 1344.68 s 4590.01 s OM > D (3.4x)

S 2

dassl 13.40 s 0.3408 s D > OM (39.3x)
euler 310.10 s 1850.01 s OM > D (6.0x)

rk 1086.39 s 4410.01 s OM > D (4.1x)

Table 5. Comparison between execution time in OM and Dymola for different solvers.

28



36 10.3384/ECP20169         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020   MARCH 23-25, BOULDER, CO, USA

A Modelica Library for Continuous and Discrete Extremum
Seeking for Static and Dynamic Systems

Joscha Müller Maxime Baudette Daniel Arnold Michael Sankur

Lawrence Berkeley National Laboratory
{joschamueller,baudette,dbarnold,msankur}@lbl.gov

Abstract
Extremum Seeking (ES) is an optimization scheme that
has become a popular tool for addressing decision-making
problems in settings where system models are unavailable
or inaccurate and communications are unreliable. This pa-
per presents an open source Modelica Extremum Seeking
library that introduces different continuous and discrete
ES controllers and examples for possible ES control appli-
cations. The controllers are available for Modelica and in
the Functional Mock-up Interface (FMI) standard, which
allows the models to be used in a variety of different soft-
ware environments.

1 Introduction
Black-box optimization methods are an important class
of algorithms used in situations where objective functions
are difficult or expensive to evaluate, or are, perhaps, un-
known to the optimizer. Many black-box optimization
techniques rely on a local exploration of the action space
to determine the best action to take. Within this subclass of
algorithms, Extremum Seeking (ES) approaches are par-
ticularly useful as they require no knowledge of the system
over which they are optimizing.

This “model-free" property of ES has made it attrac-
tive in a variety of applications, including homogeneous
charge compression ignition (HCCI) engine optimiza-
tion (Killingsworth et al., 2009), maximum power point
tracking (MPPT), wind turbine optimization (Krstic et al.,
2014), and control of autonomous robots (Zhang et al.,
2007). Additionally, several books have been written on
the topic (Zhang and Ordonez, 2012), (Ariyur and Krstic,
2003). Many of the authors of this work have utilized ES
to manage power injections of distributed generation de-
vices in the smart grid (Arnold et al., 2018).

In the ES scheme the optimizer (e.g., mobile robot,
power generation source, parameter to be tuned) injects
a small sinusoidal perturbation into the local action space.

Joscha Müller, Maxime Baudette, Daniel Arnold, and Michael
Sankur are with the Grid Integration Group within the Energy Tech-
nologies Ares at the Lawrence Berkeley National Laboratory. This work
was supported in part by the U.S. Department of Energy ARPA-E (DE-
AR0000340) and Office of Energy Efficiency and Renewable Energy
(DE-EE0008008 and DE-AC02-05CH11231).

This perturbation, in turn, introduces an oscillation in the
objective function value. With proper filtering to extract
the oscillatory component of the objective function, the
decision-maker can extract the gradient of the control in-
put with respect to the objective. No explicit knowledge of
the structure of the objective function is needed to obtain
the gradient information, only a time series of measure-
ments of the objective.

Our past research has explored several extensions of the
family of ES algorithms, such as the simultaneous control
of two setpoints using a single controller (Arnold et al.,
2018), and the introduction of a decaying probe (Sankur
and Arnold, 2019). More recently we started studying
the impacts of communication delays and missing data in
the system’s measurements on the performances of ES,
following feedback from experimental implementation of
the ES scheme in power system applications. This kind
of studies requires a modeling environment that can eas-
ily implement more complex systems including both dis-
crete and continuous dynamics. The Modelica language
natively supports the modeling and simulation of com-
plex cyber-physical systems and features many existing li-
braries containing models from many physical domains. It
offers an attractive platform to further develop and study
new variants of ES algorithms and their interaction with
systems featuring more realistic characteristics (e.g., com-
munication delays). This motivated the development of
an ES library in Modelica. In this work, we present the
library and examples of ES used to address several con-
trol/optimization problems. Models of different physical
domains from the Modelica Standard Library were used
to build a set of application examples, which are briefly
highlighted in this paper.

The remainder of this paper is organized as follows.
First, the working principle of ES control is introduced,
followed by an overview of several examples of ES ap-
plied to domain-specific problems. Specifically, we dis-
cuss the optimization of a quadratic map, control of a
spring-mass damper, speed control of a rolling wheel, and
optimization of power injections in the smart grid. The
paper concludes with a brief discussion of plans for future
extensions to the ES Modelica library. The ES library was
published as an open source project, and made available
at https://github.com/LBNL-ETA/ESL.
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2 ES Control Overview
In this section, we discuss the different types of ES con-
trollers in our library. We provide an overview of a con-
ventional ES controllers, and two types of fixed-step ES
controllers (e.g. where the control action space is uni-
formly discretized).

The reader should note that the terms “continuous” and
“discrete” can refer to continuous time or discrete time
implementations of the controllers, and to refer to the pos-
sible values the controller setpoint and probe signal may
take (i.e. action space). For clarity purposes, we will
reserve the terms “continuous” and “discrete” to refer to
continuous or discrete time. We will use “ES” or “conven-
tional ES” for controllers using a continuous action space,
and “fixed-step ES” for controllers using a discrete action
space. Fixed-step ES controllers are inherently discrete
controllers.

While the ES algorithm requires no knowledge of the
objective function, it does require measurements of the
objective function value. The reader should note that the
mapping from input to objective function must be locally
convex for the ES algorithm to converge to a minimizer,
or locally concave to converge to a maximizer.

Without loss of generality, we consider the parallel op-
eration of many ES controllers, and index each controller
by the subscript m.

2.1 Conventional ES Controllers
Figure 1 shows a conventional ES controller within the
dashed red rectangle. Consider the setpoint of the mth ES
controller, ûm. The controller adds a sinusoidal perturba-
tion with amplitude au,m, frequency ωu,m, and phase θu,m
to the setpoint ûm, producing the controller output um. The
controller output um, along with all other controller out-
puts, form the input to an unknown system. One or more
entities take measurements of the system y, and a central
entity computes objective function Ψ(µµµ).

The ES controller collects measurements of the ob-
jective function Ψ(µµµ). Objective function measurements
Ψ(µµµ) pass through a high-pass filter, attenuating low fre-
quency content of the objective function, such as content
due to controller setpoints, and then pass through a low-
pass filter, to attenuate measuerement noise and high fre-
quency content, such as content produced by the discrete
ES controller’s perturbations and setpoint updates, pro-
ducing ρu,m.

The controller demodulates the signal ρu,m through
multiplication with a sinusoidal function with the same
frequency ωu,m, amplitude 2a−1

u,m, and phase shift θu,m +
φu,m, giving σu,m. The demodulated signal σu,m passes
through a low-pass filter, to attenuate high frequency con-
tent, producing a numerical estimate of the gradient of
Ψ(µµµ) with respect to ûm, ξ̂u,m. The gradient estimate
ξ̂u,m passes through an averaging operator (AO), produc-

ing ξ̂ u,m. One example of an AO is to average the gradient
estimate over the last probe cycle, to further reduce high

frequency content, such as probing frequency oscillations.
The averaged gradient estimate, ξ̂ u,m, is integrated with

negative gain −ku,m to update the setpoint ûm. The set-
point may be limited by a minimum and/or maximum
value, which are typically set such that a complete probe
cycle is feasible at any setpoint; this is not shown in Fig-
ure 1.

2.2 Single Fixed-Step ES Controller
Figure 1 shows a Single Fixed-Step ES controller (SFSES)
within the dashed green rectangle. This controller oper-
ates on two timescales. The first timescale is that of per-
turbation and filtering. The second is the setpoint update
timescale, which is slower than the perturbation and filter-
ing timescale. We index each setpoint update period with
the subscript b.

We start with the setpoint of the mth Single Fixed-
Step ES Controller for the bth update period v̂m,b. The
controller holds its setpoint v̂m,b constant over period b.
Throughout the bth update period, the mth SFSES adds a
square wave perturbation with frequency ωv,m, zero-peak
amplitude av,m, and phase θv,m to its setpoint to produce
the controller output vm,b. The controller collects mea-
surements of the objective function Ψ(µµµ). Objective func-
tion measurements Ψ(µµµ) pass through a high-pass filter, to
attenuate low frequency content of the objective function,
such as those due to controller setpoints, producing ρv,m.

The controller demodulates the signal ρv,m, by multi-
plying with a square wave with the same frequency ωv,m,
amplitude a−1

v,m, and phase θv,m + φv,m, giving σv,m. This
signal passes through a low-pass filter, to attenuate high
frequency content, producing an estimate of the gradient
of Ψ(µµµ) with respect to v̂m,b, ξ̂v,m.

At end of the bth update period, the gradient estimate
is averaged over b by the averaging operator (AO), giving
ξ̂ v,m,b. The setpoint change is an integer multiple of the
probe amplitude multiplied by the sign of the averaged
gradient. The setpoint is then updated such that:

v̂m,b+1 = v̂m,b − kv,mav,m sgn
(

ξ̂ v,m,b

)
, (1)

and held constant over the update period b+ 1. The set-
point may be limited by a minimum and/or maximum
value, which are typically set such that a complete probe
cycle is feasible at any setpoint; this is not depicted in Fig-
ure 1.

2.3 Multiple Fixed-Step ES Controller
Figure 1 shows the Multiple Fixed-Step ES controller
(MFSES) within in the blue dashed box. We start with the
setpoint of the mth MFSES for the bth update period ŵm,b,
which is held constant over the period. Throughout the bth

update period, the controller adds a square wave perturba-
tion with frequency ωw,m, zero-peak amplitude aw,m, and
phase θw,m to the setpoint to produce the controller out-
put wm,b. The controller collects measurements of the ob-
jective function Ψ(µµµ). Objective function measurements
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HPF LPF1 ×

2a−1
u,m sin(ωu,mt +θu,m +φu,m)

LPF2 AO −ku,m
1
s +

au,m sin(ωu,mt +θu,m)

ρu,m σu,m ξ̂u,m ξ̂ u,m ∆ûm ûm um

conventional ES Controller (ES) m

HPF ×

a−1
v,m sgn(sin(ωv,mt +θv,m +φv,m))

LPF AO −kv,mav,m sgn(·) 1
z−1 ZOH +

av,m sgn(sin(ωv,mt +θv,m))

ρv,m σv,m ξ̂v,m ξ̂ v,m,b ∆v̂m,b v̂m,b+1 vm,b+1

Single Fixed-Step ES Controller (SFSES)

HPF ×

a−1
w,m sgn(sin(ωw,mt +θw,m +φw,m))

LPF AO −aw,m�kw,ma−1
w,m(·)� 1

z−1 ZOH +

aw,m sgn(sin(ωw,mt +θw,m))

ρw,m σw,m ξ̂w,m ξ̂ w,m,b ∆ŵm,b ŵm,b+1 wm,b+1

Multiple Fixed-Step ES Controller (MFSES)

ẋxx = fff (xxx,µµµ, t)
yyy = hhh(xxx,µµµ)Ψ(µµµ) = ggg(yyy(µµµ))

yyyΨ(µµµ) µµµ

All Other ES Controllers

Figure 1. Parallel operation of multiple ES Controllers of multiple types, to demonstrate the operational principles. For clarity,
only one conventional ES controller, one Single Fixed-Step ES controller (SFSES), and one Multiple Fixed-Step ES controller
(MFSES) are shown. However, this figure does not imply anything about the number or types of ES controllers that are present in
an optimization or control scenario.

Ψ(µµµ) pass through a high-pass filter, to attenuate low fre-
quency content of the objective function, such as those due
to the setpoint, producing ρw,m.

The controller demodulates the signal ρw,m, by multi-
plying with a square wave with the same frequency ωw,m,
amplitude a−1

w,m, and phase θw,m +φw,m, giving σw,m. This
signal passes through a low-pass filter, to attenuate high
frequency content, producing an estimate of the gradient
of Ψ(µµµ) with respect to ŵm, ξ̂w,m.

At end of the bth update period, the gradient estimate
is averaged over b by the averaging operator (AO), giving
ξ̂ w,m,b. The gradient estimate is multiplied by gain kw,m,
and rounded to the nearest integer multiple of the probe
amplitude, giving the setpoint change, such that:

ŵm,b+1 = ŵm,b −aw,m�kw,ma−1
w,mξ̂ w,m,b� , (2)

and held constant over the update period b+ 1. The set-
point may be limited by a minimum and/or maximum
value, which are typically set such that a complete probe
cycle is feasible at any setpoint; this is not shown in Fig-
ure 1.

2.4 Remarks on ES Controllers
In our library, the high-pass (HPF1) low-pass (LPF1) filter
combination of the conventional ES controller typically
takes two forms, depending on the use case. When only
conventional ES controllers are used, the high-pass filter
cutoff frequency is typically 1/10 of the probe frequency,
and the low-pass filter is omitted. When it is used in con-
junction with one or more fixed-step ES controllers, the

high-pass filter and low-pass filter cutoff frequencies are
typically set to the probe frequency, and a rectification
gain is applied such that the band-pass filter gain at the
probe frequency is unity.

In our description of SFSES and MFSES, and in Fig-
ure 1, we have assumed that the probe zero-peak ampli-
tude (av for SFSES, and aw for MFSES) is the smallest
possible discrete step. The reader should note that the
probe amplitude may be an integer multiple of this value.

The reader should also note that the setpoint update of
MFSES does not necessarily need to be rounded to the
nearest integer multiple of aw. Instead, a step size larger
than aw can be applied for the setpoints, so that the set-
points will be rounded to the nearest integer multiple of
nwaw where nw can be chosen as any integer (e.g., if the
stepsize is 5, the update size can be rounded to the nearest
15).

Finally, the reader should note that the setpoint updates
of multiple discrete ES controllers are generally not syn-
chronized.

3 Library Implementation
Our library includes several variants of the ES control al-
gorithm. In our previous work, we considered a decentral-
ized approach of the control scheme, where the objective
is computed by a central entity, and the ES controller(s)
use the common objective to manage their distributed re-
sources. Therefore, we separated the objective function
from the core ES control logic into a set of different blocks
in this library. The control scheme combines a block for
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(a) Continuous time implementation (ES_BASIC).

(b) Discrete time implementation (discrete_ES_BASIC).

Figure 2. Block diagrams for basic conventional ES Controllers.

the objective function and at least one ES logic block. con-
tains several blocks for both the objective function and the
ES logic. The objective function blocks allow the track-
ing of a target signal, or the regulation to keep the con-
trolled variables within a defined interval. The different
blocks also let the user include one or multiple signal(s) in
the objective function. The ES logic blocks propose dif-
ferent implementations that are detailed in the upcoming
sections. Finally, the library also features examples that
are presented in Section 4.

3.1 Conventional Extremum Seeking Con-
troller

The conventional Extremum Seeking controller (ES) is the
most straightforward implementation of ES, as described
in (Ariyur and Krstic, 2003). We built the block using the
Modelica Standard Library, assembling the components as
in similar fashion to Figure 1.

We have created several versions of this controller, im-
plementing both continuous time and discrete time ver-
sions (see Figure 3). ES_BASIC is the basic version of ES
in continuous time, shown in Figure 2a. discrete_ES_
BASIC is a basic version of ES in discrete time, shown in
Figure 2b. Both versions replace the bandpass filter with a
high-pass filter, omit the gradient averaging operator, and
omit setpoint limits.
ES_ADV is an advanced version of ES in continuous

time, shown in Figure 3a. discrete_ES_ADV is an ad-
vanced version of ES in discrete time, shown in Figure 3b.
Both ES_ADV and discrete_ES_ADV have a bandpass
filter before demodulation, and a setpoint limiter. The user
can choose to average the gradient in ES_ADV.
ES_ADV_2D is a 2-dimensional ES controller, in

which two ES_ADV probe on the same frequency, with
sinusoid phase offset by π/2 (Arnold et al., 2018; Sankur
and Arnold, 2019).

The reader is invited to read (Choi et al., 2002) for an
analysis of a discrete time implementation.

3.2 Single Fixed-Step Extremum Seeking
Controller

discrete_ES_SFS is the Single Fixed-Step Extremum
Seeking Controller (SFSES), and is shown in Figure 3c.
We based our implementation on the Modelica Standard
Library and developed a new square wave for the probe
and demodulation signals.

The SFSES updates its setpoint by a fixed step size,
with the direction determined by a sign function inside the
convergence block. The convergence block con-
tains thresholds, set by the user, for switching, such that
if the magnitude of the input signal is too small, the sign
function will return 0. The user can implement a minimum
setpoint limit and/or a maximum setpoint limit.

3.3 Multiple Fixed-Step Extremum Seeking
Controller

discrete_ES_MFS is the Multiple Fixed-Step Ex-
tremum Seeking controller (MFSES), and is shown in Fig-
ure 3d. We based our implementation on the Modelica
Standard Library and developed a new square wave for
the probe and demodulation signals.

The MFSES is similar to the SFSES, but its setpoint
update is an integer multiple of the step size. The round
block in the MFSES rounds its input, which is the gra-
dient estimate multiplied by a gain, to the nearest integer
multiple of the step size. The round block may round
its input to zero, such that the setpoint is held constant.
The user can implement a minimum setpoint limit and/or
a maximum setpoint limit.

3.4 Functional Mock-up Units
Modelica also supports the Functional Mock-up Interface
(FMI) standard. The FMI standard is an independent stan-
dard for model-exchange (ME) and co-simulation (CS).
It establishes a standard binary format, the Functional
Mock-up Unit (FMU), that can be imported into other
FMI compliant software tools. It allows to combine mod-
els from different languages / tools in a single simula-
tion (Blochwitz et al., 2012).

We exported the controller models as FMUs, to extend
the outreach of the library to users outside of the Modelica
community. Each FMU was exported for both CS and ME
simulation modes that are defined in the FMI standard.

4 Examples
In this section, we present several examples in which one
or more ES Controllers are employed to optimize an ob-
jective function, or implement control of an mechanical or
electrical system.

4.1 Quadratic Objective Function minimized
by a Single ES Controller

In our first example, a single ES controller optimizes its
setpoint to minimize the following quadratic function:

Ψ(u) = (u−1)2 ,
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(a) Continuous ES (ES_ADV).

(b) Discrete ES (discrete_ES_ADV).

(c) Discrete Single Fixed-Step ES (discrete_ES_SFS).

(d) Discrete Multiple Fixed-Step ES (discrete_ES_MFS).

Figure 3. Block diagrams of several ES controllers of the library.

where u is the output of the ES controller. We ran
three scenarios: one where a conventional ES minimizes
the quadratic function, one where SFSES minimizes the
quadratic function, and one where a MFSES minimizes
the quadratic function, as seen in Figure 4. The controllers
do not have knowledge of the system or objective function,
but receive measurements of the objective function value.

Figure 5 shows simulation results of the three scenarios.
All three ES controllers optimize their setpoint to mini-
mize the objective function. SFSES takes the longest time
to converge, as it can only update its setpoint by one probe
amplitude at a user defined rate, in this case 2 probe cy-
cles. Its oscillatory behavior after reaching the optimal
value is due to the setpoint update switch algorithm, and
can be eliminated by implementing a switching threshold
on the averaged gradient estimate.

4.2 Single Quadratic Objective Function Min-
imized by Three ES Controllers in Parallel

In this example, shown in Figure 6, one conventional ES
controller, one SFSES controller, and one MFSES con-
troller operate in parallel to minimize the following func-
tion:

Ψ(u,v,w) = (u−1)2 +(v−2)2 +(w−3)3 ,

where u is the ES output, v is the SFSES output, and w
is the MFSES output. The controllers do not have knowl-
edge of the objective function, but receive measurements
of its value. Simulation results are given in Figure 7. This
example shows that multiple ES controllers, and multiple
types of ES controllers, can detect their own impact on
an objective and optimize themselves, as long as the fre-
quency of each controller is not equal to, or a multiple of,
the frequency of any other controller.
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Figure 4. Block diagram for ES, SFSES, and MFSES con-
trollers minimizing identical quadratic functions.

4.3 ES Control of Mass-Spring-Damper Sys-
tem

This example is an extension of the mass-spring-
damper example from Modelica.Mechanics.
Translational.Examples.Damper from the
Modelica Standard Library. We extended the model
with a position sensor, and a force applied to the mass
and regulated by conventional ES, as in Figure 8. The
objective function is:

Ψ = (y(u)−5)2 ,

where y(u) is the position of the mass, and is a function
of the ES regulated force u. Figure 9 shows that the con-
troller converges to the optimal force value for the mass
to be nearest to the desired position after roughly 100 sec-
onds. The long rise time is due to the “slow” probe fre-
quency, chosen to be a factor of 10 times slower than the
natural frequency of the mass-spring-damper system, so as
to avoid exciting the system at the natural frequency. ES
convergence speed is dependent on several factors, one of
which being probe frequency.

4.4 ES Control of Rolling Wheel Speed
The following example is an extension of the Model-
ica Standard Library model Modelica.Mechanics.
Rotational.Examples.RollingWheel. The ex-
ample features a wheel with an input torque, and a nonlin-
ear friction torque, applied to it, as in Figure 10.

We replaced the torqueStep block with a control-
lable torque, regulated by ES. The translational speed of
the wheel is measured by a speed sensor. The controller
operates to minimize difference between the wheel’s rota-
tion speed and a target speed by controlling the torque as
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Figure 5. ES controller setpoints, and ES controller outputs for
three separate simulations in which a single ES controller mini-
mizes a simple quadratic function.

in:
Ψ(u) = (y(u)−1)2 ,

where y(u) is the wheel speed, which is a function of the
torque applied to the wheel u, regulated by ES.

To compare the performance of the ES, SFSES, and
MFSES controllers, we performed three separate simula-
tions in which each type of ES controller optimized the
torque applied to the wheel. Figure 11 shows the results
of this experiment. All three types of controllers are able
to regulate the torque to achieve the desired wheel speed.
The conventional ES controller converged to the optimal
torque as its setpoint can be updated by any size. The SF-
SES controller exhibited oscillatory behavior around the
optimal torque value, as its setpoint update consists of a
fixed step in either direction, depending on the sign of the
gradient value. The MFSES controller overshot the op-
timal torque value, and eventually converged to a steady
value near the optimal. This is due to the gradient value
threshold for setpoint updates.

4.5 Power System: Distribution Feeder
In the last example, the ES library was used to
build a power system example similar to our previous
works (Sankur and Arnold, 2019), where the aim was to
track a reference for the active (P) and reactive (Q) power
injections at the feeder head. We used models from the
OpenIPSL project (Baudette et al., 2018), in particular a
three-phase implementation of the IEEE 13 test model.

The example was build to show the possibility to com-
bine several ES resources into a single control scheme.
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Figure 6. Block diagram of ES, SFSES, and a MFSES con-
trollers operating in parallel to minimize a common quadratic
objective function.

The modified model including the ES control scheme is
shown in Figure 12. The scheme was designed arbitrarily
to include ES resources throughout the feeder, connected
to one, two, or three phases. In total, we added two three-
phase resources (at nodes 632 and 680), one two-phase
resource (at node 646), and one single-phase resource (at
node 611) that were configured to be ES managed re-
sources. These were connected to nine instances of the
continuous 2D-ES (ESADV_2D) to manage both P and
Q for each phase / resource Each individual ES was con-
figured with the same gain corresponding to 0.2 kVA and
a probing amplitude of 10 kVA. The probing frequencies
were selected as

√
2,

√
3,

√
5/2,

√
7/2,

√
11/3,

√
13/3,√

17/4,
√

19/4,
√

23/4.
The objective considered in this experiment was to

reach different P and Q targets for each phase at the feeder
head. We prepared a block to compute and extract the P
and Q measurements of each phase, and placed it at the
feeder head (node 650). The objective block was added
and connected to constant targets that were set for P and
Q for each phase respectively. The target values for Pa, Pb,
Pc, Qa, Qb, and Qc are chosen arbitrarily to 1, 1.5, 2 MW
and −0.2, −0.3, −0.1 MVAr respectively for the purpose
of the example, yielding the following objective function:

Ψ =(Pa −1)2 +(Pb −1.5)2 +(Pc −2)2

+(Qa +0.2)2 +(Qb +0.3)2 +(Qc +0.1)2

The common objective was broadcast to every ES re-
sources.

The example was initialized with all ES resources at
zero The simulation was executed to reach time instant
t = 60s to let all the variables reach their target value.
Figure 13 shows that the ES control sccheme is work-
ing as expected and all target values are reached. Note
that the computation time of this particular example can

Figure 7. Controller setpoints, controller outputs, and objec-
tive function value for the scenario in which ES, SFSES, and
MFSES controllers operate in parallel to minimize a quadratic
objective function. Dashed lines represent the optimal value for
the corresponding controller.

be sharply reduced by toggling the DAEsolver mode in
Dymola, which speeds up larger differential and algebraic
equation systems, such as that of power system models

5 Conclusion
In this paper, we introduce an open-source Modelica pack-
age that implements several variants of Extremum Seeking
(ES). ES offers an attractive solution for model-free opti-
mization and control, and is applicable to a wide range
of problems. In this paper we introduced an open-source
package that implements several variants of ES stemming
from the Author’s previous work in grid applications. The
implementation was carried out in Modelica, providing a
flexible framework to model multiple types cyber-physical
systems. The Modelica ES implementation allowed us to
prepare examples for different domains that we included
in the library. Thanks to Modelica’s ability to combine
continuous and discrete models, it was also possible to
compare different ES variants in practical applications and
its impact on the physical systems being controlled.

Our efforts focused on using a generic design to
broaden the target audience to different domains. The ES
control scheme was broken down into blocks that sepa-
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Figure 8. Block diagram of the Mass-Spring-Damper example.
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Figure 9. Force applied to the mass, mass position, and objec-
tive function value for the mass-spring-damper example.

rate the objective function from the ES logic. This allows
a flexible assembly of the inter-compatible blocks to suit
the needs of different research communities of various do-
mains. Finally, we included compiled versions of the ES
blocks in the form of FMUs to further extend the possible
applications of the library to any FMI compliant simula-
tion tools.

We plan to extend and further develop our Modelica
ES library in several key ways. We plan to add equilib-
rium based switching for probe amplitude decay, as in the
work of several of this work’s authors (Sankur and Arnold,
2019). A second key area is to add an estimator for the
phase difference between controller output (system input)
and objective function measurements, This is especially
important when using ES to optimize or control dynamic
systems. It also has applications for control systems that
rely on digital network communications that introduce non

Figure 10. Block diagram of the rolling-wheel example.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

T
o

rq
u

e
 [

N
m

]

Torque

0 100 200 300 400
0

0.25

0.5

0.75

1

1.25

1.5

W
h

e
e
l 
S

p
e
e
d

 [
m

/s
]

Wheel speed

0 100 200 300 400

Time [s]

0

0.25

0.5

0.75

1

O
b

je
c
ti

v
e
 V

a
lu

e

Objective

Wheel Speed Reference ES SFSES MFSES

Figure 11. Torque, translational wheel speed, and objective
function for the rolling wheel example, for three scenarios with
ES, SFSES, or MFSES.

deterministic delays. We also plan to implement more
examples in different domains, including optimization of
heat and fluid models.
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Abstract
This paper presents a generalized modeling formulation
for implementation of dynamical system models that ex-
hibit sliding behavior. The proposed formulation is based
on Filippov theory, and is implemented using Modelica.
The main advantage of the developed framework is that
it effectively removes numerical chattering and trajectory
deadlock. The robustness of the formulation is assessed
considering three example system models: a stick-slip
system, a relay feedback system and an anti-windup Pro-
portional Integral (PI) controller in a power system appli-
cation, i.e. an automatic voltage controller.
Keywords: Discontinuity, non-smooth, Filippov, hybrid
dynamics, chattering.

1 Introduction
The Modelica Language is becoming an industry standard
to model dynamical systems described by a set of Ordi-
nary Differential Equations (ODEs) or Differential Alge-
braic Equations (DAEs) with mixed continuous and dis-
crete variables, known as hybrid systems (Fritzson, 2014).
A subclass of hybrid systems referred to as Filippov sys-
tems (Filippov, 1988) are those where discontinuities ap-
pear in vector fields, i.e. in the right hand side of the
model’s equations. If the solution of Filippov systems en-
ters into a constrained subset of the state space, known as
sliding, the formalism given by Filippov (Filippov, 1988)
allows defining a vector field on the sliding surface to
properly handle discontinuities.

A Modelica implementation of the Filippov sys-
tems without considering Filippov formalism leads to
chattering-Zeno-type deadlocks, which consists of in-
finitely many instantaneous switches of the discrete vari-
ables during time domain simulation (Aljarbouh and Cail-
laud, 2016). This significantly restrains the performance
of the solvers of Modelica simulation tools and can lead
to a simulation halt. More importantly, such chattering
does not represent the complicated real physical system
chattering (Levant, 2010). Therefore a generalized formu-
lation is required for smooth continuation of trajectories.
This paper fills this gap.

The authors in (Aljarbouh and Caillaud, 2016) and (Al-
jarbouh et al., 2016) discussed chattering problem of Fil-

ippov systems in Modelica, using OpenModelica. How-
ever, to solve this problem, a framework based on the
Functional Mock-up Interface standard (FMI) and Acu-
men (Taha et al., 2015) is proposed. The authors in (Suski
and Pytlak, 2017) presented a race car model based on
the Filippov formalism implemented in OpenModelica,
but did not provide implementation details and a gener-
alized formulation. It is worth mentioning that there exist
heuristic methods to solve the chattering issues (Bonilla
et al., 2011). However, such methods lack a systematic
generalization.

There exists several methods to formulate hybrid sys-
tems as smooth systems, for example are: linear comple-
mentarity description (Pfeiffer and Glocker, 1996); aug-
mented Lagrangian approach (Leine and Nijmeijer, 2013);
parameterized curve description (Otter et al., 1999) and
then use a dedicated numerical method to solve time do-
main simulations. Such techniques require special treat-
ment of numerical methods and do not model precisely
discrete (non-smooth) events (Leine and Nijmeijer, 2013).
Considering this, we propose a general purpose hybrid de-
sign for implementing Filippov systems using Modelica
that allows smooth integration along chattering regions.

The main contributions of this paper are as follows:

• A generic formulation based on Filippov Theory
(FT) for the implementation and direct numerical
simulation of Filippov systems with one sliding sur-
face using Modelica is proposed.

• A validation of the proposed formulation is per-
formed comparing the results with a Matlab imple-
mentation and via simulation in two Modelica tools,
namely OpenModelica and Dymola.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a background on FT. Section 3 presents the
proposed generalized formulation for the implementation
of Filippov system models using Modelica. Case studies
are discussed in Section 4 where three examples are pre-
sented: a stick-slip system, a relay feedback system and an
anti-windup PI controller in a power system voltage con-
trol application. Conclusions and future work directions
are drawn in Section 5.
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2 Filippov Systems
Filippov systems are dynamical system models with dis-
continuous right-hand side first-order ordinary differen-
tial equations (Filippov, 1988). Consider the following
switched dynamical system of equations:

ẋ = f (x) =

{
f1(x) when h(x)< 0
f2(x) when h(x)> 0

(1)

where, the event function h : Rn →R and an initial condi-
tion x(t0) = x0 are known. The state space Rn is separated
by a hyper-surface Σ into two regions R1 and R2 as fol-
lows:

R1 = {x ∈ Rn | h(x)< 0},
R2 = {x ∈ Rn | h(x)> 0},
Σ = {x ∈ Rn | h(x) = 0},

(2)

such that Rn = R1∪Σ∪R2, assuming at x ∈ Σ the gradient
of h never vanishes, i.e. hx(x) �= 0 for all x ∈ Σ.

The Filippov convex method (Filippov, 1988) states that
the vector field on the surface of discontinuity is a convex
combination of the two vector fields in the different re-
gions of the state-space:

ẋ = f (x) =




f1(x), x ∈ R1

co{ f1(x), f2(x)}, x ∈ Σ
f2(x), x ∈ R2

(3)

where, co( f1, f2) is the minimal closed convex set con-
taining f1 and f2, i.e.

co{ f1, f2}= { fF : x ∈ Rn → Rn : fF = (1−α) f1 +α f2},
(4)

where α ∈ [0,1].
Consider the trajectory starting at t0 with ẋ =

f1(x), with x(t0) = x0 reaches at Σ in finite time (tk). Then
at tk the trajectory can cross, slide or exit Σ. In such situa-
tion, the first order theory given by Filippov explains how
to solve these equations as summarized in the following
section.

2.1 Filippov first order theory
Filippov first order theory defines the vector field if the
solution approaches the discontinuous surface. Let x ∈ Σ
and n(x) is the unit normal to Σ at x i.e. n(x) = hx(x)

‖hx(x)‖
where, hx(x) = ∇h(x) and ∇ = ∂

∂x ; the components of
f1(x) and f2(x) onto the normal to the Σ are nT (x) f1(x)
and nT (x) f2(x) respectively.

2.1.1 Transversal crossing
If x ∈ Σ, then

(nT (x) f1(x)).(nT (x) f2(x))> 0, (5)

i.e. the trajectory leaves Σ. The system will return to R1
with f = f1, if nT (x) f1(x)< 0 or it will proceed to R2 with
f = f2 (see Fig. 1[I]), if nT (x) f1(x)> 0.

f1(x)

f1(x)
f1(x)

f2(x)
f2(x)

f2(x)

Σ

Σ

n(x) n(x)x(t)

x(t) x(t)

R2 R2

R1
R1

a1 b1

[I] [II]

Figure 1. Different regions of the state space with [I] transversal
and [II] sliding trajectory.

2.1.2 Sliding mode
Sliding occurs, at x ∈ Σ if,

(nT (x) f1(x)).(nT (x) f2(x))< 0 . (6)

An unique attracting sliding mode will occur if,

(nT (x) f1(x))> 0 and (nT (x) f2(x))< 0, x ∈ Σ , (7)

and the solution does not leave Σ (see a1 in Fig. 1[II]).
During sliding the time derivative fF is given by:

fF(x) = (1−α(x)) f1(x)+α(x) f2(x) , (8)

where, α(x) is given by [proof, see (Filippov, 1988)]:

α(x) =
nT (x) f1(x)

nT (x)( f1(x)− f2(x))
· (9)

If the signs are opposite in (7) a repulsive sliding mode
will occur. In such a case, the solution is not unique, and
thus, is not considered in this work.

2.1.3 Exit conditions
During sliding mode if one of the vector fields starts to
point away, the solution continues above or below the slid-
ing surface (see b1 in Fig. 1[II]). The exit point is calcu-
lated by finding either the root α(x) = 0 or α(x) = 1 as
appropriate. The following remarks are relevant:

• If fF(x) �= f1(x), fF(x) �= f2(x) such a solution is of-
ten called a sliding motion.

• If at the point of discontinuity, condition (6) becomes
≤ 0 and f1(x) �= f2(x) then a continuous vector-
valued function fF(x) is given which determines the
velocity of motion ẋ = fF(x) along the discontinu-
ity line. If nT (x) f1(x) = 0 then fF(x) = f1(x); if
nT (x) f2(x) = 0 then fF(x) = f2(x).

3 Filippov Theory Based Formulation
Filippov systems can be implemented in a computer
language considering event driven or time stepping ap-
proaches (Dieci and Lopez, 2012). The former method
simulates the system model by detecting the actual event
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Figure 2. Generalized state transitions of Filippov systems.

time whereas the latter method without event detection
(Piiroinen and Kuznetsov, 2008).

Modelica allows the conditional equations become ac-
tivated or deactivated at the event instant (Fritzson, 2014)
and the exact event instant can be detected during time
domain simulation. Utilizing this Modelica language fea-
ture, in the following, we propose a formulation consider-
ing an accurate event detection method for the implemen-
tation of Filippov system models in Modelica.

3.1 General purpose design

According to FT, a system can have three states, the two
states for h(x) < 0 (R1) and h(x) > 0 (R2), and a new
state called SLIDING, characterized by h(x) = 0. For im-
plementation using Modelica, it is convenient to introduce
two discrete variables, say z1 and z2, into the differential
equations, as follows:

ẋ = f1(x)z1(1− z2)+ f2(x)(1− z1)(1− z2)+ fF(x)z2 .
(10)

Observe that in the above equation, depending on the
values of z1 and z2 (e.g. 1 or 0), a proper vector field needs
to be activated during time domain simulation. Lets define
r1 = hT

x (x) f1(x) and r2 = hT
x (x) f2(x) and Fig. 2 shows the

changes in (z1,z2) for the three states and the conditions to
move from one state to another. All these conditions are
based on FT and are evaluated the moment at which the
event function (h(x)) crosses zero.

In the SLIDING state the value of z2 = 1. This automat-
ically deactivates f1(x) and f2(x) (see (10)) without the
need of changing the value of z1. So the previous value
(pre(z1)) is retained. The sliding vector field fF(x) is de-
rived explicitly according to (8). The exit conditions are
defined based on (9). In particular, α(x) = 0 and α(x) = 1
are the conditions that indicate to move to the R1 and R2
regions, respectively.

The case studies below show the steps of the pro-
posed approach followed during time domain simulation
in Modelica tools.

4 Case Studies
In this section we discuss the implementation and val-
idation of the Filippov systems in Modelica consider-
ing our generalized formulation. The case studies are
posted online: https://github.com/ALSETLab/
Modelica_Fillipov_Sliding_Models.

4.1 Example 1: Stick-slip system
Consider the two-dimensional system (so-called stick-slip
system) (Dieci and Lopez, 2009, 2012)

ẋ = f (x) =

{
f1(x) when h(x)< 0
f2(x) when h(x)> 0

with

f1(x) =
(

x2
−x1 +

1
1.2−x2

)
, f2(x) =

(
x2

−x1 − 1
0.8+x2

)
,

and h(x) = x2 − 0.2. This system has a single switching
manifold with two dynamic states.

4.2 Direct implementation
A direct implementation of this system using Modelica is
as follows:

model S t i c k _ s l i p " S t i c k−S l i p System "
Real x1 ( s t a r t =0) ;
Rea l x2 ( s t a r t =0) ;
I n t e g e r z1 ( s t a r t =1) ;
Rea l h ;

equat ion
der ( x1 ) = x2∗z1 + x2∗(1− z1 ) ;
der ( x2 ) = (−x1 + ( 1 / ( 1 . 2− x2 ) ) ) ∗z1+(−x1−

( 1 / ( 0 . 8 + x2 ) ) ) ∗(1− z1 ) ;
h = x2 − 0 . 2 ;
when h < 0 then

z1 = 1 ;
elsewhen h > 0 then

z1 = 0 ;
end when ;

end S t i c k _ s l i p ;

OpenModelica and Dymola were used to simulate this
example, however these tools halt when simulating this
simple model. In OpenModelica, all solvers fail to sim-
ulate and report an error message: Chattering detected
around time 0.221654558425..0.221654756475 (100 state
events in a row with a total time delta less than the step
size 0.001). On the other hand, Dymola’s solver DASSL
fails to continue the simulation. However some solvers for
example: RkFix2 and Euler allows to continue simulation
exposing chattering as shown in Fig. 3. Because of unnec-
essary chattering during the simulation, the results are not
mathematically correct and it is not possible to understand
the dynamic behavior of the real physical system.

4.2.1 Implementation using Filippov theory

The surface Σ is defined by zero of h(x) = x2 −0.2. Here,
hx(x) = [ δh(x)

δx1

δh(x)
δx2

]T = [0 1]T , thus on Σ (i.e. x2 =
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Figure 3. Time derivative of state variables (ẋ1, ẋ2) of stick-slip
system without Filippov sliding simulated in Dymola.

0.2), calculating,

r1 = (0 1)
(

x2
−x1 +

1
1.2−x2

)
=−x1 +1 ,

r2 = (0 1)
(

x2
−x1 − 1

0.8+x2

)
=−x1 −1 .

Therefore according to (6), x1 ∈ (−1,1) there will be an
attractive sliding mode on Σ. This sliding vector field on
Σ is calculated using equations (8,9):

α(x) =
nT (x) f1(x)

nT (x)( f1(x)− f2(x))
=

−x1 +1
2

,

fF(x) =
(

x2
0

)
=

(
0.2
0

)
,

which means that on the sliding surface Σ the x1 state will
grow linearly until reaching the value x1 = 1, at which the
point the trajectory will leave Σ with vector field f1 as for
x1 = 1 the α(x) = 0.

Using the proposed FT based approach, the expressions
derived above can be used to implement the model as fol-
lows (equation part of the model is given):

der ( x1 ) = x2∗z1∗(1− z2 ) + x2∗(1− z1 ) ∗(1− z2 )
+ x2∗z2 ;

der ( x2 ) = (−x1 + ( 1 / ( 1 . 2− x2 ) ) ) ∗z1∗(1− z2 ) +
(−x1− ( 1 / ( 0 . 8 + x2 ) ) ) ∗(1− z1 ) ∗(1− z2 ) ;

h = x2 − 0 . 2 ;
r1 = −x1 +1;
r2 = −x1−1 ;
a = (−x1 +1) / 2 ;
z e r o C r o s s i n g . u = h ;
z e r o C r o s s i n g 1 . u = (−x1 +1) / 2 ;
z e r o C r o s s i n g 2 . u = 1−a ;
when z e r o C r o s s i n g . y then

i f r1 ∗ r2 < 0 then
i f r1 > 0 and r2 < 0 then
z1 = p r e ( z1 ) ;
z2 = 1 ;
e l s e
z1 = p r e ( z1 ) ;
z2 = 0 ;
end i f ;
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Figure 4. Time derivative of state variable (ẋ1) of stick-slip sys-
tem without (NF) and with (F) Filippov theory simulated in Dy-
mola.
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Figure 5. Periodic trajectories of the stick-slip system obtained
in different simulation software tools.

e l s e i f r1 ∗ r2 > 0 then
i f r1 < 0 then
z1 = 1 ;
z2 = 0 ;
e l s e i f r1 > 0 then
z1 = 0 ;
z2 = 0 ;
e l s e
z1 = p r e ( z1 ) ;
z2 = 0 ;
end i f ;

e l s e
z1 = p r e ( z1 ) ;
z2 = 0 ;

end i f ;
elsewhen z e r o C r o s s i n g 1 . y and p r e ( z2 ) == 1

then
z1 = 1 ;
z2 = 0 ;

elsewhen z e r o C r o s s i n g 2 . y and p r e ( z2 ) == 1
then

z1 = 0 ;
z2 = 0 ;

end when ;

Using this implementation the simulation of this system
can be successfully carried out in both OpenModelica and
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Dymola without numerical issues. Results are compared
in Fig. 4. Observe that considering the Filippov sliding
condition the simulation continues without any chattering.
For further validation of the proposed generalized formu-
lation and its implementation, the trajectories in Fig. 5 ob-
tained using Modelica tools (OpenModelica and Dymola)
and compared with the results obtained using Matlab uti-
lizing the method in (Piiroinen and Kuznetsov, 2008).

4.3 Example 2: A relay feedback system
A relay feedback system with single-input and single-
output is as follows (Piiroinen and Kuznetsov, 2008):

ẋ = AAAx+BBBu
y =CCCx
u =−sgn(y)

(11)

or

ẋ =

{
AAAx+BBB, when CCCx < 0
AAAx−BBB, when CCCx > 0

(12)

where,

AAA =




−(2ζ ω +1) 1 0
−(2ζ ω +ω2) 0 1

−ω2 0 0


 ,BBB =




1
−2σ

1


 ,CCC =




1
0
0


 .

The state vector of this model is x = [x1,x2,x3]
T and the

discontinuity surface Σ is defined by h(x) = x1. Re-writing
the dynamical system according to FT,

ẋ = f (x) =

{
f1(x) when h(x)< 0
f2(x) when h(x)> 0

(13)

with

f1(x) =




−(2ζ ω +1)x1 + x2 +1
−(2ζ ω +ω2)x1 + x3 −2σ

−ω2x1 +1


 ,

f2(x) =




−(2ζ ω +1)x1 + x2 −1
−(2ζ ω +ω2)x1 + x3 +2σ

−ω2x1 −1


 .

Here, hx(x) = [1 0 0]T , thus on Σ (i.e. x1 = 0), calcu-
lating,

r1 =−(2ζ ω +1)x1 + x2 +1 ,

r2 =−(2ζ ω +1)x1 + x2 −1 .

The sliding vector field on Σ obtained using equations
(8,9):

α(x) = (−(2ζ ω +1)x1 + x2 +1)/2 ,

fF(x) =




0
b+4(−(2ζ ω +1)x1 + x2 +1)/2
c−2(−(2ζ ω +1)x1 + x2 +1)/2


 ,

where b =−(2ζ ω +ω2)x1+x3−2σ and c =−ω2x1+1.
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Figure 6. Time derivative of state variable (ẋ1) of the relay feed-
back system model without (NF) and with (F) Filippov theory
simulated in Dymola.
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Figure 7. Time derivative of state variable (ẋ2) of the relay feed-
back system model without (NF) and with (F) Filippov theory
simulated in Dymola.

Similarly to the previous example, we have imple-
mented both in direct form and using the proposed formu-
lation. The parameters considered are: ζ = 0.05,ω = 25
and σ = −1. Using the Modelica language similar is-
sues (chattering and trajectory deadlock) as in the pre-
vious example arise in OpenModelica and Dymola dur-
ing time domain simulation without considering FT and
the simulation results obtained using Dymola are shown
in Figs. 6-7. Observe that chattering does not occur for
the model implemented following the proposed approach
based on FT. Finally the validation of the results of Model-
ica tools against the implementation in Matlab (Piiroinen
and Kuznetsov, 2008) is shown in Fig. 8.

4.4 Example 3: Anti-windup PI controller
The IEEE Standard 421.5-2016 recommends an anti-
windup (AW) or non-windup PI controller (IEEE, 2016)
model for dynamic analysis of power systems. Mathemat-
ically, the model is:

If y ≥ wmax : w = wmax and ẋ = 0 ,

If y ≤ wmin : w = wmin and ẋ = 0 ,

Otherwise : w = y = kpu+ x and ẋ = kiu .

(14)
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Figure 8. State space response for the relay feedback system
obtained in different simulation software tools.

where kp, ki, are the proportional, integral gains of the
controller, respectively; x is the controller’s state variable;
and u, y and w are the control input, unconstrained output
and constrained output respectively.

The discontinuous nature of the integral state variable
of this model can lead to numerical issues such as tra-
jectory deadlock and chattering. Only ad hoc approaches
have been proposed to handle such issues (Hiskens, 2012;
Fabozzi et al., 2017). In the authors preliminary results, it
was shown that the formalism given by Filippov can effec-
tively remove those numerical issues (Murad et al., 2019).
In this work, the AW PI controller is utilized in a power
system voltage control application namely an Automatic
Voltage Controller (AVR), which is implemented using
the proposed formulation in Modelica. In addition, the
dynamic response is compared to a deadband (DB) based
technique proposed in (Hiskens, 2012) and it is shown
that the proposed approach achieves a smooth transient re-
sponse.

4.4.1 Single machine infinite bus system

Consider a simple three bus power system network with
a single machine shown in Fig. 9. The generator in bus
1 is equipped with an AW PI controller based AVR and
a power system stabilizer as depicted in Fig. 10. The dy-
namics of this Single Machine Infinite Bus (SMIB) system
is described by a set of DAEs in the following form (Mi-
lano, 2010),

ẋ = f (x,y) ,
0 = g(x,y) ,

(15)

where x and y are the vector of state and algebraic vari-
ables respectively.

Then generator in Fig. 9 (Gen) is modelled using a third
order model (Milano, 2010), and the switching manifold
for the maximum of the AVR, h(x) = kpva + xi − vmax.
When h(x) < 0, the differential equations of the SMIB
system are:

Gen

v1 � θ1

jx13

v3 � θ3

jx23

pl + jql

v20 � θ20

Figure 9. A single generator connected to an infinite bus.
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1+T2s
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v1
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1+Tas
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vmin

kp

ki

s

v f

Figure 10. Scheme of AVR and power system stabilizer.

δ̇ = ω (16)

ω̇ =
1
M
(pm − pe −Dω) (17)

ė′q =
1

T ′
d0
(v f −

xd

x′d
e′q +

xd − x′d
x′d

v1cos(δ −θ1)) (18)

v̇a = (ka(vref + c3 − v1)− va)/Ta (19)
ẋi = kiva (20)

ṡ1 =
1
T2

(c2 − s1) . (21)

The notations and algebraic equations are given in (Mu-
rad et al., 2019). When the v f reaches to its max (vmax)
then (18) and (20) will be switched and all other state vari-
ables will remain same, as follows:

ė′q =
1

T ′
d0
(vmax − xd

x′d
e′q +

xd − x′d
x′d

v1cos(δ −θ1)) (22)

ẋi = 0 (23)

4.4.2 Implementation using Filippov theory
We consider f1(x,y) is (16)-(21) and f2(x,y) is (16),
(17), (22), (19), (23) and (21). Calculating, hx(x) =
[ ∂h(x)

∂x1

∂h(x)
∂x2

... ∂h(x)
∂x6

]T = [0 0 0 kp 1 0]T , and the nor-
mal to the switching surface is: nT (x) = [0 0 0 kp 1 0]. On
the switching manifold, calculating

hT
x (x) f1(x,y) = kp((ka(vref + c3 − v1)− va)/Ta )+ kiva ,

hT
x (x) f2(x,y) = kp((ka(vref + c3 − v1)− va)/Ta ) .

Therefore according to (6), if an attractive sliding occurs
on Σ, then using equation (8) α(x,y) is given by:

α(x,y) =
kp((ka(vref + c3 − v1)− va)/Ta )+ kiva

kiva
.

According to (9), during the sliding requires (23):

fF(x,y) =−kp((ka(vref + c3 − v1)− va)/Ta ) .

These expressions are used in the Modelica implementa-
tion.

51DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 202046



Table 1. PARAMETERS OF THE SMIB NETWORK

Name Values

Generator M = 8, D = 0, x′d = 0.25, xd = 1,
pm = 1, T ′

d0 = 6
Line x13 = 0.3, x23 = 0.5
Load pl0 = 0.7, ql0 = 0.01
AVR ka = 2, Ta = 0.005, kp = 5.5, ki = 35,

vmax = 1.6, vmin =−1.5, vref = 1
PSS ks = 1.5, T1 = 0.23, T2 = 0.12

1.45 1.50 1.55
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0.0

0.2

0.4

0.6

0.8

xi

der(xi) [DB]

der(xi) [F]

Dymola trial version, see www.dymola.com

Figure 11. Time derivative of the integrator state variable (ẋi) in
the AW PI controller with respect to the state variable (ẋi) using
DB and Filippov (F) methods simulated in Dymola.

4.4.3 Simulation Results

The SMIB system is implemented considering the FT-
based formulation and the DB based method in Modelica.
The DB implementation is the same as in (Hiskens, 2012)
and DB value used is 0.0001. The parameters of different
components of the SMIB system are given in Table 1 and
initial values for all variables are given in (Murad et al.,
2019).

The SMIB system is simulated by increasing the volt-
age reference set-point (vref = 1.01) and load (pl0 = 0.71
pu, ql0 = 0.016 pu) at t = 5 s. Figs. 11 and 12 show
the response of the time derivative of integrator state vari-
able (ẋi) and field voltage (v f ) for both DB and FT based
method’s respectively. Following the disturbance, the in-
tegrator state variable (xi) enters into a deadlock region
and using the DB based implementation it shows chat-
tering. Therefore the field voltage (v f ) shows numerous
switching bounded by the DB (see zoom in Fig. 12).
However, a smooth response is achieved using FT based
method. In addition, except for the chattering the FT based
model shows the same trajectories. It is important to men-
tion that without DB or FT based techniques simulation in
OpenModelica fails for all solvers while DASSL fails for
Dymola.

Time(s)
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v
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Figure 12. Trajectories of the field voltage (v f ) using DB and
Filippov (F) methods simulated in Dymola.

5 Conclusions
A generic formulation to implement Filippov system
models with sliding motion using Modelica is proposed.
Three examples are presented considering such a general-
purpose design with a single sliding surface. Simulation
results in different Modelica tools indicate accurate dy-
namic response without any chattering or simulation halt.

Future work will extend the FT-based design for multi-
ple discontinuity surface (Piiroinen and Kuznetsov, 2008).
In addition a numerical performance of FT-based AW PI
controller will be investigated considering the Modelica
power system library: OpenIPSL (Vanfretti et al., 2016).
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Abstract
We propose an implicit, event-driven, penalty-based
method for modeling rigid body contact and collision that
is useful for design and analysis of control algorithms for
precision robotic assembly tasks. The method is based
on Baumgarte’s method of differential algebraic equation
index reduction in which we modify the conventional con-
straint stabilization to model object collision, define a fi-
nite state machine to model transition between contact and
non-contact states, and represent the robot and task object
dynamics as a single set of differential algebraic inequal-
ities. The method, which is realized natively in Model-
ica, has some advantages over conventional penalty-based
methods: The resulting system is not numerically stiff af-
ter the collision transient, it enforces constraints for ob-
ject penetration, and it allows for dynamic analysis of the
Modelica model beyond time-domain simulation. We pro-
vide three examples: A bouncing ball, a ball maze, and a
delta robot controlled to achieve soft collision and main-
tain soft contact with an object in its environment.
Keywords: robotics, control

1 Introduction
To derive new control algorithms for robust robot as-
sembly, it is important to construct system-level dynamic
models of the robotic manipulator and the assembly task,
including appropriate representations of object contact
and collision and also the control algorithms themselves.
Of course, Modelica is well-suited for all three of these
domains. It is also important that such models should be
useful for more than time-domain simulation. For exam-
ple, we should be able to linearize the full model at vari-
ous operating conditions, and to compute things such as a
multi-variable frequency response for rigorous design and
analysis of new types of feedback control algorithms. We
also should be able to compute some model objects for
purposes of real time model-based estimation and control.

Our long-term objectives are (1) to invent new control
algorithms, especially for the delta robot, that make as-
sembly processes robust with respect to uncertainty in the
environment (especially uncertainty in the location of an
object), and exploit new types of sensors, such as touch
sensors, (2) to accelerate the process of experimental val-
idation, and (3) to accelerate and simplify the process of
controller parameter tuning that is done at commission-
ing time. Toward these ends, we not only seek to model
and simulate robotic assembly, but we also desire a math-

ematical abstraction of robotic assembly that is consistent
with the Modelica software representation, and is useful
for synthesis and analysis of robust, hybrid feedback con-
trol algorithms. In addition, we intend to use our devel-
oping Modelica library of robot manipulators, assembly
tasks and control algorithms together with the Modelica
Device Drivers library (Thiele et al., 2017) to control the
delta robot in our laboratory in various assembly experi-
ments, without having to recode any aspect of the control
algorithm, although this work is beyond our scope here.

In this paper, we propose an event-driven model of rigid
body collision and contact that combines differential alge-
braic inequalities to represent rigid body motion with a
Finite State Machine (FSM) to represent the state of con-
tact and collisions. Rigid bodies in contact may be mod-
eled as a set of differential equations coupled via a vector
of Lagrange multipliers λ to a set of algebraic equations
that represent the contact, resulting in an index-3 Differ-
ential Algebraic Equation (DAE). Baumgarte’s method of
index reduction (Baumgarte, 1972, 1983) replaces the al-
gebraic constraint equations with a linear combination of
their derivatives with respect to time, resulting in an index-
1 (or 0) set of DAEs (or ODEs). The contribution of this
paper is to allow the structure of this DAE to change dy-
namically from an unconstrained state (λ = 0) to a con-
strained state (λ > 0) in order to model the physical pro-
cess of collision and subsequent contact (and vis versa),
and to observe that the dynamics introduced by Baum-
garte’s method can in fact model the transient associated
with the collision. We introduce the FSM to represent the
discrete state of contact, resulting in a hybrid DAE captur-
ing collision, contact, and loss of contact. This mathemat-
ics can be represented in the Modelica language natively,
and is consistent with other common models of robotic
manipulators, allowing for integrated modeling, simula-
tion and analysis of the robotic system and task.

The paper is organized as follows. In Section 2 we
propose the contact and collision model in general terms,
list its properties, advantages and disadvantages compared
to other state-of-the-art methods, and provide a simple
bouncing ball example. In Section 3 we present a sec-
ond example: A ball maze. We design a feedback control
algorithm to solve the maze and simulate the closed-loop
system, which exhibits a sequence of collisions, using the
proposed model. Finally, we show initial results for a delta
robot assembly task (Bortoff, 2018, 2019), where control
must achieve soft collision between the manipulator and a
workspace object. Conclusions are drawn in Section 5.
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2 Collision and Contact Model
Modeling collisions and contact among solid objects is a
well-studied subject and we refer the reader to the vast
literature on the subject, including works associated with
the computer graphics community (Erleben et al., 2005).
Collision models have been developed for the Modelica
MultiBody library, notably (Engelson, 2000; Otter et al.,
2005; Hofmann et al., 2011a), resulting in the third-party
IdealizedContact library (Hofmann et al., 2011b). These
references discuss several methods of contact detection
and reaction, including impulsive methods and penalty-
based methods. Several works have integrated Modelica
with third-party software such as the Bullet Physics Li-
brary1 or Gazebo2, especially for collision detection but
also to exploit their animation capability and potentially
tap the large collection of robotic technologies represented
in these tools such as advanced sensors (Bardaro et al.,
2017). However, the collision detection algorithms used
by these third party tools are intended primarily for anima-
tion, not dynamic analysis, and have limitations discussed
in the literature e.g., requiring a non-zero collision margin
or having difficulty with very large and very small shapes
(Coumans, 2015).

In this paper we propose an event-triggered, implicit
penalty (force) - based collision approach that is native to
Modelica, and has some advantages (Pros) over conven-
tional penalty - based methods:

P1 It does not result in a stiff set of ODEs, even for stiff
material properties,

P2 It results in steady-state solutions without object pene-
tration, although object penetration occurs during the
transient collision phase, and

P3 It is relatively easy to understand and implement,
completely in Modelica, which allows representation
of the complete physics of a problem in a single tool.

On the other hand, our proposed method has three disad-
vantages (Cons):

C1 It does not conserve energy before and after elastic
collisions,

C2 It is event-driven, meaning it relies on the Modelica
tool’s ability to properly detect events, and

C3 For large numbers of objects, it will certainly be less
memory and time efficient than alternatives.

Despite these disadvantages, the method is useful for our
purpose, and even C1 is not significant except for very
limited and well-defined circumstances that are generally
outside our interest.

To begin, assume that the environment includes a num-
ber of other rigid bodies, which we denote as task objects,

1https://pybullet.org
2http://gazebosim.org

whose collective generalized position and velocity are de-
noted qc and vc respectively. For the task objects, the un-
constrained Lagrangian equations of motion are assumed
to be

q̇c = vc (1a)
Mc(qc)v̇c +Cc(qc,vc)+Dc(vc)+Gc(qc) = fc, (1b)

where Mc is the inertia matrix, Cc represents Coriolis and
centripetal forces and torques, Gc represents forces and
torques due to gravity, Dc represents frictional forces and
torques, fc represents external forces and torques, and the
subscript c denotes “constraint.” In addition, we assume
that all geometric constraints among the task objects can
be expressed as the Nc-dimensional vector inequality

hc(qc)≥ 0, (2)

and that all the geometric constraints between the task ob-
jects and the robotic manipulator can be expressed as the
Nr-dimensional vector inequality

hrc(q,qc)≥ 0. (3)

With this notation, two task objects are in geometric con-
tact if at least one of the corresponding inequalities is zero;
otherwise the task objects are not in geometric contact.
The functions hc and hrc are, generally speaking, the dis-
tance between key features of the task objects and robotic
manipulator, respectively.

For example, if the task objects were three solid cubes
above a rigid surface, then (1) is the 36-dimensional rigid
body equations for the blocks, with each body having
three translational and three rotational degrees of free-
dom. The matrix Mc is the 18×18 block-diagonal inertia
matrix, Cc represents Coriolis and centripetal forces and
torques, Gc represents forces and torques to to gravity, and
Dc represents frictional forces and torques on the collec-
tion of blocks. The vector hc includes distances from each
vertex to the surface, and distances between the vertices
and edges of each block in order to capture the constraint
that every vertex edge of every cube must lie outside the
volume of all other cubes.

In practice, Nc and Nrc may be large, and grow unfavor-
ably as the number of objects increase. Physics engines
such as Bullet reduce the dimension of inequalities that
must be considered in the collision detection problem by
eliminating from consideration those pairs of objects that
are far away, i.e., hci(qc)>> 0 for some i, using heuristics
like bounding boxes, and by computing only the minimum
distance between pairs objects e.g. (Gilbert et al., 1988),
thereby reducing the number of inequalities in the colli-
sion detection problem. These aspects are important in
typical computer graphics applications. In this paper we
do not concern ourselves with efficiency, and concede that
(2) and (3) may be high-dimensional, although for many
specific assembly problems, these are reasonably sized.

54



56 10.3384/ECP20169         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020   MARCH 23-25, BOULDER, CO, USA

We further assume that the unconstrained (free of contact)
robot manipulator is modeled in the usual manner:

q̇ = v (4a)
M(q)v̇+C(q,v)+G(q) = Bu. (4b)

We now propose that Baumgarte’s method of index re-
duction, which stabilizes a holonomic equality constraint
h(q) = 0 when the constraint is active, can be extended
and used to model both solid object contact and also colli-
sion, if we cause the Lagrange multipliers that correspond
to object-to-object or object-to-robot contact to satisfy an
inequality constraint, and optionally if we modify the co-
efficients and the structure of the constraint stabilization
to represent stiff elastic collision. There are two parts to
this model: The physics equations of constrained motion,
and a finite state machine (FSM) that determines the state
of contact between objects.

We first present the physics equations. Define λc ∈RNc

and λrc ∈RNrc be Lagrange multiplier vectors of the same
dimension as hc and hrc, respectively. For now, denote the
state of each FSM as ci ∈ {0, 1, 2}, for 1 ≤ i ≤ Nc +Nrc,
with ci = 1 corresponding to the contact state. Then we
can define the equations of motion for the combined robot-
task system as

q̇ = v (5a)

M(q)v̇+C(q,v)+G(q) = λ T ∂h
∂q

+λ T
rc

∂hrc

∂q
+Bu (5b)

ḧ+α1ḣ+α0h = 0, (5c)

and

q̇c = vc (6a)

Mc(qc)v̇c +Cc(qc,vc)+Gc(qc) = λ T
rc

∂hrc

∂qc
+λ T

c
∂hc

∂qc
+ f (6b)

and, for 1 ≤ i ≤ Nc and 1 ≤ j ≤ Nrc,

If ci = 1 then ḧci +α1ḣci +α0hci +α2h3
ci = 0 else λci = 0

(7a)

If c j = 1 then ḧc j +α1ḣrc j +α0hrc j +α2h3
rc j = 0 else λrc j = 0.

(7b)

In short, if a constraint is active, i.e., if two objects are in
contact, then the corresponding Lagrange multiplier is an
algebraic state-variable of the index-1 DAE and the corre-
sponding stabilizing constraint equation is active. Other-
wise, the Lagrange multiplier is set to zero, and the corre-
sponding constraint stabilizing equation does not appear.
This ensures that the number of equations and variables is
the same, regardless of the constraint state.

The FSM for each constraint is required for a subtle rea-
son. It might seem that the logic for constraint activation is
that the constraint i (or j) becomes active when hci ≤ 0 (or
hcri ≤ 0), and becomes inactive when λci < 0 (or λrc j < 0),
for 1 ≤ i≤Nc, 1≤ j ≤Nrc, giving two well-defined states.
(For this point, we drop the subscripts for notational sim-
plicity.) However, in Modelica it is not good practice to

Free
Contact = 0

Contact
Contact = 1

Ballistic
Contact = 2

 < 0

h > 0

h  0

h < 0
ḣ < 0

Figure 1. Finite State Machine (FSM) for contact.

have an activation condition (realized using either when
or if), depend on two different variables. Further, it can
occur that λ < 0 while h < 0, because of numerical errors
when both are near zero, or because forces due to other
objects cause λ < 0 while h < 0. In fact, this is common
in practice. We therefore define the three-state FSM dia-
grammed in Figure 1, which ensures correct transition to
and from contact. The Ballistic state is included for the
case that h < 0 and λ < 0, to ensure that the constraint
force can not be negative and pull objects together. Physi-
cally it must always be repulsive i.e., positive.

Several remarks are in order. Note that the Lagrange
multipliers have the physical interpretation as the force
between two objects required to drive the constraint to
zero, according to the second-order stabilized constraint
equation (7). Also, the penetration between objects due to
collision is governed only by corresponding second-order
stabilized constraint equation (7), which is independent of
the other dynamical equations by design. The parameters
α0, α1 and α2 can be tuned for the specific material stiff-
ness and damping properties. Importantly, we have added
a nonlinear cubic term in order to capture nonlinear force
behavior due to penetration (Hofmann et al., 2011a). This
can be any odd-order polynomial or similar function, as
long as (7) is stable.

This formulation has three advantages over more con-
ventional penalty-type methods that explicitly compute a
force between objects in contact as a function of pene-
tration. First, the resulting dynamics (5)-(7) are not stiff
after the collision transient due to (7) has transpired. If we
choose values of α0 and α1 that are of the same time-scale
as the rigid dynamics, while α3 may be large to account
for stiff material properties, then we see that the Lagrange
multiplier is precisely the force that will drive the con-
straint to zero, at which point the eigenvalues correspond
to roots of s2 +α1s+α0, which by design is not stiff. In
other words, we can model collisions between very stiff
objects by making α3 >> 0, and after the transient from
the collision transpires, assuming that the objects remain
in contact, the dynamics will have eigenvalues at the roots
of s2+α1s+α0, so the system need not be stiff. Of course,
the system will be stiff during the collision transient, ne-
cessitating small simulation time steps during this phase,
but a variable step solver will be able to increase step size
after contact is established between objects, and the tran-
sient due to (7) has transpired.
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The second advantage is that the stabilized constraint
equations (7) drive the constraint to zero when the con-
straint remains active. This means that, after the tran-
sient due to that specific collision transpires, the constraint
h = 0 is exactly enforced and there is no penetration, aside
from numerical error which is of the solver tolerance. The
constraint h = 0 will be enforced even if the dynamic sys-
tem continues to evolve: It does not need to be in steady-
state. On the other hand, if we were to compute the force
between objects using a “spring-damper” model, for ex-
ample, then there would be nonzero penetration after the
collision, it would remain nonzero due to the dynamic be-
havior of the rest of the system, even in steady-state. The
penetration can be made small, but at the expense of using
a stiff virtual spring, making the ODE stiff.

A bouncing ball is a good example, with Modelica code
as follows.
model myBouncingBall

Real q(start=1.0), v(start=0.0), f;
Real h, hDot, hDotDot, lambda(start=0);
discrete Integer contact(start=0);
Boolean b1, b2, b3, b4;
parameter Real g=9.81, m=1.0;
parameter Real a0=100, a1=20, a2=1e6;
parameter Boolean linFlag = false;

algorithm
b1 := h <= 0;
b2 := lambda < 0.0;
b3 := h > 0.0;
b4 := h <= 0 and hDot < 0;
if edge(b1) and contact == 0 then

contact := 1;
end if;
if contact == 1 and edge(b2) then

contact := 2;
end if;
if contact == 2 and edge(b3) then

contact := 0;
end if;
if contact == 2 and edge(b4) then

contact := 1;
end if;

equation
if contact == 1 or linFlag then

0 = hDotDot + a1*hDot + a0*h + a2*h^3;
else

lambda = 0.0;
end if;

f = if linFlag then lambda
else contact*lambda;

der(q) = v;
m * der(v) = -m * g + f;

h = q;
hDot = der(h);
hDotDot = der(hDot);

end myBouncingBall;

Figure 2. Bouncing ball simulation for stiff materials and low
damping (α1 = 100, α1 = 1, α2 = 1e6, ). Note that the contact
state passes through the “Ballistic” state, contact = 2, be-
cause λ changes sign, and remains in that state if either h > 0
when λ changed sign, or h < 0 and ḣ > 0 when λ changed sign.
After four bounces, the ball comes to rest, and the constraint
h → 0, and the Lagrange multiplier λ > 0.

The algorithm section computes the FSM. If its
state is contact == 1 then the Lagrange multiplier is
active, and we include the stabilizing constraint equation
with a stiff spring model of contact. If inactive, then we
explicitly set lambda = 0, in order to balance the num-
ber of equations and states. We have included the flag
linFlag in order to compute linearization when the con-
straint is active. It is necessary because Dymola will other-
wise compute a mathematically incorrect linearization at
the final time of simulation when the constraint is active,
due to its numerical algorithm.

Figure 2 shows a Dymola simulation with a small posi-
tive value of damping. This is a typical situation in which
this method is useful, although our typical uses have more
damping than this. However, Figure 3 shows the situa-
tion when the damping is zero, (α1 = 0). Here we see the
ball height increases over time, which means the model is
adding energy to the system, which is not physical. This
is for two reasons. First, the Lagrange multiplier, which
is the reaction force due to collision, includes the steady-
state gravity force mg when the ball is in contact,

λ (t) = (α0q(t)+α2q3(t)+g)m.

If we were to implement a mass-spring type of force dur-
ing collision, this term would be absent and the simulation
would conserve energy within the solver tolerance. So,
during each contact our method adds a little extra energy
that is not physical. This is a clear disadvantage of the
method. The second reason that the energy increases is
that the constraint is active beyond the point in time that h
crosses zero, by design of the FSM, which switches when
λ crosses zero, not when h crosses zero. This is apparent
in Figure 4. The reason the FSM is designed in this man-
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Figure 3. Bouncing ball simulation for stiff materials and zero
damping (α1 = 100, α1 = 0, α2 = 1e6), showing the ball height
growing over time.

ner is that the constraint equations cause h → 0, and so
small numerical errors in h when it is near zero but slightly
positive would cause a switch from contact to non-contact,
even if λ > 0. This would cause a kind of undesirable and
actually unphysical chatter in the system simulation. We
prefer to switch when the constraint force changes sign,
so that objects in contact will remain in contact as long as
their contact force is positive.

Figure 4. Close-up of the transition between contact and non-
contact in Figure 3, which occurs when λ changes sign near
t = 4.262s. Note that when h crosses zero, near t = 4.356s,
λ = 9.81, so additional positive force is applied to the ball for
4.262 < t < 4.356, adding energy to the ball.

We emphasize that the situation when α1 = 0 is not
representative of a typical use of this method, and dis-
cussed here only to be clear about the method’s limita-
tions. Indeed, in this case, the constraint is not stabilized.
Most real problems involving assembly have significant
damping, and in these cases the energy increase due to the
method is negligible.

Figure 5. Rolling ball maze toy (van Baar et al., 2019).
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Figure 6. Ball maze diagram.

3 Ball Maze Example
A ball maze exhibits contact and non-contact physics that
is effectively modeled using the proposed approach. Re-
ferring to Figure 5, the objective of the game is to manip-
ulate the maze orientation in a way to cause the ball to roll
into the center ring. The maze has been used to demon-
strate learning-type control (van Baar et al., 2019), and
typically the manipulation is “tip-tilt” in nature, causing
the ball to roll due to gravity. The objective is challeng-
ing because after the ball passes through a gate, it collides
with a maze ring and once in contact, the configuration is
unstable, so the ball will roll one way or another, frustrat-
ing the player.

Here we will solve the maze using an alternative ap-
proach. Instead of tipping and tilting the maze, we stand it
on end, so that the central axis (of symmetry) is orthogo-
nal to the gravity vector, and we rotate the maze about the
central axis, so that the maze itself has only one degree of
freedom, as shown in Figure 6. The strategy is to use feed-
back to stabilize the ball when it is in contact with a ring,
and then rotate the closed-loop maze system so that the
ball falls through a sequence of gates, eventually reaching
the center. Therefore we need a model that is appropriate
for control system design, and also is appropriate for the
simulation of the ball motion as it comes into and out of
contact with the sequence of rings.
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The ball maze is modeled as

Mq̈+G = HT (q, i)λ +Bu (8a)

ḧ(q, q̇,λ , i)+α1ḣ(q, q̇, i)+α0h(q, i) = 0 (8b)

where q ∈R4, q1 is the angular displacement of the maze,
q2 and q3 are the Cartesian coordinates of the ball center-
of-mass, q4 is the angular displacement of the ball relative
to the base frame,

M = diag(Jm, mb, mb, Jb) , (9a)

G = [0 0 gmb 0]T , (9b)

B = [1 0 0 0]T , (9c)

H(q, i) =
∂h(q, i)

∂q
, (9d)

Jm and Jb are the rotational inertia of the maze and ball, re-
spectively, mb is the ball mass, g is the acceleration due to
gravity, u is an input torque, and λ ∈ R2 is the Lagrange
multiplier vector. When the ball is in contact with maze
ring i of radius rmi, 1 ≤ i ≤ 4, the two holonomic con-
straints

h1(q, i) = q2
1 +q2

2 +(rmi + rb)
2 (10a)

h2(q, i) = rb(q4 −q40)+ rmi(q1 −q10)

+ rmi (atan(q2/q3)− atan(q20/q30)) (10b)

are active so that λ1 and λ2 are time-varying algebraic
states. In (10), h1 is the distance constraint, h2 is
the rolling constraint, rb is the ball radius, and q0 =
[q10 q20 q30 q40]

T is q(t) at the time of collision t = t0
with ring i. When the ball is not in contact with any rings,
i.e., it is passing through a gate, then λ1 = λ2 = 0.

We design a stabilizing feedback controller for the case
when the ball and ring i are in contact using the root lo-
cus method, assuming the ball position along the x-axis,
y1 = q2, and the maze orientation, y2 = q1, are measured
outputs, and splitting the input as u = u1 + u2. Model
(8) and (10) is coded in Modelica, from which we com-
pute a linearization at the open-loop unstable equilibria
q2 = 0, and a pole-zero plot of the system from u1 to y1.
This shows four pole-zero cancellations at s = −5, corre-
sponding to the stabilized constraint (8b) with α1 = 10
and α0 = 25, two pole-zero cancellations at the origin,
one pole at s = −1.1, and one unstable pole at s = 1.4.
This system can be stabilized using two lead-type com-
pensators, one for each output. The first stabilizes the ball
position y1 = q2, with zero at s = −0.6, pole at s = −10
and positive feedback gain, as shown in the root locus in
Figure 7 (top). This moves the unstable pole into the left
half plane, but leaves the two poles at the origin. After
closing this loop, we next compute the pole-zero map for
the system from u2 to y2. This shows the two poles at the
origin and a non-minimum phase zero at s = 0.65. This
can also be stabilized with a lead compensator with zero
at s = −0.05, pole at s = −5.0, and gain k2 = 0.035, as

Figure 7. Root locus showing a lead compensator stabilizing
the ball position y1 = q2 (top), and lead compensator stabilizing
the maze rotation y2 = q1 (bottom).

shown by the root locus in Figure 7 (bottom). The sec-
ond loop has an upper limit on its gain, due to the non-
minimum phase zero, and has a slower response, while the
first loop has a lower limit on its gain, due to the unstable
pole, and has a faster response. The closed-loop system
is realized in Modelica as shown in Figure 8. Note that
a single set of controller gains is effective for any of the
rings 1 ≤ i ≤ 4, but this must be checked by computing a
linearization for each ring radius.

To simulate the ball maze, we require a FSM to switch
the Lagrange multipliers from active to inactive, similar to
Figure 1. However for the ball maze, we have sufficient
damping to prevent bouncing, and the system will move
one-way through the maze, simplifying the logic. Essen-
tially the constraints become active when the ball contacts
a ring, i.e., when h1 changes sign, for the sequence of rings
(note that h1 depends on ring radius i), and become inac-
tive i.e., the ball falls through a gate, when the rotation of
the maze moves the gate under the ball. We can define the
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Figure 8. Feedback Controller for Ball Maze.
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Figure 9. Ball maze FSM.

location of the gates by defining

ψ(q, i) =




q1 + rm1atan(q2/q3)−π/2 for i = 1
−q1 − rm2atan(q2/q3) for i = 2
q1 + rm3atan(q2/q3)−π/2 for i = 3
−q1 − rm4atan(q2/q3) for i = 4

(11)
so that ψ(q, i) changes sign as the ball moves “over” open
gate i. Then the FSM is as shown in Figure 9, and is
straightforward to implement as a Modelica algorithm.

Figure 10 shows results of a Dymola simulation of the
closed-loop system. The ball is initialized in the free state,
and falls toward the outer ring, making contact at about
t = 0.1s. The maze turns counterclockwise beginning at
t = 10s and rotates until the ball falls through gate 1. As it
falls through the gate, in the contact = 2 state, λ = 0 and
the ball moves freely, until it collides with ring 2 at about
t = 27s. The collision causes the large spike in λ , repre-
senting the elastic collision, after which the contact = 3
state is maintained as the maze is rotated clockwise until
gate 2 is below the ball. Thus, as the maze rotates, the sys-
tem switches between the constrained contact state and an
unconstrained free state, although the number of dynamic
states remains constant (8) throughout. The ball maze con-
tinues to rotate until the ball gets to the inner ring, at which
point the controller is turned off.

Figure 11 shows a sequences of screen captures from a

Figure 10. Ball maze simulation. Note the brevity of the free-
motion states, contact = 2,4,6, when the ball passes through a
gate, and when λ = 0.

Dymola animation of the closed-loop system. Note that
we show only three rings here for simplicity. Space con-
straints prohibit a full listing of the Modelica code, which
is available from the conference website or by contacting
the author directly. Note that it would be simpler to ro-
tate the maze in a single direction. However, changing the
direction of q̇1 allows for the maze to retain previously
collected balls in the center. It also shows the slower and
non-minimum phase response of the maze angle q1 to the
reference.

Figure 11. Sequence of ball maze configurations as the closed-
loop system drives the ball toward the goal.
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Figure 12. Delta robot.

4 Delta Robot Soft-Touch Control
The delta robot (Clavel, 1990) shown in Figure 12 con-
sists of three (or more) identical under-actuated arms, ar-
ranged symmetrically about the x3-axis (pointing down).
Each arm consists of a proximal link, rigidly attached to
the servomotor shaft at the base, and a pair of parallel dis-
tal links that are attached to the proximal link by universal
joints. The six distal links are in turn attached to the wrist
flange by universal joints, so that the two distal links as-
sociated with each arm remain parallel during operation.
The configuration provides three translation DOFs of the
wrist flange within the robot’s reachable workspace, while
the orientation of the wrist flange remains fixed. This ben-
eficial feature of the delta robot decouples the translational
kinematics and dynamics of the robot from the rotational
kinematics and dynamics associated with a wrist that is
mounted below the wrist flange (not shown in Figure 12).
The servomotor angles are directly measured, while the
universal joint angles are not measured, but can be com-
puted from the servomotor angles via the forward kine-
matics.

A formulation and Modelica realization of the delta
robot translational dynamics was derived previously
(Bortoff, 2018, 2019) by defining the dynamics for
each unconstrained arm, and then adding the holonomic
coupling constraint representing the connections to the
wrist flange. The resulting index-3 differential-algebraic
equation (DAE) is stabilized using Baumgarte’s method
(Baumgarte, 1972, 1983), giving an index-1 DAE.

The objective here is to derive and simulate a soft-
contact control algorithm for the delta robot. In this case
the task object is a Lego brick on a surface, and the task is
to pick up the brick with a gripper that is mounted to the
wrist flange without sliding the brick along the surface,
despite uncertainty in its location on the surface. Such a
control algorithm would be used in practice to grasp very
fragile objects. To accomplish this, the gripper frame is
moved by the robot servos so that the left finger is close
to the block surface, and then it approaches the block with

Figure 13. Simulation of soft collision and contact. The dis-
tance to the object (top), is commanded by a smooth reference to
be within 5mm of the object in the first 2.5s. Then it approaches
at low velocity of 0.2mm/s, and the position gain kp is reduced
continuously to zero until t = 9s. At this point the robot is in
velocity control mode. Contact is made at t = 12s, and the force
of impact peaks at 90mN, below what would cause the block to
move. Contact is maintained with a force of 40mN, and there is
no motion of the block or bouncing.

low velocity and low impedance so that it does not trans-
fer energy sufficient to cause motion of the block. For this
particular simulation, the gripper servo is not used.

Figure 14 is a block diagram in Dymola showing the
feedback controller. The reference generator computes
smooth reference trajectories for position, velocity and ac-
celeration in task space within constraints on maximum
values for velocity, acceleration and jerk, using cubic
splines. In this specific case, the trajectory is such that
the approach velocity is 0.2mm/s. The PDFF controller
block is a digital PD controller with feedforward

u(k) = kp(k)(r(k)− y(k))+ kd(k)(ṙ(k)− ẏ(k))+ r̈(k)+ f (k)
(12)

where ẏ(k) is computed by filtering y(k) to approximate
the derivative, the feedback gains kp and kd are time-
varying, set by a higher-level controller, and f is an ex-
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Figure 14. Feedback control model for soft contact. Blocks in green are discrete-time control blocks that use the Modelica Syn-
chronous Library and compute forward and inverse kinematics, PD control with variable gains, and gravity torque compensation.
The pink blocks at left compute smooth reference trajectories. The red Brick block computes the dynamics of a block in contact
with a surface, which comes in contact with the delta robot end effector during simulation. The input f into the delta robot model
is the force applied to the end effector by the brick, which is a Lagrange multiplier internal to the Brick model. Our deltaRobot
library is open at left, showing some of the control system components.

ternal input from the left touch sensor, which is not used
here. The Forward and Inverse Kinematics blocks, and the
Gravity Compensator block, compute the forward and in-
verse kinematics, and also a torque to cancel the effect of
gravity on the robot. These functions cannot be computed
analytically for the delta robot, and use Newton’s method
to solve a set of implicit functions, described in (Bortoff,
2018).

To achieve soft contact, the kp gain in the direction of
travel is continuously reduced to zero as it approaches
the brick, putting the robot effectively in velocity control
mode and reducing its impedance at the moment of con-
tact. Closed-loop stability is maintained if

0  kp(k) k2
d , (13)

for fixed kd , which follows from the Circle criteria
(Vidyasagar, 1993). Importantly, there is no heuristic
switch from a “position control mode” to a “velocity con-
trol mode.” Rather it is a single controller that is continu-
ously adjusted between these two extremes along the ref-
erence trajectory as the end effector approaches the task
object. Further, there is no switch from “motion control
mode” to a “force control mode” when contact is detected.
In fact, the robot lacks a force - torque sensor. Rather,
there is a single feedback controller that can achieve soft

contact without any switch. This is important because we
want to eliminate tuning and commissioning effort, and
we desire a control architecture amenable to robustness
analysis.

Figure 13 shows a simulation result of the end effec-
tor approaching and contacting the brick. The contact be-
tween the block and surface, and between the block and
robot is modeled as in Section 2. In this simulation, a
smooth trajectory commands the left finger to approach at
low velocity, while the impedance is reduced by contin-
uously until kp = 0 before impact. From this point for-
ward it is effectively in a velocity control mode. Contact
is made, and the Lagrange multiplier becomes active at
t = 12s. There is no bounce and the force imparted is
sufficiently small to maintain the friction contact with the
surface, so the block does not move. The small force is
maintained after the contact.

5 Conclusions
We have presented a useful model of contact and colli-
sion intended to support development of model-based con-
trol design and analysis for robotic assembly. The advan-
tages and disadvantages of the modeling approach were
discussed. In particular, this method will be effective in
situations involving low numbers of contacts, where it is
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important to enforce penetration constraints after the colli-
sion transient occurs, and in cases where dynamic analysis
is required, not just time-domain simulation. Three exam-
ples illustrate the method, with the ball maze providing a
control design and simulation use case.

There are several important issues that are not ad-
dressed in this paper. First, friction at the contact is not
included, although it would not be difficult to augment
the approach to include it. Second, and more importantly,
redundant constraints, where the Jacobian H is non full
row rank, and therefore the Lagrange multipliers are not
unique, is also not considered. Additional logic or a way
to regularize the problem, i.e., by adding an additional
constraint, might work. But despite these and other dis-
advantages, we intend to use this method to develop a
range of control algorithms for robotic assembly, in ad-
dition to modeling other mechatronic problems in which
contact and collisions are central to the problem.
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Abstract 
Refrigerant property calculation has a significant 
impact on the computational performance of vapor 
compression cycle simulations.  In a previous 
publication, the authors have described the Modelica 
implementation of a Spline-Based Table Look-Up 
Method (SBTL) for fast calculation of refrigerant 
properties.  This implementation demonstrated 
significant improvement in computational speed for a 
range of complex air conditioning system models.  
This paper describes further development of the SBTL 
method to allow the generation of analytic Jacobians. 
The new implementation with analytic Jacobian 
capability is tested on a range of air conditioning 
system models and demonstrates significant further 
improvement of computational speed when compared 
to the original SBTL model. 
Keywords: Refrigerant Properties, Equation of State 
(EOS), Analytic Jacobians, Thermodynamic Modeling, 
Vapor Compression Cycle, Air Conditioning, Spline 
Interpolation, Computational Performance 

1 Introduction 
Dynamic simulations of vapor compression cycles 
typically require significant numbers of function 
evaluations to calculate properties of the working fluid.  
There are a number of different approaches for 
working fluid calculations. These calculations are 
typically performed using reference Helmholtz energy 
(multi-parameter) equation of state (EOS) (Tillner-
Roth et al, 1994; Richter et al, 2011) to achieve high 
accuracy. Short formulation (Span et al, 2003) of 
Helmholtz energy EOS improves the computational 
performance, but it does not cover all popular 
refrigerants, in particular the commonly used R1234yf. 
In Modelon’s Air Conditioning Library (Modelon, 
2019), both the reference Helmholtz EOS and short 
Helmholtz EOS are implemented for a wide range of 
refrigerants. 

While typically accurate, these Helmholtz 
approaches have a complicated multi-parameter 
functional form that is very computationally expensive.  
In addition, Helmholtz energy EOS uses density and 
temperature as thermodynamic states, but system 

models typically use pressure and enthalpy as dynamic 
states.  Thus, internal iteration is needed when property 
calculations are needed in vapor compression cycle 
system simulations. 

To address performance requirements for complex 
vapor cycle system simulations, a new property model 
based on the Spline-Based Table Look-Up Method 
(Kunick et al, 2015) was implemented in Modelica (Li 
et al., 2018).  This implementation uses external C 
functions for fast spline evaluations and inversion.  A 
full overview of the SBTL method and implementation 
is provided in the previous publication (Li et al., 2018) 
from the authors and thus not repeated here.  The 
SBTL property model was validated against the 
existing highly accurate Helmholtz energy EOS 
models.  Accuracy and computational performance 
were tested starting from single function calls and then 
increasing in system complexity to heat exchanger tests 
and then full system models of vapor compression 
cycles using Modelon’s Air Conditioning Library and 
the associated library regression testing suite.  The 
SBTL property model was also tested with a series of 
system models from Ford Motor Company including 
drive cycle simulations, air conditioning pulldown tests 
with air loop, and a shutdown-startup test.  Testing 
demonstrated significant improvements in 
computational speed without sacrificing accuracy over 
the range of tests conducted.  Complex system models 
demonstrated 2x speedups using the new SBTL 
property model as compared to those using the 
Helmholtz energy EOS.  The SBTL property model 
and implementations for R134a and R1234yf were 
added to the 2018.2 release (version 1.17) of 
Modelon’s Air Conditioning Library. 

While the SBTL method has demonstrated 
significant improvements in computational efficiency 
for vapor cycle models, there are additional 
opportunities for efficiency improvement.  In particular, 
the SBTL property model as initially implemented in 
Modelica and used with Dymola (Dassault Systemes, 
2019) results in numerical Jacobians when used in 
system simulations.   The computational benefits of 
analytic Jacobians with Modelica models has been 
well-documented (Braun et al., 2011; Jorissen et al., 
2015).  In particular, Modelon has experienced 
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speedups of up to 100x in very complex thermal power 
models after the development of a high precision water 
property model in Thermal Power Library (Modelon, 
2019) that is capable of generating analytic Jacobians 
with Dymola.   

This paper describes the extension of the SBTL 
method to allow the generation of analytic Jacobians.  
A short overview of the use of analytic Jacobians in 
system simulation is provided in Section 2.   A brief 
overview of the SBTL method and implementation is 
provided in Section 3.  Section 4 provides an overview 
of the development and implementation effort to 
enhance the SBTL method to allow analytic Jacobian 
generation.  Section 5 shows a series of different 
models that were tested to validate the accuracy and 
computational efficiency improvement of the SBTL 
method with analytic Jacobian capability.   

2 Analytic Jacobians in System 
Simulation 

One key advantage of Modelica modeling is that the 
equations are typically accessible to the Modelica 
compiler.  Depending on the sophistication of the 
Modelica compiler, it is often possible for the compiler 
to utilize the differential-algebraic equations to provide 
additional information required for the numerical 
solver.  In particular, there are two critical places 
where the equations and their derivatives can be 
leveraged to improve the computational efficiency of 
the numerical solver: 

• Nonlinear equation solution using Newton-
Raphson techniques 

• Numerical integration scheme 
In both these cases, the Jacobian of the system of 
equations typically needs to be calculated. 
     While many Modelica compilers apply automatic 
differentiation to construct Jacobians, there are many 
ways in which automatic differentiation can fail to 
generate an analytic Jacobian.  Common issues include 
external code without derivatives provided via the 
appropriate annotations, functions without appropriate 
information for the tool to perform automatic 
differentiation at the level required to generate an 
analytic Jacobian, or even equations and equation 
structure which make it difficult for the tool to perform 
automatic differentiation.  In cases where an analytic 
Jacobian cannot be generated, numerical Jacobians are 
calculated.  While the analytic Jacobian is not an 
approximation but is the true symbolic derivatives of 
the equation, a numerical Jacobian is an approximation 
and typically calculated via finite differences.  
 

2.1 Nonlinear Equation Solution 
It is common for the differential-algebraic equations 
that result from a Modelica model to involve the 

solution of a nonlinear system of equations.  Consider 
the following representation of a nonlinear system of 
equations: 

𝒇𝒇(𝒙𝒙) = 𝟎𝟎 (1) 
Newton’s method is a typical iterative technique for the 
solution of non-linear equation systems.  The iteration 
scheme for Newton’s method is as follows: 

𝒙𝒙𝑛𝑛+1 = 𝒙𝒙𝑛𝑛 − 𝑱𝑱(𝒙𝒙𝑛𝑛)−1 𝒇𝒇(𝒙𝒙𝑛𝑛) (2) 
where the Jacobian is as follows: 

𝑱𝑱(𝒙𝒙) = 𝛁𝛁𝒇𝒇(𝒙𝒙) (3) 
Thus, it can be seen that the Jacobian is fundamental 
for solving nonlinear equation systems.  The use of 
analytic Jacobians increases the accuracy of the 
derivatives used in the iterative solution of nonlinear 
equation systems, leading to a reduction in the number 
of iterations required for convergence and potentially 
also increase the robustness of the solution of the 
nonlinear equation system. 

2.2 Numerical Integration 
Many numerical integration schemes require the 
calculation of the Jacobian of the system of equations 
(Braun et al., 2011; Jorissen et al., 2015).  For example, 
implicit integration schemes require Jacobian 
computation and require iterations for convergence.  
These iterations lead to multiple function evaluations 
for the calculation of the Jacobian when numerical 
Jacobians are used.  Increased accuracy from analytic 
Jacobians results in fewer iterations to convergence. 

The Jacobian is related to the number of states in the 
model.  Complex models with more states lead to a 
larger Jacobian as the number of elements in the 
Jacobian matrix is equal to the square of the number of 
states.  Thus, it is expected that complex models with a 
larger number of states will exhibit greater 
computational improvement with analytic Jacobians by 
elimination of the large number of finite differences 
that would be required for the approximate of the 
Jacobian numerically. 

3 Spline-Based Table Look-Up 
Method (SBTL) Overview 

In recent years, different kinds of interpolation-based 
methods have been explored for fast calculation of 
refrigerant properties (Laughman et al, 2012; Schulze, 
2013; Aute et al, 2014). SBTL method is one of them 
with proven accuracy, performance, and robustness. A 
detailed description of the SBTL method can be found 
in the reference (Kunick et al, 2015). This section 
focuses on its distinct features and derivative 
derivation. 
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3.1 Key features of SBTL method 
By using a specific type of quadratic/biquadratic 

spline (Späth, 1995), the SBTL method (Kunick et al, 
2015) possesses the following distinct features: 

• Equidistant grid 
• Continuous first derivatives 
• Analytic inverse 
• Consistent phase boundary definition 

These features make the method a good fit for 
system simulation of vapor compressor cycle, where 
both speed of function evaluations and consistency are 
key requirements. To further tailor the implementation 
for modeling vapor compression cycle in Modelica, the 
authors made several design choices in the previous 
work (Li et al., 2018):  

• Performed an overall fit to cover the whole 
domain instead of fitting over several sub-
divided domains, balancing accuracy and data 
loading time at model initialization.  

• Limited the use of grid transformation, 
trading-off between accuracy and the cost of 
derivative evaluation and inversion.  

• Used external C functions for the spline 
evaluation, inversion, and derivatives to 
maximize the speed.  

The benefit of the above choices carries over to the 
implementation of analytic Jacobians with a fine 
balance of speed and simplicity. 

3.2 Derivative of the splines with grid 
transformation 

To illustrate the impact of grid transformation on 
derivative calculation, we will look at the example of 
1D saturation temperature splines. Derivatives of 2D 
spline follow the same principle.  

The SBTL method uses equidistant grid to avoid 
searching. To enhance the accuracy of the interpolation, 
particularly for fitting highly non-linear functions, grid 
transformation can be used on both the independent 
and dependent variables. The chain rule must be 
applied properly when calculating derivatives for the 
transformed variables. Take the 1D saturation 
temperature spline as an example: 

�̅�𝑝 = log(𝑝𝑝) (4) 

𝑇𝑇𝑠𝑠{𝑖𝑖} = 𝑎𝑎𝑖𝑖1 + 𝑎𝑎𝑖𝑖2(�̅�𝑝 − �̅�𝑝𝑖𝑖) + 𝑎𝑎𝑖𝑖3(�̅�𝑝 − �̅�𝑝𝑖𝑖)
2 (5) 

where �̅�𝑝𝑖𝑖 is the ith transformed pressure node and 𝑎𝑎𝑖𝑖𝑖𝑖 are 
the spline coefficients in the ith interval of the spline. 
The derivative in the ith interval is given as:   

𝑑𝑑𝑇𝑇𝑠𝑠{𝑖𝑖}
𝑑𝑑𝑝𝑝 =

𝑑𝑑𝑇𝑇𝑠𝑠{𝑖𝑖}
𝑑𝑑�̅�𝑝

𝑑𝑑�̅�𝑝
𝑑𝑑𝑝𝑝 =

𝑑𝑑𝑇𝑇𝑠𝑠{𝑖𝑖}
𝑑𝑑�̅�𝑝

1
𝑝𝑝 (6) 

where  
𝑑𝑑𝑇𝑇𝑠𝑠{𝑖𝑖}

𝑑𝑑�̅�𝑝 = 𝑎𝑎𝑖𝑖2 + 2𝑎𝑎𝑖𝑖3(�̅�𝑝 − �̅�𝑝𝑖𝑖) (7) 

The 2nd-order derivative can be written as:   
𝑑𝑑2𝑇𝑇𝑠𝑠{𝑖𝑖}

𝑑𝑑𝑝𝑝2 = 𝑑𝑑
𝑑𝑑𝑝𝑝 (

𝑑𝑑𝑇𝑇𝑠𝑠{𝑖𝑖}
𝑑𝑑�̅�𝑝

1
𝑝𝑝)            

= (
𝑑𝑑2𝑇𝑇𝑠𝑠{𝑖𝑖}

𝑑𝑑�̅�𝑝2 −
𝑑𝑑𝑇𝑇𝑠𝑠{𝑖𝑖}

𝑑𝑑�̅�𝑝 ) 1
𝑝𝑝2 

(8) 

where  
𝑑𝑑2𝑇𝑇𝑠𝑠{𝑖𝑖}

𝑑𝑑�̅�𝑝2 = 2𝑎𝑎𝑖𝑖3 (9) 

As we can see, more advanced grid transformation 
can result in complicated expression for derivative 
function due to chain rule. Therefore, model 
developers need to be careful when balancing the cost 
of derivative calculation and model accuracy. 

4 Implementation of Analytic 
Jacobians with SBTL 

In this section, we discuss the implementation of 
analytic Jacobians in SBTL medium models. Our first 
step towards analytic Jacobians was to identify what 
derivative functions were needed by the compiler to 
construct the Jacobians. We then derived the derivative 
functions analytically based 1D and 2D splines. In the 
SBTL method, dew and bubble enthalpy functions 
were implemented as inverse function of the 2D spline 
of temperature (Kunick et al, 2015). Therefore, we had 
to pay close attention to consistency between function 
evaluation and derivative calculation when deriving 
derivatives of the saturation property functions. 
Additional derivatives might also be needed in some 
component models to obtain analytic Jacobians for the 
full system model. 
 

4.1 Diagnostics of required derivative 
functions 

Two advanced flags in Dymola were used to identify 
the derivatives required for the analytic Jacobians: 

• Advanced.GenerateAnalyticJacobian 
• Advanced.PrintFailureToDifferentiate 

With the first flag set to true, Dymola will try to 
construct analytic Jacobians during compilation of the 
model. When Dymola fails to do so, the user can set 
the second flag to true to find out what derivative 
functions are missing.  

Consider the twin evaporator cycle model (see 
Figure 4) from the Air Conditioning Library as an 
example, Using the flags above, we were able to find 
out that we needed to provide derivatives (with respect 
to time) of the following functions: 

• Partial derivatives of density 𝜕𝜕𝜕𝜕
𝜕𝜕ℎ|

𝑝𝑝
, 𝜕𝜕𝜕𝜕

𝜕𝜕𝑝𝑝|
ℎ
 

• Saturation properties: 𝑑𝑑ℎ𝑙𝑙
𝑑𝑑𝑝𝑝 ,  𝑑𝑑ℎ𝑣𝑣

𝑑𝑑𝑝𝑝 , 𝑑𝑑𝜕𝜕𝑙𝑙
𝑑𝑑𝑝𝑝 ,  𝑑𝑑𝜕𝜕𝑣𝑣

𝑑𝑑𝑝𝑝  
• Isentropic enthalpy h𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝, 𝑠𝑠, 𝑋𝑋) 
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• Spline functions for compressor efficiencies 
In this example, not only derivatives of the medium 
properties are required, some specific component 
models (e.g. compressor) also need derivatives. We 
suggest model developers perform this kind of 
diagnostics on selected system models that can well 
represent the causality and complexity of their typical 
use cases. 

4.2 Derivatives of saturation properties 
While it is difficult to derive analytic derivatives for 
fluid property models based on Helmholtz energy EOS, 
it is relatively straight forward to do so for spline-based 
models, especially in the single-phase region. SBTL 
method, despite its advantage in speed and consistency, 
does require additional work when it comes to 
derivative functions of saturation properties. First, grid 
transformation needs to be taken care of as discussed in 
Section 3.2. More importantly, we need to keep the 
derivatives consistent with the spline fit, i.e. all 
derivatives are obtained from the 1D and 2D spline and 
no extra information or fit shall be used. 

Dew and bubble enthalpy functions are implemented 
as inverse of the 2D spline for temperature in SBTL 
method. They can be written as ℎ𝑙𝑙

𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝,  𝑇𝑇𝑠𝑠(𝑝𝑝))  and 
ℎ𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝,  𝑇𝑇𝑠𝑠(𝑝𝑝)).  This feature ensures consistent 
definition of the phase boundary, but it is more 
complicated to get derivatives of saturation properties 
in SBTL method than an implementation of ℎ𝑙𝑙 and ℎ𝑖𝑖 
as 1D splines of pressure. As summarized in (Thorade 
and Saadat, 2013), we can write the first-order 
derivatives (with respect to pressure) as 

dℎ
d𝑝𝑝 = 𝜕𝜕ℎ

𝜕𝜕𝑝𝑝|
𝑇𝑇

+ 𝜕𝜕ℎ
𝜕𝜕𝑇𝑇|

𝑝𝑝

d𝑇𝑇𝑠𝑠
d𝑝𝑝  (10) 

where  
𝜕𝜕ℎ
𝜕𝜕𝑝𝑝|

𝑇𝑇
= − 𝜕𝜕𝑇𝑇/𝜕𝜕𝑝𝑝|ℎ

𝜕𝜕𝑇𝑇/𝜕𝜕ℎ|𝑝𝑝
 (11) 

𝜕𝜕ℎ
𝜕𝜕𝑇𝑇|

𝑝𝑝
= 1

𝜕𝜕𝑇𝑇/𝜕𝜕ℎ|𝑝𝑝
 (12) 

Similarly, we can get 
d𝜌𝜌
d𝑝𝑝 = 𝜕𝜕𝜌𝜌

𝜕𝜕𝑝𝑝|
𝑇𝑇

+ 𝜕𝜕𝜌𝜌
𝜕𝜕𝑇𝑇|

𝑝𝑝

d𝑇𝑇𝑠𝑠
d𝑝𝑝  (13) 

where  
𝜕𝜕𝜌𝜌
𝜕𝜕𝑝𝑝|

𝑇𝑇
= 𝜕𝜕𝜌𝜌

𝜕𝜕𝑝𝑝|
ℎ

+ 𝜕𝜕𝜌𝜌
𝜕𝜕ℎ|

𝑝𝑝

𝜕𝜕ℎ
𝜕𝜕𝑝𝑝|

𝑇𝑇
 (14) 

𝜕𝜕𝜌𝜌
𝜕𝜕𝑇𝑇|

𝑝𝑝
=

𝜕𝜕𝜌𝜌/𝜕𝜕ℎ|𝑝𝑝
𝜕𝜕𝑇𝑇/𝜕𝜕ℎ|𝑝𝑝

 (15) 

The partial derivatives 𝜕𝜕𝑇𝑇
𝜕𝜕𝑝𝑝|

ℎ
, 𝜕𝜕𝑇𝑇

𝜕𝜕ℎ|
𝑝𝑝

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝|

ℎ
, 𝜕𝜕𝜕𝜕

𝜕𝜕ℎ|
𝑝𝑝

 can be 

evaluated as derivatives of 2D splines 𝑇𝑇(p, h) and 𝜌𝜌(p, 
h) along the dew and bubble lines. 

Second-order derivatives of saturation properties are 
also needed when calculating the derivative of 𝜕𝜕𝜕𝜕

𝜕𝜕ℎ|
𝑝𝑝
 and 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝|

ℎ
in the two-phase region.  Derivation details are 

outlined in a Jupyter Notebook on GitHub of CoolProp, 
hence not to repeat in this paper. 

5 System simulations using SBTL 
method with analytic Jacobians 

In this section, we demonstrate the speedup of system 
simulations using SBTL method with analytic 
Jacobians by comparing with those using Helmholtz 
energy EOS or SBTL method without analytic 
Jacobians. We first look at a simple heat exchanger test 
and a system model of vapor compression cycle in the 
Air Conditioning Library. We then move on to a 
complex three-branch air conditioning (AC) system 
and an AC system coupled with a cooling loop, both 
developed at the Ford Motor Company, to evaluate 
their computational performance in drive cycle 
simulations. Lastly, we study the scalability of the 
SBTL method with analytic Jacobians by using higher 
discretization for the heat exchangers in the three-
branch model. All the simulations are performed with 
the same computer configuration shown in Table 1. 

Table 1. Configuration of the computer used for testing 

Model Dell XPS 8700 Desktop 
Processor Intel® Core™ i7-4770 CPU 
RAM 16.0 GB 
System 64-bit, x64 based, Windows 10 Pro 
Software Dymola 2018 FD01 
C compiler Visual Studio 2015 Express Edition 
Solver Dassl 
Tolerance 1e-6 (to ensure mass conservation) 

5.1 Comparison of heat exchanger test 
results and performance 

Heat exchangers modeled by finite volume method 
usually have the most property function calls in system 
simulations of vapor compressor cycles. Therefore, a 
heat exchanger test is representative of how well the 
property model is going to perform in full system 
simulations. We used an evaporator test bench from the 
Air Conditioning Library, shown in Figure 1, to test the 
SBTL property model with analytic Jacobians for 
R134a. The two-layer evaporator had 18 discretized 
volumes and 56 dynamic states (pressure and enthalpy 
in each refrigerant volume and temperature in each 
wall element). The test was run for 20 s with constant 
boundary conditions except for the refrigerant mass 
flow rate which ramps from 0.028 to 0.038 kg/s during 
5s to 7s.  
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Figure 1. Evaporator test bench in Modelon’s Air 
Conditioning Library. 

Trajectories of evaporator cooling power and air 
outlet temperature matched very well between the 
SBTL model with analytic Jacobian and its data 
source, the short formulation of Helmholtz energy 
EOS, as shown in Figure 2. The maximum deviation in 
cooling power is less than 0.03%. The computation 
performance of different property models is vastly 
different. CPU time of the three cases can be found in 
Figure 3. The use of analytic Jacobians cuts the time by 
17% compared with the original SBTL model. The 
heat exchange tests provide a preview of the great 
potential of using the SBTL method with analytic 
Jacobians to speed up system simulations. 

 
Figure 2. Comparison of cooling power and air outlet 
temperature.  

 
Figure 3. Comparison of CPU time running the 
evaporator test bench.  

5.2 Comparison of system models in the Air 
Conditioning Library results and 
performance 

The twin evaporator model from the Air Conditioning 
Library (Figure 4) was simulated for 180s to further 
evaluate the speedup of a complex system model 
brought by analytic Jacobians. The model has 131 
dynamic states and has a 10°C ramp in the incoming 
air temperature at the condenser after 90 s.  

 
Figure 4. Twin evaporator cycle model in Modelon’s Air 
Conditioning Library. 

As shown in Figure 5, simulation with analytic 
Jacobians ran at 1.7x the speed of the one without 
them. The speedup can mostly be explained by a 
decrease in the number of function evaluations from 
2987 to 1000 when analytic Jacobians were used. This 
agrees with findings in (Jorissen et al., 2015).  
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Figure 5. CPU time comparison of the twin evaporator 
cycle simulations. From top to bottom: Blue – Reference 
Helmholtz EOS, Red – Short formulation of Helmholtz 
EOS, Green – SBTL, Magenta – SBTL with analytic 
Jacobians. 

We then moved on to a pull-down test example with 
91 dynamic states in the Air Conditioning Library, as 
depicted in Figure 6. A comparison of the CPU time 
can is shown in Figure 7. The simulation ran 2x faster 
with analytic Jacobians than without.  

 
Figure 6. Pull-down test example in Modelon’s Air 
Conditioning Library. 

 
Figure 7. CPU time comparison of the pull-down 
simulations. 

5.3 Comparison of Ford air conditioning 
system models results and performance 

In this section, we show the results from two complex 
automotive air conditioning system models, developed 
at Ford Motor Company, to illustrate the speedup by 
the SBTL method with analytic Jacobians in drive 
cycle simulations. There are three distinct features in 
these simulations compared with the ones in previous 
sections: 

• The working fluid in both systems is R1234yf. 
Short formulation of Helmholtz energy EOS 
was not available for it and reference state 
Helmholtz EOS had to be used. The original 
SBTL method offered an even greater speed-
up in these cases (Li et al., 2018). 

• Both models run into low flow conditions in 
the chiller, which was known to challenge the 
performance and robustness of the model. 

• Tabulated boundary conditions or compressor 
shut down are imposed on the model, inducing 
more fast dynamics. 

By running these simulations, we can get a better 
understanding of the performance and robustness of the 
SBTL method with analytic Jacobians in complex 
system models.  

Figure 8 depicts a three-branch air conditioning 
system. Two evaporators and one chiller are connected 
in parallel, and all of them are superheat controlled by 
the thermal expansion valves (TXVs). The condenser 
model consists of a condenser section, a subcool 
section, and an internal receiver. The system model has 
183 dynamic states. Apart from the tabulated boundary 
conditions, we deliberately introduced fast dynamics 
by rapidly closing the valve upstream of the chiller 
TXV and introducing low flow rate condition in the 
chiller. 

Drive cycle (SC03) simulations were performed for 
598s using different R1234yf medium models. Figure 
9 shows a good match in results. As seen in Figure 10, 
the simulation finished in 112.6s when using the SBTL 
medium with analytic Jacobians, just 19% of the real-
time (598s). This is more than 4x the speed of the 
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original SBTL medium and 10x the speed of the 
reference state Helmholtz energy EOS. 

 
Figure 8. Air conditioning system with two evaporators 
and one chiller connected in parallel in the loop. 

 
Figure 9. Cooling power of the evaporators and the 
chiller using different property models. 

 
Figure 10. CPU time comparison of the three-branch air 
conditioning system model. 

Figure 11 is a diagram of a vapor compression cycle 
coupled with a battery cooling system. The refrigerant 
loop was initialized at certain operating conditions 
(defined by pressures, chiller superheat and condenser) 
The compressor was off from 0s, simulating cycle 
shutdown. The temperature of the battery kept rising 
afterward and hit a certain threshold. The compressor 
was then turned back on (at about 122s) to cool the 
coolant and eventually drive the battery temperature 
down. Fast dynamics introduced by the shutdown and 
startup of the compressor posed serious challenges to 
the performance and robustness of the model. 

Compressor speed and refrigerant mass flow rate are 
plotted in Figure 12. Simulations using different 
R1234yf medium models predicted the same mass flow 
trajectory during the fast transients. As shown in 
Figure 13, the SBTL medium with analytic Jacobians 
offered significant speedup (14x) compared to the 
original SBTL medium. If we focus on the zero-flow 
period from 22s to 122s, it only took 1.34s of CPU 
time using analytic Jacobians, a 125x speedup 
compared to the simulation using the SBTL medium 
without analytic Jacobians. 

 
Figure 11. R1234yf vapor compression cycle with a 
chiller connected to a battery cooling loop. 
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Figure 12. Compressor speed and refrigerant mass flow 
rate. 

 
Figure 13. CPU time comparison for the model shown in 
Figure 11. 

5.4 Scalability of SBTL method with 
analytic Jacobians 

To better understand how the performance of the SBTL 
method with analytic Jacobians scales with the number 
of states, we simulated the three-branch air 
conditioning system, shown in Figure 8, with higher 
discretization on the refrigerant side of the heat 
exchanger. Non-sparse DASSL solver was used for the 
study. Simulation setup and CPU time are summarized 
in Table 2. As the total number of states increases, the 
CPU time grows as O(N1.6).  

Table 2. Setup and CPU time of 598s drive cycle 
simulations of the three-branch air conditioning system 
with different discretizations. 

Number of finite volumes Total 
number 

of 
states 

CPU 
time [s] Condenser Each 

evaporator Chiller 

12 12 5 183 112.65 
24 24 10 311 327.01 

36 36 15 439 472.23 

48 48 20 567 730.11 

60 60 25 695 1014.87 

6 Conclusions 
This paper summarizes the further development of the 
SBTL method for fast calculation of refrigerant 
properties in Modelica to allow the generation of 
analytic Jacobians.  By expanding the SBTL 
implementation to provide the additional derivatives 
needed for analytic Jacobians, Dymola can generate 
analytic Jacobians for complex vapor cycle system 
models with Air Conditioning Library.  The new SBTL 
model capable of analytic Jacobians was tested on a 
suite of models ranging from a heat exchanger bench 
test to full closed vapor cycle loop systems, including 
several complex system models from Ford Motor 
Company.   

The computational improvements from the SBTL 
models with analytic Jacobians are significant.  While 
the original implementation of the SBTL method 
provides improvements in computational speed on the 
order of 33% - 50% for complex system models when 
compared to the baseline Helmholtz property models, 
the computational improvements from SBTL with 
analytic Jacobians are even greater when compared to 
the original SBTL implementation without analytic 
Jacobians.  Reductions in computational speed ranging 
from to 2-4x are obtained on complex system models 
for SBTL with analytic Jacobians versus SBTL without 
analytic Jacobians. Even greater improvement was 
observed in models under low or zero flow conditions. 
In addition, the computational improvement could be 
even larger for more complex models with even more 
states. 

The new SBTL models with analytic Jacobians 
capability will be available in an upcoming release of 
Modelon’s Air Conditioning Library. 
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Abstract 
Commonly used deterministic methods are unable to 
capture the randomness in occupant behavior and its 
impact on electric power consumption. In this paper, we 
propose a new data-driven model to capture occupant 
behavior in a stochastic manner. Unlike existing models 
and prediction tools, this new model does not require 
occupant presence data and can learn occupants’ arrival 
and departure time based on lighting power 
consumption data, which is more readily available than 
occupant presence data. We applied this occupant 
behavior model to lighting power consumption 
prediction and implemented the entire prediction 
process in Modelica. We then validated the Modelica 
model by comparing the predicted daily, weekly and 
monthly peak lighting power with measurements from 
two small commercial buildings. The results suggest 
that the prediction matches the measurement within 
acceptable deviations of 7%. The results also indicate 
that the proposed stochastic model performs better for 
long-term prediction of lighting power (monthly and 
weekly) than the short-term (daily). 
Keywords: Occupant behavior modeling, occupant 
presence prediction, lighting power prediction, 
regression model, stochastic simulation 

1 Introduction 
The increasing penetration of renewable energy is 
introducing more variability within the power grid (J. 
Wang et al. 2018). To better balance generation and 
consumption, the power demand side needs to become 
more flexible and even more controllable. Some studies 
focus on estimating building load flexibility by 
controlling thermostatically controllable loads (TCLs) 
such as HVAC systems and water heaters in buildings 
(Wu et al. 2018; Zhao et al. 2017). Compared to TCLs, 
the lighting system has the advantage of shorter 
response time which makes it more suitable for faster 
demand response mechanisms (e.g., shimmy).  

The stochasticity of occupant behavior and its impact 
on power and energy consumption presents a challenge 
to accurate real-time estimation of building electric 
loads. Traditional building energy modeling tools use 

static hourly schedules both for occupant presence and 
building equipment. This leads to discrepancies between 
the simulated power shape and the actual consumed 
power (Luo et al. 2017; Kim et al. 2017), especially for 
short-term prediction scenarios such as those needed for 
fast demand response. Limited data availability is a 
second challenge, as due to privacy reasons, occupant 
sensor data is often unavailable. These challenges must 
be accounted for in theoretical and model-based studies 
on occupant behavior and its related impacts on the 
power consumption and flexibility characterization of 
the built environment.  

For commercial buildings, existing occupant 
presence prediction models have been developed mainly 
on single office rooms. Wang et al. used exponential 
distribution to predict the vacancy intervals of single 
offices (D. Wang, Federspiel, and Rubinstein 2005). 
Small commercial buildings have not gained enough 
attention concerning occupant behavior studies.  

Lighting prediction models have been investigated 
over the past 40 years, and the research points to strong 
correlation between occupants’ presence and the 
lighting status in a zone. The first published study for 
occupants’ light switching behavior in office buildings 
found that switching mainly takes place when entering 
or vacating a space and the switch-on probability on 
arrival exhibits a strong correlation with minimum 
daylighting illuminance in the working area (Hunt 
1980). Manual switch-off probability of lights is 
strongly correlated with the expected length of absence 
(Pigg, Eilers, and Reed 1996). Later, this research was 
expanded by the study of correlations between 
intermediate switch-on/-off behavior and illuminance 
levels (Reinhart and Voss 2003).  

In this paper we propose a methodology for occupant 
presence and lighting power prediction based on 
minute-level power meter data. We apply the 
methodology for two small commercial buildings use 
cases (one bakery and one ice cream shop) and validate 
the prediction performance with real data collected from 
building sites. Here we present only the prediction of 
occupant presence and lighting power. In future work 
we will extend the methodology to other loads driven by 
occupant behavior. 
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The innovation of this work lies in: (1) The proposed 
method can be applied to occupant presence prediction 
without occupancy sensor data and it has been validated 
against real power meter data. (2) The method can be 
used for sub-hourly power demand prediction within 
acceptable deviations of 7%. (3) The method could be 
applied to other building systems and the Modelica 
model is extensible and scalable. The rest of the paper is 
organized as follows: Section 2 presents the 
methodology. Section 3 discusses the results. Section 4 
concludes this paper with future work and limitations. 

2 Methodology 
Our method is based on the assumption that the usage of 
the lighting system and its associated power 
consumption is strongly determined by the presence of 
the occupants in the building spaces. This assumption 
allows us to extract occupant presence schedules from 
lighting power data. We then use the extracted presence 
data to train logistic regression models that predict 
people’s arrival and departure times. The trained 
probability models are then implemented in Modelica 
language to reproduce building occupancy patterns. The 
lighting power is then predicted by multiplying the 
occupant presence value (0 or 1) with the observed 
nominal lighting power. We then extend the model to 
address realistic scenarios of multi-stage lighting power. 
To validate our model, we compare the simulation 
results with the lighting power data collected at two 
building sites and evaluate the model performance with 
respect to several statistical metrics.  

The following flowchart (Figure 1) shows the 
research workflow for the results presented in this paper. 

 
Figure 1. Research and modeling workflow. 

2.1 Determine Occupant Presence 
In this section, we discuss the extraction of occupant 
presence information from the lighting power data. As 
indicated in the literature review, occupant arrival time 

and departure time has a strong correlation with the 
lighting power utilization: According to Hunt’s work 
(Hunt 1980), the action of turning on the lights depends 
on the minimum illuminance level on the working plane 
upon arrival and people tend to leave the lights on until 
the space is fully empty. This is consistent with our 
observation on the lighting power data in the two studied 
buildings (C2: ice cream shop and F1: bakery). As 
plotted in Figure 2 and Figure 3, once the lights are 
turned on, they will remain on for the whole day until 
all the people leave the space. This means that in this 
case the illuminance level is not a strong driver for the 
light utilization. In our preparation work where we used 
regression of lighting power based on indoor 
illuminance levels, prediction accuracy was relatively 
low. In this paper, we will assume that people in the two 
studied buildings are not sensitive to the illuminance 
levels and will turn on the lights once they enter the 
space and will keep the lights on while they are there. In 
other words, lights are not switched on to increase work-
place illuminance levels, but rather to show potential 
customers that the store is open. Based on this 
assumption, we extract the occupant presence 
information from the lighting power data and regard it 
as the ground truth.  
 

 
Figure 2. Lighting power and occupant presence (C2: ice 
cream shop). 
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Figure 3. Lighting power and occupant presence (F1: 
bakery). 

To convert the lighting power data into occupant 
presence information, we first cleaned the power meter 
data by removing obvious outliers such as values that 
are extremely large for lighting systems. Then, we 
selected the threshold for determining occupant 
presence (e.g., 0 for absent; 1 for present) to avoid 
oscillations in presence status. For instance, the 
threshold for the ice cream shop is 50 W; for the bakery 
is 350 W. Any power value above this threshold is 
converted to 1 and below this threshold into a 0. Because 
the power data has 1-minute resolutions, we will make 
the assumption that presence or absence of 1 minute can 
be neglected and we will filter out two consecutive 
changes of occupant presence to eliminate frequent 
oscillations in the resulted presence data.  

The lighting power shapes shown in Figure 2 and 
Figure 3 indicate the different characteristics of the two 
buildings. For the ice cream shop, only one power value 
occurs every day regardless of weekday or weekend. 
However, for the bakery, two distinct levels are 
observed in the power shape. Hence, for his case, we 

divide the power shape into two parts namely base 
lighting power (Figure 4) and additional lighting power 
(Figure 5) and we model them separately. This two-
stage lighting behavior is probably caused by zoning of 
the lighting system. The expression for multi-stage 
lighting power can be described with Eq. 1. 

𝑃𝑃(𝑡𝑡) = 𝑎𝑎0(𝑡𝑡)𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑎𝑎1(𝑡𝑡)𝑃𝑃𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒,1 +⋯
+ 𝑎𝑎𝑛𝑛−1(𝑡𝑡)𝑃𝑃𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛−1 (1) 

𝑃𝑃 is the lighting power; 𝑎𝑎𝑖𝑖 is the binary variable that 
indicates the status of base or extra lighting; n is the 
number of stages. Both 𝑃𝑃  and 𝑎𝑎𝑖𝑖  are time dependent. 
Here, 𝑎𝑎0 indicates the building occupancy and the rest 
of them indicates the on/off of extra lighting devices. 𝑎𝑎𝑖𝑖 
is predicted with logistic regression models introduced 
in Section 2.2. 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑃𝑃𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 are the average power 
value of each stage. For C2, 𝑛𝑛 = 1; for F1, 𝑛𝑛 = 2.  

2.2 Train Logistic Regression Models 
The prediction of occupant presence could be viewed as 
a classification problem. As discussed before, the arrival 
and departure behavior in the two studied buildings 
follows the same pattern for weekdays and weekends 
regardless of the indoor illuminance level. Hence, the 
main feature for classifying occupant presence is the 
time of the day. We chose logistic regression as our 
model for the training because: (1) it is a linear classifier 
and is easy to train; (2) it can reach the same level of 
accuracy as non-linear classifiers; (3) it is easy to 
implement in Modelica. We divided the arrival and 
departure behavior into two models and trained them 
separately as they have opposite trends along time of the 
day.  

To rule out the impact of seasonal change in the 
occupant behavior, the training and validation datasets 
were selected from the summer of 2018. June and July 
data were used for the training and August data was used 
for the validation. The accuracy is defined as the rate of 
classifying the data point into the right group. The 
confusion matrices for the test datasets of all the 
regression models are shown in Table 1. The format of 
the confusion matrices follows the pattern in Table 2. 

Table 1. Confusion Matrices for Classification 
Performance. 

C2 
Arriv

al 

3693 44 F1 Arrival 
2736 132 
118 1406 

31 624 F1 
Departure 

1797 260 
C2 

Depa
rture 

283 60 273 2062 
F1 Extra 

On 
16 0 

4 1849 3 0 

Table 2. Example Confusion Matrix (C2 Arrival). 
 Predicted No Predicted Yes 

Actual No 3693 44 
Actual Yes 31 624 

Figure 4. Base lighting power and occupant presence in 
F1 bakery. 

Figure 5. Extra lighting power and lighting status in F1 
bakery. 
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The accuracy of the classifier is then calculated with 
Eq. 2. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
= 𝑁𝑁𝑁𝑁.  𝑁𝑁𝑜𝑜 𝐴𝐴𝑁𝑁𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴 𝐴𝐴𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑁𝑁𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐

𝑁𝑁𝑁𝑁.  𝑁𝑁𝑜𝑜 𝑐𝑐𝑁𝑁𝑐𝑐𝐴𝐴𝑐𝑐 𝑐𝑐𝐴𝐴𝑐𝑐𝐴𝐴 𝑝𝑝𝑁𝑁𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐  (2) 

For building F1, the lighting power is divided into the 
base power and the extra power. The base part reflects 
occupants’ arrival and departure and is regressed in 
dependence on time of the day. The frequency (i.e., 
number of total times) of extra lights on of F1 in 2018 is 
plotted in bars (Figure 8). From the figure, we can see 
that the status of the extra lighting has a correlation with 
day of week. Hence, the feature for this part is chosen as 
day of week. Also, from the figure, we see that the total 
frequency of extra lights on in 2018 is only 8.8%. To 
deal with the imbalance in the training dataset, we 
adopted the Synthetic Minority Over-sampling 
Technique (SMOTE) (Chawla et al. 2002), which made 

the minority (extra lights on) class equal to the majority 
class (extra lights off) by creating synthetic samples of 
the minority class. The logistic regression parameters 
for each model are listed in Table 3. The probability 

  
Figure 6. Logistic regression model for arrival (left) and departure (right) in C2 ice cream shop.  

  
Figure 7. Logistic regression model for arrival (left) and departure (right) in F1 bakery. 

 

Table 3. Logistic Regression Parameters. 

  Accuracy β0 β1 β2 β3 β4 β5 β6 β7 

C2 Arrival 0.98 -27.1983 0.0447 N/A 
Departure 0.97 34.6877 -0.0249 

F1 
Arrival 0.94 -11.9311 0.0254 N/A 

Departure 0.88 13.7769 -0.0125 
Extra On 0.84 -0.8309 -0.4829 0.4967 -0.2586 0.4967 -0.1171 -0.4829 -0.4829 

 

Figure 8. Extra lights on frequency for day of week in F1 
bakery (2018). 
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function is expressed in Eq. 3, where 𝑝𝑝 represents the 
probability of occupant present or extra lights on; 𝑒𝑒 is 
the natural log base; 𝛽𝛽 is the regression intercept and 
coefficients; 𝑚𝑚  refers to the number of logistic 
regression independent variables. The accuracy of all 
the models are above 84%. Table 4 lists the probability 
of extra lights on for day of week in building F1.  

𝑝𝑝 = 1
1 + 𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2+⋯+𝛽𝛽𝑚𝑚𝑥𝑥𝑚𝑚) (3) 

Table 4. Probability of Extra Lights On for Day of Week 
from Logistic Regression. 

 Mon Tue Wed Thu Fri Sat Sun 
Proba
bility 0.21 0.42 0.25 0.42 0.28 0.21 0.21 

Figure 6 and Figure 7 visualize the training data 
points and the logistic regression models for arrival and 
departure in C2 and F1. Based on our observations, 
occupants will arrive before 12 pm and leave after 12 
pm. Hence, the arrival models are trained with data 
points before 12 pm and the departure models with 
points after 12 pm. For the ice cream shop departure 
model, people tend to leave very late. To increase the 
prediction accuracy, we used data after 6 pm to train this 
model.  

2.3 Implement in Modelica 
The implementation of the presence model and the extra 
lighting status model is adapted from 
Buildings.Occupants.Office.Lighting.Hunt1979Light in 
Modelica Buildings library (Wetter et al. 2014). The 
model is implemented as a stochastic simulation model. 
Every two minutes, a binary variable generator will 
randomly generate a binary number. The probability of 
this number being 1 equals the calculated probability of 
the occupant being present at that time of day based on 
the logistic regression model. Similarly, in the extra 
light status model, the probability of the random number 
being 1 equals the probability of the extra light being on 
at the simulated day of week.  

Figure 9 depicts the layout of the two-stage lighting 
power prediction model for F1. The presence models 
generate binary signals which will be multiplied with 
the nominal power of each stage. The nominal powers 
are the calculated mean values of the lighting power in 
each stage. The sum of the lighting power of all stages 
are then compared with the actual lighting power data to 
validate the performance of the stochastic simulation 
models. An assumption is made in this model that the 
extra light will only be on when both of the following 
conditions are satisfied: (1) The extra light should be on 
for that day of week; (2) There are occupants in the 
building. The simulation was run for the whole month 
of August 2018 and the time step was set as 10 minutes. 
The actual time step was picked by Dymola to be 2 
minutes due to the stochastic events. 

 
Figure 9. Modelica layout of the two-stage lighting 
power prediction model. 

3 Results and Discussions 
We evaluate both the occupant presence prediction 
performance and the lighting power prediction 
performance in this section. The presence models are 
evaluated with the root mean squared error (RMSE) and 
the coefficient of variation of RMSE (CVRMSE) of the 
probability distribution model. The lighting power 
prediction performance is evaluated with the relative 
error of the peak power and normalized mean bias error 
(NMBE). The error in the lighting power prediction is 
dependent on the presence prediction error as well as the 
error of nominal power estimation.  

ASHRAE Guideline 14-2002 has requirements for 
whole building energy calibration (ASHRAE 2002). 
The smaller the time scale, the more tolerant the criteria. 
For example, the criteria for monthly NMBE is 5%, 
monthly CVRMSE is 15%, and the criteria for hourly 
NMBE is 10%, hourly CVRMSE is 30%. Though only 
the lighting system is calibrated in our work, the 
principle for different time scales should apply.  

3.1 Occupant Presence Prediction 
RMSE represents the standard deviation of the errors 
and CVRMSE is the ratio of the standard deviation to 
the mean of the dependent variable. They both describe 
how concentrated the data is around the line of its best 
fit. Large errors are especially noticed in these metrics. 
The equations for calculating the two metrics are listed 
below. 𝑥𝑥𝑜𝑜,𝑖𝑖  is the original value of the predicted 
variable, 𝑥𝑥𝑓𝑓,𝑖𝑖 is the forecasted value, N is the number of 
total data points. Table 5 lists the RMSE and CVRMSE 
of the occupant and extra lighting status prediction 
models. The CVRMSE for the occupant presence 
models are below 25%. The CVRMSE for extra lighting 
prediction is 125%. This is caused by the imbalance of 
the training data. The probability of the extra lights 
being on is much lower than the probability of them 
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being off. Hence, the mean value 𝑥𝑥𝑜𝑜̅̅ ̅ is very small and 
small errors could cause a large CVRMSE.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑥𝑥𝑓𝑓,𝑖𝑖 − 𝑥𝑥𝑜𝑜,𝑖𝑖)
2𝑁𝑁

𝑖𝑖=1
𝑁𝑁  (4) 

𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
√1𝑁𝑁∑ (𝑥𝑥𝑓𝑓,𝑖𝑖 − 𝑥𝑥𝑜𝑜,𝑖𝑖)

2𝑁𝑁
𝑖𝑖=1

𝑥𝑥𝑜𝑜̅̅ ̅
 

(5) 

Table 5. RMSE and CVRMSE of Occupant Presence and 
Lighting Status Prediction Results. 

 
C2 F1 

Occupant 
Presence 

Occupant 
Presence 

Extra 
Lights 

RMSE 0.108 0.101 0.153 
CVRMSE 20.9% 25.0% 125% 

Figure 10 and Figure 11 plot the regression model, 
simulated probability distribution and the actual 
probability distribution of arrival and departure in the 
two buildings. From the figure, we see that the simulated 
probability distribution aligns with the regression model 
very well. The actual probability distribution deviates 
from the regression model especially during the 
transitional periods in the middle (e.g., 9 to 11 for C2 
arrival, 17 to 21 for F1 departure). This could have been 
caused by the inappropriate selection of the training data. 
The high accuracy of the classifiers shown in Table 3 is 
partially because more data points are located outside 

the transitional period. The classifier can distinguish 
those points easier. Another reason could be that only 
one feature is used to predict occupant presence. This 
could have limited the shape of the logistic regression 
model to further fit the actual curve. More features 
should be explored in the future. 

Table 6 compares the probability of extra lights on in 
F1 calculated from the simulated results and the actual 
data. From the table, we see that the simulated and actual 
results deviate on Tuesday and Wednesday. For other 
days, the simulation results reproduced the actual 
probability well.  

Table 6. Comparison of Simulated and Actual Probability 
of Extra Lights On for Day of Week. 

 Mon Tue Wed Thu Fri Sat Sun 
Simula

ted 0 0.29 0.29 0.14 0.29 0.29 0.14 

Actual 0 0 0 0.14 0.29 0.29 0.14 

3.2 Lighting Power Prediction 
To evaluate the lighting power prediction performance 
of the models, peak power prediction relative error and 
NMBE are calculated on a monthly, weekly and daily 
basis. In this way, the lighting power prediction 
performance is evaluated for different time scales. As 
the models in this paper are mainly designed for shorter-
time demand response scenarios, annual energy 
consumption is out of scope. Table 7 summarizes the 

  
Figure 10. Arrival and departure time probability distribution (C2: ice cream shop). 

  
Figure 11. Arrival and departure time probability distribution (F1: bakery). 
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peak power prediction accuracy. For C2, the errors are 
all below 2.36%. For F1, which is two-stage prediction, 
the errors are larger, but all stay below 6.9%. Hence, the 
multi-stage method performs well in predicting peak 
power. 

Table 7. Peak Power Prediction Accuracy. 

 
Monthly 

Peak 
Power 

Weekly Peak 
Power 

Daily Peak 
Power 

C2 2.36% 2.36%~2.36% 
(avg: 2.36%) 

0.73%~2.36% 
(avg: 1.99%) 

F1 6.90% 2.15%~6.90% 
(avg: 5.34%) 

1.05%~6.90% 
(avg: 2.42%) 

To further evaluate the fitness of the power curve to 
the real power curve, the NMBE metric is adopted, 
which describes the average bias in the model. NMBE 
is determined with Eq. 6. By definition, it is the sum of 
error over the sum of the actual values. This metric 
evaluates the fitness of the model over the whole 
simulation horizon.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
∑ (𝑥𝑥𝑓𝑓,𝑖𝑖 − 𝑥𝑥𝑜𝑜,𝑖𝑖)𝑁𝑁
𝑖𝑖=1

𝑁𝑁 × 𝑥𝑥𝑜𝑜̅̅ ̅
 (6) 

Table 8 summarizes the daily, weekly and monthly 
NMBE of the lighting power. The lighting power 
obtained by multiplying the ground truth occupancy 
data with nominal power is set as the baseline for better 
comparison. From the table, the two-stage prediction 
generally has larger errors than the single-stage model. 
For the single-stage lighting power (C2), the monthly, 
weekly and daily NMBE are all within 5%, which 
indicates a high accuracy for power demand predictions. 
For the two-stage lighting power (F1), the monthly and 
weekly average errors are within 10%, which is still 
acceptable. However, we see a big deviation in the daily 
NMBE, and this leads to a high average value for daily 
NMBE. This high deviation could have been caused by 
an uncommon data record on Aug. 19 (see Figure 12) 
when the lights are only on for a short time period but 
the model simulated it just as usual.  

Table 8. NMBE of Lighting Power Prediction. 

 Baseline Model 
Monthly 
NMBE 

C2 0.061% 3.92% 
F1 -0.55% 8.28% 

Weekly 
NMBE 

C2 -0.27%~0.44% 
(avg: 0.060%) 

-0.25%~9.84% 
(avg: 4.07%) 

F1 -2.84%~1.30% 
(avg: -0.68) 

0.33%~20.4% 
(avg: 7.92%) 

Daily 
NMBE 

C2 -0.56%~0.72% 
(avg: 0.057%) 

-2.59%~23.72% 
(avg: 4.03%) 

F1 -12.9%~50.9% 
(avg: 0.39%) 

-21.6%~807% 
(avg: 44.1%) 

Additionally, as the models are simulated in a 
stochastic manner and the occupant presence was 
determined every 2 minutes, we see an obvious 
oscillation in lighting power in Figure 12. This feature 
of the model leads to that the longer the simulation time, 
the closer the expectation of the simulation results will 
be to the actual data. This explains why the model shows 
a better performance concerning monthly NMBE. 
However, short-term accuracy of the model still needs 
some improvement. 

4 Conclusion 
This paper proposed a methodology for occupant 
presence learning and reproducing based on lighting 
power metering data. The method was validated against 
real data. The results show that the proposed multi-stage 
lighting power prediction method can predict daily peak 
power with 2.42% relative error. The monthly and 
weekly NMBE of lighting power are on average below 
8.28%.  

Through the training and validation process of this 
work, we found that logistic regression models are 
sensitive to the quality of the training data. Ideally, the 
dataset should be more focused on the transitional 
region (i.e., where the value turns from 0 to 1 or vice 
versa) of the model and the two classes should be well 
balanced. Further, increasing the number of independent 
features should help improve the fitness of the 
probability model. The stochastic simulation results 
show that stochastic models can be very accurate for 

Figure 12. Monthly predicted and actual lighting power in F1 bakery. 
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long-term predictions. However, they cannot predict 
uncommon events, and this can lead to large short-term 
prediction errors.  

This work has the limitation of not having the ground 
truth data for occupant presence. The presence 
generated from lighting power can be delayed when 
people arrived and did not turn the lights on. This can be 
cross validated with other appliance usage data in the 
future. In the best-case scenario, occupant surveys 
should be conducted to know their preferences and 
habits, and occupant sensors should be installed.  

Acknowledgements 
This research was supported by the U.S. Department of 
Energy, Energy Efficiency and Renewable Energy, 
Building Technologies Office, under Contract No. DE-
AC05-76RL01830. This research was also supported by 
the National Science Foundation under Awards No. IIS-
1802017 and IIS1633363. BIGDATA: Collaborative 
Research: IA: Big Data Analytics for Optimized 
Planning of Smart, Sustainable, and Connected 
Communities. 

References 
ASHRAE. 2002. ASHRAE Guideline 14-2002: Measurement 

Of Energy And Demand Savings. 
Chawla, Nitesh V, Kevin W Bowyer, Lawrence O Hall, and 

W Philip Kegelmeyer. 2002. “SMOTE: Synthetic 
Minority over-Sampling Technique.” Journal of 
Artificial Intelligence Research 16: 321–57. 

Hunt, D R G. 1980. “Predicting Artificial Lighting Use-a 
Method Based upon Observed Patterns of Behaviour.” 
Lighting Research & Technology 12 (1): 7–14. 

Kim, Yang-Seon, Mohammad Heidarinejad, Matthew 
Dahlhausen, and Jelena Srebric. 2017. “Building 
Energy Model Calibration with Schedules Derived 
from Electricity Use Data.” Applied Energy 190: 997–
1007. 

Luo, Xuan, Khee Poh Lam, Yixing Chen, and Tianzhen 
Hong. 2017. “Performance Evaluation of an Agent-
Based Occupancy Simulation Model.” Building and 
Environment 115: 42–53. 

Pigg, S., Mark Eilers, and John Reed. 1996. “Behavioral 
Aspects of Lighting and Occupancy Sensors in Private 
Offices: A Case Study of a University Office 
Building.” ACEEE 1996 Summer Study on Energy 
Efficiency in Buildings, no. 8: 161–70. 

Reinhart, C F, and K Voss. 2003. “Monitoring Manual 
Control of Electric Lighting and Blinds.” Lighting 
Research & Technology 35 (3): 243–58. 
https://doi.org/10.1191/1365782803li064oa. 

Wang, Danni, Clifford C. Federspiel, and Francis Rubinstein. 
2005. “Modeling Occupancy in Single Person 
Offices.” Energy and Buildings 37 (2): 121–26. 
https://doi.org/10.1016/j.enbuild.2004.06.015. 

Wang, Jing, Wangda Zuo, Landolf Rhode-Barbarigos, Xing 
Lu, Jianhui Wang, and Yanling Lin. 2018. “Literature 
Review on Modeling and Simulation of Energy 
Infrastructures from a Resilience Perspective.” 
Reliability Engineering & System Safety. 

Wetter, Michael, Wangda Zuo, Thierry S Nouidui, and 
Xiufeng Pang. 2014. “Modelica Buildings Library.” 
Journal of Building Performance Simulation 7 (4): 
253–70. 

Wu, D, H Hao, T Fu, and K Kalsi. 2018. “Regional 
Assessment of Virtual Battery Potential from Building 
Loads.” In 2018 IEEE/PES Transmission and 
Distribution Conference and Exposition (T&D), 1–5. 
https://doi.org/10.1109/TDC.2018.8440225. 

Zhao, L, W Zhang, H Hao, and K Kalsi. 2017. “A Geometric 
Approach to Aggregate Flexibility Modeling of 
Thermostatically Controlled Loads.” IEEE 
Transactions on Power Systems 32 (6): 4721–31. 
https://doi.org/10.1109/TPWRS.2017.2674699. 

 
 

73



81DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

Development and Verification of Control Sequences for Single-
Zone Variable Air Volume System Based on ASHRAE 

Guideline 36 

Kun Zhang, David H. Blum, Milica Grahovac, Jianjun Hu, Jessica Granderson, Michael Wetter 
Building Technology and Urban Systems Division 

Lawrence Berkeley National Laboratory 
Berkeley, CA, USA 

{kunzhang,dhblum,mgrahovac,jianjunhu,jgranderson,mwetter}@lbl.gov 
 
 
 
 

Abstract 
This paper presents work on the development and 
verification of ASHRAE Guideline 36-2018 control 
sequences for single-zone variable air volume air-
handling unit (AHU) systems. The Control Description 
Language, a subset of the Modelica Language, is used 
to implement those advanced control sequences. The 
sequences address control for components such as the 
economizer, supply air temperature setpoint reset, fan 
speed control, and zone heating/cooling states 
determination. Each component sequence is validated in 
open-loop tests and then used to compose a single 
comprehensive controller. This controller is also first 
validated in open loop and then tested in closed loop 
with an AHU system and building envelope model 
constructed using the Modelica Buildings library. The 
Guideline 36 controller is compared with a conventional 
control strategy applied to the same AHU and building 
model. Annual simulations show that the Guideline 36 
control sequences yield 17.3 % of annual HVAC energy 
savings against the conventional control strategy in this 
case study. 
Keywords: Control, VAV, ASHRAE Guideline 36, 
Buildings, HVAC 

1 Introduction 
The Heating, Ventilation and Air Conditioning (HVAC) 
control industry has not yet had a standard for 
expressing control sequences of HVAC systems (Pang 
et al, 2017). The controllers in the market can be 
generally divided into two types: configurable and 
programmable. The first type of controller is pre-
programmed; it is therefore easy to install and 
commission. However, the embedded control logic is 
often overly simplistic, resulting in a compromise of 
thermal comfort and energy efficiency required by 
evolving energy standards and building codes. The 
second type is fully programmable (Hydeman, Taylor, 
& Eubanks, 2015). Yet, due to a lack of standard high-
efficiency sequences, the implemented control scheme 

of the HVAC system is often project-specific. 
Therefore, significant resources are required to 
engineer, specify, program and commission each 
project.  It is also common that the implemented control 
sequences are sub-optimal and error-prone, which leads 
to varied building operational efficiency and 
performance (Hydeman et al, 2015).  

The American Society of Heating, Refrigerating, and 
Air-Conditioning Engineers (ASHRAE) has initiated 
projects related to high-performance control sequences 
for HVAC systems through its Research Projects 1455 
(Taylor Engineering, 2014) and 1711. A first version of 
ASHRAE Guideline 36-2018 (G36) (ASHRAE, 2018) 
was published upon completion of the Project 1455. The 
control sequences included in the G36 are based on the 
best-in-class industry practices. The guideline aims at 
reducing energy consumption and improving thermal 
comfort and indoor air quality of buildings. It also 
provides potential to reduce the time of the engineering, 
specification, programming and commissioning process 
(ASHRAE, 2018).  

Implementing the advanced control scheme as 
described in the Guideline 36 does present its own 
challenges, due to the complexity of the sequences. The 
English language description can be ambiguous, and its 
interpretation to implement the sequences in a 
programming language is not straight-forward.   

The G36 2018 version includes control sequences for 
the air distribution for single-zone and multi-zone 
variable air volume systems. The multi-zone system has 
been implemented in the Control Description Language 
(CDL) and reported in (Wetter et al, 2018). This paper 
focuses on the implementation of the G36 control 
sequences for Single Zone Variable Air Volume 
(SZVAV) systems using CDL (Wetter et al, 2018a). 
CDL is a subset of Modelica with its own set of data 
types and elementary blocks. It intends to allow for 
implementation of control sequences in computer code 
that can be used in real buildings, assessed through 
explicit simulation, and reused for verification tests 
during the commissioning process. CDL was developed 
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under the OpenBuildingControl (OBC) project (Wetter 
et al, 2018b). Both CDL and the implemented sequences 
for OBC are incorporated in the master branch of the 
Modelica Buildings library version 7.0.0 (Wetter et al, 
2014). Another closely-related project called “Spawn of 
EnergyPlus” (Wetter et al, 2015) aims at enhancing the 
EnergyPlus simulation engine (EnergyPlus 
Development Team, 2019) by integrating the Modelica 
Buildings library so it can simulate these sequences 
using EnergyPlus envelope models and Modelica 
HVAC and control models.  

Related work has indicated the potential of control 
strategies of HVAC systems to impact their energy 
consumption.  For example, Pang et al. (2017) found 
that energy consumption can vary up to 66% from 
various control strategies for multi-zone VAV systems, 
while Fernandez et al. (2017) found that this variation 
could be up to 60% for various HVAC control and 
commissioning cases.  For the multi-zone G36 
sequence, Wetter et al. (2018a) found potential energy 
savings of up to 30%. 

As of writing this paper, the authors are unaware of 
publications related to implementing the G36 SZVAV 
control sequences in a programming language and 
evaluating the performance of those advanced 
sequences in a simulation environment. Therefore, the 
objective of this paper is to describe the process of 
implementing and verifying the control sequences using 
CDL, as well as the performance evaluation of the 
sequences compared with a conventional controller.  
Then, the sequences will be available for further 
performance evaluation and eventual real building 
implementation through the process developed in the 
OBC project.  

Section 2 gives an overview of the control sequences 
and their implementation with the main components of 
the sequences described in the subsections separately. 
Section 3 presents the case study, where a baseline 
controller is also developed to help evaluate the 
performance of the G36 control sequences and 
emphasize key advantages over those found in practice. 
Section 4 presents the comparison results with analysis. 
The paper closes with discussion and conclusion. 

2 Guideline 36 control sequences of 
single-zone VAV system 

A SZVAV air handling unit (AHU) system is often 
applied to medium to large single-floor spaces such as 
small retail stores, classrooms, and auditoriums. It is 
usually composed of a variable-speed supply fan 
(additionally with or without an exhaust fan), a cooling 
coil, a heating coil and a mixing box for controlling the 
ratio of recirculated zone return air and outside air (see 
Figure 1).  The delivery of additional outside air when 
conditions are appropriate is called economizer 
operation. Control sequences of the SZVAV system in 
the G36 specification include supply fan speed control, 

supply air temperature control, minimum outdoor air 
control, economizer control, zone state, freeze 
protection and alarms. 

 
Figure 1. Single-zone VAV air handling unit system. 

The goal of the G36 control strategy is to maximize 
free cooling and to avoid excess energy consumption to 
run fans and provide mechanical heating and cooling. 
The essential ideas of the strategy are to vary the fan 
speed, reset the supply air temperature setpoints (both 
heating and cooling) in different conditions, and adjust 
the outdoor air damper position according to the supply 
fan speed. 
   Elementary CDL blocks were used to implement 
composite blocks representing subsets of the control 
sequences. These composite blocks were then integrated 
into a single controller block. Figure 2 shows the tree 
view of the single-zone VAV control sequences package 
in the Modelica Buildings library version 7.0.0.  

 
Figure 2. Structure of the single zone VAV package in the 
Modelica Buildings library 7.0.0. 

The implementation of the sequences is modular. It 
allows users to customize the sequences for their needs 
primarily by simple parameter selection, such as 
whether there exists an enthalpy sensor to direct 
economizer operation, but also through easy access to 
certain parts of the control sequences. The CDL 
implementation also provides information on the control 
objective and functionality of each control block in the 
form of html info sections. 

The implementation also considered numerical 
integration error and/or sensor noise which may cause 
chattering of the control, though this is beyond the scope 
of the G36 itself. CDL blocks for hysteresis or timers 
were therefore added for the part of the control 
sequences that use continuous-time semantics. 
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Each composite block in the package is validated in 
open-loop simulations. As can be seen from Figure 2, 
each sub-package includes a Validation package. The 
validation models are not only to verify whether the 
control sequences satisfy the control intent under a wide 
range of preset input conditions, but also intended to 
provide utilization examples for the library users.  

The following sections explain the key components 
of the control sequences and how they were 
implemented and validated in the Buildings library. 

2.1 Setpoints for supply air temperatures 
and fan speed 

There are two separate supply air temperature (SAT) 
setpoints in the G36 sequences: 1) SAT for heating, 
which is used to control the heating coil and economizer 
dampers, and 2) SAT for cooling, which is used to 
control the cooling coil. The two temperature setpoints 
are reset at different rates but controlled using the same 
temperature sensor. The supply fan speed is also reset 
using the same control loops as the SAT for heating and 
cooling. These two control loops correct for the error 
between measured zone air temperature and the heating 
and cooling temperature setpoints respectively. 

 
Figure 3. Control diagram for single zone VAV control 
logic: fan speed and supply air temperature setpoints as a 
function of control loop signals.  

Figure 3 shows the G36 control diagram of the 
heating and cooling SAT setpoints and fan speed 
trajectories under heating and cooling control loop 
signals. The control logic requires that the heating SAT 
setpoint 𝑇𝑇"#$"%&	increases linearly when the heating coil 
valve control signal, i.e. the heating loop signal, 
increases from 0 to 0.5; and stays at the maximum 
heating SAT 𝑇𝑇"#$"%&()* when the heating signal is 
within 0.5 and 1 (see the red dotted curve). When the 
system is in the deadband (neither heating nor cooling 
state), the heating SAT is the same as the zone 
temperature setpoint 𝑇𝑇+,-"%&	and the fan speed remains 
at the minimum 𝑦𝑦/0-. The fan speed stays at 𝑦𝑦/0- when 
the heating loop signal is within 0 and 0.5; and it 

increases linearly to the maximum fan speed 𝑦𝑦1%)()* 
when the heating loop signal is within 0.5 and 1 (see the 
solid black curve in the left part of the upper plot). 

In cooling mode, the SAT setpoint (see the blue 
dotted curve) is reset in a similar linear modulation logic 
as the heating SAT setpoint. The fan speed is varied 
continuously based on the difference between inside and 
outside air temperatures and cooling loop signal, as 
shown in the upper right portion of Figure 3. 

2.1.1 Implementation in CDL 
The block Buildings.Controls.OBC.ASHRAE. 
G36_PR1.AHUs.SingleZone.VAV.SetPoints.Supply 
implements the functionalities of the SAT reset and 
supply fan speed control as indicated in the G36. The 
block allows users to set the maximum SAT setpoint for 
heating and the minimum SAT setpoint for cooling. For 
the fan speed control, the parameters that can be 
changed are the maximum fan speed for heating, and the 
minimum and maximum fan speeds for cooling.  

2.1.2 Open-loop verification 
Figure 4 presents the fan speed control validation results 
as a function of the cooling control loop signal from the 
validation simulation of the VAV controller. In the 
validation model, instances of the controller are 
configured identically, but the input signal for zone 
temperature differs in order to validate that the fan speed 
is increased correctly. It can be seen that Figure 4 is a 
representation of the upper right part of Figure 3 as 
required in the G36.  

 
Figure 4. Fan speed control as a function of the cooling 
control loop signal. 

Similarly, Figure 5 presents the lower right part of 
Figure 3. It shows how the SAT setpoint for heating and 
economizer, and the SAT setpoint for cooling are 
modulated in different cooling control signals. 
Validation models such as these confirm that our 
controller implementation behaves according to the 
prescribed control sequences of the G36.  
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Figure 5. Heating and cooling supply air temperature as a 
function of the cooling control loop signal. 

2.2 Economizer 
The single-zone AHU economizer control according to 
the G36 comprises the SAT, outdoor air (OA) damper 
and economizer lockout control. 

The economizer SAT control loop has an intent to 
maintain the SAT at its heating setpoint by modulating 
the heating coil and both OA and return air (RA) damper 
positions. The dampers are complementary, meaning 
that a single actuator controls both dampers.  

The logic assumes a single OA damper for both the 
economizer and the minimum OA functionality. The 
minimum OA damper position, which aims at satisfying 
the outdoor airflow requirement, is reset based on both 
current outdoor airflow requirement and fan speed. 

The economizer is locked out (CDL implementation 
uses the term disabled) as the outdoor air condition, i.e., 
dry bulb temperature and/or enthalpy depending on the 
sensors installed, exceeds the climate and energy code 
specific setpoints. 

2.2.1 Implementation in CDL 
The package Buildings.Controls.OBC.ASHRAE. 
G36_PR1.AHUs.SingleZone.VAV.Economizers, as 
illustrated in the upper middle part of Figure 2, provides 
a CDL implementation of the SZ G36 economizer. It 
comprises a main economizer Controller block, a 
package with three subsequences: Limits, Enable and 
Modulation, and the corresponding validation models 
for both the Controller block and the subsequences. The 
Limits sequence implements the minimum OA damper 
position reset. The Enable sequence resets the OA and 
RA damper position limits based on the economizer 
lockout conditions, for example outdoor air 
temperature, and equipment and building status, such as 
fan enable status and whether the zone requires any 
heating or cooling. The Modulation sequence 
implements the SAT control. When the economizer is 
disabled, the modulation sequence keeps evaluating the 
SAT control loop, but the RA damper position is fixed 
to a fully open position and the OA damper is fixed to 

the minimum open position to meet outdoor airflow, as 
specified by the outputs of the Enable sequence. 

 
Figure 6. Block diagram of the CDL implementation of the 
Economizer controller in the Buildings library. It 
comprises four subsequences: Enable, Limits, Modulation 
and Freeze Protection. 

The economizer Controller block is illustrated in 
Figure 6. The block takes as inputs the setpoints, such 
as the SAT and its heating setpoint, minimum outdoor 
airflow setpoint, measured quantities such as outdoor air 
temperature and/or enthalpy, supply air fan speed, 
mixed air temperature, status variables such as the 
supply fan on/off status, operating mode, zone state and 
freeze protection status. The block outputs the OA and 
RA damper positions to be sent to actuators. In addition 
to the G36 definition the controller implements a custom 
freeze protection block based on the mixed air 
temperature tracking for reasons elaborated in (Wetter 
et al, 2018). 

2.2.2 Open-loop verification 
All control blocks contained in the Economizer 
package, including the top-level Controller block and 
the subsequences, have at least one corresponding 
validation model. Here we present a validation model of 
the Modulation block. 

Figure 7 shows the validation results of the 
Modulation block performance. The plot (b) shows the 
PI controller output signal over time when the SAT rises 
from below to above its setpoint, as shown in plot (a). 
With these inputs the control signal drops monotonically 
from 1 to 0. Plot (c) illustrates how the OA and RA 
damper and cooling valve positions behave as a function 
of the SAT control loop signal. The heating coil signal, 
which rises from 0 to 1 at the far-right side of plot (c), is 
mapped to the SAT control signal such that only the 
upper portion of the signal, starting at a value at which 
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the OA damper is fully closed and the RA damper is 
fully open, is used for the heating valve control.  

 
Figure 7. Modulation block validation results for a 
simulation duration of 15 minutes show the time series of 
(a) test values of SAT (in blue) and SAT setpoint (in red) 
that yield the (b) PI controller signal as a response. (c) 
Control diagram with OA (in red), RA damper (in green) 
and cooling coil valve (in blue) positions as a function of 
the SAT control signal. 

2.3 Outdoor airflow control 
The control of minimum outdoor airflow rate setpoint 
complies with the ventilation rate procedure of 
ASHRAE 62.1 (ASHRAE, 2016). It adjusts the setpoint 
according to the zone operation mode, zone status 
(heating, cooling or standby), and window status if it has 
any operable window. 
2.3.1 Implementation in CDL 
The block Buildings.Controls.OBC.ASHRAE. 
G36_PR1.AHUs.SingleZone.VAV.SetPoints.OutsideA
irFlow outputs the minimum outdoor airflow rate 
setpoint as specified in the G36. Figure 8 shows the 
implementation of the block in the Buildings library. 

There are three steps to specify the setpoint. First, it 
finds the minimum breathing zone outdoor airflow rate, 
which is the sum of the rate specified according to area 
and the rate specified according to occupant population. 
The number of occupants could be retrieved directly 
from an occupancy sensor, if present. Otherwise, the 
default occupant density is used to calculate the outdoor 
air requirement according to (ASHRAE, 2016). Second, 
the sequence selects warm-air or cool-air distribution 
effectiveness depending on the zone heating or cooling 

status, as specified in ASHRAE 62.1. Finally, it sets the 
minimum outdoor airflow setpoint for the zone when it 
is in occupied mode with the window (if there is one) 
being closed. When the zone is not in occupied modes 
or the window is open, the setpoint becomes zero.   

 
Figure 8. Block diagram of the CDL implementation of 
specifying minimum outdoor airflow setpoint. 

2.3.2 Open-loop verification 
Figure 9 shows the results of validating the sequence by 
giving the inputs of increasing occupancy and the 
change of zone state from heating to cooling. It 
illustrates that the minimum output airflow setpoint 
increases when there are more occupants in the zone. 
Also, the sequence can choose different air distribution 
effectiveness depending on the zone state. The zone 
state is decided based on the temperature difference 
between the zone and the supply air, with a hysteresis 
being applied to avoid chattering. 

 
Figure 9. Validation results for block of specifying the 
minimum outdoor airflow rate setpoint show that the 
setpoint changes along with the changes of occupancy and 
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zone state (at the time 2700s the zone state is changed from 
heating to cooling). 

3 Case study 
To test the controller in a closed-loop scenario, a model 
is created to integrate the controller with a SZVAV 
AHU system and a single-zone building envelope 
model. Measurements of the building air temperature, 
supply air temperature, return air temperature, and 
mixed air temperature are fed back to the controller to 
close the control loop (see Figure 10). Other important 
parts of the model include the weather data and 
occupancy schedules. 

 
Figure 10. Closed-loop control model with the building, 
AHU and G36 controller. 

The details of the building and AHU model are 
illustrated in the subsections below, and the 
performance of the G36 controller is compared with a 
conventional Baseline controller in Section 4. 

3.1 Building envelope model 
The building envelope model used for this case study is 
from the model Buildings.Air.Systems.SingleZone. 
VAV.Example.BaseClasses.Room. It uses an instance 
of Buildings.ThermalZones.Detailed.MixedAir to 
model the transient heat conduction within the building 
constructions and longwave radiation heat exchange 
between the surfaces (walls, roof and windows etc.). 
The heat convection and radiation between the ambient 
(indoor and outdoor air) and the envelope is also 
modeled at each time step. 

The information of the envelope such as geometry 
and materials are from the BESTEST case 600, and 
derived from the EnergyPlus validation project 
(Henninger & Witte, 2004). 

The weather data used in the case study is the 
DRYCOLD weather data included in the Buildings 
library, which is the weather used for the BESTEST case 
studies. It is from the weather station of Denver-
Stapleton in Colorado, USA. The occupancy schedule 
for the building is assumed to be from 8am to 6pm daily, 
which means that the system is operated based on this 

schedule. The internal heat gains are modelled as 
constant gains when the zone is occupied. 

3.2 Air handling unit system model 
The air handling unit system model from the class 
Buildings.Air.Systems.SingleZone.VAV.ChillerDXHe
atingEconomizer contains a variable-speed supply fan, 
a heating coil, a water-based cooling coil, and an 
economizer.  The cooling coil is assumed to be served 
by an air-cooled chiller. The model assumes that 
pressure drops through the system are lumped into a 
single component and the cooling coil is a dry coil. The 
mass flow of chilled water through the cooling coil is 
controlled by a three-way valve to maintain the cooling 
supply air temperature setpoint. The cooling coil mixing 
valve and the economizer dampers are modeled as ideal, 
i.e., they exactly control a specified ratio of fluid flow 
through contributing branches.  

The fan and pump models are idealized to exactly 
track the set point for the mass flow rate, and they are 
from the model Buildings.Fluid.Movers. 
FlowControlled_m_flow. The details about the 
fan/pump model are described in (Wetter, 2013). 

The design airflow rate for the AHU system is 0.625 
m3/s. The minimum outdoor airflow rate is 0.0144 m3/s 
and the design outdoor airflow rate is 0.025 m3/s. The 
calculation of the ventilation requirement for the 
building model is based on ASHRAE Standard 62.1 
(ASHRAE, 2016) for an office with reference 
occupancy density. Note that the G36 controller is 
capable to adjust the outdoor airflow rate between the 
minimum and design outdoor airflow based on whether 
there are occupants in the zone; while the Baseline 
controller is configured to provide the design outdoor 
airflow.  

The chiller model is Buildings.Fluid.Chillers. 
ElectricEIR. It is a model of an electric chiller, based on 
the DOE-2.1 chiller model and the EnergyPlus chiller 
model Chiller:Electric:EIR (Hydeman et al, 2002). Its 
nominal Coefficient of Performance (COP) is 5.5. The 
heating plant is not modelled and we assume it is a 
geothermal heat pump with a constant COP of 4.0.  

3.3 Baseline controller model 
The Baseline controller is based on the commonly used 
single-maximum VAV control with dry-bulb 
economizer control. During cooling, the fan speed is 
controlled to maintain the room temperature at the 
cooling setpoint temperature using a P controller, 
between a minimum and maximum fan speed. Flow 
through the cooling coil is controlled to maintain a 
constant supply air temperature setpoint. During 
heating, the fan speed is constant at the minimum speed 
while the heating coil is controlled to maintain the room 
temperature at the heating setpoint using a P controller. 
The minimum position of the outdoor air damper 
ensures enough ventilation flow to meet ASHRAE 62.1 

81



87DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

at minimum fan speed. If the outside air dry-bulb 
temperature is lower than the return air dry-bulb 
temperature, the economizer opens the damper further 
to provide cooling of the mixed air to the supply air 
temperature setpoint as much as possible. During 
unoccupied times, the zone heating and cooling 
setpoints are set back and the minimum outdoor air 
damper position is set to zero.  

4 Results comparison 
The performance of these G36 and base controllers was 
compared using identical models for the building 
envelope, AHU system and weather. Overall, the G36 
controller saves 17.3 % HVAC electric energy 
compared with the Baseline case. The heating energy 
use for both controllers is nearly equal, with most of the 
energy savings of the G36 controller associated with the 
cooling energy. The pump electricity use is minimal for 
both cases and the G36 controller uses slightly more 
electricity for the supply fan. Figure 11 shows the 
breakdown of the monthly energy use for the two 
controllers with left bars indicating the Baseline 
controller and right bars indicating the G36 controller. It 
can be clearly seen that G36 requires less energy use for 
cooling throughout all the months. In the winter months 
(December, January and February) G36 consumes 2.6% 
more heating energy than the Baseline. This small 
increase could be due to two factors. The first is when 
near the end of an occupancy period the internal loads 
are decreasing and the zone switches from cooling mode 
to deadband. This mode switch increases the SAT 
setpoint according to Figure 3. For the remaining time 
the fan is supplying outside air, and the temperature is 
low outside, heating is briefly used to heat the supply air 
to the setpoint. This is shown in Figure 14. The second 
factor is the small amount of increased outside air the 
G36 control sequence provides during morning heat up, 
as shown in the upper plot of Figure 13, which adds a 
small amount of heating load to the coil. 

Figure 12 shows the zone temperature profiles during 
a winter and a summer week along with the zone heating 
and cooling setpoint. We can see that the zone 
temperatures are maintained within the heating and 
cooling setpoint bands by both controllers during these 
two extreme weeks. In addition, we can see that the zone 

temperatures are very close to each other in both cases. 
We actually find that both controllers deliver very 
similar zone temperatures all year around, with 
temperature difference within 0.5 K, the same 
magnitude as the temperature hysteresis settings in the 
controllers. Using the zone temperature as the thermal 
comfort indicator, we can conclude that both controllers 
maintain the thermal comfort in the zone equally close. 
This means that the G36 controller does not compromise 
thermal comfort while yielding energy savings.  

Figure 13 shows the outdoor airflow during the same 
two weeks. We can see that the outdoor airflow profiles 
of the two cases are very similar to each other in winter. 
During this winter week, the outdoor air temperature is 
very low as shown by the lime curve in Figure 12, so the 
controllers restrict the outdoor air fraction to the 
minimum required for ventilation during heating, as 
seen in the mornings of each day and use the economizer 
if any cooling is needed, as seen during the other 
afternoons in the week. In the summer week, the G36 is 
capable of lowering the outdoor airflow rate by 
adjusting the minimum outdoor air damper position 
based on the fan speed. This reduces excess load on the 
cooling coil when the outdoor air temperature is higher 
than the zone temperature. As the Baseline controller 
assumes no active reset on the minimum outdoor air 
damper position, excess outdoor air is brought in when 
the fan speed increases for space cooling. 

In Figure 13 we also find that there are sudden jumps 
in the outdoor airflow profiles, for example, on the 
afternoon of August 1st (more significant airflow 
increases for the G36 controller). During that period, the 
outdoor air temperature becomes lower than the zone 
temperature setpoint (see the lower plot of Figure 12); 
both controllers therefore increase the OA damper 
opening to use more outdoor air to cool down the 
building. However, the G36 controller simultaneously 
resets the cooling SAT setpoint up (see the green curve 
in Figure 15). This results in an increase of the supply 
airflow rate in order to meet the zone cooling load; 
however, the G36 controller does so by use of more 
outside air and without use of any mechanical cooling. 
On the other hand, the Baseline controller maintains a 
constant SAT for cooling (see the blue curve in Figure 
15), so mechanical cooling is still required to reach the  

 

 
Figure 11. Site HVAC electricity use for each month (Left bars: Baseline; Right bars: G36). 
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Figure 12. Zone temperature profiles during a winter (top) and a summer (bottom) week 

 

 
Figure 13. Outdoor airflow rate during a winter (top) and a summer (bottom) week. 

 
Figure 14. Heating power demand during a winter week. 

 
Figure 15. Supply air temperature for cooling in a summer week. 
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Figure 16.  Cooling power demand in a week of shoulder season. 

 
Figure 17. Supply airflow rate in a week of shoulder season.  
lower cooling SAT setpoint, even though the 
economizer is enabled. This shows how the advanced 
control sequences of the G36 take even more advantage 
of available free cooling by coordinating the SAT 
setpoints reset and the economizer operation. This 
strategy of coordinating the SAT setpoint reset and the 
economizer operation is the main reason why the G36 
controller consumes less cooling energy than the 
Baseline. The strategy is particularly useful during 
shoulder seasons. Figure 16 shows the cooling power 
demand in a week of the shoulder season. We can see 
that the G36 uses much less cooling energy than the 
Baseline for this week. Figure 17 shows the supply 
airflow rate in the same week of the shoulder season as 
in Figure 16. We can see that the G36 controller has 
higher supply airflow than the Baseline for the whole 
week. This is because the G36 controller engages the 
economizer more often to increase the outdoor airflow 
to utilize free cooling than the Baseline. This explains 
why the G36 does not save fan energy as shown in 
Figure 11. 

Finally, it should be noted that the simulation time for 
each controller was similar, with the Baseline controller 
at 507 seconds and the G36 at 526 seconds. The 
simulations were run on a Linux operating system with 
a 16-core processor (Intel Xeon® CPU X5650 
@2.67GHz) and a 32GB memory. In general, the 
simulation time with different control strategies can be 
largely dependent on the number of events generated 
through mode or on/off switching. 

5 Discussions and conclusions 
This paper presented the work on implementation, 
validation and application of ASHRAE Guideline 36-
2018 control sequences for single-zone variable air 

volume air-handling unit systems. Those advanced 
control sequences address control for AHU system 
components such as the economizer, supply air 
temperature setpoints reset, fan speed control, and zone 
heating and cooling states.  

The control sequences were implemented using the 
Control Description Language in a modularized 
approach, which therefore allows the users to customize 
the sequences for their needs. Each component sequence 
was validated in open-loop tests and then used to 
compose a single comprehensive controller. This 
controller was firstly validated in open loop and then 
tested in closed loop with an AHU system and building 
envelope model constructed using the Modelica 
Buildings library.  

The Guideline 36 control sequences were compared 
with the conventional control strategy based on single- 
maximum VAV control. Both controllers were applied 
to the same AHU and building system in a case study. 

Annual simulations show that the Guideline 36 
control sequences yield 17.3 % of annual HVAC energy 
savings against the conventional control strategy. The 
G36 control scheme can take advantage of free cooling 
by adjusting the economizer dampers and resetting 
supply air temperature setpoints; the G36 controller 
therefore has reduced energy consumption due to 
cooling. Verification of annual zone temperatures show 
that both controllers maintain the zone temperature very 
closely to each other within thermal comfort bands. This 
shows that the energy savings of the G36 control 
sequences do not compromise thermal comfort while 
delivering the energy savings.  

It should be noted that the percentage of energy 
savings shown by the G36 controller in this paper is 
specific to the selected case study. The energy savings 
potential is subject to variables such as climate zones, 
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internal heat gains assumption and the baseline control 
sequences. Future work of this study includes 
investigating the impact of those variables on the G36 
control sequences performance. Validation of the 
control sequences with measurement data is also 
important to further verify the implementation of the 
sequences. 

Data availability 
All the models and components used in this paper are 
open-source and can be downloaded from the Github 
repository https://github.com/lbl-srg/modelica-
buildings. The Modelica Buildings branch for the 
models used in this study is issue1608_compareSZVAV 

(commit 7c939c0). Table 1 lists the Modelica path of the  
two closed-loop system models in the case study and the 
SZVAV package in the Buildings library. 
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Table 1. Models and package used in the paper from the open-source Modelica Buildings library  

Name Modelica Path 
Baseline system model Buildings.Air.Systems.SingleZone.VAV.Examples.ChillerDXHeatingEconomizer.mo 
G36 system model Buildings.Air.Systems.SingleZone.VAV.Examples.Guideline36.mo 
SZVAV package Buildings.Controls.OBC.ASHRAE.G36_PR1.AHUs.SingleZone.VAV 
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Abstract
In this paper, the theory of progressive ocean-surface
gravity-waves is discussed, followed by the concept of the
representation of the irregular sea-state by a sea-spectrum.
Fourier series decomposition of the irregular sea-surface
into its constituent regular waves and the method of re-
alizing unique time-records of the sea-surface-elevation
from commonly used sea-spectra is described. A detailed
description of the development of Modelica component-
models to generate regular as well as irregular waves, and
depth-varying current, with an eye on the requirements
imposed by probable integrated simulation scenarios, is
then presented and the results discussed.
Keywords: regular wave, irregular wave, sea-spectrum,
Modelica ocean-engineering library.

1 Introduction
The advantages of developing an OpenModelica ocean
engineering library populated with domain-specific
component-models and functions to carry out the inte-
grated simulation of multi-pyhsical ocean engineering
systems was demonstrated by the authors (Viswanathan
and Holden, 2019). This earlier work:

1. Gives a brief description of the simulation of systems
based on the hydrodynamic response of catenary-
moored non-diffracting floating objects in the pres-
ence of waves and current,

2. Demonstrates the satisfactory agreement of the Mod-
elica simulation results with those obtained using
a popular ocean-engineering commercial software
(Orcaflex), and

3. Brings out the advantages of using a component-
model based simulation approach.

The voluminous nature of the earlier work precluded
the possibility of delving into the theoretical and imple-
mentational details of the various Modelica component-
models of the ocean-engineering library proposed by the
authors, the preliminary version of which is available for
download at github.com/Savin-Viswanathan/
OELib_OMAE2019.

The present work which deals with the development of
Modelica component-models for simulating the kinemat-
ics and dynamics of regular and irregular waves, and depth
varying current, is the first among a series of two papers
which will fill in such gaps in theory and implementation.

2 Theory
The theory presented here upto Section 2.4.2 is a brief
summary of that given in (Dean and Dalrymple, 2001) .

2.1 The Fundamentals
The application of the conservation of mass to a reference
fluid volume yields the continuity equation:

1
ρ
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∂ t
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∂ z
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∂ z
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Here, ρ [kg/m3] is the fluid density, t [s] is time, and u,v,w
[m/s] are the fluid velocities in the x,y,z directions.

Disregarding the effects of surface tension and elastic-
ity, the application of the translational equation of motion
to a fluid particle yields the Navier-Stoke’s equations:
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Here, D
Dt is the material derivative, p [N/m2] is the fluid

pressure, τ [N/m2] is the shear stress where the first sub-
script refers to the surface perpendicular and the second
subscript refers to the direction of the stress, and X ,Y,Z
[N] are body forces along the x, y, and z directions.

2.2 Assumptions and the Governing Equation
The following assumptions are made:

• Incompressible fluid (ρ =constant).

• Inviscid fluid (τ = 0).

• Irrotational flow ( ∂w
∂y = ∂v

∂ z ,
∂w
∂x = ∂u

∂ z and ∂v
∂x =

∂u
∂y ).
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• Low wave steepness, i.e., (H � L).

• Long crested waves (2D flow, in x and z directions
only).

• Horizontal and time-invariant bottom boundary.

Assuming incompressible fluid and long crested waves,

Eqn. (1) → ∂u
∂x

+
∂w
∂ z

= 0. (5)

Assumption of inviscid fluid gives the Euler equations:

Eqn. (2) → Du
Dt

=− 1
ρ

∂ p
∂x

, (6)

Eqn. (4) → Dw
Dt

=− 1
ρ

∂ p
∂ z

−g. (7)

The assumption of irrotational flow makes it possible
to define a scalar velocity potential φ(x,y,z, t) [m2/s] such
that its directional derivative gives the fluid velocity in that
direction. i.e.,

u =
∂φ
∂x

, w =
∂φ
∂ z

. (8)

Thus, for an incompressible, irrotational flow in the x
and z directions, the integrated form of the Euler equation
yields the Bernoulli equation for unsteady potential flow,
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ρ
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where C(t) is the Bernoulli term and is a constant for
steady flows.

With u = [u,w]T, (5) may be expressed in vector form
as ∇.u = 0. From (8), u= ∇φ , so we have

∇.∇φ = ∇2φ =
∂ 2φ
∂x2 +

∂ 2φ
∂ z2 = 0. (10)

Equation (10) is the well-known Laplace equation, and
consitutes the governing differential equation which is
valid throughout the fluid domain. Our interest is in deter-
mining the velocity potential which satisifies the Laplace
equation, which then makes it possible to determine the
fluid velocities at any point in the fluid domain.

The Bernoulli equation relates the fluid velocities to the
the fluid pressure, and the integration of the fluid pressure
along the surface of any submerged/floating object gives
the force that the fluid exerts on the object, which is, in
most cases, the element of interest in wave-body interac-
tion problems.

2.3 The Boundary Conditions
In seeking a solution for the velocity potential in (10), we
make use of the following physical conditions which must
be satisfied by the fluid velocity and pressure, at the do-
main boundaries:

1. The Kinematic Free-Surface Boundary-Condition
(KFSBC) stemming from the fact that there cannot
be any fluid flow across the interface between the liq-
uid domain and the atmosphere at the free surface of
the fluid.

2. The Bottom Boundary-Condition (BBC) stemming
from the fact that there cannot be any fluid flow
across the sea floor.

3. The Dynamic Free-Surface Boundary-Condition
(DFSBC) stemming from the fact that ‘free’ surfaces
such as the air-water interface cannot support pres-
sure variations across it, and hence must be capa-
ble of responding in order to maintain the pressure
continuity across the liquid and gaseous domains.
This displacement of the free surface means that the
position of the upper boundary is not known a pri-
ori in the water-wave problem. For small-amplitude
waves, this condition is given by the requirement that
the pressure on the free surface is uniform along the
wave form.

4. The Spatial and Temporal Periodicity Condition at
the Lateral Surfaces (LPBC) stemming from the fact
that the solution we seek is the velocity potential as-
sociated with a wave which is periodic in both space
and time.

Mathematical expressions for the kinematic boundary
conditions may be derived from the equation of the form
F(x,y,z, t) = 0, describing the boundary surface. For a
temporally varying surface, the total time-derivative of the
surface is zero, on the surface. Hence, for a 2D wave
surface-profile,

DF
Dt

=
∂F
∂ t

+u
∂F
∂x

+w
∂F
∂ z

= 0 on F(x,z, t) = 0. (11)

Or, rearranging and using vector notation,

−∂F
∂ t

= u.∇F = u.n|∇F|. (12)

Here, n= ∇F
|∇F| is the unit normal to the surface, and

|∇F|=
√(

∂F
∂x

)2
+
(

∂F
∂ z

)2
.

The kinematic boundary condition is thus expressed as

u.n =−∂F/∂ t
|∇F|

on F(x,y,z, t) = 0. (13)
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At the free surface, F(x,z, t) = z−η(x, t) = 0, where
η(x, t) is the displacement of the free surface about the
horizontal plane. Equation (13) gives

u.n =
∂η/∂ t√(

∂η
∂x

)2
+1

on z−η(x, t) = 0. (14)

Taking

n =
− ∂η

∂x i+k√(
∂η
∂x

)2
+1

, (15)

(14) gives the KFSBC as

w =
∂η
∂ t

+u
∂η
∂x

on z = η(x, t). (16)

Assuming a horizontal, time-invariant bottom at z =
−h, F(z) = z + h = 0. Equation (13) gives u.n = 0 at
z =−h. Here, n = k, and hence the BBC can be expressed
as

w = 0 on z =−h. (17)

By specifying a uniform pressure (pη =constant) along
the wave form in the Bernoulli equation at the free surface,
the DFSBC may be expressed mathematically as

∂φ
∂ t

+
1
2

{(
∂φ
∂x

)2

+

(
∂φ
∂ z

)2
}

+
pη

ρ
+gz = C(t) on z = η(x, t).

(18)

The LPBCs may be expressed as

φ(x, t) = φ(x+L, t), (19)
φ(x, t) = φ(x, t +T ). (20)

Here, L [m] is the wave length and T [s] is the wave period.

2.4 Solution of the Boundary Value Problem
The BVP to be solved is thus the Laplace equation (10)
subject to: 1. the KFSBC in (16), 2. the DFSBC in (18),
3. the BBC in (17), and the LPBC in (19) and (20). The
diagrammatic representation of the problem is shown in
Figure 1.

2.4.1 Manipulation of the Free Surface Boundary
Conditions

On carrying out a non-dimensional analysis of the terms in
the KFSBC and the DFSBC, under the assumption of low
wave steepness, i.e., H/L � 1, we notice that u ∂η

∂x � ∂η
∂ t ,

u ∂η
∂x � ∂φ

∂ z and
(

∂φ
∂x

)2
,
(

∂φ
∂ z

)2
� ∂φ

∂ t .
Further, the KFSBC and DFSBC are to be evaluated at

z=η(x, t), which is a priori unknown. However, on taking

Figure 1. Boundary value problem for the velocity potential.
Adapted from (Dean and Dalrymple, 2001).

a Taylor series expansion of the BCs about the mean free
surface at z = 0, we notice that the second-order and sub-
sequent higher-order terms can be neglected; hence, we
can safely assume the validity of the BCs at the mean free
surface instead of the actual free surface. Details about
linearization and shifting can be found in (Techet, 2005).

Taking the pressure at the free surface as the constant
atmospheric pressure, we can eliminate the Bernoulli con-
stant and the pressure term in (9) as demonstrated in (An-
dersen and Frigaard, 2011). Thus, the modified BCs are:

KFSBC:
∂φ
∂ z

=
∂η
∂ t

on z = 0, (21)

DFSBC:
∂φ
∂ t

+gη = 0 on z = 0. (22)

Differentiating (22) w.r.t. t and using (21), we can
combine both the BCs to give the Combined Free-Surface
Boundary-Condition (CFSBC) as:

CFSBC:
∂ 2φ
∂ t2 +g

∂φ
∂ z

= 0 on z = 0. (23)

2.4.2 Complex Exponential Form of the Velocity Po-
tential

It is often mathematically advantageous to use the com-
plex form of the velocity potential; see p. 4 of
(Chakrabarti, 1987). Since the solution we seek is related
to a progressive sinusoidal wave, we may express the ve-
locity potential as

φ = ϕ(z)ei(kx−ωt). (24)

The LPBCs were utilized in the formulation of the above
equation, the real part of which represents the velocity po-
tential of a sinusoidal wave progressing in the positive x-
direction; see pp. 2, 12 of (Krogstad and Arntsen, 2000).
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The BVP is now given by:

Laplace eqn:
∂ 2ϕ
∂ z2 − k2ϕ = 0. (25)

CFSBC: −ω2ϕ +g
∂ϕ
∂ z

= 0 on z = 0. (26)

BBC:
∂ϕ
∂ z

= 0 on z =−h. (27)

Assuming a solution of the form

ϕ(z) = C1e−kz +C2ekz, (28)

Eqn. (27) → C1ke−kh −C2kekh = 0, (29)

Eqn. (26) → (gk−ω2)C1 − (gk+ω2)C2 = 0. (30)

The above homogenous equation system has non-trivial
solutions only when the determinant is zero. This gives
the dispersion relation

ω2 = gk tanh(kh). (31)

Now, setting C1 =
1
2 Bekh and C2 =

1
2 Be−kh,

Eqn. (28) → ϕ(z) = Bcosh[k(z+h)], (32)

Eqn. (24) → φ(x,z, t) = Bcosh[k(z+h)]ei(kx−ωt),
(33)

Eqn. (22) → η =
−1
g

∂φ
∂ t

∣∣∣∣
z=0

. (34)

Considering that that highest value of η is the wave am-
plitude A = H/2 [m], from (33) and (34), we have

B =
−igA

ω
1

cosh(kh)
. (35)

The complex exponential form of the velocity potential
may now be expressed as

φ(x,z, t) =
−igA

ω
coshk(z+h)

cosh(kh)
ei(kx−ωt). (36)

2.5 Kinematics and Dynamics of Regular
Waves

Considering the real part of the velocity potential in (36),

φ =
gH
2ω

coshk(z+h)
cosh(kh)

sin(kx−ωt), (37)

η = H/2cos(kx−ωt), (38)

u =
πH
T

coshk(z+h)
sinh(kh)

cos(kx−ωt), (39)

w =
πH
T

sinhk(z+h)
sinh(kh)

sin(kx−ωt), (40)

u̇ =
2π2H

T 2
coshk(z+h)

sinh(kh)
sin(kx−ωt), (41)

ẇ =−2π2H
T 2

sinhk(z+h)
sinh(kh)

cos(kx−ωt), (42)

δx =−H
2

coshk(z+h)
sinh(kh)

sin(kx−ωt), (43)

δz =
H
2

sinhk(z+h)
sinh(kh)

cos(kx−ωt), (44)

p = ρg
H
2

coshk(z+h)
cosh(kh)

cos(kx−ωt). (45)

Here, u̇ and ẇ [m/s2] are the water particle accelerations,
δx and δz [m] are water particle displacements from their
mean position, and p [N/m2] is the dynamic pressure.
(Chakrabarti, 1987).

2.6 Kinematics and Dynamics of Irregular
Waves

The process of linearization carried out in Section 2.4.1
implies the validity of the superpostion principle with re-
gards to the quantities expressed in Section 2.5. This,
in turn, justifies the representation of the irregular wave
parameters as the summation of the parameters of con-
stituent regular waves; or, in other words, as a Fourier se-
ries, as represented in Figure 2.

The way of describing the sea-state is linked to the en-
ergy content in waves. Linear theory gives the wave en-
ergy per unit area of the sea surface due to a regular wave
as

E =
1
2

ρgζ 2
0i. (46)

Here, ζ0i [m] is the amplitude of the regular wave under
consideration; see p. 97 of (Dean and Dalrymple, 2001).

The spectrum for the irregular wave process is defined
such that the area of the wave spectrum Sη(ω) within the
frequency interval ∆ω represents the wave energy for the
same frequency interval. Hence, from a known spectrum
function, we can find the amplitude ζ0i [m] of the har-
monic wave component which represents the wave energy
for a given frequency resolution using (47); see p. 23 of
(Faltinsen, 1999), and p. 122 of (Chakrabarti, 1987):

ζ0i =
√

2Sη(ωi)∆ω. (47)
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Figure 2. Concept of Fourier series representation of irregular
waves and the wave spectrum. Adapted from (Faltinsen, 1999).

Once the amplitudes corresponding to each of the com-
ponent regular waves is known, randomness may be in-
troduced by the inclusion of an arbitrary phase difference
εi [rad]. The property of the irregular wave may now be
expressed as the summation of the property of the com-
ponent waves of specified frequencies with random phase.
For e.g., the sea surface elevation (SSE) at a given x co-
ordinate is expressed by equation (48); see p. 123 of
(Chakrabarti, 1987):

η(x, t) =
N

∑
i=1

ζ0i cos(kix−ωit − εi). (48)

Here, N is the total number of wave components (fre-
quency bands), ζ0 [m] is the component wave amplitude,
ω [rad/s] is the wave angular frequency, and ε [rad] is the
phase. Subscript i refers to the number of the component
wave under consideration. The wave number k [rad/m]
is to be determined from the dispersion relation given in
(31). g [m/s2] is the acceleration of gravity and d [m] is
the water depth. Sη(ωi) [m2s] is the energy spectral den-
sity and ∆ω [rad/s] is the width of the frequency bands
dividing the total wave spectrum.

The even distribution of component frequencies will
cause the resultant wave to be periodic with a period of
of 2π/ωmin [s], and thus not truly irregular. Hence, the
component frequency within each frequency interval is se-
lected based on a unifrom random distribution, as advised
in p. 209 of (Fossen, 2011).

3 Modelica Implementation
3.1 General Considerations
Most simulation problems envisaged would require, in one
way or the other, the determination of wave/current forces
acting on structures with varying degrees of restraint as
illustrated in Figure 3. Since the wave forces vary both

temporally and spatially, and since the location informa-
tion is contained in the component-model for the body
in a wave-body interaction problem, it was decided that
a wave component-model that generates all the required
parameters that allows for the determination of the vari-
ous quantities given in the equations under Section 2.5, at
any location (x, y, z) within the problem domain, at any
specified simulation time t, would be the best approach.

Figure 3. Expected simulation scenarios.

Once the wave parameters such as component fre-
quencies, corresponding amplitudes and phases are deter-
mined, they would have to be made available to the body
component-model for determination of wave properties at
the desired location. Towards this end, an information bus
holding the required data is to be specified from which the
body component-model may then access this data.

Considering the above general requirements, the system
model for integrated simulation may be represented by the
block diagram in Figure 4. While the wave, current, and
data bus are common components for any ocean engineer-
ing simulation, the other components may vary depending
upon the scope of the simulation. The rest of this paper is
dedicated to the implementation of the component-models
for waves and current.

Figure 4. General block diagram for integrated simulation of an
ocean engineering system.

Flow-charts provided in the following sub-sections
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have been prepared with ocean engineers, most likely to
be unfamiliar with Modelica, in mind, and some elements
might appear superfluous to the Modelica savvy reader.

3.2 Regular-Wave Component-Model
The height of the regular wave Hr [m], time period Tr [s],
water depth d [m], water density ρw [kg/m3], ramp time
Trmp [s], delay time Tdel [s] and the number of frequency
components nωi = 1 are specified as parameters in the
Regular_Airy_Wave component model. Tsim [s] is the
required duration of simulation.

Trmp is used to ramp the wave height in order to prevent
impulse wave loads at the start of the simulation, while
Tdel maybe used to start the waves at a specified time into
the integrated simulation.

The wave angular frequency ω = 2π/T [rad] and d
are passed on as parameters to the function waveNum-
berIterator, which iterates for the wave number based on
the dispersion relation given in (31), and returns the final
value to Regular_Airy_Wave.

A data connector WaveDataConnector transmits d,
ρw, ω , T , k, ε , ζ0i, and SSEX0 to the data bus which
is an expandable connector named the EnvironmentBus.
Here, ε [rad], the phase difference is redundundant for the
case of a regular wave and is set to zero, while SSEX0 is
the sea surface elevation calculated at x = 0 using (38).

The algorithm for generation of regular wave parame-
ters is depicted in the flow chart given in Figure 5, and the
flow chart for the function waveNumberIterator is given
in figure 6. The first value for the wave number iteration is
taken to be k0 =

2π
L0

, where L0 =
gT 2

2π [m] is the deep-water
wave length as given on p. 66 of (Dean and Dalrymple,
2001).

Equations (37)–(45) can then be used to calculate the
wave properties at the required position coordinates, con-
tained in the body component-model, at any required sim-
ulation time t [s].

3.3 Irregular-Wave Component-Model
The generation of component wave parameters based on
the Pierson-Moskowitz spectrum is considered for de-
tailed description. The algorithm for the irregular-wave
component-model IRW_PM_RDFCWI is shown in Fig-
ure 7.

The water depth d [m], significant wave height Hs [m],
the ramp time Trmp [s], the lower cut-off frequency ωmin
[rad/s], the upper cut-off frequency ωmax [rad/s], and the
number of frequency components to be considered nωi,
are specified as parameter inputs.

The frequency resolution ∆ω = (ωmax − ωmin)/nωi
[rad/s] is determined. The component frequency within
each frequency interval ∆ω is then selected based on a
uniform random distribution by the function frequencyS-
elector.

To generate a vector of random numbers, a function
randomNumberGenerator based on the Model-
ica.Math.Random.Generators.Xorshift64star random

Figure 5. Flow chart for regular-wave component-model.

number generator, with a for loop included, to return a
vector of random numbers of specified size, correspond-
ing to the number of frequency components nωi, is called.
The frequencySelector function is a simple function
that shifts the component frequencies randomly within
the associated frequency interval based on the generated
random numbers rnd_shft[nωi].

Once the component frequencies are identified, the cor-
responding spectral values are determined by calling the
function spectrumGenerator_PM which calculates the

91



97DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

Figure 6. Flow chart for iteration of the wave number.

spectral density values based on the empirical formula

Sη(ωi) =
5π4H2

s

T 4
p ω5

i
exp

(
−20π4

T 4
p ωi

)
. (49)

Here, Tp [s] is the peak period of the spectrum, and is re-
lated to Hs through the relations Tp =

2π
ωp

, and ω2
p =

0.161g
Hs

.
ωp [rad/s] is the peak angular frequency; see pp. 105–107
of (Chakrabarti, 1987).

In the future, generation of wave records based on other
commonly used sea-spectra may be incorporated by defin-
ing the correspoding spectrum generating functions.

The amplitudes of the component waves ζ0i are then de-
termined using (47), and corresponding wave numbers ki
are determined using the function waveNumberIterator
described in Section 3.2. The randomly distributed phases
are determined by a second call to the function random-
NumberGenerator. This function call returns a vector
ε[nωi] of uniformly distributed random numbers in (0,1]
and hence, the associated phase difference is expressed as
2πε [rad] .

Having determined all the required parameters, the sea
surface elevation at x = 0, SSEX0 [m], is then calculated
using the formula given in (48). The values are then linked

Figure 7. Flow chart for the irregular-wave component-model.

to the expandable connector EnvironmentBus using the
WaveDataConnector as described in Section 3.2.

3.4 Component-Model of Depth-Varying Cur-
rent

The component-model for current is a simple block which
produces as its output two vectors zcg[n] and Ucg[n]. zcg
contains the co-ordinate information and Ucg contains the
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corresponding current velocities. The parameters spec-
ified are the zcg[n] which is a vector containing the n
depth positions where current velocities are defined, Uf [n]
which is a vector containing the fully developed current
values, and the ramp time Trmp [s]. Ucg[n] holds the in-
stantaneous value of the ramped current. A sinusoidal
ramping function is used for smooth ramping. A Cur-
rentDataConnector links the zcg and Ucg values to the
expandable connector EnvironmentBus. The current ve-
locity at any location may now be computed by the differ-
ent body component-models by interpolation.

4 Results
All results presented below are based on outputs
of the above component models. Simulation files
are available for download at github.com/
Savin-Viswanathan/Modelica2020-a.

4.1 Regular Wave
The simulation model Check_RegularWave under the
sample simulations in the above link calculates the wave
properties based on the parameters generated by the Reg-
ular_Airy_Wave component-model.

Figure 8a shows a sample sea surface elevation at x = 0
[m] with Tdel = 5 [s], Trmp = 10 [s], Hr = 1 [m], d = 10
[m] and Tr = 3 [s], for a simulation interval of 0–30 [s],
while Figure 8b shows the progressive wave profile for the
same wave in the spatial interval 0–30 [m] for different
simulation times.
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]

(a) Sea surface elevation at x = 0 for t = [0,30] s.
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0
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E
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]

(b) Wave profile at different simulation time steps for x = [0,30] m.

Figure 8. Sea surface elevation and the progressive wave profile.

Figure 9a shows the wave profiles at t = 0 [s] for differ-
ent Tr, and Figure 9b shows the trajectory traced by water
particles with different mean positions during a complete
wave cycle, at different depths, for the different wave pe-
riods, in a water depth d = 10 [m]. We observe that,

• For Tr = 3 [s], k = 0.447414 [m−1], and kd > π . The
wave is in deep water and the trajectories are circular.
The displacements in the vertical and horizontal di-
rections decay exponentially with depth and the par-
ticles near the bottom boundary have no horizonatal
or vertical displacements.

• For Tr = 6 [s], k = 0.129834 [m−1], and π
10 < kd < π .

The wave is in intermediate water and the trajecto-
ries are elliptical. The displacements in the vertical
and horizontal directions decay with depth and the
particles near the bottom boundary have only hori-
zontal displacements.

• For Tr = 22 [s], k = 0.029246 [m−1], and kd < π
10 .

The wave is in shallow water and the trajectories are
elliptical. The displacements in the vertical direction
decay linearly with depth, while the horizontal dis-
placement is near constant at all depths.

Tr = 3 s; Tr = 6 s; Tr = 22 s
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(a) Profiles of waves with different periods.
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(b) Water particle trajectories of waves with different wave periods.

Figure 9. Wave profiles and water particle trajectories.

Figure 10a shows the intstantaneous wave profile for a
regular progressive wave with Tr = 6 [s], Hr = 1 [m], in
a water depth d = 10 [m], when there is a crest at x = 0
[m]. Figure 10b–10f shows the quiver plots for the instan-
taneous velocities of water-particles with different mean z
co-ordinates, under different x co-ordinates.

An important consideration to keep in mind is that the
linearization of the boundary conditions in the derviation
of the velocity potential has the effect that the water par-
ticle kinematics derived from such a potential does not
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(a) Wave profile and x co-ordinates where the velocities are measured
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Figure 10. Wave profile (a), water-particle velocities (b)–(f).

account for the change of position of the particle within
the fluid, and hence the theory cannot give a proper de-
scription for flow velocity and acceleration in the region
between the still water level and the wave crest and in the
void to the wave trough. Extrapolation of the values is, in
general, not recommended since the wave forces will be
overestimated. A better way is to apply Wheeler stretch-
ing or move the profile for velocity and acceleration to the
instantaneous sea surface; see p. 221 of (SINTEF, 2014).

Figure 11 shows the pressure distribution at various x
co-ordinates for the same wave as above. The dynamic
pressure above z = 0 [m] has been calculated using a trun-
cated Taylor series for small positive distances, as given
on p. 84 of (Dean and Dalrymple, 2001).

4.2 Irregular Wave
Figure 12a depicts a Pierson-Moskowitz spectrum of Hs =
1 [m] generated by the spectrumGenerator_PM func-
tion, while Figure 12b depicts the sea surface elevation for
an irregular wave record with 100 frequency components,
generated from the spectrum by the IRW_PM_RDFCWI
irregular-wave component-model with Trmp = 10 [s],
Tdel = 0 [s], ∆ω = ωmin = 0.03141 [rad/s], and ωmax =
3.141 [rad/s]. Figure 12c shows an expanded view of the
same wave record in a shorter time interval, for clarity.

4.3 Depth-varying Current
Figure 13 depicts the instantaneous profile for a depth
varying current which is based on the output of the Cur-
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Figure 11. Pressures beneath the wave crest, down-crossing,
and trough.
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(a) Pierson-Moskowitz spectrum with Hs = 1 m.
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(b) SSE at x = 0 m for time interval [0, 400] s.
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(c) SSE at x = 0 m for time interval [0, 60] s.

Figure 12. Irregular waves.

rentProfile_4pt component-model. The current is ramped
up to full value using the parameter Trmp = 5 [s].
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Figure 13. Current profile

5 Conclusion
General considerations to be kept in mind while formu-
lating a framework for carrying out integrated simulation
of ocean-engineering systems is presented and the algo-
rithms for development of Modelica component-models
for the generation of regular and irregular waves are de-
scribed. The implementation of a simple component-
model for generation of depth varying current is also pre-
sented.

Graphical representation of the wave kinematics and
dynamics based on the output of the component-models
for regular waves are then presented to show satisfactory
agreement with general results discussed in (Dean and
Dalrymple, 2001). A sample sea-surface-elevation based
on the output of the component-model for irregular waves
is presented. Since, within the assumption of linearity,
the properties of the irregular wave are a linear combina-
tion of the properties of the consitutent regular waves, it is
deemed that the output of the irregular wave component-
model is satisfactory. Graphical representation of the out-
put of the component-model for depth varying current is
then presented.

For a better understanding of how these component
models perform within an integrated simulation scenario,
readers may refer to (Viswanathan and Holden, 2019).
The present paper fills in for the lack of theoretical
and implementational details for the wave and current
component-models in the above work.

Theory and implementation of component-models
for non-diffracting floating objects and for mooring
forces based on the quasi-static catenary approach, used
in (Viswanathan and Holden, 2019), is discussed in
(Viswanathan and Holden, 2020), along with compari-
son of results for the same system modelled in the com-
monly used ocean-engineering software Orcaflex. Satis-
factory agreement of surge/heave responses, and of Mori-
son forces under various combinations of wave and cur-
rent loading is demonstrated in (Viswanathan and Holden,
2020), and these maybe taken as proof for the correct rep-
resentation of wave-current kinematics by the component

models discussed in this work.
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Abstract
In this paper, the theory behind determining the hydro-
dynamic response of a floating object in the presence of
waves is discussed, followed by a simplification for the
case of wave-transparent objects. The Morison equation
is introduced as a means to estimate lateral wave and cur-
rent loads on slender bodies. The quasi-static catenary
approach to determine mooring forces is then discussed.
Development of Modelica component-models to simulate
the hydrodynamic response of free-floating and catenary-
moored non-diffracting objects, in the presence of waves
and depth varying current, is then dealt with in detail, and
the results dicussed.
Keywords: hydrodynamics of non-diffracting floating ob-
jects, quasi-static catenary mooring, Modelica ocean-
engineering library.

1 Introduction
The advantages of developing an OpenModelica ocean-
engineering library populated with domain-specific
component-models and functions to carry out the integ-
rated simulation of multi-pyhsical ocean engineering sys-
tems was demonstrated by the authors (Viswanathan and
Holden, 2019). This earlier work:

1. Gives a brief description of the simulation of systems
based on the hydrodynamic response of catenary-
moored non-diffracting floating objects in the pres-
ence of waves and current,

2. Demonstrates the satisfactory agreement of the Mod-
elica simulation results with those obtained using
a popular ocean-engineering commercial software
(Orcaflex), and

3. Brings out the advantages of using a component-
model based simulation approach.

The voluminous nature of the earlier work precluded
the possibility of delving into the theoretical and imple-
mentational details of the various Modelica component-
models of the ocean-engineering library proposed by the
authors, the preliminary version of which is available for
download at github.com/Savin-Viswanathan/
OELib_OMAE2019.

(Viswanathan and Holden, 2020) gives a detailed de-
scription of the development of Modelica component-
models to simulate regular as well as irregular waves
and depth-varying current. This present work elabor-
ates on the theoretical and implementational details of the
component-models for non-diffracting floating objects,
and catenary mooring based on the quasi-static approach.

2 Theory
2.1 Hydrodynamics
Considering the steady-state interaction of a floating ob-
ject with a regular wave, the loads acting on the body may
be considered to be comprised of:

• The fluid pressure loads due to the incident wave act-
ing on the body, which is assumed fixed at its mean
position.

• The fluid pressure loads due to the scattered/diffrac-
ted wave from the body, which is assumed fixed at
its mean position.

• The fluid pressure loads due to the radiated wave
system set up by the body as it oscillates in its six
Degrees-of-Freedom (DoF) in calm water.

An illustration of the Diffraction-Radiation problem is
given in Figure 1.

The loads due to the incident wave are referred to as
Froude-Krylov loads, and those due to the scattered wave
are referred to as diffraction loads in p. 39 of (Faltinsen,
1999), and this is the convention followed in this work.
Another widely used convention is to refer to the com-
bined incident and scattered wave-problem as the diffrac-
tion problem as in p. 288 of (Newman, 1989).

The Froude-Krylov and diffraction loads taken together
constitute the wave excitation loads and may be determ-
ined by integrating the incident and diffracted wave dy-
namic pressures over the mean wetted hull surface. The
integration of the dynamic component of the radiation
wave pressures give the associated hydrodynamic loads
commonly referred to as added-mass and damping, while
the integration of the hydrostatic component gives the
restoring loads. The added-mass loads are in phase with
the body acceleration and the damping loads are in phase
with the body velocity.
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Figure 1. The diffraction-radiation problem. Adapted from
(Faltinsen, 1999)

The assumption of inviscid, incompressible fluid and
irrotational flow implies the existance of a velocity poten-
tial which may be determined by solving the associated
linearized boundary value problem (BVP). The solution
to the BVP for determining the incident wave potential is
discussed in (Viswanathan and Holden, 2020). Each of
the wave systems above may thus be described by its re-
spective velocity potential, and within the assumption of
linearity, the total potential φ [m2/s] in the vicinity of the
body is given by

φ = φ0 +φ7 +
6

∑
j=1

η̇ jϕ j. (1)

Here, φ0 and φ7 [m2/s] are the incident and diffracted wave
velocity potentials, respectively, and the summation term
represents the radiation wave potential, where η̇ j [m/s] is
the body velocity along the respective DoF, and ϕ j [m]
is the spatial component of the complex velocity-potential
due to the body oscillation with unit velocity in the corres-
ponding DoF; see (Faltinsen and Michelsen, 1974).

Numerical solutions to the diffraction-radiation prob-
lem may be sought through the Boundary Element Method
or through the Harmonic Polynomial Cell method, to de-
termine the hydrodynamic coefficients. See (Newman and
Lee, 2002) and (Shao and Flatinsen, 2014).

2.1.1 Simplifications in the case of a small-volume
structure

When the size of the structure is large, the diffraction
forces are significant, and hence, one must solve the

diffraction-radiation problem to determine the wave loads.
However, when the structure is relatively small compared
to the incident wave-length, depending on the relative sig-
nificance of the inertia and drag forces, one may utilize the
Froude-Krylov theory or the Morison equation to determ-
ine the wave loads. The Froude-Krylov theory is applic-
able for a relatively small structure when drag forces are
small compared to the inertia forces. When the drag forces
are significant, one has to use the Morison equation; see
p. 168 of (Chakrabarti, 1987).

Considering the case of a vertical cylindrical buoy, drag
forces are not signifcant for motions in the vertical plane,
and hence the Froude-Krylov theory can be used to cal-
culate the vertical wave-loads. However, for motion in
the horziontal plane, drag forces become significant and
hence, the Morison equation should be used to determine
the horizontal wave-loads.

2.1.1.1 The Froude-Krylov Force For small-volume
upright cylindrical structures, the long wave approxima-
tion is applicable for L > 5D, where L [m] is the wave-
length and D [m] is the diameter of the cylinder. Consid-
ering the translational DoFs, i.e., i = 1,2,3, the force on
the relatively small body may then be expressed as:

F = iF1 + jF2 +kF3 (2)

where Fi =−
∫∫

S0B

pni ds+Ai1a1 +Ai2a2 +Ai3a3. (3)

Here, p [N/m2] is the undisturbed incident wave pressure,
and n = (n1, n2, n3) is the unit normal vector to the body
surface, defined to be positive into the fluid. The integ-
ral is over the average wetted surface of the body. Fur-
thermore, a1, a2, and a3 [m/s2] are the acceleration com-
ponents along the x, y, z directions of the undisturbed
wave field, and are to be evaluated at the geometrical mass
centre of the body. Ai1, Ai2, Ai3 [kg] are added-mass terms.
i, j, k are unit vectors along x, y, z. We also note that the
wave generation capability of the body is very small when
the long-wave approximation holds true, and hence, the
potential damping terms may be neglected; see pp. 60–61
of (Faltinsen, 1999).

The first term of (3) is the Froude-Krylov force, the ver-
tical component of which is approximated as

Fz
FK ≈ ρgAwpη . (4)

Here, ρ [kg/m3] is the water density, g [m/s2] is the accel-
eration due to gravity, Awp [m2] is the water-plane area,
and η [m] is the sea surface elevation (SSE) about the
mean sea level. See (Techet, 2005).

The sea surface elevation η , at any x co-ordinate, may
be expressed as:

η(x, t) =
N

∑
i=1

ζ0i cos(kix−ωit − εi). (5)

Here, N is the total number of wave components (fre-
quency bands), ζ0i [m] is the component wave amplitude,
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ωi [rad/s] is the wave angular frequency, and εi [rad] is the
phase. Subscript i refers to the number of the component-
wave under consideration. The wave number ki [rad/m] is
to be determined from the dispersion relation. For details,
see (Viswanathan and Holden, 2020).

The SSE for a regular wave can be expressed by taking
N = 1 in (5).

2.1.1.2 The Morison Equation Though initially for-
mulated to calculate the horizontal wave-forces on fixed,
surface-piercing vertical piles, where D � L, and the drag
forces significant, the Morison equation has since been ad-
apted to determine wave loads on oscillating slender struc-
tures. A thorough treatment of the subject can be found in
Chapter 6 of (Chakrabarti, 1987).

The horizontal wave and current loads per unit length,
on a cylindrical object free to move in presence of waves
and current, may be determined from

Mx
F =Cx

Mρ
π
4

D2u̇−Cx
Aρ

π
4

D2ẍ

+Cx
D

1
2

ρD | u±U − ẋ | (u±U − ẋ).
(6)

Here, Mx
F [N] is the Morison force, Cx

M [-] is the inertia
coefficient, ρ [kg/m3] is water density, D [m] is the body
diameter, u̇ [m/s2] is the wave-induced water-particle ac-
celeration along x, Cx

A [-] is the added-mass coefficient , ẍ
[m/s2] is the body acceleration along x, Cx

D [-] is the drag
coefficient, u [m/s] is the wave-induced water-particle ve-
locity along x, U [m/s] is the current velocity along x,
and ẋ [m/s] is the body velocity along x. Cx

M and Cx
D are

available from numerous field and laboratory tests, e.g.,
(Yeung, 1981), which allows the designer to choose ap-
propriate values; see p. 172 of (Chakrabarti, 1987). Also,
Cx

M = 1 +Cx
A; see p. 178 of (Chakrabarti, 1987). The

wave kinematics are given by (7) and (8); see pp. 48–52
of (Chakrabarti, 1987).

u =
πH
T

cosh [k(z+d)]
sinh kd

cos(kx−ωt) (7)

u̇ =
2π2H

T 2
cosh [k(z+d)]

sinh kd
sin(kx−ωt). (8)

Here, H [m] is the wave height, T [s] is the wave period, k
[rad/m] is the wave number, z [m] is the vertical coordin-
ate of the point at which the wave kinematics are to be cal-
culated, d [m] is the water depth, x [m] is the horizontal
coordinate of the point at which the wave kinematics are
to be calculated, and ω [rad/s] is the angular frequency of
the wave.

2.2 Catenary Mooring
When a floating object is moored by a slack mooring line,
the line assumes the shape of a half catenary; see p. 9 of
(Chakrabarti, 1987).

For simplicity, we consider a mooring line that acts in
the x-z plane. At the point of suspension, the chain tension
has a horizontal and vertical component, the magnitudes

of which depend on ψ [rad], the angle made by the tangent
to the caternary with the horizontal, at the point of suspen-
sion. The horizontal component of this force prevents the
drifting of the floater in the direction away from the an-
chor position. In the absence of other external forces, the
floater drifts to a position such that the suspended length
of the mooring line is vertical. X [m] is the distance from
the anchor point to the fairlead on the buoy, and x [m] is
the distance from the touch- down-point (TDP) to the fair-
lead. As the buoy drifts away from the anchor, the TDP
moves towards the anchor, and vice-versa, as shown in
Figure 2. The total chain length is represented by lc [m]
and the suspended length of the chain is represented by ls
[m]. The length of the chain lying on the seafloor is thus
l f = lc − ls.

Figure 2. The mooring half-catenary.

From (Tatum, 2004) we have the following relations:

a =
TH

w
(9)

z = acosh
( x

a

)
(10)

ls = asinh
( x

a

)
(11)

z = asec(ψ) = a+h (12)

z2 = l2
s +a2. (13)

Here, a [m] is the catenary parameter, x, z [m] are catenary
co-ordinates, TH [N] is the horizontal tension, and w [N/m]
is the submerged specific weight of the catenary.

From (MIT, 2011), we have:

TH =
xw

cosh−1
(

1+ wh
TH

) (14)

ls = h

√(
1+

2TH

wh

)
. (15)

Considering that we are dealing with the response
to linear waves of small-volume structures with small
draughts and even smaller variations in draughts, and
that the water depth is very large when compared to the
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draught, we note that when X = Xmin ≈ (lc − d), x ≈ 0,
and when X = Xmax ≈

√
l2
c −d2, x = xmax.

Equation (14) can be iterated to get values of TH for
x ∈ {0,0.1,0.2........xmax}. We may then use the relation

X = lc − ls + x (16)

to generate a look-up table of horizontal tension values
for different horizontal positions of the floater w.r.t. the
anchor position. The horizontal tensions for intermediate
positions may then be determined by interpolation.

Once the instantaneous horizontal tension values are
determined, we may use (10) and (12) to calculate the in-
stantaneous suspended length of the chain, the submerged
weight of which is the vertical tension at the fair lead.

The mooring line is also subject to Morison forces,
both in the horizontal and vertical directions. To determ-
ine these forces, the chain is discretized into a number of
segments, and the horizontal and vertical Morison loads
are calculated at the mid-points of such segments, and
summed up to get the loading on the entire chain. It is
assumed that the catenary shape is not affected by such
loads, and the sole effect of the fluid loading is a modi-
fication in the horizontal and vertical tension values for a
given configuration.

The Morison loads per unit length in the normal and
tangential directions to a segment, at its mid point, is cal-
culated using equations (17) and (18). This method allows
for the separate specification of CD and CM values, exper-
imental values of which are scarce when the structures are
inclined; see p. 205 of (Chakrabarti, 1987). This method
is widely used, and is referred to as the cross-flow prin-
ciple in p. 166 of (Orcina, 2010).

Mn
F =Cn

Mρ
π
4

D2an
w −Cn

Aρ
π
4

D2an
l

+Cn
D

1
2

ρD | vn
w ±Un − vn

l | (vn
w ±Un − vn

l ).
(17)

Mt
F =Ct

Mρ
π
4

D2at
w −Ct

Aρ
π
4

D2at
l

+Ct
D

1
2

ρD | vt
w ±Ut − vt

l | (vt
w ±Ut − vt

l).
(18)

Here, superscripts n and t denote the normal and tangen-
tial directions, and subscripts w and l denote the water-
particle and the mooring-segment. Further, a [m/s2] is the
acceleration, v is the velocity, U [m/s] is the magnitude
of the current velocity, and the equivalent-line diameter is
D= 1.8dcw [m], where dcw [m] is the diameter of the chain
wire. See p. 303 of (Orcina, 2010).

The determination of the position of the link mid-points
would require the approximation of the quasi-static caten-
ary shape from the horizontal tension at each time step.
This is effected by discretizing the mooring length lc into a
number of segments, and determining the position of each
node connecting the segments using (10)–(12). Once the
mid-point positions at each time step are located, the link
velocity and accelerations can be expressed as time deriv-
atives of the displacement.

The wave-induced water-particle kinematics at the link
mid-point maybe calculated from (7), (8), (19), and (20);
see pp. 48–52 of (Chakrabarti, 1987):

w =
πH
T

sinh[k(z+d)]
sinh(kd)

sin(kx−ωt) (19)

ẇ =−2π2H
T 2

sinh[k(z+d)]
sinh(kd)

cos(kx−ωt). (20)

The current velocities at the required positions can be
interpolated from the specified current profile. The wave-
induced kinematics and the current profile are moved with
the SSE. See p. 221 of (SINTEF, 2014).

Once Mn
F and Mt

F are determined for each link, they
are resolved into their horizontal and vertical compon-
ents, and summed up, to get the total horizontal and ver-
tical forces acting on the mooring chain at each time step.
These are then summed up with the vertical and horizontal
mooring tension values to get the modified values with
fluid loading as Fx

M and Fz
M [N].

2.3 The Equations of Motion
Having determined the loads acting on the cylindrical
buoy, we may express the equations of motion (EoM) in
the horizontal and vertical directions as:

Mxẍ+Cxẋ+Kxx = Mx
F +Fx

M (21)
Mzz̈+Czż+Kzz = Fz

FK +mz
aẇcb +Fz

M (22)

Here M [kg] is mass, C [Ns/m] is the damping, K [N/m]
is the restoring force, MF is the Morison load on the buoy,
FM [N] is the mooring load, ma [kg] is the added-mass,
and ẇcb [m/s2] is the vertical wave induced water particle
acceleration evaluated at the vertical centre of buoyancy
of the buoy. Superscripts x and z denote the horizontal
and vertical directions. In (21), the added mass load is
included in the Morison force term given by (6).

3 Modelica Implementation
Flow-charts in the sub-sections that follow have been pre-
pared with ocean engineers, most likely to be unfamiliar
with Modelica, in mind, and some elements might appear
superfluous to the Modelica savvy reader.

The general considerations in the implementation of
Modelica component-models for integrated simulation
of ocean engineering systems, the implementation of
component-models to simulate waves and depth-varying
current, and the method of linking the generated outputs to
a universal data bus have been discussed in (Viswanathan
and Holden, 2020).

The following data are thus available at the Environ-
mentBus:

• ω[nωi], vector of component wave frequencies.

• T [nωi], vector of component wave Time periods.

• k[nωi], vector of component wave numbers.
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• ε[nωi], vector of component wave phases.

• ζ0i[nωi], vector of component wave amplitudes.

• zcg[n], vector of z co-ordinates where current velo-
cities are provided.

• Ucg[n], vector of current velocities at above z co-
ordinates.

3.1 Non-diffracting Floating Cylinder
Component-model

The water depth d [m], water density ρw [kg/m3], density
of the mooring line material ρc [kg/m3], specific mass of
the mooring line in air ma [kg/m], cylinder radius r [m],
height h [m], structural mass ms [kg], ballast mass mb [kg],
vertical centre of gravity position w.r.t. the keel zKG [m],
added-mass coefficients Cx

ma, Cz
ma [-], drag coefficients Cx

D,
Cz

D, and damping Cx, Cz [kg/s] are specified as parameters.
m f lg is a parameter to specify if the buoy is free-floating
or moored. It is set to 0 in case of a free-floating buoy, and
to 1 if moored.

A composite connector Fairlead[2],
having two flanges of type Model-
ica.Mechanics.Translational.Interfaces.Flange_a, is
specified at the centre of the bottom surface of the buoy,
to transfer the horizontal and vertical mooring loads.

A data connector ebdc is specified to link the wave
and current data from the EnvironmentBus to the buoy
component-model.

Figure 3 shows the flow-chart for the component-
model. Here, K [N/m] is the stiffness, M [kg] is the dry
mass of the buoy, Awp [m2] is the water-plane area of the
buoy, zs [m] is the static draught, zm [m] is the draught
considering the mooring line length, zcb [m] is the z co-
ordinate of the centre of buoyancy, z f b [m] is the calm-
water z co-ordinate of the body CG. z1, z2, z3 [m] are the
instantaneous z co-ordinates of the body CG, top surface
and bottom surface, respectively. z [m] is the instantan-
eous vertical displacement from z f b and x [m] is the dis-
placement in the horizontal direction of the body CG, both
of which are to be determined from the equations of mo-
tion. vx and vz [m/s] are the body velocities in the x and z
directions, while ax and az [m/s2] are corresponding accel-
erations. SSEx [m] is the instantaneous sea surface eleva-
tion at the x co-ordinate of the body CG, aw [m/s2] is the
vertical component of the wave-induced water-particle ac-
celeration, calculated at the instantaneous (x,zcb) position,
and Mx

F [N] is the instantaneous wave-current Morison
loading on the buoy. Fairlead[1]. f and Fairlead[2]. f [N]
are the horizontal and vertical components of the mooring
load, at the the fairlead. t, Tsim [s] are the current and total
simulation times, respectively.

SSEX is calculated using (5). The function
wave_awCalculator returns the value of aw calculated us-
ing (8), with consideration of the moved kinematic profile.
The function morisonForceCydlBuoy returns the value

Figure 3. Flow-chart for the floating cylinder component-
model.

of Mx
F . The EoMs along the x and z directions are then

solved with the specified initial conditions to determine
the body response.

3.2 Quasi-static Catenary Mooring
Component-Model

Considering space limitations, the flow chart for the
component-model Catenary_Mooring_Mf0, which does
not take into consideration the wave and current loads on
the mooring line itself, is given in Figure 4.
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Figure 4. Flow-chart for the quasi-static catenary component-model.

A composite connector Shackle[2],
having two flanges of type Model-
ica.Mechanics.Translational.Interfaces.Flange_b, is
specified at the top end of the catenary to transfer the
horizontal and vertical mooring loads. The parameters
defined are the water depth d [m], water density ρw
[kg/m3], the number of segments into which the mooring
is discretized nl , the length of each segment ll [m], the
density of the mooring material ρc [kg/m3], and the dry
specific mass of the chain ma [kg/m]. Since the Shackle
is connected to the Fairlead, the corresponding positional
data are also available.

Xmax, X0, xmax [m] are calculated along with the sub-
merged specific mass of the mooring ms [kg/m]. The vec-

tor containing the x positions, where the horizontal moor-
ing load is to be iterated, is defined as x[n]. A function
CatThIterator returns the vector TH[n], containing the
corresponding horizontal tension values, calculated based
on (14). Another function CatXIterator, returns the vec-
tor X[n] containing the X position corresponding to the x
position, as defined in Figure 2.

A data connector emdc is specified to link the wave and
current data from the EnvironmentBus to the mooring.
In addition, the initial x co-ordinate of the top end of the
mooring line Xi [m], is transmitted to the universal data
bus for utilization by the buoy component-model to spe-
cify its initial condition.

fd0 [N] is the horizontal mooring load, for the given x
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co-ordinate of the top end of the mooring line, a is the
catenary parameter, zc [m] is the z co-ordinate of the top
end of the catenary, in the local co-ordinate system of the
catenary, the origin of which lies at a distance of a [m]
below the bottom-most point of the catenary, as described
in (Tatum, 2004). ψc [rad] is the slope of the top-most
catenary segment, xc [m] is the x co-ordinate of the top-
most point of the catenary, and ls [m] is the suspended
length of the catenary.

xlc and zlc are vectors holding the x and z co-ordinates
of the end points of the segments, in the local co-ordinate
system of the catenary. xl p and zl p are the vectors holding
the x and z co-ordinates of the end points of the segments,
in the global coordinate system. xl po is the plot correction
parameter to account for the minor difference between the
actual catenary shape with its top end z coordinate cor-
responding to the instantaneous position of the buoy keel,
and the catenary shape which is back-calculated based on
the horizontal tension value from the look-up table, which
is in turn based on the z co-ordinate of the top end of the
catenary lying at the sea-surface.

If the x co-ordinate of the shackle is less than Xmin [m],
then a small force in the positive x direction is applied to
restore the buoy to a region where the mooring model is
valid. The vertical mooring load is then the weight of the
vertically suspended length of the mooring. For the rare
cases when shackle[1].s < Xmin, the plot of the mooring
shows a vertically suspended-length instead of the actual
shape.

When the x co-ordinate of the shackle is between Xmin
and Xmax, the horizontal mooring load is the corresponding
value interpolated from the lookup-table using a function
linearInterpolatorSV, and the vertical load is based on
the suspended length back-calculated from the horizontal
load. The plot of the mooring line shows the catenary
shape, back-calculated from the horizontal load, and cor-
rected using xl po.

If the loads on the buoy exceed the capacity of the
mooring line, then the x co-ordinate of the shackle ex-
ceeds Xmax, the catenary is assumed to be detached from
the buoy, and would lie extended on the sea-floor.

3.2.1 Current and Wave Loads on the Mooring Line

Simulation of current and wave Morision loads on the
mooring line is based on the theory given in Section 2.2.
The methodology is similar to the one represented by Fig-
ure 4, with additional loops for determining fluid and
structure velocities and accelerations, and is easily dis-
cernible from the code. Catenary_Mooring_MfC con-
siders the Morison loads due to current and mooring ve-
locities, while Catenary_Mooring_MfCW considers the
loads due to current, wave, and mooring line velocities and
accelerations.

4 Results
The simulation files for all results discussed below are
available at github.com/Savin-Viswanathan/

Modelica2020-b. Comparison results using Orcaflex
are also presented here.

Figure 5a shows the heave response of a cylindrical
buoy of r = 0.6 [m], h = 2 [m], ms = 350 [kg], mb = 500
[kg], in a water depth of d = 50 [m], when subjected to a
regular wave with Hr = 1 [m] and Tr = 7 [s], with Tdel = 0
[s], and Trmp = 20 [s]. We have assumed Cx

ma =Cz
ma = 1,

Cx = 0 [kg/s], and Cz = 3100 [kg/s].
Figure (4) in (Viswanathan and Holden, 2019) had

shown the same results for heave, and we had noticed a
slight discrepancy between the Modelica and Orcaflex res-
ults. The cause was identified to be an error in the treat-
ment of the added mass term in (4) of (Viswanathan and
Holden, 2019), and has been corrected based on the the-
ory described here in Section 2.1.1.1. Figure 5b shows the
surge response.
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Figure 5. Unmoored cylindrical buoy in waves.

Figure 6a shows the surge response of the above buoy,
in the presence of a uniform current of 1 [m/s] in the x
direction, while Figure 6b shows the same in presence of
both the above wave and current.

Figure 7a shows the horizontal Morison loads on a fixed
buoy with same properties as the earlier one, but with a
draught of 1 [m], when subjected to a uniform current of
1 [m/s]. Figure 7b shows the surge Morison loads when
only a regular wave, with the same parameters as above,
acts on the fixed buoy, and Figure 7c shows the Morison
loads when both the current and the wave acts on the buoy.

From Figure 7, we observe that the Morison loads are
a close match, and hence, the difference between Mod-
elica and Orcaflex values in Figures 5b, 6a, and 6b, can
be attributed to the difference in the way in which the
loads are ramped up during the start of simulation, as evid-
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Figure 6. Surge response of an unmoored cylindrical buoy.
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Figure 7. Morison loads on a fixed cylinder.

ent from Figure 7a. Orcaflex uses vertical-stretching of
the water-particle kinematics, while the present Modelica
model employs moved kinematic-profiles, and this could

be the cause of the minute difference in peak values of the
Morison loads in Figures 7b and 7c.

Orcaflex uses a lumped-mass and spring-damper model
for the mooring lines, while mooring forces in the present
work are based on the quasi-static catenary theory. Fig-
ure 8 shows the horizontal tension values given by Or-
caflex and Modelica models for different X positions, for
moorings of different specific masses. The horizontal ten-
sions are a close fit, with Modelica giving slightly higher
values than Orcaflex. e.g., for a chain with specific mass
of 16 [kg/m], at X = 70 [m], TH in Modelica is 2,336 [N]
and 2,299 [N] in Orcaflex. The mooring horizontal ten-
sions from Orcaflex were determined by placing the top
end of the line at different X positions along the free sur-
face manually and a small error in the values had occured
in Figure 10 of (Viswanathan and Holden, 2019).
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Figure 8. Horizontal tensions for mooring chains with different
specific masses (ma).

Figure 9 shows the shape of a mooring line, with spe-
cific mass 10 [kg/m], in Modelica and Orcaflex when the
top end is placed at X=60 [m], and at 80 [m] with z= 0 [m].
When a uniform current of 1 [m/s] is applied across the
full depth of the water-column, the Orcaflex line, based on
the lumped mass model, deflects under the influence of the
current. The deflection is not expected to be large enough
to cause considerable difference in the fluid loading ex-
perienced by the mooring line. However, it is evident that
the static catenary model would not capture the forces that
result as a consequence of the dynamics of the mooring
line itself.

Figure 10 shows the surge and heave response of the
above free-floating buoy, when moored with a mooring
line of specific mass 10 [kg/m], under different conditions
of wave and current. It was noticed that the model failed
to simulate when the acceleration forces due to the fluid
and the motion of the chain were considered, using the
CatenaryMooring_MfCW component model. Hence the

101



109DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

20 40 60 80
−50

−40

−30

−20

−10

0

X [m]

z
co

-o
rd

in
at

e
[m

]
without current, Orcaflex

with/without current, Modelica

with current, Orcaflex

Figure 9. Shape of the mooring line.

results shown are with the CatenaryMooring_MfC com-
ponent model. The combined wave-current velocity and
accleration loads, and inertial loads due to the structural
response of the mooring chain, are inherent in the Orcaflex
model, while they are not accounted for by the present
Modelica model. The phase difference in the response
between the models may be because of this difference.

When the current velocity is reduced to 0.5 [m/s],
CatenaryMooring_MfCW could be used for simula-
tion, and the results are shown in Figure 11. How-
ever, the model is sluggish with many warnings for non-
convergence. This could be due to the discontinuities in
the accelerations of the segment mid-points, calculated
based on the instantaneous static catenary shape. An ex-
ample of the vertical component of the acceleration of the
mid-point of the second segment from the top-end of the
mooring, is shown in Figure 11c.

5 Conclusion
Implementation of the theory to develop Modelica
component-models for a non-diffracting cylindrical ob-
ject, and for a quasi-static mooring catenary, is described
in detail. Simulations to determine the hydrodynamic re-
sponse of a free-floating cylinder are carried out, and the
results compared with a smilar model in Orcaflex. It is
observed that the heave responses in both cases are in sat-
isfactory agreement. Minor differences in the surge re-
sponses are reconciled based on the comparison of Mor-
ison forces on a fixed cylinder, under various loading scen-
arios, and it is concluded that these differences are a result
of the differences in the ramp-up functions used in this
Modelica model and in Orcaflex, and hence, do not con-
stitute errors in the simulation results.

The static mooring loads, based on the catenary the-
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Figure 10. Hydrodynamic response of a moored cylindrical
buoy.

ory in the present Modelica model, and those based on
the lumped-mass spring-damper system of the Orcaflex
model, are demostrated to have satisfactory agreement.
The comparison between mooring configurations under
different loading scenarios points out the probability that
differences in the fluid loading of the mooring line, as a
result of the deviation of the mooring line from the caten-
ary shape, might not be significant, compared with the
contributions from the dynamics of the mooring line it-
self, which the present Modelica model does not capture.

The simulations of a moored floating cylinder further
demostrate the satisfactory agreement between this Mod-
elica model and a similar Orcaflex model. The simulations
bring out the deficiencies caused by the assumptions of the
quasi-static catenary, which is not in agreement with the
actual physics of the system.
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Figure 11. Moored cylindrical buoy in waves and reduced cur-
rent.

To overcome the deficiency of not being able to account
for the mooring line dynamics, and to mitigate issues as
seen in Figure 11c, a Modelica mooring component-model
based on the lumped-mass spring-damper approach is be-
ing developed, along with a frequency-domain hyrdody-
namic analysis component-model, which would enable
the generation of hydrodynamic parameters for diffract-
ing objects. The initial results appear promising and will
be the topic of discussion in a future work.
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Abstract 
Rotor aeromechanics is a multidisciplinary branch in the 
field of rotorcraft that involves performance, loads, 
vibrations, stability, and noise. Aeromechanic analysis 
in this field is a complex task typically requiring 
specialized software tools to simultaneously resolve the 
coupled structural, mechanical, and aerodynamic 
solutions that contain motion (both rigid and elastic) and 
forces. One drawback of these tools is that they are often 
overspecialized and do not lend themselves well to the 
analysis of the latest rotorcraft advances and concepts, 
including those utilizing distributed electric propulsion. 
In this paper, a Modelica library is presented that 
provides an extensible platform for performing analysis 
and design studies of current and future rotorcraft. 
Several examples are presented that illustrate how the 
library can be used to perform aerodynamic and whirl 
flutter stability analysis as well as control system design 
for multi-rotor aircraft. 
Keywords:     Modelica, rotorcraft, aeromechanics, 
aerodynamics, whirl flutter, flight control 

1. Introduction 
Analytic methods for analyzing rotors are frequently 
capable of adequately characterizing the basic 
aerodynamics of rotor blades but have shortcomings in 
addressing more-complex configurations, as such 
methods are not easily extendable to adequately 
describe complex geometry, elastic blades, or physics 
such as time-resolved rotor wakes. In addition, detailed 
hub mechanics are often missing that can significantly 
affect rotor behavior and stability. Therefore, numerical 
methods are frequently preferred for analyzing real-
world designs. Several comprehensive rotor analysis 
tools exist (e.g., CAMRAD-II, RCAS) with varying 
capabilities intended to overcome the limitations of 
analytical methods.  

Whirl flutter is a phenomenon that principally affects 
propeller and proprotor aircraft that encounter high rotor 
inflow velocities and involves the tip path plane 
precessing (“whirling”) in the form of a dynamic 
instability. The precession stems from the gyroscopic 
motion of the rotating blades. This otherwise stable 
motion is destabilized under certain conditions by 
aerodynamic forces introduced by changes in the local 

blade inflow angles due to the precession (Reed, 1967). 
Analytic methods exist, such as the Houbolt-Reed 
method (Houbolt and Reed, 1962; Reed and Bland, 
1961), that are capable of quantifying stability; 
however, they are limited by the same factors since 
general rotor analysis and software is typically used 
once a basic rotor design is established to capture 
additional aerodynamic or mechanical effects. 

Existing software tools for performing rotor 
aerodynamics and whirl-flutter analyses are generally 
tailored specifically to rotor analysis and therefore are 
limited, whether by the available connections to external 
tools, the rotor control schemes, or the ability to model 
effects such as electromechanical interaction for rotors 
driven by electric motors. Emerging rotorcraft designs, 
however, are increasingly moving toward multi-rotor 
and electrified rotor concepts for which these tools 
typically lack capability to analyze. An example is the 
NASA X-57 distributed electric propulsion aircraft, 
which consists of 14 rotors distributed along the wings 
intended to enhance performance under certain flight 
conditions. Modelica has previously been used to 
analyze this complex multi-physics problem (Batteh et 
al., 2018); however, explicit rotor dynamics and 
stability were not considered. Existing rotor analysis 
tools are not designed to handle the coupled multi-rotor 
aero-electrical-mechanical problem, so alternative 
analysis approaches are necessary. 

This paper presents a new Modelica library, the 
Rotorcraft Aerodynamics Library (RotorAeroLib), that 
provides a rotor aerodynamics modeling capability and 
rotor mechanical templates that can be used to analyze 
various rotor configurations such as those found on 
helicopters as well as fixed wing, tilt-rotor, and 
distributed electric propulsion aircraft. By leveraging 
the capabilities and extensibility of Modelica, this 
library will enable engineers to perform sophisticated 
analyses beyond what is capable in existing 
comprehensive rotorcraft tools.  

2. The Rotorcraft Aerodynamics 
Library 

The Rotorcraft Aerodynamics Library mixes new 
modeling capabilities of rotor blade aerodynamics with 
existing Modelica Standard Library models to provide a 
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toolset for coupled aerodynamic analysis and design. 
The rotor hub topologies used in rotorcraft vary 
significantly, so it is imperative to have a flexible and 
extensible modeling technology such as Modelica. The 
goal of the library is to make building aerodynamic 
models of rotors easier by providing a set of common 
building blocks.  

The Rotorcraft Aerodynamics Library is organized 
into aerodynamic models and template implementations 
of rotor components, including, for example, the rotor 
blade as well as several example models. The top-level 
view of the library is shown in Figure 1. The most 
relevant of the models will be described in the following 
sections. Some of the template rotor models, e.g., the 
RotorBlade model, make use of the freely available 
Modelica Deployable Structures Library (Rupp and 
Schweizer, 2018) (available via the Modalica 
Association website), which contains an appropriate 
flexible beam formulation that can be used for rigid for 
elastic rotor analysis. 

 
Figure 1. Top-level view of the rotorcraft aerodynamics 
library. 

2.1. AirStation 
At the top level of RotorAeroLib is a Modelica model 
that implements the aerodynamic equations for the rotor 
problem. This model, the AirStation, computes localized 
aerodynamic lift and drag sectional forces imposed upon 
a rotor blade as a function of local blade position, 
velocity, angle of attack, lift and drag coefficients, as 
well as global terms such as freestream velocity and 
overall rotor properties as described by blade element 
theory (BET) (Stepniewski and Keys, 1984). 

In BET (also known as strip theory or lifting line 
aerodynamics), the rotor blade is assumed to act as a 
one-dimensional beam and is discretized along its length 
where the aerodynamic equations of each blade cross-
section (i.e., an airstation) are solved independently 
considering local conditions (Leishman, 2006). The 
resultant forces are then summed along the blade length 
to derive total thrust and rotor torque. 

Following the variable definitions for the airstation 
aerodynamics shown in Figure 2, the inflow angle 𝜙𝜙𝜙𝜙 is 
calculated via the perpendicular 𝑈𝑈𝑈𝑈𝑃𝑃𝑃𝑃 and tangential 𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇 
air flow speeds via 

𝜙𝜙𝜙𝜙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑈𝑈𝑈𝑈𝑃𝑃𝑃𝑃
𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇
� (1) 

which is related to the geometric/collective angle 𝜃𝜃𝜃𝜃 and 
ultimately the angle of attack 𝛼𝛼𝛼𝛼 via 
𝛼𝛼𝛼𝛼 = 𝜃𝜃𝜃𝜃 − 𝜙𝜙𝜙𝜙.  (2) 

Lift 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 and drag 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 forces at an airstation can then be 
computed from 
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 = 1

2
𝜌𝜌𝜌𝜌𝑈𝑈𝑈𝑈2𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 (3) 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 = 1
2
𝜌𝜌𝜌𝜌𝑈𝑈𝑈𝑈2𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 (4) 

where  
𝑈𝑈𝑈𝑈2 = 𝑈𝑈𝑈𝑈𝑃𝑃𝑃𝑃2 + 𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇2 (5) 

is the total cross-sectional airstream speed (neglecting 
radial flow), 𝜌𝜌𝜌𝜌 is the density of air, 𝑐𝑐𝑐𝑐 is the blade chord 
length, 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥  is the lengthwise blade discretization size 
(i.e., the width of the airstation), and 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙 and 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 are the 
airfoil coefficients of lift and drag, respectively, defined 
here by 
𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙 = 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,0 + 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,𝛼𝛼𝛼𝛼 ∗ 𝛼𝛼𝛼𝛼 + 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,𝛼𝛼𝛼𝛼2 ∗ 𝛼𝛼𝛼𝛼2 (6) 
𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 = 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑,0 + 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑,𝛼𝛼𝛼𝛼 ∗ 𝛼𝛼𝛼𝛼 + 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑,𝛼𝛼𝛼𝛼2 ∗ 𝛼𝛼𝛼𝛼2. (7) 

Such analytic forms of sectional lift coefficients are 
typically obtained from wind tunnel measurements and 
have been relatively common in rotor aerodynamic 
analyses since the early days of aviation (Knight and 
Hefner, 1937). An alternative approach involves 
defining large tables of sectional aerodynamic data, 
known as C-81 tables, after the name of the computer 
software originally developed by Bell Helicopter 
(Harris, 2012). The C-81 tables typically include 
sectional lift, drag, and pitching moment as a function 
of angle of attack, Reynolds number, and Mach number 
and therefore are nontrivial to construct even with the 
large collection of experimental data for common airfoil 
sections available (Abbott and von Doenhoff, 1959). 
While these tables are undoubtedly more complete, the 
accessibility of the above analytic forms offer a 
straightforward implementation in RotorAeroLib that 
could, if desired, be expanded to use a lookup table. 

The resulting lift 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥  and drag 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥  forces are then 
transformed into the local AirStation frame, which is 
oriented at the blade geometric angle (Figure 2), using 
𝛥𝛥𝛥𝛥𝐹𝐹𝐹𝐹𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝛼𝛼) + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎(𝛼𝛼𝛼𝛼)  (8) 
𝛥𝛥𝛥𝛥𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝛼𝛼)− 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎(𝛼𝛼𝛼𝛼).  (9) 
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Figure 2. Variable definitions for the AirStation 
aerodynamics. 

For the AirStation, these equations are solved in a 
reference coordinate system that is assumed to be 
oriented with X along the nominal blade direction and Z 
perpendicular to the nominal rotor plane. Thus, this 
coordinate system will rotate with the blade azimuth, but 
it is unaffected by flap or lead-lag blade motion. The 
geometric angle of an AirStation is then computed as the 
relative rotation about the X-axis between the AirStation 
frame and the relative coordinate system. This angle 
continuously changes as the blade flaps, lead-lags, and 
feathers and is thus tightly coupled to the blade motion 
and aerodynamics. 

As in BET, it is the intent that several AirStation 
models are distributed along each rotor blade in a 
discretized fashion so that as the number of AirStation 
models increases, the solution converges to the 
asymptotic limit. RotorAeroLib provides a discretized 
rotor blade model that serves this purpose, which is 
described in a later section. 

The AirStation model extends the PartialAirStation 
model, which contains the basic input/output quantities 
necessary to provide an interface to an arbitrary 
aerodynamic solver. Whereas the AirStation model 
provides a pure Modelica implementation of the rotor 
aerodynamic equations, the ExternalAirStation model 
does the same but provides an external C function 
interface for implementing aerodynamic loading from 
an external source such as a computational fluid 
dynamics solver or one of several high-fidelity rotor 
aerodynamics software packages. Work utilizing 
ExternalAirStation is ongoing, and the model will be 
updated within RotorAeroLib as functional interface 
codes are implemented and validated. 

In addition to the standard BET equations, the 
AirStation model can optionally include various 
aerodynamic correction terms to improve the accuracy 

of the solution. These terms include corrections for 
induced airflow, Mach effects, tip loss, aspect ratio, 
unsteady circulatory aerodynamics, and unsteady 
noncirculatory aerodynamics. Boolean parameters 
controlled by an outer RotorAeroLib_Globalsmodel (to 
be described next) turn these contributions on and off. 
Some of the computations for these corrections, e.g., 
unsteady noncirculatory aerodynamics, will 
significantly increase computational cost due to the 
introduction of additional states and nonlinear terms, but 
some flight conditions require them to ensure accuracy 
of the results. The following subsections describe each 
of the aerodynamic terms available in the AirStation 
model. 

2.1.1. Aerodynamic Parameter useInflowCorrection 
One of the shortfalls of BET is that it uses an assumed 
inflow condition. In the case of the AirStation model, 
the inflow is assumed to be uniform and independent of 
collective or blade twist, which is inaccurate for many 
flight conditions. An improvement for axial flight 
corrects the inflow using blade element momentum 
theory (BEMT) (Leishman, 2006) in which inflow ratio 
𝜆𝜆𝜆𝜆 and perpendicular airflow speed are corrected at each 
airstation via the equations 
𝜆𝜆𝜆𝜆2 + �𝜎𝜎𝜎𝜎𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,𝛼𝛼𝛼𝛼

8
− 𝜆𝜆𝜆𝜆𝑐𝑐𝑐𝑐�𝜆𝜆𝜆𝜆 −

𝜎𝜎𝜎𝜎𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,𝛼𝛼𝛼𝛼
8
𝜃𝜃𝜃𝜃𝛥𝛥𝛥𝛥

~
= 0 (10) 

𝑈𝑈𝑈𝑈𝑃𝑃𝑃𝑃 = 𝑉𝑉𝑉𝑉𝛥𝛥𝛥𝛥 + 𝜆𝜆𝜆𝜆𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 (11) 
where 𝜎𝜎𝜎𝜎 is the rotor solidity, 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,𝛼𝛼𝛼𝛼 is the lift curve slope, 
and 𝜆𝜆𝜆𝜆𝑐𝑐𝑐𝑐  is the inflow due to axial climb rate. With 
BEMT, the inflow ratio is now a function of collective 
and blade twist, which leads to more accurate solutions. 

Although BEMT provides an improved estimate of 
the rotor disk inflow conditions for axial flight, the 
inflow is assumed to respond instantaneously to changes 
in rotor operating conditions. These assumptions are 
typically appropriate for performance prediction as well 
as certain stability analyses that involve high inflow 
conditions (e.g., propellers in forward flight). Although 
not implemented within the current version of 
RotorAeroLib, more advanced models (Leishman, 
2006), such as dynamic inflow and free wake models, 
exist for the purpose of extending applicability to a 
broader problem set. 

2.1.2. Aerodynamic Parameter 
useAspectRatioCorrection 

The rotor aspect ratio is the ratio of the blade length to 
its mean chord length, defined as 
𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 0.75 𝑅𝑅𝑅𝑅

𝑐𝑐𝑐𝑐
 (12) 

where 𝑅𝑅𝑅𝑅 is the blade length (Bland and Bennett, 1963). 
The 0.75 factor comes from the aspect ratio at the three-
quarters radius. The aspect ratio correction factor 𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 is 
defined as 
𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅+2
 (13) 
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and accounts for tip loss (Bland and Bennett, 1963). 
This correction factor is applied directly to the 
AirStation lift value. 

2.1.3. Aerodynamic Parameter useMachCorrection 
As a blade rotates, the tangential, and thus total, air 
speeds it encounters are a function of radial position 
along its length. Full-scale vehicles commonly have tip 
Mach numbers in excess of 0.6, warranting the use of 
the Prandtl-Glauert compressibility correction. The 
compressibility correction factor takes into account 
these effects individually at each AirStation since each 
will have a different Mach number (Bland and Bennett, 
1963). With the speed of sound 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the Mach number 
defined as 
𝑀𝑀𝑀𝑀 = 𝑈𝑈𝑈𝑈

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠
 (14) 

feeds into the Mach correction factor 𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 as 
𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 = 1

√1−𝑀𝑀𝑀𝑀2 (15) 
which then gets applied directly to the AirStation lift 
value. 

2.1.4. Aerodynamic Parameter useTipLossCorrection 
Finite lifting wings encounter a phenomenon termed 
“tip loss,” which is caused by the high-pressure air 
beneath the airfoil sections rolling over the blade tip to 
the low-pressure side above the airfoil, resulting in a 
loss of lift. Accounting for these effects in rotary wing 
aerodynamics is naturally more challenging than fixed 
wing aerodynamics due to the unsteady aerodynamics. 
There exists numerous empirical tip loss models 
(Leishman, 2006; Stepniewski and Keys, 1984) to 
incorporate these effects into simplified aerodynamic 
computations. The implementation within 
RotorAeroLib utilizes a tip loss model similar to that 
used in the Dymore comprehensive solver (Bauchau, 
n.d.). In the Modelica model, blade section lift is 
modified by the correction factor 

𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ �
1−

𝛥𝛥𝛥𝛥
𝑅𝑅𝑅𝑅

1−𝜇𝜇𝜇𝜇
� (16) 

where 𝛥𝛥𝛥𝛥  is the radial distance along the blade of the 
airstation and 𝜇𝜇𝜇𝜇 is a user-prescribed tip loss coefficient, 
typically selected between 0.95 and 1.0. The resulting 
tip loss factor is approximately unity near the rotor hub 
and increases significantly near the blade tip where tip 
losses are at their greatest. This correction factor is 
applied directly to the AirStation lift value. 

2.1.5. Aerodynamic Parameter useUnsteadyAero 
Rotor aerodynamics tend to be dominated by unsteady 
effects, especially at the low inflow flight conditions 
typically encountered by conventional helicopter main 
rotors. This is a consequence of several rotor 
phenomena and is largely attributed to a combination of 
cyclic controls (i.e., commanded blade pitch becomes a 
function of rotor azimuth), tip vortex trajectories (both 
periodic and aperiodic), and blade structural dynamics 

(including pitch, flap, and lead-lag motion, along with 
local aeroelastic deformations).  

One method for incorporating unsteady 
aerodynamics involves application of Wagner’s 
function. The value of the lift coefficient 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙 at angle of 
attack 𝛼𝛼𝛼𝛼  can be represented by a state space system 
approximation of the Wagner function (Leishman and 
Nguyen, 1990) as 

�
�̇�𝑥𝑥𝑥1
�̇�𝑥𝑥𝑥2

� = �
0 1

−0.01375 �
2𝑈𝑈𝑈𝑈
𝑐𝑐𝑐𝑐
�
2

−0.3455 �
2𝑈𝑈𝑈𝑈
𝑐𝑐𝑐𝑐 �

� �
𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥2

� + 

 �01� 𝛼𝛼𝛼𝛼
(𝑎𝑎𝑎𝑎) (17) 

𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙(𝑎𝑎𝑎𝑎) = 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,𝛼𝛼𝛼𝛼 �0.006825 �
2𝑈𝑈𝑈𝑈

𝑐𝑐𝑐𝑐
�

2

0.10805 �
2𝑈𝑈𝑈𝑈

𝑐𝑐𝑐𝑐
�� �

𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥2� + 

 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,𝛼𝛼𝛼𝛼
4
𝛼𝛼𝛼𝛼(𝑎𝑎𝑎𝑎) (18) 

where 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,𝛼𝛼𝛼𝛼  is the lift curve slope and 𝑥𝑥𝑥𝑥1 , 𝑥𝑥𝑥𝑥2  are state 
variables. If selected, this set of equations fully replaces 
the linear equation for the lift coefficient (eq. 6). 

2.1.6. Aerodynamic Parameter 
useUnsteadyNoncircAero 

Unsteady noncirculatory terms (also termed “apparent 
mass” terms) are a result of unsteady blade 
accelerations. The unsteady blade motion requires a 
certain mass of air be moved to accommodate the 
blade’s physical position. The acceleration of this mass 
of air gives rise to the noncirculatory terms. 

This introduces a correction 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐  to the AirStation 
lift coefficient defined as 
𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 = 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋��̇�𝜃𝜃𝜃𝑈𝑈𝑈𝑈 + ℎ̈

𝑈𝑈𝑈𝑈2 −
𝜋𝜋𝜋𝜋𝑎𝑎𝑎𝑎�̈�𝜃𝜃𝜃
𝑈𝑈𝑈𝑈2 � (19) 

where 𝜋𝜋𝜋𝜋 is the semi-chord, 𝜃𝜃𝜃𝜃 is the geometric angle, ℎ 
is the vertical plunge distance from the rotor plane, and 
𝑎𝑎𝑎𝑎 is distance from the center of blade rotation to the 
mid-chord (Hodges and Pierce, 2002). This correction 
term is added to the lift coefficient from unsteady 
aerodynamics and is only used if the useUnsteadyAero 
parameter is true. 

2.2. RotorAeroLib_Globals 
The RotorAeroLib_Globals model uses a Modelica 
outer declaration to define a globally scoped class 
containing definitions of whole-rotor design parameters, 
variables, and the aerodynamic correction term usage 
flags. One RotorAeroLib_Globals model is intended to 
be used with each rotor, so in multi-rotor configurations, 
the user must take care to properly encapsulate the 
model within an instance of a rotor to ensure a one-to-
one correspondence between a rotor’s 
RotorAeroLib_Globals model and its set of AirStation 
models. 

Within the RotorAeroLib_Globals model are 
parameters for the rotor blade radius, root cutout radius, 
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chord length, solidity, and tip loss factor. Also included 
are the air density, speed of sound, and free-stream 
velocity. To calculate certain aerodynamic values, it is 
necessary to know the nominal blade tip speed, which 
cannot be calculated at any given AirStation due to its 
purely local definition. Therefore, the 
RotorAeroLib_Globals model contains an input port for 
the rotor shaft speed from which the nominal blade tip 
speed is calculated. This value is then used in an 
AirStation model which contains an inner 
RotorAeroLib_Globals model. 

Also defined within the RotorAeroLib_Globals 
model are the parameter definitions for the various 
AirStation correction terms. Each of these is turned on 
and off via a Boolean parameter setting, which then gets 
referenced within the AirStation model. 

2.3. RotorBlade 
A rotor blade typically has properties that vary along its 
length, including cross-sectional and material properties 
which are usually defined in terms of EI, GJ constants. 
Typically, there is also a cutout region near the blade 
root where there is no airfoil, beyond which the blade 
twists along its axis to account for variation in 
aerodynamics due to changes in transverse speed as a 
function of radius. The RotorBlade model provides a 
template with which to include these effects as 
parameters. 

The RotorBlade model consists of a series of flexible 
beam members from the DeployStructLib library 
attached end to end with a discretization level set by a 
parameter. Between each beam segment is a 
FixedRotation model that progressively implements the 
twist of the beam along its length. The twist rate is set 
by a parameter. AirStation models are attached to a 
frame located at the quarter chord of each beam, rotating 
with the beam as it moves and imparting aerodynamic 
forces onto the beam. The AirStation is also connected 
to a reference coordinate system, which is always 
oriented with the blade nominal position within the rotor 
plane to provide a reference for the computation of the 
aerodynamic equations. 

2.4. RotorBladeAssembly 
A rotor can have any number of blades, so the 
RotorBladeAssembly model is parameterized to create 
multiple instances of a RotorBlade model and 
automatically set up the appropriate relative and 
reference orientations for the blades and their inputs. 
Most parameters are passed through this model and 
applied to the underlying RotorBlade models. 

The RotorBladeAssembly model provided in this 
library uses a configuration where the blades are fixed 
together in the same plane, which would be 
representative of fixed rotor or gimballed rotor 
topologies. Other rotor topologies can be created by 
modifying this model and incorporating the appropriate 

rotor mechanisms (e.g., pitch links, pitch horns, and 
joints). An example of a gimballed rotor topology is 
provided in RotorAeroLib.Examples.GimballedRotor. 

2.5. Rotor 
The Rotor model is a template for properly combining a 
BladeAssembly and a RotorAeroLib_Globals model to 
ensure that the reference coordinate system is correctly 
set up for the RotorBlade models and is isolated from 
any motion due to the rotor topology mechanisms. This 
is important because the aerodynamic equations require 
a reference coordinate system fixed in the nominal blade 
orientation. With the exception of a fixed rotor, the 
flapping and lead-lag motion of the blades are 
perturbations upon this nominal blade orientation, so it 
is important that the reference coordinate system is 
properly isolated at a point that is outside of such 
motion. 

The Rotor model also contains an implementation of 
the rotor motor or more simply the shaft speed control, 
which notionally could be of any type and complexity. 
In some cases, it is sufficient to set the rotor speed to a 
set value without concern about coupled motor 
dynamics, as is the case with the Rotor model. With the 
advent of electric aircraft propulsion and multi-rotor 
hobby or maintenance copters, electric motors are of 
increasing interest. An example of an electric motor 
coupled into the rotor drive train is provided in 
RotorAeroLib.Examples.ElectricRotor. 

3. Examples 
We now present three examples of rotor analysis using 
the RotorAeroLib to perform different types of rotorcraft 
analyses. The first example validates the basic BEMT 
implementation of the aerodynamic equations. 
Presented in the second example is an evaluation of the 
rotor whirl-flutter stability boundary and comparison to 
theory and test data. The final example demonstrates the 
altitude control of a quadcopter model, including the 
modeling of electric motors. 

3.1. Aerodynamics Validation 
The Modelica implementation of the aerodynamic 
equations in RotorAeroLib was exercised to both verify 
and validate the strip theory aerodynamics by 
replicating the Knight and Hefner five-bladed 1937 
rotor experiment (Knight and Hefner, 1937). The results 
were also compared to an analytic model of the BEMT 
equations (Reveles et al., 2019). The model was 
discretized with eleven airstations on each rigid blade 
and assumed to have no tip loss. Unsteady aerodynamic 
terms were also turned off. The analytic model utilized 
a tip loss model with 100 airstations per blade. Figure 3 
shows that the Modelica model has excellent agreement 
with both the analytic method and the test data for thrust, 
while Figure 4 displays the same trends for rotor power. 
The use of a tip loss model on the analytic curve is 
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observed to slightly reduce thrust and nominally 
increase the predicted power required, both of which are 
in the direction of the experimental measurements. 

 
Figure 3. Thrust coefficient as a function of collective for 
five-bladed Knight and Hefner experiment. 

 
Figure 4. Power coefficient as a function of collective for 
five-bladed Knight and Hefner experiment. 

3.2. Whirl Flutter 
To test the ability of using the RotorAeroLib to 
accurately model the physics of whirl flutter, a model of 
the Bland and Bennett whirl-flutter experiment (Bland 
and Bennett, 1963) was developed. The model, shown 
in Figure 5, consists of a fixed rotor connected to a pylon 
that has pitch and yaw about its base with characteristic 
stiffness and damping, which represents the rotor’s 
connection to an aircraft wing. In this model, the rotor 
is free to rotate and is driven only by the aerodynamics 
induce by the freestream air velocity and not by a motor 
nor by any other power source. The rotor was created 
with six airstations per blade, which was observed to 
have little difference (outside of computational speed) 
from a twenty-airstations-per-blade model for this 
problem. Built-in twist was linearized and a sectional lift 
coefficient of 5.7/rad was utilized without any in-plane 
drag coefficients. A visualization of this configuration 
is shown in Figure 6. The propeller was trimmed to a 
windmilling state (zero torque) and results compared 

with analytic theory. Figure 7 shows a comparison of 
advance ratio results, revealing good correlation 
between the model, analytic theory, and measurements 
taken from reference (Bland and Bennett, 1963). 

 
Figure 5. Block diagram for the Modelica-based whirl 
flutter model.  

 
Figure 6. Modelica model of the Bland and Bennett 
propeller. 

  
Figure 7. Advance ratio for the propeller windmilling 
state as a function of collective. 

To solve the whirl-flutter stability problem, the 
Modelica model is initialized into a windmilling state 
(steady-state and zero torque) at which point a 
linearization is performed to obtain a state-space 
representation of the system. From this, the eigenvalues 
of the matrix A relating system states and their 
derivatives are retrieved, yielding the aerodynamic 
damping and frequency as the real and imaginary parts 
of the eigenvalues, respectively. A negative real part 
corresponds to a stable system, whereas a positive real 

111



117DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

part corresponds to an unstable system. By sampling the 
parameter space of gimbal damping rates and freestream 
velocity, the whirl-flutter stability boundary can be 
characterized by the sign of the eigenvalue real part. 

The Modelica model was used to predict the whirl-
flutter stability boundaries using quasi-steady 
aerodynamics for four different collective angles: 25°, 
35°, 46°, and 58°. Figure 8 plots the stable and unstable 
test points from a parametric sweep of the operating 
envelope along with the Houbolt-Reed analytical model 
(Reveles et al., 2019) and experimental data from 
reference (Bland and Bennett, 1963). There exists 
excellent agreement between the two analysis methods, 
where all Modelica results align with the Houbolt-Reed 
stability boundaries for 25° and 35° collectives, and 
only subtle deviances are observed at the higher 
collective angles of 46° and 58°. The small deviations at 
higher collectives are attributed to weak nonlinearities 
that are automatically resolved in the Modelica model. 
It is observed that the Modelica model results at higher 
collectives subtly shift the results closer to the observed 
measurements as compared to the Houbolt-Reed results, 
although without the use of unsteady aerodynamics, an 
accurate reconstruction of the stability boundary is not 
expected. It is also evident that the analytical methods 
show better correlation at higher collectives than at 

lower collectives. This may be due to the high inflow 
velocities encountered in the windmilling state that 
induce large local angles of attack, beyond which small 
angle assumptions may not necessarily apply. 
Additional deficiencies in thin airfoil theory are likely 
exacerbated by the relatively lower Reynolds numbers 
encountered at model scale that tend to induce earlier 
separation than those encountered at full scale. 

3.3. Quadcopter Flight Control 
The final example demonstrates the use of the 
RotorAeroLib on the flight control of a quadcopter 
model. Each rotor of the aircraft consists of a fixed rotor 
rigidly attached to a spar connected to the quadcopter 
body, which is represented by a lumped mass. For this 
simplified example, all four rotors rotate in the same 
plane and operate in a quiescent environment with zero 
freestream velocity. As is typical of these vehicles, two 
rotors rotate clockwise, while the other two rotate 
counterclockwise to provide a means to maintain 
rotational inertia balance. A control system 
simultaneously controls the input voltage to four rotor 
electric motors that drive the rotors; hence, the rotor 
speed is the same for all four rotors. The control system 
is used to set the altitude of the quadcopter and consists 
of a PID controller with maximum and minimum motor 

 
Figure 8. Comparison of whirl-flutter boundary between Modelica (blue circles are stable, red X’s are unstable) and the 
present Houbolt-Reed analysis with only quasi-steady aerodynamic terms. Blade angles are 25° (top left), 35° (top right), 
46° (bottom left), and 58° (bottom right). 
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voltage limits. Figure 9 shows a visual representation of 
the quadcopter. 

 
Figure 9. Visualization of the quadcopter model with 
rotor rotation directions identified. 

A demonstration of the quadcopter model is 
performed by changing the altitude set point of the 
controller to 5 m after two seconds of hover at 0 m, 
which is also its initialization state. Figure 10 plots the 
set point and quadcopter altitude, showing a small 
overshoot in altitude and then settling to the set point. 
Figure 11 shows the motor voltage input and rotor speed 
as the maneuver takes place, from which the coupled 
electro-aero-mechanical dynamics and controller 
voltage limits are apparent. Figure 12 plots the motor 
current, which further shows the electro-mechanical 
coupling of the system. The sizing of the rotors, motors, 
and other aspects of this demonstration model are 
somewhat arbitrary, which is clear in the very high 
motor current peaks, although the steady-state current is 
approximately 1.1 Amp. 

 
Figure 10. Quadcopter altitude set point (red) and actual 
(blue). 

 
Figure 11. Quadcopter motor voltage (red) and rotor 
speed (blue). 

 
Figure 12. Quadcopter motor current. 

4. Conclusions 
This paper presents a Modelica library, RotorAeroLib, 
for the analysis of rotorcraft aerodynamics, whirl flutter, 
and rotorcraft control. It provides models useful for 
simulating the coupled motion of a rotor, the rotor 
blades, and the aerodynamic forces imparted upon the 
blades as they move through a fluid. The library may 
also be used for performing whirl-flutter analysis of 
rotors connected to flexible structures where dynamic 
instabilities may manifest.  

The Rotorcraft Aerodynamics Library is open source 
and available via the GitHub page 
https://github.com/ata-engineering/RotorAeroLib 
which will likely be linked to via the Modelica 
Association website at https://modelica.org/libraries. 
While the library should work for any Modelica 
implementation per the Modelica standard, it was 
developed using OpenModelica and has not been tested 
using other software. External contributions and bug 
fixes or reports are encouraged. 
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Abstract
The adoption of distributed photovoltaics (PV) with smart
inverters was one of the first large-scale deployment of
grid-interactive, customer owned assets. This paper in-
troduces a co-simulation platform for future scenarios of
Distributed Energy Resources (DER), in the context of
large-scale deployment, to assess the local and global im-
pact on the electric power grid. The co-simulation plat-
form utilizes the Functional Mock-up Interface (FMI) in-
dustry standard to couple 80,851 individual simulators.
For this purpose a Modelica package named SCooDER
was developed, which includes models for various DERs.
The simulation was conducted at the Lawrencium high
performance computing cluster. It included a hierarchi-
cal structure of multi-level electricity grids (i.e., transmis-
sion, medium-voltage distribution, and low-voltage dis-
tribution), and PV with smart inverters and time-varying
load profiles at 80,000 load buses, in representation U.S.
state sized electric power grid. With the flexibility of the
simulation framework and the agreed-on industry standard
for simulation model exchange, future applications can be
very broad by coupling multi-domain simulators.

1 Introduction
Power grids world wide are undergoing big changes due
to the increasing amount of distributed energy resources
(DERs) such as photovoltaics (PV), behind-the-meter
battery storage (BTM-BS), and electric vehicles (EVs)
(Bayod-Rújula, 2009). Deploying large amounts of DER
can result in unintended and potentially critical conditions
on the grid. Simulations offer one means of conducting a
contingency analysis to identify critical scenarios and to
support the planning and installation of DERs. However,
large-scale, detailed simulations are complicated to setup
and solve. As a result, detailed simulations are often only
conducted for a specific application due to the cost and la-
bor intensive setup. They are also often only conducted
for specific events in subsections of the grid like in (Leou
et al., 2013), (Godfrey et al., 2010), or (Stetz et al., 2012).
Simulations of larger grids often do not include detailed
models of single DERs; instead they use pre-computed
power flows (i.e., positive and negative active and reactive
loads) for discrete time steps.

Another difficulty for simulations is the large variety
of devices that are connected to the power grid and the
resulting use cases of the simulation. In addition to the
variety of DER listed above, applications typically also
include buildings and commercial or industrial facilities.
The challenge, therefore, is that different devices are mod-
eled with different, domain-specific tools. These tools are
often proprietary, which makes it difficult to extend or in-
terconnect them. One solution to couple a wide variety of
different domain-specific models is the Functional Mock-
up Interface (FMI). Initiated by the European automotive
industry, it was developed to standardize the exchange and
co-simulation capabilities of models from different ven-
dors. This standard can be used to export simulation mod-
els as a Functional Mock-up Unit (FMU), which in turn
can be used in other software tools which support the FMI
standard (Nouidui et al., 2019; Blochwitz et al., 2012).
The source code of FMUs can be hidden, so proprietary
models can be shared without revealing sensitive informa-
tion.

The FMI standard is currently supported to different ex-
tents by 134 software tools (Modelica Association, s.a.).
Relevant to the electric power system are the tools EMTP-
RV, EcosimPro, Matlab/Simulink, and ESI SimulationX
which directly support the FMI standard. Other tools such
as Cymdist, PowerFactory, PSCAD, DSATools, PSS/E,
Pandapower, GridDyn, MATPOWER, and OpenDSS can
be supported indirectly by wrapping their Application
Programming Interfaces (APIs) into FMUs using a tool
called SimulatorToFMU. (Nouidui and Wetter, 2017)

In this paper we apply the FMI standard to power sys-
tems by conducting a large-scale grid simulation, which
involves 80,851 FMUs in total, representing 80,000 indi-
vidual customers with co-located PV systems and smart
inverters connected to the grid. Smart inverters are de-
signed to regulate the reactive power output in respect to
locally observed grid voltages, to mitigate the impact of
distributed PV generation on the grid. The simulation is
partitioned in multiple subsections of the grid which are
representative of the different voltage levels. The sub-
sections are again encapsulated in FMUs and connected
with other FMUs to form a large grid simulation. To
decrease simulation time, the parallelism of subsections
was applied and scaled across different compute nodes
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at the Lawrencium High Performance Computing Clus-
ter (HPCC) at Lawrence Berkeley National Laboratory
(LBNL). This paper describes the developed framework
and discusses its scalability and flexibility for large-scale
simulations.

2 Overview
The central part of this paper is the leverage of the FMI
standard, which is used to create simulation models for
a large-scale simulation of an electricity grid. The sce-
nario includes 100 percent PV penetration (i.e., peak PV
production is equal to peak load demand) and voltage-
dependent smart inverter controls at each of the 80,000
individual customers. The transmission grid model is rep-
resentative of a large power grid, the nominal size of a
state in U.S. (i.e., Illinois).

2.1 Functional Mock-up Interface
The FMI standard describes a set of standardized func-
tions to export and link simulation models for the use in
co-simulations. A model which is exported in compliance
with FMI is called an FMU. It consists of the files below
which are zipped as a zip file with the ending . f mu:

• An Extensible Markup Language (XML) file de-
scribing parameters, inputs, outputs, and dependen-
cies of the model.

• Compiled C-code with standardized FMI functions
to evaluate the model.

• Resource data which can contain additional informa-
tion such as documentation, dependency files that are
required by the simulation, or graphical illustrations.

Using the FMI standard as the back-end of the simula-
tion offers some benefits, which include (a) leveraging an
agreed-upon industry standard which is well maintained,
updated, and improved by industry, (b) the ability to utilize
a large variety of model libraries for different domains that
are built and maintained by large industry and research
institutions, (c) the flexibility to couple models of differ-
ent domains (e.g., battery chemistry model with EV drive-
train model coupled with the electric power grid) to form a
single multi-domain co-simulation, (d) industry developed
wrappers for the FMI standard in different programming
languages (e.g., Python, MATLAB, Modelica, Java) that
are well maintained and documented, and (e) a large com-
munity working on the FMI and related standards.

The FMI standard supports two types of simulation
model export. The first mode is the co-simulation (CS)
mode. In CS mode, every model contains its own numeri-
cal solver and provides the result for the next timestep, i.e.,
start time of the model plus step size, as an output. When
a simulation is run in CS mode, the individual models are
simulated with a defined timestep, and forced to advance
time for the step defined. The execution time and order
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Figure 1. Volt/Var control curve for smart inverters.

is managed by an orchestrator, where one iteration com-
pletes when all FMUs are evaluated once. The other mode
is the model exchange (ME) mode. ME models do not
contain their own solver and instead provide the evaluated
system of equations as output. In case of a first-order dif-
ferential equation the output would be the state derivative,
while CS would output the integrated state. An orches-
trator coordinates the evaluation of models and a global
solver solves the coupled models as a network. This way,
the models are run repeatedly, and with a variable time-
step, until inputs and outputs converge to an equilibrium
(Blochwitz et al., 2012). Since CS can only advance in
time, it is often desirable to utilize ME FMUs for simu-
lation, especially when algebraic loops are present. Us-
ing ME FMUs, the solver can iterate back and forth in
time until it finds a solution, while the CS FMU has to
advance time. In case of a step function or other rapid
change in output, the CS would miss the event, while
ME allows to go back in time to find the exact event. A
common workaround with CS FMUs are sufficiently small
timesteps which, on the other hand, increase solving time.
All the models in this paper are exported as FMUs and
simulated by the FMI standard. The FMUs contain both
types of export, depending on the hierarchy level.

2.2 Smart Inverter
To control and guide the implementation of DERs, the
IEEE 1547 international interconnection standard (Basso
et al., 2015) was established. In addition, some U.S. states
implemented additional rules for DERs to comply with.
For example, the California Public Utilities Commission
(CPUC) established Rule 21 (Commission et al., 2014)
for California. With respect to IEEE 1547 and Rule 21,
PV inverters connected to the power grid have to provide
advanced inverter functionalities. These include the capa-
bility of advanced control features like the reactive power
droop control, commonly referred to as Volt/Var control.
The Volt/Var control is illustrated in Figure 1.

With an active Volt/Var control, the inverter controls its
reactive power generation or consumption (on the y-axis)
depending on the local voltage (on the x-axis). If the lo-
cal voltage exceeds a threshold, V2 or V3, the inverter
starts to consume or generate reactive power in a linear re-
sponse, depending on whether voltages are too low or too
high. It saturates (i.e., reaches the maximal reactive power
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absorption or generation) at V1 or V4 accordingly. In
electrical power systems the generation of reactive power
results in an increase in system voltage, and the absorption
of reactive power results in a decrease in system voltage.

A Modelica package called Smart Control of DER
(SCooDER) was developed by LBNL to facilitate the test-
ing and simulation of such devices (Gehbauer et al., 2019).
It contains models of PV generators, inverters, batteries,
sensors, controllers, and other models relating to DER
and power system simulations. The models are intended
for detailed DER simulations and can all be exported as
FMUs. This study used the PV generator and smart in-
verter control models, which are exported as FMUs using
JModelica.

2.3 JModelica
JModelica is an open-source platform supporting simula-
tion, optimization, and analysis of complex dynamic sys-
tems in the Modelica language. It provides tools for ex-
porting and simulating FMUs (JModelica.org, s.a.). All
the simulations in this paper were conducted with compo-
nents of the JModelica package. PyFMI is a Python based
tool for loading and executing FMUs and is part of this
package. It supports simulations in either CS or ME mode
by providing a simple interface to run simulations with the
FMI standard in an open source environment (Andersson
et al., 2016). PyFMI relies on third-part numerical solvers
(i.e., CVODE as default) to solve the system of equations.
CVODE is a C-based solver that can be used to solve sys-
tems of stiff and non-stiff ordinary differential equations
(Cohen et al., 1996).

2.4 Pandapower
For the power grid part of the simulations, Pandapower,
an open-source Python-based tool for simulating and an-
alyzing power systems, was used. Pandapower provides
power flow and optimal power flow (OPF) capabilities,
which are based on PYPOWER, which in turn is based
on the MATPOWER tool. Pandapower ships with a large
library of pre-configured electric grid models that can be
easily loaded and simulated (Thurner et al., 2018). The
next section describes a tool for automated export of Pan-
dapower as an FMU, allowing users to leverage Pan-
dapower’s power systems modeling capabilities.

2.5 SimulatorToFMU
SimulatorToFMU is a Python package developed by
LBNL to wrap the high-level Python API of a third-party
simulator in a Python function, which can then be ex-
ported as an FMU (Nouidui and Wetter, 2017). The util-
ity auto-generates Modelica code that contains a model to
communicate with the simulation tool through its Python
API. It then invokes a Modelica translator to compile the
model and export it as an FMU. It is built to leverage
third-party Modelica compilers (i.e., JModelica, Dymola,
or OpenModelica) to export the model. This helps to en-
sure the forwards and backwards compatibility with new

versions of FMI. SimulatorToFMU requires an XML file,
which specifies the input and the output of the simulator,
as well as the Python function which interacts with the
simulator. The export is implemented as a Python func-
tion call.

2.6 Lawrencium HPC Cluster
For the large-scale simulation of many FMUs, the HPCC
at LBNL was used. It currently includes four clusters with
a total of 924 compute nodes, ranging from 16 to 32 cen-
tral processing units (CPUs) and between 64 to 128 giga-
bytes (GB) of random access memory (RAM) per com-
pute node (LBNL, s.a.). It utilizes large parallel network
file storage to enable fast data transfers between compute
nodes. An overview of the four active stages of Lawren-
cium is given in Table 1.

Name Nodes Cores RAM [GB]
Total per Node per Node

L6 215 32 96
L5 187 20 or 28 64 or 128
L4 142 24 64
L3 380 16 or 20 64

Table 1. Active Lawrencium HPCC stages.

The simulations conducted in this study require a high
number of CPU cores for efficient scale-up, and a mod-
erate number of compute nodes. LR6 was chosen as the
target cluster for this application. Note that all clusters are
connected to a common private network which is utilized
in this work to distribute work across multiple nodes and
clusters. The framework for this work-load distribution
was written in Python and exported as FMU. This FMU
augments the HPCC as a single model to be used in the
co-simulation.

3 Setup
This study’s objective was to demonstrate the scalabil-
ity and versatility of the FMI standard for power system
applications. The setup was therefore focused on power
grids and the impact of high penetration of PV equipped
with smart inverters. What made this setup challenging
was the large amount of controllable PV whose active and
reactive power output impacts one another through the
coupling of the electric power grid. The local grid volt-
age as input to the smart inverter and the reactive power
as output forms a feedback loop, which is challenging to
solve at large scale.

To simulate a realistic power grid, prototypical exam-
ple network models of different voltage levels (i.e., 115
kilovolt (kV) transmission, 20 kV medium-voltage distri-
bution, and 0.4 kV low-voltage distribution) were utilized
to form a whole power grid. The three network models are
shown in Fig. 2, Fig. 3, and Fig. 4. Fig. 2 shows the 42
bus transmission network which is based on IEEE Illinois
Case 57 (Christie and Dabbagchi, 1993), Fig. 3 shows
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Figure 2. IEEE 57 Transmission network.

the medium-voltage distribution network which is based
on the 13 bus CIGRE MV network (Rudion et al., 2006),
and Fig. 4 shows a 146 bus low-voltage distribution net-
work based on the Kerber LV network (Kerber, 2011). All
networks are taken from the Pandapower example mod-
els. Each of the 80,000 load buses in the low-voltage dis-
tribution networks is representative of a single customer
with a PV system, smart inverter, and time-varying base
load. The base loads are taken from the U.S. Department
of Energy (DOE) statistical reference of building types. It
defines 17 load profiles for the U.S. (Department of En-
ergy, s.a.). For this study pre-computed files for the his-
toric weather data of San Francisco, California were used.

3.1 Time-Varying Load Profiles
The 17 DOE load profiles were clustered using the
kMeans algorithm (Krishna and Murty, 1999) with the
objective to establish grouping of data samples by min-
imizing the centroid distances. The optimal number of
clusters, defined as where the loss of the algorithm is less
than 20 percent, was found to be 5 clusters. In a next
step one representative load profile of each cluster was
manually chosen, which reduced the total number of in-
dividual load profiles to 5. This helped to reduce the
overhead of assigning load profiles of similar type (e.g.,
quickservicerestaurant and f ullservicerestaurant). The
individual profiles are shown in Fig. 5 where all load
profiles are scaled by its peak power demand of the se-
lected day, which is June 1st for this study. The manu-
ally selected profiles are highlighted as a solid line, while
the other profiles associated with the cluster are shown as
dotted line in the same color. It can be seen that some
profiles, such as the orange one which centers around
the f ullservicerestaurant profile consists of six DOE
load profiles (i.e., out patient, smallhotel, largeo f f ice,
quickservicerestaurant, and supermarket) while others,
such as the violet one only consist of one DOE load pro-

Figure 3. CIGRE Medium-Voltage network.

Figure 4. Kerber Low-Voltage network.

file (i.e., residential). In either case, the grouping of DOE
profiles was determined by the kMeans clustering. In or-
der to realistically assing the profiles to load buses on the
feeder model, a statistical distribution was defined, based
on data of 50 individual feeder models from a California
utility company.

The distribution of load types is shown in Fig. 6 where
the data for 50 individual feeder models is plotted as blue,
orange, and green crosses for residential, industrial and
commercial customers accordingly. The data is ranked by
the share of residential customers. Two linear fit functions
were established with the residential share as independent
variable, and industrial and commercial share as depen-
dent variables. The evaluated fit is shown as the solid line
in the same color as the base data. For this study, a dis-
tribution based on the mean residential share, which is 46
percent, was chosen. The five load profiles were manually
assigned to one of the three categories, and the total num-
ber of each load profile occurrence was computed. The
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Figure 5. Overview of clustered DOE load profiles for June 1st.

Figure 6. Load type distribution on 50 feeders of a Californian
utility company.

computed mix of load profiles was randomly assigned to
feeder load buses.

Since the networks are only coupled by the voltage at
the interconnection point as input and the resulting active
and reactive power as output, it was possible to implement
scaling factors to scale single customer load demand and
PV generation as aggregated power flow to the nominal of
the example network model. This step avoids the over- or
undersizing of customers, and results in a unique scaling
factor for every load bus and feeder. This allows for a wide
variety of control actuation by the smart inverter across the
simulated power grid.

3.2 Functional Mock-up Units
The architecture to conduct simulations at the Lawren-
cium HPCC involves seven distinct FMUs which are
loaded multiple times and parameterized differently, to re-
sult in a coupled system of 80,851 FMUs in total. The
FMUs use both the ME or CS mode, based on the hierar-
chy level. The architecture is described in Section 3.3 and
Fig. 8. The FMUs are described here:

• PV FMU: This FMU computes the PV generation
based on historic weather data as input. It is a deriva-
tive of the PV model introduced by the Modelica
Buildings Library (MBL) (Wetter et al., 2014) and
modified by the SCooDER package. It uses a de-
tailed sky model to compute incident solar irradia-
tion on a tilted surface. The PV generation was cal-

culated with the total irradiance with a 10 degree
tilt towards south. It was exported as an ME FMU
using JModelica. The path to the Modelica model
is SCooDER.Components.Photovoltaics.Model.PV
andWeather_simple or Buildings.Electrical.AC.
OnePhase.Sources.PV SimpleOriented for the base
version.

• Smart Inverter FMU: The function of the smart
inverter FMU is to regulate the reactive power
output based on locally observed grid voltages,
introduced as Volt/Var control in Section 2.2. It
is a linear response feedback control, based on
the voltage at the interconnection point, with a
deadband (±0.01 p.u.) around the control setpoint
(1.0 p.u.), with saturation (0.95 and 1.05 p.u.).
The maximal reactive output was set to 30 percent
of the inverter size. It was implemented in the
SCooDER package and exported using the ME
API with JModelica. The path to the model is
SCooDER.Components.Controller.Model.voltVar_
param_simple_ f irstorder. It also includes a
first-order response to reflect the internal control
delays of the smart inverter. The response time was
validated with measurements taken at LBNLâĂŹs
FLEXGRID facility. A positive side-effect of the
control delay is the separation of algebraic loops in
the co-simulation.

• Feeder Model FMU: The electrical feeder network
relies on a custom Python function which calls Pan-
dapower (a) at instantiation to create the electrical
model from the example networks, and (b) on run-
time to execute a power flow analysis which com-
putes the nodal voltages based on active and reactive
power flow at the load buses. The base load in the ex-
ample network was scaled based on a time-varying
demand profile, derived from the DOE reference
buildings, as described earlier. To export the func-
tion with the SimulatorToFMU tool, another Python
wrapper function was developed. To make it possible
to scale-up simulations across many compute nodes
at Lawrencium HPCC, the two Python functions are
coupled through a socket communication, illustrated
in Fig. 7. Hereby the Pandapower wrapper was en-
capsulated in a simple web-server and called by the
SimulatorToFMU wrapper using Hypertext Transfer
Protocol (HTTP) requests. Information is exchanged
through JavaScript Object Notation (JSON) sanitized
objects. The advantage of this implementation is the
potential for large scale-up by parallelization across
many compute nodes. Both Python functions were
optimized for fast computation. This results in large
reductions of computation time, because these func-
tions are called at every iteration step of the feeder
model. While a first implementation took up to 15
seconds to complete a single timestep, the finally im-
plemented version completed within an average of

120



125DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

200 milliseconds. Further results regarding the scal-
ability are shown in the Results section. The FMU
was exported with SimulatorToFMU using the ME
mode.

• Distribution Model FMU: The electrical distribution
network also uses Pandapower to provide and solve
the electric network model, and it uses the same ar-
chitecture as the Feeder Model FMU. It was exported
with SimulatorToFMU using the CS mode.

• Coupled Feeder FMU: The partitioning at Lawren-
cium HPCC using multiple compute nodes requires
that the FMUs be executed in parallel. This is im-
plemented in the Coupled Feeder FMU, which is a
time-discrete wrapper to a coupled system of one
Feeder Model FMU and PV FMU, and one Smart
Inverter FMU at each of the 146 load buses. While
PV generation is also present at each load bus, only
one PV FMU was loaded, and the generation was
scaled to 1 per unit (p.u.), which resulted in a univari-
ate PV profile for all buses. This is a simplification
made to keep the number of FMUs and connections
within the coupled system low, and to allow for im-
proved solving times. Each load bus also included
the time-varying demand profile which is embedded
in the Feeder Model FMU. The system of FMUs was
coupled using the CoupledFMUModelME2 func-
tion provided by PyFMI. The Python script was
wrapped using the described web-server approach
and once-again exported using the CS API with Sim-
ulatorToFMU. While the exported Coupled Feeder
FMU appears to raise state events, the actual imple-
mentation of the underlying C function does not sup-
port this functionality. However, the wrapped cou-
pled feeder system does support the indication and
handling of state events (e.g., when control loops
saturate). To simplify this assumption, the Coupled
Feeder FMU can be seen as discrete, while the em-
bedded coupled feeder system is continuous with
state event handling by the CVODE solver of PyFMI.
The tolerances for CVODE were modified as 1e-3 for
atol to meet the accuracy of Pandapower.

• Transmission Model FMU: This FMU encapsulates
the transmission model in Pandapwer. It is similarly
structured to the Distribution Model FMU and also
exported as FMU using SimulatorToFMU with the
CS mode.

• Coupled Distribution FMU: The highest level of ag-
gregation is the Coupled Distribution FMU, which
encapsulates one Distribution Model FMU, 13 Cou-
pled Feeder FMUs, and one custom orchestrator. It
was exported using SimulatorToFMU with the CS
mode.

feeder_wrapper.py    

Feeder Model FMU

Pandapower

feeder_server.py

pandapower_wrapper.py

So
ck

et

So
ck

et

HTTP/
JSON

Figure 7. Illustration of the socket-based communication be-
tween the FMU wrapper and the simulator. The simulator can
be hosted locally or remotely across the Lawrencium HPCC.

3.3 Architecture
The architecture for computation reflects the electrical
network by decoupling the system at the different volt-
age levels. As described previously, each load bus of the
transmission model is connected to one coupled distribu-
tion network. Each distribution model is connected to 13
coupled feeder networks, which are then in turn connected
to the PV, smart inverter, and time-varying load at each
feeder load bus. The architecture is illustrated in Fig. 8.

The architecture combines the Feeder Model FMU,
PV FMU, and Smart Inverter FMU into a coupled sys-
tem of FMUs, all exported using the ME mode. This
system is solved for a specific time step using the
CoupledFMUModelME2 function provided by PyFMI,
and is again wrapped as an FMU to form the Coupled
Feeder FMU. The Coupled Feeder FMU reflects a fully
populated feeder where state events of models (e.g., dead-
band or saturation of the smart inverter control) are con-
sidered and solved by PyFMI. The timestep within the
Coupled Feeder FMU is variable based on the solver of
PyFMI. One level higher on the medium voltage distribu-
tion level, the Distribution Model FMU is coupled with
the Coupled Feeder FMU by a custom orchestrator which
employs the CS mode of the FMUs. These FMUs are dis-
crete in time and are invoked based on the high-level time
step. This system of FMUs was again wrapped as another
FMU, namely Coupled Distribution FMU. It was loaded
for each load bus of the Transmission Model FMU and
execution was handled by a custom orchestrator that uti-
lizes PyFMI.

The partitioning of the FMUs on the Lawrencium
HPCC was determined by a total of 546 Coupled Feeder
FMUs, which each were solved in parallel. It was most
practical to assign five Coupled Feeder FMUs to one com-
pute node at HPCC. The LR6 Lawrencium HPC cluster,
which provides 32 logical CPU cores per compute node,
was used for this study. The Transmission Model FMU
consisted of 42 load buses, each connected to one Cou-
pled Distribution FMU. This translates to a total of 12
LR6 compute nodes for the simulation. With 215 compute
nodes available at LR6, this would scale to a maximum of
1,075 Coupled Distribution FMUs. With 1,898 load buses
per Coupled Distribution FMU, the maximal number of
individual customers would be about 2 million. However,
solving clock-time could be traded against scaleup to fur-
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Figure 8. Hierarchical multi-level simulation architecture with high-level inputs and outputs for each FMU. The exchange variables
are active power, P, reactive power, Q, and voltage, v. The three hierarchical voltage layers are transmission, denoted by i with 42
load buses, medium-voltage distribution, denoted by j with 13 load buses, and low-voltage distribution, denoted by k with 146 load
buses.

ther increase the number of individual loads per node.

3.4 Orchestrator
The co-simulation of multiple independent models re-
quires the models to be in a standardized format, in this
case the exported FMUs, and an orchestrator to coordi-
nate the execution of FMUs and to solve the system of
equations. The Coupled Feeder FMU and Coupled Distri-
bution FMU are special cases because they wrap a whole
co-simulation to form a new FMU. In case of the Coupled
Feeder FMU it already includes an orchestrator which in
this case is PyFMI. However the top-level coordination
of the Coupled Distribution FMU and transmission level
is implemented with a custom algorithm which controls
(a) the primary timestep of the model, and (b) the con-
vergence of the model. While the timestep coordination
is implemented as a simple f or loop, the convergence
is more involved by requiring an iteration algorithm and
convergence objective and criteria. The implemented al-
gorithm is limited to a maximal number of 10 iterations,
with a convergence criteria of voltage derivative less than
5e-3 per unit. The iteration sequence starts with the ini-
tialization of the grid model FMU whose computed bus
voltages represent the inputs to the coupled FMU. In order
to support the solver in its action, the voltage derivatives
are dampened by a first-order delay, until an equilibrium is
reached. This delay dampens the control action of the de-
centralized control loops of the underlying Smart Inverter
FMUs, to avoid oscillatory behavior. Note that this delay
does not affect the physical behavior of the system, and is
solely implemented as part of the solving algorithm. The
coupled FMU is evaluated in parallel, and the resulting ac-
tive and reactive power at the feeder heads are fed directly
into a last evaluation of the grid model FMU. The bus volt-
age derivatives are computed, and the system is checked
for convergence. If it did not converge and if it also did
not reach the maximal number of iterations, another itera-

tion is initiated. Otherwise the iteration is terminated and
the result returned.

One drawback with coupling the FMUs exported with
the CS mode is the timestep control. CS FMUs can only
advance time which is problematic when seeking the con-
vergence of a system at a defined simulation time. The
workaround are sufficiently small timesteps where dy-
namics within the FMU are close to constant. In this case
the internal timestep for an iteration was set to 10 millisec-
onds.

4 Results
The co-simulation was conducted for one sunny day with
an hourly timestep on the transmission level. As described
earlier, the low-level Coupled Feeder FMU, which encap-
sulates the PV generation, time-varying base load, and
smart inverter, was solved with a variable timestep. The
Fig. 9 provides an overview of the smart inverter actua-
tion and solving time for all of the 80,000 individual cus-
tomers.

The first subplot shows the statistics of the time-varying
base load as boxplot normalized to each customers nomi-
nal active power demand, for each hour of the simulation.
The statistics are based on each of the 80,000 individual
customers. The secondary axis of the first subplot, in red,
shows the univariate PV profile which is applied to all cus-
tomers, also normalized to the customer size. The sec-
ond subplot shows the distribution of smart inverter con-
trol actuation as reactive power scaled to the nominal reac-
tive power of each customer. The third subplot shows the
distribution of feeder head voltage, as determined by the
transmission and medium-voltage distribution network. It
is scaled to the nominal feeder voltage. The fourth sub-
plot shows statistics of the solving time, as boxplots on
the primary axis, and maximal number of iterations, in red
on the secondary axis. Both statistics are based on the
546 Coupled Feeder FMUs. The mean simulation time
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Figure 9. Overview of full-scale grid results with 80,000 indi-
vidual customers.

per iteration is 25 seconds across all timesteps, whereas
the standard deviation ranges between 25 to 175 seconds,
depending on the timestep.

5 Discussion and Future Work
This paper successfully demonstrated the distributed co-
simulation of various components of an electric power
grid. This includes time-varying load and PV generation,
feedback control loop of a smart inverter with Volt/Var
control, and electrical coupling through multiple voltage
levels.

While the setup simplified the complexity of electric
distribution networks, customer load variation, and site-
dependent PV generation, it demonstrated the capabili-
ties of the developed SimulatorToFMU tool and the FMI
overall to solve complex large-scale cross-platform co-
simulation setups. The setup included individually vali-
dated models from publicly available Modelica libraries,
in case of the Smart Inverter FMU and PV FMU, or Pan-
dapower package, in case of the grid models. The coupled
system of FMUs was solved using the PyFMI package
which was developed and validated by its developer Mod-
elon. While the whole system results could not compared
to other simulators, mainly due to lack of availability to
couple those individual models, which was the motivation
of this paper, the project team believes that the performed
validations are sufficient.

The introduced simulation setup exploited the poten-

tial of reduced complexity for high-level aggregated mod-
els, while keeping a full detail on the lower-level models.
An aggregation of 80,000 individual customers was used
to represent the interaction on a U.S. state sized electric
power grid. The level of scale, i.e., about 50 times scaleup
in this example, was achieved by reducing the number
of feeders per substation to one, as well as the number
of medium-voltage distribution circuits per transmission
node to one. One example where the low-level detail of
individual customers is important would an over-voltage
event to trip smart inverters which in turn would suddenly
reduce the voltage, and could end-up with a cascading ef-
fect triggering neighboring substations or feeders. In par-
ticular the setup of a coupled co-simulation system being
wrapped as an FMU is important to capture such state
events of smart inverters. The aim of this wrapped system
was to simplify the algorithm and to facilitate a effective
separation of low-level FMUs (i.e., PV FMU and Smart
Inverter FMU), mid-level FMUs (i.e., Distribution Model
FMU and Coupled Feeder FMU), and high-level FMUs
(i.e., Transmission Model FMU and Coupled Distribution
FMU) with the objective of reducing solving time. The
complexity with this setup was the need to evaluate the
coupled systems in parallel, while the coupling on higher
levels required a serial evaluation. In addition the parti-
tioning on compute nodes on the Lawrencium HPCC re-
quired the discrete separation of the models on compute
nodes. One drawback of the current implementation is
the limitation that state events cannot be propagated to
higher-level FMUs. In case of the cascade effect described
earlier, a higher-level distribution or transmission system
would not recognize the event until the next timestep was
reached. This limitation originates in the implementation
of the developed SimulatorToFMU tool to export Python
scripts as FMUs. As described in Section 3.2, the Cou-
pled Feeder FMU appears to raise state events, but the ac-
tual implementation of the underlaying C function does
not support this functionality. This is a recognized limi-
tation of SimulatorToFMU, and it is being discussed for
future implementation by providing a zero-crossing func-
tion to project and raise such state events.

Another simplification taken in this paper was the ex-
port of the high-level FMUs with the CS API, while lower-
level FMUs use the ME API. As described in the Intro-
duction, ME allows to extract derivatives and roll-back
time, which are important features to solve coupled sys-
tems. The ME model is therefore generally preferred for
the application in power systems, especially when alge-
braic loops (e.g., from feedback controllers) are present.
However ME requires an external solver and handling of
events, whereas CS internally solves this problem. It is
therefore easier to interface with CS FMUs, to build a cus-
tomized orchestrator. In addition, the added functionality
of state events would not be exploited because of the pre-
viously discussed limitation of SimulatorToFMU.

For future work, simulations with real load profiles
could be done. Due to the lack of open source load pro-
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files based on real measurements, this study used the sim-
ulated OpenEI load profiles for DOE reference buildings.
This results in less variety of loads and therefore less real-
istic scenarios. Nevertheless, realistic and authentic data
are not necessary to proof the functionality of the large
scale simulation itself. The connection between all levels
of FMUs was proven in this paper. For more detailed real
world scenarios simulated with the developed platform, a
higher variety of real load profiles would be preferable.

In future it also might be possible to upgrade the archi-
tecture with the FMI 3.0 standard (alpha version released).
The proposed functionalities include ports and icons, ar-
ray variables, clocks and hybrid co-simulation, binary data
type, intermediate output values, and source code FMUs
(FMI 3.0, 2018). Especially the clocks and hybrid co-
simulation functionality, which allows the triggering of
events in co-simulation mode, can have promising appli-
cations in large scale simulations. Longer timesteps can
be used, without missing events in single FMUs and the
resulting effects those effects would have on other FMUs.
Because of the industry based nature of the FMI standard
and the growing support of it, further developments to im-
prove the usability and capabilities of the FMI can be ex-
pected.

6 Conclusion
The results of this paper demonstrate that the FMI stan-
dard offers a promising way to create large scale simula-
tions. It is an easy and convenient way to combine a wide
variety of models on a large scale, but to still simulate
them with a high level of detail. The developed Simula-
torToFMU tool enables users to further increase the num-
ber of available model libraries and simulation tools span-
ning into the power systems domain. While this paper
focused on PV systems with smart inverters, many future
scenarios involving multi-domain models could be con-
ducted. Examples are detailed building simulations to re-
place simple load profiles, electric vehicles with individ-
ual availability and constraints, or advanced control sys-
tems such as Model Predictive Control for building heat-
ing, ventilation, and air conditioning systems to assess
load shifting capabilities on a large scale.

Simulating large parts of the power grid with multi-
level and high-fidelity resources provide a more realis-
tic result compared to plain simulations of single voltage
level and aggregated generation. By connecting many dis-
tribution feeders with a transmission grid model, the im-
pact of feeders on one another is taken into account, which
helps to reveal global grid challenges such as steep ramp-
ing demand in a high-PV deployment scenario.

This paper also demonstrated the ability of FMI and
other tools to scaleup to about eighty thousand individ-
ual FMUs evaluated in a co-simulation. The multi-level
hierarchical partitioning of the simulation into many par-
allel models, which run independently on different com-
pute nodes at the Lawrencium HPCC, greatly reduces the

simulation time and allows for a fidelity which is often not
achievable on a single computer.
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Abstract 
This paper considers integration of heat pumps in 
Danish low-voltage residential power distribution 
network, hereafter referred to as “radial”, providing a 
data-driven case study for the electrical package of the 
Modelica Buildings library. The loads in the distribution 
grid for year 2030 are estimated based on the 
requirement of fully sustainable energy system by the 
year 2050. Combined with local consumption, the total 
system model is validated by measuring mains 
transformer signal at the chosen radial. The maximum 
cable capacity is compared to future current flow 
estimations for a 2030 grid, simulated based on a 
specific official Danish scenario. The study shows, that 
there is no threat to the network cables, if only heat 
pumps are integrated. However, when maximum load is 
applied to the grid, the values of cable currents are 
relatively close to the limit, which may complicate 
integration of other technologies. The results point at 
recommendations for safety measures to protect electric 
lines during periods of rapid technological development. 
Keywords:     Buildings Library validation, Danish 
electric grid, heat pumps, photovoltaics, sustainable 
energy, distributed generation, electric power 
distribution 

1 Introduction 
1.1 Motivation 
The Danish Energy Agency expects the heat production 
from heat pumps to reach 2265 GWh in 2030 equivalent 
to 23% of the total residential heat demand with almost 
linear increase over time (Energistyrelsen, 2018; 
Energistyrelsen, 2018a). Integration of heat pumps in 
the existing traditional electrical system is supposed to 
increase energy efficiency compared to fossil fuel-based 
heating sources (Bloess, Schill, et al., 2017), e.g. boilers 
in Denmark (Petrović and Karlsson, 2016; Nielsen, 
Morales et al., 2015).  
However, new installations may compromise grid 
safety, if the increased load exceeds capacity of 
distribution lines designed at the previous technological 
stage. Similarity of heat pump control settings in 
different households can lead to cumulative dynamic 
effect of simultaneous heat consumption resulting in 

high peak loads in the electricity grid. Transients will, 
therefore, play an important role in determining cable 
capacity limit which should be maintained to avoid 
damages. 
On the other hand, heat pumps can increase flexibility 
of the distribution grid by postponing heat production 
when utilizing the heat storage in buildings (Fischer and 
Madani, 2017). As a result, one consumer’s production 
can be shifted in time to match another consumer’s 
consumption, thereby reducing the overall peak. Real-
time model predictions may play, in this case, an 
important role for controlling power flows in the 
distribution grid and mitigating simultaneity effect.  
This imposes requirements on model 
complexity/accuracy and its computational efficiency. 
Simultaneous production and consumption require that 
the bidirectional power flows are considered. Optimized 
control requires that the model is either black-box or 
lower-order grey-box to minimize the response delay. It 
is however desirable to have a validated white-box 
model available for comparison to ensure that no 
overfitting occurs when estimating the reduced-order 
model parameters and that it can be applied outside the 
training data range. 

1.2 State of art 
Modelica Buildings library has functionality for 
developing computationally efficient grey-box models 
of multi-energy systems (Lawrence Berkeley National 
Laboratory, 2019). The electrical package is suitable for 
simulating networks with bidirectional power flows and 
for optimization and control combining different energy 
dynamics in the same model (Bonvini, Wetter, and 
Nouidui, 2014). 
Other Modelica libraries, capable of simulating electric 
distribution grids are IDEAS, PowerSystems, IPSL, 
OpenIPSL, ModPowerSystems, ObjectStab, PNlib, 
Electric Power Library (Winkler, 2017; Franke and 
Wiesmann, 2008). However, only Buildings and IDEAS 
contribute to the IBPSA library, which aims to 
standardize district energy simulation and optimization 
and integrate modeling with GIS data handling.  
On the other hand, commercial Modelica libraries 
(Electric Power Library, Wind Power Library) and non-
Modelica proprietary tools (DIgSILENT PowerFactory, 
POWERSYS EMTP-RV, PSCADTM, Siemens 
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PSS/ERⓇ) restrict exchange of validated models and 
complicate their use for model predictive control.  
For this reason and due to availability of an easily 
comprehensible example (Wetter, Bonvini, et al., 2015), 
the electrical package from Buildings is chosen here to 
build a validated multi-energy white-box model with 
bidirectional power flow between prosumers and the 
main transformer. This model reuses components from 
Buildings.Electrical with minor modifications 
(Copeland and Jespersen, 2019).  

1.3 Aim of research 
The models of the building electrical systems from 
IDEAS package including converters and adapters are 
somewhat more detailed for needs of the local 
distribution system operator (DSO) when estimating the 
consumption and testing network capacities. Buildings 
library, on the other hand, does not include a component 
representing an internal electrical system of the 
consumer. Additionally, no system-level experimental 
model validation of electrical package is known to the 
authors. Few examples considered in the above library 
descriptions did not present any time-varying 
experimental validation. Therefore, the three goals set in 
this work are to 

1. Develop a component responsible for the 
interaction of DSO and electricity consumer 
(not available in literature) combining loads for 
traditional household appliances and new 
technologies (heat pumps) with production 
from local energy sources (photovoltaics). 

2. Compare the output of a data-driven model of 
the radial in a Danish residential area to 
measurements of the mains transformer signal 
obtained from the DSO during March 2019. 

3. Apply the model to estimate the future current 
flow as a result of future network development, 
when more and more heat pumps are integrated 
to achieve the energy sustainability goals for 
2050 established by Danish government. 

2 Cable box model 
2.1 Concept 
This paper considers an important aspect of interaction 
between the DSO and residential consumer electrical 
subsystem through an interface called here a cable box 
(kabelskab in Danish electric sector). The cable box is a 
simple cabinet with a busbar, providing certain services 
to the consumer (ABB, 2020). It usually stands by the 
side of the pavement close to the households it serves 
and includes fuses and cable connectors. To understand 
the purpose of the cable box, it should be considered 
within the context of the overall power distribution 
system.  

The transformer maintained by the DSO converts 
electric power from 10 kV to 0.4 kV to be distributed to 
several districts each via its own supply cable owned by 
the DSO. To clarify this structure, the term radial is used 
for each network emphasizing that it extends from the 
transformer along with other radials attached to the same 
transformer. The radial may be spilt several times and 
have any topology accepted for electric distribution 
networks. Several cable boxes are located along the 
radial and terminate the supply to the consumers. DSO 
is responsible for delivering the power only to the cable 
boxes, so it could be said that the cable box encapsulates 
the part of electrical system, for which consumers are 
solely responsible. 

2.2 Implementation 
In the considered case, a cable box connects consumers 
(typically, 3 to 4 households per cable box in Denmark) 
to a distribution line aggregating their power flows in 
either direction. For this reason, the cable box model 
seems to be the most appropriate building block for the 
Danish low-voltage distribution network model.  
It is implemented here as a class extending classes from 
electrical package of Buildings Modelica Library 
constructed in the way similar to the Power Systems 
Library (Franke and Wiesmann, 2014) and Electric 
Power Library (Modelon, 2019). The package relies on 
overdetermined connectors to represent bidirectional 
power flows (Franke and Wiesmann, 2014). The 
replaceable phase system within a connector is 
analogous to the replaceable medium used by 
Modelica.Fluid library to model generic fluid flow 
(OpenModelica, 2019).  
The implementation of the cable box component is 
shown in Figure 1. Both traditional and heat pump loads 
shown in the figure with their time tables extend 
Buildings.Electrical.AC.ThreePhasesBalanced.Loads, 
while the photovoltaic (PV) class instantiated three 
times  extend from 
Buildings.Electrical.AC.OnePhase.Sources.PVSimpleO
riented. The instances represent different orientations of 
the PV cells with respect to direct, diffuse and reflective 
irradiation. Both components are connected to the 
distribution grid via the one-phase terminal.  
The parameter interface of the cable box shown in 
Figure 2 includes the names of the files containing time 
series for traditional and heat pump loads and the 
parameters of the PV cell: area and orientation. The PV 
model for each orientation is based on the total PV 
surface area A, active area fraction f, as well as module 
and DC/AC conversion efficiencies, η and ηc, and 
calculates the total electric power produced by the PV: 

𝑃𝑃𝑃𝑃 = 𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝑐𝑐𝑐𝑐 (1) 
The total irradiation 𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 is supplied as an input to the 
component and is composed of three time series 
corresponding to the direct, diffuse and reflected 
irradiation. The traditional and heat pump electric 
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systems are approximated by the linearized loads with 
fixed power factor of 0.98 and variable power supplied 
externally as a time series discussed in the next section. 

 
Figure 1. Modelica model of a residential cable box 

 
Figure 2. Parameter dialog of the cable box model 

2.3 Verification 
To ensure, that the sub-models provide reliable 
representation of the real cable box, they are verified in 
Figure 3 and Figure 4 against Matlab computations 
relying on analytical formulas and the following relation 
between the total current I, power factor pf and nominal 
grid voltage U (Copeland and Jespersen, 2019):  

𝐼𝐼𝐼𝐼 =   
𝑃𝑃𝑃𝑃

𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 𝑈𝑈𝑈𝑈
 (2) 

 
Figure 3. Verification of the load component. 

 
Figure 4. Verification of the PV component 
Load calculations are compared in Figure 3, where the 
verification of the load component is done by varying 
the power factor in the range from 0.9 to 1 and 
calculating the reactive current from the total current 
and the power factor: 

 𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟 =  𝐼𝐼𝐼𝐼 sin(acos(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓)) (3) 
To calculate 𝐼𝐼𝐼𝐼, 𝑃𝑃𝑃𝑃 is set equal to the nominal power of the 
grid in Eq. (1). The load performs as expected with an 
error magnitude of order 1E-2%.  
The objective of the PV verification shown in Figure 4 
is to ensure that the output current from the component 
Buildings.Electrical.AC.OnePhase.Sources.PVSimple 
is as expected for a set of standard PV parameters. The 
active power in Eq. (2) is found from Eq. (1), and the 
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irradiation base for the calculation is selected to be from 
100 W/m2 to 1000 W/m2 to imitate real operation 
conditions. The error in this case is on the order of 1e-
6%.  

3 System model 
The model of the radial shown in Figure 5 is constructed 
from the verified cable box (Section 2) and distribution 
components (Section 3.1) connected to the grid voltage 
source – a 10kV to 0.4kV transformer. It uses the actual 

geographical layout to retain the visual information for 
future references. At the top level, the average load 
profiles and cable parameters are set by redeclaring the 
suitable replaceable records. 

3.1 Distribution 
To create a distribution line model, the class 
Buildings.Electrical.AC.OnePhase.Lines.TwoPortRLC  
is extended from Buildings library. The impedance of 
the distribution cables is calculated based on 
characteristic resistances and reactances taken from data 
sheet provided by the manufacturer. Both voltage and 
power losses are calculated in the model, however, the 
temperature dependence of the resistance is not 
accounted for in order to simplify the analysis.  

The distribution line model is verified in the range of the 
power factors from 0.9 to 1 in Figure 6. The figure 
compares the voltage loss over the line segment 
obtained in Modelica simulation and the same voltage 
loss calculated in Matlab by using the formula 

∆𝑈𝑈𝑈𝑈𝑓𝑓𝑓𝑓 = 𝐼𝐼𝐼𝐼 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐 (𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 + 𝑥𝑥𝑥𝑥 sin(arccos(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓))) (3) 
where 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐 is the length of the cable and 𝑟𝑟𝑟𝑟 and 𝑥𝑥𝑥𝑥 are 
characteristic resistance and reactance found in 
manufacturer datasheet. To calculate 𝐼𝐼𝐼𝐼 from Eq. (1), P 
has been set equal to the nominal active grid power.  

 
Figure 6. Verification of distribution line component 

Figure 5. Model of the Danish radial (distribution cables: green cylinders, cable boxes: squares with diagonals drawn, 
grid: square with transmission lines drawn) 
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The error in Figure 6 goes up to half of the percent for 
power factors close to 0.9, but decreases below 0.1% in 
the range around 0.98, which is the value mainly 
encountered in the actual system. It can be concluded 
that the model is accurate enough for the considered 
power factor values. 

3.2 Radial network topology and time series 
The model of the radial shown in Figure 5 accurately 
reproduces the topology of the DSO installation and 
includes two main nodes (1) connecting cable box cb5 
to the distribution cables 6, 7, 8, 11 and (2) connecting 
cable box cb9 to the distribution cables 1, 2, 3, 5, 6. 
Cable 1 serves as a supply cable from the main 
transformer. 
To ensure that the radial is accurately represented in 
simulations, the seasonal consumption profiles for both 
traditional and heat pump loads were provided by the 
Danish DSO. The average of these electricity 
consumption time series for the traditional load is shown 
in Figure 7. 

 
Figure 7. Average and standard deviation of the electrical 
consumption profiles used in modeling. 
Each of the 30 individual profiles, which average is 
calculated in the figure, accounts for lighting, electronic 
devices, cooking, etc., but exclude domestic heating, 
since the radial is located in a district heating area. These 
profiles are intended for capturing a typical 
consumption pattern and are not used directly for a 
specific consumer in the model. The corresponding 
cable box loads are calculated as average values of the 
profiles of the consumers attached to the same cable box 
for each time moment.  
The average takes into account the probability of each 
profile as corresponding to the common behavior 
pattern. Since the original consumption profiles 
represent real households, they are expected to be 
accurate with regards to the system construction and 
objectives of the model. The profiles, however, have 
limitations in terms of resolution since single occurrence 
peak values are leveled out by the mean calculation. 
From the analysis of the daily and varying seasonal 
profiles, the consumption showed the expected behavior 
of lower consumption in the summer compared to the 

winter. This consumption change depends on 
temperature and social behavior pattern in using lighting 
and electronic devices. 
The heat pump electrical consumption W is defined by 
the domestic hot water (DHW) and space heating (SH) 
demands: 

𝑊𝑊𝑊𝑊 =  (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑊𝑊𝑊𝑊 + 𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷)/𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 (4) 
where the heat pump coefficient of performance (COP) 
is calculated from the following regression formula 
obtained from manufacturer data: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇) = (−4.2𝐸𝐸𝐸𝐸-5)𝑇𝑇𝑇𝑇3 + (4.9𝐸𝐸𝐸𝐸-4) 𝑇𝑇𝑇𝑇2
+ (6.9𝐸𝐸𝐸𝐸-2)𝑇𝑇𝑇𝑇 + 2.4 (5) 

Correspondingly, the heat demand curve in Figure 8 is 
generated from two profiles with SH part produced by 
the heating degree day model 

𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷 =  −0.16 𝑇𝑇𝑇𝑇 +  2700 (6) 
and the DHW part calculated based on the 
800𝑘𝑘𝑘𝑘𝑊𝑊𝑊𝑊ℎ/year/person usage for 24 hour period and 
repeated throughout the year. 

 
Figure 8. Modelled yearly heat pump demand profile 
The time series for PV irradiation supplied to each PV 
orientation through the information connectors in Figure 
1 are produced as a sum of the three contributions: 

𝐼𝐼𝐼𝐼 =  𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟  𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 + 𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓 𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓  +  𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓 (7) 
where the direct, diffuse and reflected irradiation terms 
are governed by the following geometric relations 
(Copeland and Jespersen, 2019): 

𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑)/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝜃𝜃𝑧𝑧𝑧𝑧) (8) 
 
𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓 = 𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 + (1 − 𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼) (1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽𝛽𝛽))/2   (9) 

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓 = (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽𝛽𝛽)) 𝜌𝜌𝜌𝜌/2 (10) 
with incident, zenith and horizontal tilt angles denoted 
by 𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑 , 𝜃𝜃𝜃𝜃𝑧𝑧𝑧𝑧 and 𝛽𝛽𝛽𝛽 and the surface reflectiveness and 
anisotropic index denoted by 𝜌𝜌𝜌𝜌 and 𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼. 

3.3 Validation 
The model of a cable box is validated in Figure 9 against 
the current measured at the transformer station 
supplying the radial with power (grid component in 
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Figure 5). The current, voltage, power factor, etc. of the 
system were continuously monitored in the period from 
March 8 to March 19, 2019 by the sensor located 
between the grid and cable 1 (the measurement data 

outside of this time period is not available). Figure 9 
shows the rolling average of the current measurements 
over the 1-hour window (orange curve), the total current 
simulated in Modelica (blue curve) and the root mean 
square error (green curve) between the two curves. 
Deviation of the simulated curve from the measured 
curve can be explained by the difference in assumed and 
actual ambient conditions during March 2019 resulting 
in a distorted PV production pattern. Additionally, the 
outliers seen in the figure are impossible to predict, since 
they depend on which appliances are connected to the 
cable box. In terms of the short-time load exertion on the 
transmission line, the peak has no real influence since 
the cables can handle much higher short-time current 
than the limit set by the providers. 

4 Results 
The heat pump integration scenario simulated here is 
proposed by Danish Energy Agency (Energistyrelsen, 

2019), which did not anticipate considerable increase in 
either the traditional demand or the number of PV cells.   
It is therefore assumed that other loads and PV 
production remain unchanged and only the impact of 

heat pump integration is considered according to the 
three scenarios summarized in Table 1: Static scenario 
is based on 0% forecast for the heat pump integration 
rate before the year 2030, which is not very probable, 
but will serve as a reference for other projections. 
Moderate increase scenario is based on DEA 23% 
projection for the electric heat pump units installed in 
Danish electrical system. To probe the system safety 
under the full heat pump penetration, the third, 
Maximum increase scenario is based on the 100% 
projection, corresponding to the case where heat pumps 
supply heat to all consumers on the radial. 

Table 1. Heat pump integration scenarios. 

Scenario Projection 
Static 0% 
Moderate increase 23% 
Maximum increase 100% 

Figure 9. Validation of the radial model: comparison of the electric current values calculated in Modelica (blue curve) 
and the measured transformer current (orange curve) over two weeks of March 2019 and the root mean square error 
between the measured and calculated values (green curve). 
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In Figure 10, the total currents through the supply cable 
1 and the peripheral cable 8 (colored curves) calculated 
as 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖)2 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖)2 are drawn for all three 
scenarios. These cables were chosen because they carry 
the largest current for their cable sizes. As could be 
expected, the currents through the cable 1 are larger by 
absolute value than the corresponding currents through 
cable 8, due to the fact that the supply line is exposed to 
all loads. Additionally, cable 1 has 3 PV installations of 
5+3 kW, 5+3 kW and 5 kW while cable 8 has none.  The 
capacities of cable 1 and cable 8 are shown in the figure 
as a dotted and a solid line, respectively. 

 
Figure 10. Heat pump penetration scenarios (year 2030). 
Cable capacities: cable 1 - 230 A, cable 8 - 94 A. HP0% 
curves are made semi-transparent. 
In the wintertime corresponding to the right quarter of 
the figure, the current in the reference static scenario has 
stable amplitude, changing only during the transition 
periods from colder to the warmer time. During these 
periods, the light availability for PV generation 
increases, thereby reducing the current required to 
power the cable boxes. The sharp drops in the figure 
occur, because the profiles for each new season are 
recalculated from previous datasets, which is a normal 
practice to be able to forecast and plan consumption. 
When the heat pump load is partially included within the 
Moderate increase scenario, this transition effect is 
superposed by the variation of the amplitude within each 
season due to direct influence of the increased heat 
pump capacity on the electric system.  
Further explanation can be drawn from Figure 11, which 
includes the same currents having the same color codes 
as in Figure 10, but in February of the same year.  
Larger heat demand in coldest period explains the global 
current peak in February for Moderate and Maximum 
increase scenarios. However, in the latter case, the 
system is more sensitive to the temperature variations, 
and consumption is increased due to reduced heat pump 
COP at lower ambient temperatures and larger installed 
heat pump capacity. The more tangible amplitude 
modulation can be attributed to the effect of coincidence 
of the heat demand events in response to systematic 

reduction of the ambient temperature. This effect 
becomes stronger, when larger number of consumers 
chose the same heating strategy in the cold period. Since 
in present study, the simplest strategy is implemented 
for all active consumers, the increase of their number 
leads to an unequivocal effect of current fluctuations 
following the consumer heat consumption. 

 
Figure 11. Total current in February 2030. The legend 
from Figure 10 applies. 
In summer, on the other hand, the current values shown 
for all three scenarios in Figure 12 are close to each 
other, since less heating is needed, and the major part of 
the installed capacity is not used. The analysis of the 
peripherical lines (only Cable 8 is included in Figures) 
shows similar results with an increased current flow 
where heat pumps are installed and is discussed in the 
next section. 

 
Figure 12. Total current from mid-July to mid-August 
2030. Legend from figure 10 applies. 

5 Discussion and outlook 
Based on the obtained results, the simulated radial will 
perform satisfactorily for the 2030 projection offered by 
DEA, if only heat pumps are integrated. The supply 
cable 1 has the maximal mean current flow in winter 
equal to the half of the cable capacity in the Moderate 
increase scenario. The currents through peripheral 
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distribution cable 8 and, therefore, all other peripheral 
cables are much less than its capacity limit.  
If the radial is located in the area with 100% penetration 
of heat pumps (Maximum increase scenario), the current 
flow experiences significant seasonal fluctuations and 
the February peak exceeds 200 A. This and other peaks 
are relatively close to the capacity limit. Therefore, the 
integration of other technologies, such as electrical 
vehicles, may lead to an electrical signal exceeding the 
cable capacity.  
The authors propose the following remedies, if the 
distribution currents exceed the installed capacities, 
which constitute the subject of future research on the 
topic: 

1. Reduce simultaneity of consumption through 
load shifting and peak shaving 

2. Introduce centralized model predictive control 
of heat pump’s set points in different 
households to decrease the overall load on the 
system 

3. Use flexibility of the thermal storage in 
buildings. 

6 Conclusion 
In this paper, the cable box component has been 
developed and validated against measurements at 
Danish residential radial. The component is applied to 
investigation of the integration of heat pumps in a 
typical Danish electric power distribution radial 
providing a data-driven case study for the electrical 
package of the Modelica Buildings library.  
The maximum cable capacity is compared to future 
current flow estimations for 2030 grid simulated based 
on a specific Danish officials’ scenario. Three 
simulations were performed to investigate the limit to 
which the distribution lines are stressed, if (1) no heat 
pumps are integrated in the households, (2) only 23% of 
the households adopted heat pumps and (3) if all 
households have heat pumps.  
Based on the output data from Modelica and the 
subsequent analysis of the result, it can be concluded 
that there is no immediate threat to the cable capacity of 
the transmission lines in the radial. However, in the 
Maximum increase scenario, the values of cable currents 
are relatively close to the limit, which may complicate 
integration of other technologies. Therefore, to ensure 
the grid safety, the three solutions are proposed. The 
research and the model can be further modified to help 
the electric distribution system operators to estimate the 
grid load under known consumer behavior and the 
rapidly changing electric grid infrastructure. 
Additionally, the use of Modelica as a modeling tool in 
the considered context offers fast and physically sound 
models of energy conversion systems like heat pump 
providing a potential benefit for dynamic simulation of 
sector coupling. The described model is purely electrical 

but can be relatively easily converted to the multi-
energy system by adding relevant mechanical, hydraulic 
and/or thermal components. This will allow to study the 
influence of heat pump control and heat storage 
flexibility in buildings on power grid performance, 
which is left for future work. 
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Abstract

The power industry heavily relies on power system model-
ing to understand system operations, perform system plan-
ning studies, and identify and correct problems that arise
within the system. By minimizing the error between the
models and actual physical system, it can be ensured that
the models provide representation of both the existing and
future the power system. Many of these models in the
system are user-defined, i.e. they are specialized repre-
sentations of a specific system component in the system.
It is important that these customized models produce an
accurate response. However, maintaining such models is
costly, so it is of value to determine if those models can
be replaced with a generic model. Phasor measurement
data can be used to calibrate model parameters and reduce
error. In this paper, this process is automated for a gen-
erator in the Itaipu power plant using RaPId, a MATLAB
toolbox that integrates measurements, models using Mod-
elica/FMI standards, and optimization routines. This is
achieved by using a combination of particle swarm opti-
mization (PSO) algorithm and classical gradient optimiza-
tion routines to calibrate the model parameters. In this pa-
per, the calibration of a generic model of a synchronous
generator, automatic voltage regulator, and power system
stabilizer are estimated and compared to the user-defined
models for an automatic voltage regulator, power system
stabilizer, and turbine governor.

Keywords: Modelica, FMI, synchronous generator pa-
rameter estimation, PSO, system identification

Glossary
GENSAE Salient pole generator with expo-

nential saturation
AVR Automatic voltage regulator
PSS Power system stabilizer
TG Turbine governor
SMIB Single machine infinite bus sys-

tem
Model
description

Source of the definition of the
model via a standard or another
document

OpenIPSL
model

Model in Modelica available in
the OpenIPSL library adapted
from the model description

Efd Field exciter voltage
PMU Phasor measurement unit
P Active power
Q Reactive power
Pmech Mechanical power

1 Introduction
1.1 Motivation
New advancements in renewable power generation and
control systems creates a resilient power grid and lim-
its our negative impact on the environment. Simulation-
based studies are helpful in determining which technolo-
gies have the highest benefit for the grid and the poten-
tial impacts of integrating a resource with the bulk electric
grid.

Highly accurate dynamic power system models are nec-
essary, especially in cases where user-defined models are
used to simulate system conditions. Many renewable re-
sources and control systems utilize user-defined models
in their simulations, creating the burden of maintaining
multiple models for system operators. It is necessary to
determine the accuracy of these models and investigate if
these models can be replaced by a generic, standardized
model. Low confidence in the parameters of these models
leads to more conservative and possible erroneous assess-
ments of their responses to an event. There is also inher-
ent uncertainty due to changes in the system parameters
due to wear and aging of system components. Limited
opportunities exist to test the physical power system be-
cause the existing system cannot be compromised for ex-
perimentation; building a new system for testing is not be
a viable option, as it would be too costly (L. Vanfretti, W.
Li, T. Bogodorova and P. Panciatici, 2013). The results of
this paper expand upon (M. Podlaski, L. Vanfretti, J. Pe-
sente and P. H. Galassi, 2019), to show alternate ways to
model power systems and derive user-defined model pa-
rameters with accuracy using Modelica and FMI. Previ-
ously, the IEEE standard models were used to represent
the system. These models were calibrated using the same
algorithms and methods used to calibrate the user-defined
models. These results also compare the performance of
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the user-defined power system models to IEEE standard
power system models.

Real-world measurement data from phasor measure-
ment units (PMU) can be used to improve power sys-
tem models. By implementing these models with Mod-
elica and interfacing with other softwares using FMI, the
parameters can be calibrated for various power system
components. Using a set of measurements obtained from
PMUs attached at the terminal bus of Itaipu Binacional,
the world’s second-largest renewable hydro-electric dam,
the parameters of different components of the power gen-
eration can be calibrated. This particular generator studied
in this work produces 700 megawatts (Itaipu Binacional),
an amount of power capable of supplying a city of 1.5 mil-
lion people.

1.2 Related Works
Previous studies for power system model calibration us-
ing PMU measurements focus on using different solver
methods and standardized models. PMU measurements
have been used for dynamic model validation and cali-
bration using various methods such as extended Kalman
filter techniques (Z. Huang, P. Du, D. Kosterev, and S.
Yang, 2013). Existing conventional and renewable plants
are calibrated in (J. Chen, P. Shrestha, S. Huang, N. D. R.
Sarma, J. Adams, D. Obadina, and J. Ballance, 2012) us-
ing PMU data to help determine the cause of faults within
the system. The dynamic parameter identification uses
a combination of particle swarm optimization (PSO) and
sensitivity analysis for a system consisting of a wind tur-
bine, its reactive power support, and step up and step down
transformers. The parameter identification produces good
results for an undamped oscillation under weak grid con-
ditions. The calibrated models helped operators find prob-
lems with the AVR of the plant for the fault studied, allow-
ing for improved operations under weak grid conditions
in the future. This is especially important for a plant like
Itaipú, which provides such a large amount of power.

Modelica and the FMI standard have also been used
extensively in power system model calibration. In (An-
dersson and Strömner, 2013), a multi-domain model for
a wind turbine is calibrated using synthetic and real-life
measurement data. The model calibration follows a se-
quential approach in calibrating system components sim-
ilar to the one outlined in this paper. The calibration pro-
cess outlined in (Andersson and Strömner, 2013) utilizes
the optimization features in the Modelica Design Library
in Dymola rather than exporting the models as FMUs to
utilize optimization routines in other software.

1.3 Paper Contribution
This paper contributes a study focused on the calibra-
tion of a standardized generator model and user-defined
models for its control system. Both a classical gradient
optimization method and a particle swarm optimization
method are utilized in model calibration. FMI Toolbox
and RaPId in MATLAB were used to calibrate the models
discussed in this study.

1.4 Paper Organization
This paper is organized as follows. Section 2 outlines
the setup of the models using Modelica/FMI as well as
the software-to-software validation. Section 3 outlines the
optimization problem defined in MATLAB that will be
solved using RaPId. Section 4 shows the results of the
optimization using the methods outlined in the previous
sections, comparing the fitness of each calibration method.

2 Creating Power System Models Us-
ing Modelica and OpenIPSL

The power system model was implemented in Modelica
using Dymola, the OpenIPS library, as well as the Model-
ica standard library to create the user-defined models from
Itaipu. The Itaipu generators are salient pole generators
with exponential saturation, which is modeled using the
GENSAE model, as derived in (Kundur). The turbine-
governor (TG), automatic voltage regulator (AVR), and
power system stabilizer (PSS) models are user-defined
models that were originally implemented in Anatem, the
simulation software Itaipu uses for their plant. The voltage
measurements from the PMU are injected into the system
at the terminal bus to calibrate the generator, TG, AVR,
and PSS.

2.1 Modelica model
2.1.1 Modelica model overview
The model was implemented in Dymola using in the
Modelica language using the OpenIPSL (M. Baudette, L.
Vanfretti, J. Rabuzin, M. Murad) and Modelica Standard
(MSL) libraries. The Itaipu generators are salient pole
generators with exponential saturation, so the IEEE stan-
dard GENSAE model is used to create the system model.
The equations used to model the generator are included
in the Appendix. User-defined models from Itaipu’s mod-
eling software, Anatem, were implemented using Model-
ica for the AVR, PSS, and TG. These user defined mod-
els feature functions from both the MSL and OpenIPSL
used to model the components. The components are mod-
eled using transfer functions and behaviors specific to the
Itaipu plant. In the cases where the IEEE controller mod-
els are studied, the models’ behaviors and transfer func-
tions are derived from the IEEE standard for excitation
system models (IEEE, 2016). These models are config-
ured in a manner such that we can export them as FMUs
to be used in MATLAB for model calibration.

The power system model was developed using the Mod-
elica language and Dassault’s Dymola software as shown
in Figure 1. The components are labeled as follows:
A. Tables containing the PMU data for the active and re-

active power measurements.
B. System data contains frequency and base power for the

system. The machineData block contains parameter
data stored in a record, which is propagated to all sys-
tem components. A record exists with the results of
every parameter calibration test run.
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C. User-defined turbine governor model from Itaipu.
D. GENSAE generator model 1, a salient pole generator

with exponential saturation.
E. User-defined AVR model from Itaipu.
F. User-defined PSS model from Itaipu.
G. Active and reactive power outputs to be used in the

FMU.
H. Controllable voltage source component.
I. Tables containing real and imaginary voltage compo-

nents from the PMU measurements.

The names and details of the parameters calibrated from
the components listed above are listed in the Appendix.
Figure 2 shows the relationships between the components
shown in Modelica model in Figure 1. The generator out-
puts an active (P) and reactive (Q) power, as well as speed
derivation (∆ω), mechanical power (Pmech), and electrical
power (Pelec). The PSS uses Pelec as an input to obtain an
additional tracking signal (VOT HSG) for the AVR’s input.
The AVR also needs the generator’s exciter field voltage
(E f d0) and terminal machine voltage (Ecomp) to determine
what adjustments need to be made to E f d . The governor,
which is a speed controller for the generation unit, utilizes
∆ω and the reference mechanical power (Pmech0) to con-
trol the turbine behavior in terms of speed and mechan-
ical power. The turbine will then provide a mechanical
power signal to the generator. These components are also
mapped to a one line diagram of an SMIB system to pro-
vide understanding of where these components would be
in a power system.

Figure 1. Modelica model of the generator, TG, AVR, and PSS
in Dymola. This is compared to an SMIB one line diagram
where all of the relationships are shown using magenta boxes.

1In previous work, the Itaipú plant has been modeled with a simpler
generator model with parameters Xd , H, Ra, and X’d (M. Podlaski, L.
Vanfretti, J. Pesente and P. H. Galassi, 2019). The order of parameter
selection was derived from guidelines in (Kundur). The equations used
to model the generator are also obtained from (Kundur).

Figure 2. Relationship between system components.

Figure 3. Itaipu User-Defined AVR model in CduEdit Software.

2.1.2 Re-implementation of User-defined Models
The user-defined models have been developed from mod-
els provided by Itaípu’s engineers. They were created us-
ing the modeling software CduEdit. An example of how
the models are set up in CduEdit is shown in Figure 3.

Some additional functions were created for the Anatem-
Modelica equivalent user-defined models, such as the
’pulso’ function (meaning ’pulse’ in English), which was
used in the modeling of the PSS and AVR:
model Pulso

parameter Real p1 = 0;
parameter Real p2 = 1;
parameter Real p3 = 1e10;
parameter Real p4 = 1;
Modelica.Blocks.Interfaces.RealInput u;
Modelica.Blocks.Interfaces.RealOutput y;

equation
if u<p1 then y = 0;
elseif (u>p1 and u<p3) then y = p2;
else y=p4;
end if;

end Pulso;

The Modelica implementation for the AVR model is
shown in Figure 4. It includes a main AVR loop, overex-
citation limiter, underexcitation limiter, VHz limiter, and
a scaling factor. The main loop contains the transfer func-
tions to regulate Efd, the field voltage. The scaling factor
scales the initial Efd of the generator to the initial output
of the AVR to ensure that the models are operating on the
same base. The definition for each of the parameter abbre-
viations are located in the Appendix.

2.1.3 Brazilian software
The engineers at Itaipu used industry-specific software to
implement their models. We re-implemented these models
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Figure 4. User-defined AVR model functions implemented in
Modelica.

Figure 5. SMIB system set up in Dymola. Equivalent system is
also implemented in Anatem.

in Dymola. The software CduEdit (Cepel, c), which is pic-
tured in Figure 3, is used to create control system diagrams
for components. It is proprietary software used in Brazil
in the utility sector for engineers to maintain a database of
user-defined controller models for power systems (Cepel,
c). It is a graphical interfaces used to create and edit user
defined controls (CDUs). The CDUs can be simulated in
ANATEM (Cepel, b), which is an industry-specific tool
used for electromechanical transient analysis. These soft-
wares also interact with ANAREDE (Cepel, a), which is a
program that assists in the analysis of power system net-
works, such as power flow, network equivalents, and con-
tingency analysis. These tools are limited in analysis ca-
pability, so we must re-implement the CDUs for the Itaipu
plant in Dymola for parameter calibration.

2.1.4 Software-to-software verification with Anatem

The verification will be carried out by simulating the same
system in both software packages and comparing the ob-
tained results, with the goal of showing that the models
are equivalent in both software programs. This is nec-
essary because it is challenging to prove to the users of
domain-specific tools that they can obtain the same results
as those tools in Modelica as long as the models are cor-
rectly re-implemented. This brings confidence to the mod-
els in Modelica that the results are going to be just as good
as, if not better than, the domain-specific tool.

The system chosen to be implemented is the single-
machine infinite-bus (SMIB) system, due to its simplicity.
The SMIB system implemented using OpenIPSL is shown
in the Figure 5.

It is important to mention that some parameter conver-
sion need to be carried out. For example, the saturation
curves need to be converted from an exponential repre-
sentation to a polynomial one. In addition, exciter and
power system stabilizers were adapted. The per unit pa-
rameters from the circuit were converted to ANAREDE in
the Anatem software for the power-flow calculation, re-
sulting in the adequate initial guess values to the system.

Figure 6. OpenIPSL vs Anatem voltages at bus B1 for software
validation.

Figure 7. OpenIPSL vs Anatem rotor angle at bus B1 for soft-
ware validation.

The event tested is a step change in the terminal voltage
reference for the exciter system. The reference increase by
0.02 at time t=1s and it decreases, also as a step change,
back to the original value at instant t=6s. The results from
OpenIPSL and ANATEM are displayed in figures for easy
comparison. The resultant voltage at bus B1 given by both
software packages is displayed in Figure 6. It is possible
to observe that the curves from ANATEM and OpenIPSL
overlap throughout the entire simulation.

The rotor angle behavior given by both software pack-
ages is shown in Figure 7. Again, it is possible to ob-
serve the superposition of the results given by both soft-
ware packages.

2.1.5 Using PMU data with Modelica

The voltage data obtained from the PMUs is injected into
the system at the site of the infinite bus, shown in Box I in
Figure 1. Inside of the ’combiTimeTable’ blocks in Block
I, the real and imaginary components of the voltage are
listed in tables over the period of the system event. Those
voltage signals are then converted to flow variables (real
and imaginary currents) to be injected at the machine’s
point of interconnection. Those flow variables then con-
trol the generator power output according to the voltage
input.

Block A in Figure 1 contains the tables of data for the
active and reactive power. The purpose for including these
measurements in the model is to observe the fit of the sim-
ulation to the measurements in the plotting window.

2.2 Preparing models for RaPId
The models were optimized using RaPId (L. Vanfretti,
M. Baudette, A. Amazouz, T. Bogodorova, T. Rabuzin, J.
Lavenius, F. Jose Gomez-Lopez, 2016), a MATLAB tool-
box used for parameter validation, calibration, and opti-
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Figure 8. Itaipu system in Simulink using the FMI Toolbox for
use in RaPId.

mization that uses models exported using FMI standard
for Model Exchange, called Functional Mock-up Units
(FMUs). RaPId uses both Simulink and MATLAB func-
tions from the FMI Toolbox for MATLAB (Modelon,
2018) to simulate and perform the computations with the
model. The FMUs need to be loaded and configured in
a Simulink block from the FMI Toolbox library; in this
paper, the block for model exchange from the FMI Tool-
box was used to simulate the model. A MATLAB script
is used to specify measurements, define an optimization
problem, and to provide an initial guess of the desired pa-
rameters. The complete system used for all experiments
discussed in this paper is configured in Simulink is shown
in Figure 8, labeled as follows:

A. Input voltage measurements split into a real and imag-
inary component. Measurements are from PMUs.

B. FMU containing the Modelica model.
C. Output of the FMU (created from system in Figure 1);

simulated P and Q.
D. Measurements of P and Q for graphical comparison,

used in software for validation.
E. Output P and Q results to the work space. This is up-

dated every iteration.
F. Scopes to monitor the simulated response against the

measurements during each simulation run.

These models were calibrated using the toolbox with
the methods outlined in Section 3. This was necessary to
determine the change in the parameters due to the aging
components in the system.

3 Parameter Identification and Cali-
bration Methods

The fmincon and particle swarm optimization (PSO)
solvers are used in the parameter estimation experiments
for the user defined models. The PSO solver is used to find
a global solution for the parameters when calibrating each

component in the model. Once a global solution is found,
fmincon is used to optimize the local solution.

In Equation (1), the lower and upper limits to the opti-
mization problem are defined as pmin and pmax.

min f (x) such that
{

pmin ≤ x ≤ pmax
}
. (1)

During each optimization run using PSO and
fmincon, the estimated parameter vector p̄ is con-
tinuously optimized and updated to simulate the response
of the system. The absolute difference between the
simulation and measurements is calculated at each time
step, as follows:

ε1 =

[
Psimulated

out −Pre f erence
out

Qsimulated
out −Qre f erence

out

]T

(2)

where Psimulated
out is the output from the simulation of the

FMU for the active power, Pre f erence
out is the active power

measurement from the PMU data; Qout is the reactive
power and follows the same process. The objective func-
tion is then determined by computing the Frobenius norm
from the mismatch ε1 between the simulation and PMU
measurements for active and reactive power of the gener-
ator. The sum of mismatches is calculated from the norms
of the measurement/simulation pair at each time step, re-
turning the fitness of the simulated model to the measure-
ments. The fitness of the active and reactive power are
weighted equally when optimizing the parameters by min-
imizing:

f (x) = Σm
i=1Σn

j=1(εi j ∗ εi j) (3)

This is repeated for each individual parameter cali-
brated in this paper listed in the Appendix.

The model shown in Figure 1 was exported from Dy-
mola as a Functional Mock-up Unit (FMU) (Dassault,
2018) to calibrate the models’ parameters using MAT-
LAB’s optimization solver, fmincon (Mathworks), a
particle swarm optimization (PSO) solver, and Simulink.
The fmincon optimization runs were executed for up to
5000 iterations using an error tolerance of 1 x 10−5. The
PSO optimization runs were executed for up to 200 itera-
tions with an error tolerance of 1 x 10−3. The parameter
values were changed each iteration with the goal of pro-
viding the best optimization fit to the reference measure-
ments using RaPId (L. Vanfretti, M. Baudette, A. Ama-
zouz, T. Bogodorova, T. Rabuzin, J. Lavenius, F. Jose
Gomez-Lopez, 2016), a MATLAB toolbox for rapid pa-
rameter identification.

The optimization process used in this paper for the com-
parison with the generic IEEE power system models is de-
scribed in (M. Podlaski, L. Vanfretti, J. Pesente and P. H.
Galassi, 2019). Both the user-defined and generic models
are calibrated using the same process.
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Figure 9. Process for calibrating user-defined components.

3.1 Sequential Parameter Estimation Method-
ology for User-Defined Models

The optimization process used in this paper is shown in
Figure 9. First the generator parameters are calibrated
without any of the control system included in the model.
All of these parameters are calibrated simultaneously us-
ing PSO. The results from the PSO are then used as the ini-
tial guess to calibrate the parameters sequentially. The se-
quential parameter estimation process follows the method
shown in Algorithm 1.

Algorithm 1 Sequential parameter calibration using
heuristic solver, then gradient solver
Use PSO algorithm:
x = vector for all parameters to be calibrated
xmin = vector of lower limit of all parameters calibrated
xmax = vector of upper limit of all parameters calibrated
x = min f (x) such that xmin ≤ x ≤ xmax
Use fmincon solver:
p = empty vector
pmin = empty vector
pmax = empty vector
For parameter in x:
p = p.append(x) % Use results of PSO as starting guess x
pmin = pmin.append(xmin)
pmax = pmax.append(xmax)
min f (x) such that pmin ≤ p ≤ pmax

This method follows the sequence defined in Figure 9.
After calibrating the generator parameters, the final solu-
tion of the generator fmincon optimization is used as
the initial guess of generator parameters for calibrating the
AVR. Similarly to the calibration of the generator model,
Algorithm 1 is used to calibrate the parameters of the gen-
erator and AVR model. A PSO routine is run for all of
the parameters in the generator and AVR, then its solu-
tion is used as the initial guess for the calibration of the
individual AVR parameters with the fmincon solver. This
process is then repeated again for the PSS and TG, adding
them into the system sequentially.

3.2 User-defined models vs. Generic Models
In this paper, two different models for calibration are
studied: generic and user-defined. The generic mod-
els are re-implemented from the model description pro-
vided in IEEE’s Recommended Practice for Excitation
System Models for Power System Stability Studies (IEEE,
2016). These models in (IEEE, 2016) are also imple-
mented in other power system analysis tools, including
the OpenIPSL library. In this study, the GENSAE syn-

Figure 10. Calibration results for User-defined AVR/PSS
calibration (red), AVR/PSS/TG (green), and IEEE generator
AVR/PSS/TG (purple) for September 22, 2015 event.

chronous generator, SEXS AVR, and STAB3 PSS are used
to model the Itaipu system for the generic model stud-
ies. The generic TG model is the IEEE HYGOV model
(NEPLAN AG, b), which follows the model definition for
an IEEE standard turbine-governor in a hydro plant. The
control diagrams and equations defined by IEEE to create
these models are include in the Appendix.

The user-defined models used to model the Itaipu sys-
tem were created by the plant engineers in CDUEdit,
which is explained in Section 2.1.3. These models in Dy-
mola are the exact same as the model description in the
CDUEdit software. They have the same performance in
both ANATEM and in Dymola as shown in Section 2.1.4.

4 Case Studies
Data from two different fault events occurring at a gen-
erator at Itaipu were used for this model validation and
calibration process. The models with calibrated parame-
ters were simulated in Dymola with a variable time step
solver, Dassl with a tolerance of 10−3.

4.1 Results - Case 1: September 22, 2015
The model was calibrated using both user-defined com-
ponents and IEEE generic components (M. Podlaski, L.
Vanfretti, J. Pesente and P. H. Galassi, 2019) for the AVR,
PSS, and TG models. Figure 10 shows the results of the
AVR and PSS calibration for this data set using both the
user-defined and IEEE generic models. The generic mod-
els show graphically that they perform better at modeling
the fault response than the user-defined models. The Eu-
clidean norm according to Equation 3 of the user-defined
models is 1.2; the IEEE generic models have a Euclidean
norm of 1.1017. The IEEE generic models have a slightly
better fit than the user-defined models. The results for all
of the calibration steps are shown in Table 1.

The AVR/PSS calibration shows a better fit than the
AVR only calibration according to Figure 11. The accu-
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Figure 11. All calibration phases for user-defined models com-
pared for September 22, 2015 data set.

Table 1. ||x|| fitness of results per model for September 22, 2015
and November 2, 2016 events

Model Setup/Date 9/22/2015 11/2/2016
GENSAE generator 1.9548 1.0884

Generic AVR 1.5767 2.2833
Generic AVR/PSS 1.1017 1.1017

Generic AVR/PSS/TG 1.3192 1.3288
UD AVR 2.2875 2.2827

UD AVR/PSS 1.2 1.1055
UD AVR/PSS/TG 2.0944 5.6683

racy of the model decreases when the TG is added to the
system, causing distrust in that model. The TG model sig-
nificantly damps the active power output from the genera-
tor and provides too much reactive support. The reference
signals, such as reference voltages, were not calibrated in
the TG and may need to be adjusted in the future to de-
velop a more accurate model.

4.2 Results - Case 2: November 2, 2016
The model was calibrated using both user-defined AVR,
PSS, and TG models and IEEE generic AVR and PSS
models (M. Podlaski, L. Vanfretti, J. Pesente and P. H.
Galassi, 2019). Figure 12 shows the results of the AVR
and PSS calibration for the data set using the generic
and user-defined control system models. The user-defined
models have a better fit with the measurements than the
generic models.

Figure 15 shows the results of the calibration at each
step. When the TG is added to the model, the simulation
creates a poor fit to the measurements. The TG damps the
power output from the generator and causes a large dip
in reactive power when the system returns to steady state
around 1.5 seconds.

The user-defined TG model has an issue similar to the
results of the previous data set where the power from the

Figure 12. Calibration results for User-defined AVR/PSS
calibration (red), AVR/PSS/TG (green), and IEEE generator
AVR/PSS/TG (purple) for for November 2, 2016 event.

generator is significantly damped. The addition of the TG
in the model causes an over correction of reactive power
after the fault, as shown in Figure 15. After the fault, the
TG does not let the system return to a steady state; there
is a slow oscillation most evidently seen in the reactive
power response of the model. When the mechanical power
of the generator is used to control the input (shown in Fig-
ure 1 with block C removed), the system recovers to near
steady state within 1-2 seconds after the fault, as shown in
Figure 16. The mechanical turbine power is held constant
due to the absence of the turbine-governor.

The fitness of the model calibration to the measure-
ments are shown in Table 1. The fitness of the AVR/PSS
user-defined model and the generic model are compara-
ble, but the fitness significantly decreases when the TG is
included in the model.

4.3 Errors with the User-Defined TG Model
The user-defined TG causes such a high error. Figures 13
and 14 shows the results for the power system contain-
ing models of the re-implemented user-defined AVR and
PSS. The TG was varied between a calibrated model for
the user-defined TG and the IEEE HYGOV TG model.
The IEEE model is more accurate than the user-defined
model in this case, showing that the user-defined TG
model has some error that causes the machine to absorb
large amounts of reactive power. Figure 14 shows a drastic
change between the user-defined Itaipu TG and the IEEE
HYGOV TG response. There seems to be an error in the
transfer function of the user-defined TG that causes the
machine to consume a large amount of reactive power un-
der certain conditions instead of going back to steady-state
like the actual system response.

5 Discussion
While carrying out this work, it was expected that the user-
defined model description would produce a more accurate
result than the generic models. The model of the Itaipu

139



146 10.3384/ECP20169         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020   MARCH 23-25, BOULDER, CO, USA

Figure 13. Final phases for user-defined AVR and PSS models
with both a user-defined and IEEE standard TG model compared
for September 22, 2015 data set.

Figure 14. Final phases for user-defined AVR and PSS models
with both a user-defined and IEEE standard TG model compared
for November 2, 2016 data set.

Figure 15. All calibration phases for user-defined models com-
pared for November 2, 2016 data set.

plant was most likely originally described in the 1990’s.
There have been changes in the models since, but they
have not updated to be reflected in the model. The user-
defined models were created back before the IEEE stan-
dard models were originally defined. Although the IEEE
standard models are simplified, they have a broader ap-
plication scope and are able to capture the actual system
response and dynamics with better accuracy.

These observations raise the importance of model main-
tenance and model validation. Thanks to the availability
of PMU measurements, this is becoming more possible.
This was not possible before, where the only measure-
ments were taken during commissioning tests that do not
fully reflect the entire spectrum of the system response.

6 Conclusion
The user-defined models did not perform as well as the
generic models for the control system of the plant after
calibrating the parameters for the two faults analyzed. Al-
though the fitnesses of the two modeling methods are com-
parable when the AVR and PSS are included in the system,
the generic models are consistently more accurate than the
user-defined models. In both cases studied, the fitness of
the model increases when the user-defined AVR is added
to the system from the basic generator only model; how-
ever, in the generic case, the models show an improvement
in fitness to the PMU measurements after each parameter
is calibrated. In the future, the models used for the Itaipu
power plant need to be corrected to better to fit the actual
response of the plant to the simulation.

These results show that the models currently used for
power systems cannot be blindly trusted without the type
of analysis shown in this paper. The approximations of
the models do not capture all of the behaviors in the phys-
ical system, causing distrust in the models. For example,
there is a 20 Hz oscillation seen in the measurements that
the models cannot replicate, as shown in Figure 17. This
implies for both the user-defined and generic models that
more detailed representations of certain components need
to be developed. This implies that the models need to be
revisited to be able to capture the behavior, but also the
traditional modeling approach may be insufficient.
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APPENDIX: Variables and Parameters

Parameter Details
Generator - IEEE GENSAE Model

T’d0 d-axis transient open circuit time constant
T”d0 d-axis sub transient open circuit time constant
T”q0 q-axis sub transient open circuit time constant
H Inertia constant
D Speed damping
Xd d-axis reactance
X’d d-axis transient reactance
X”d d-axis sub transient reactance
X”q q-axis sub transient reactance
Xq q-axis reactance
Xl leakage reactance

AVR - Itaipu User-Defined Model
Kv AVR integrator gain
Kei AVR gain
Kmin Underexcitation limiter gain
Kpoint AVR gain
Ti Overexcitation limiter time constant
Ta Overexcitation limiter time constant
Tb Overexcitation limiter time constant
Tai Overexcitation limiter time constant

PSS - Itaipu User-Defined Model
K f
K f 1 AVR time constant
T f AVR gain
Tp PSS time constant
K1 PSS time constant
T1 PSS time constant
K2 PSS gain
T2 PSS gain

TG - Itaipu User-Defined Model
Tn Accelerometer time constant
NTv Adjustment of accelerometer time constant
Td Integrator time constant
T f 1 Time of closing distributor fast part
T f 2 Time of closing distributor slow part
Tv Equivalent time of distributor valve
Tw Water staring time
Tya Time of opening of the distributor

APPENDIX: Equations for IEEE stan-
dard components

IEEE HYGOV Turbine Governor

Figure 18. Control diagram for IEEE HYGOV TG (NEPLAN
AG, b)(Pourbeik et al., 2013)

GENSAE generator

K1d =
(X ′

d −X”d)(Xd −X ′
d)

(X ′
d −Xl)2

K2d =
(X ′

d −Xl)∗ (X”d −Xl)

(X ′
d −X”d)

K3d =
X”d −Xl

X ′
d −Xl

K4d =
X ′

d −X”d

X ′
d −Xl

dEpq

dt
=

1
Tpd0(E f d −XadIf d)

dΨkd

dt
=

1
T ”d0(E ′

q −Ψkd −X ′
d −Xl)∗ id

dΨ”q

dt
=

1
T ”q0(−Ψ”q +(Xq −X”q))∗ id

Ψd” = E ′
q +K3d +ΨkdK4d

Ψd = Ψ”d −X”d ∗ id
Ψq =−Ψ”q −X”q ∗ iq

XadI f d = K1d ∗ (E ′
q −Ψkd − (X ′

d −Xl)∗ id)

+(Xd −X ′
d)∗ id +(SEexp +1)∗E ′q

Te = Ψd ∗ iq −Ψq ∗ id
ud = (−Ψq)−Ra ∗ id

uq = Ψd −Ra ∗ iq

SEXS AVR
VREF = E f d0/K +ECOMP0

Figure 19. Control diagram for SEXS AVR(IEEE, 2016)(NE-
PLAN AG, a)

STAB3 PSS

Figure 20. Control diagram for STAB3 PSS(IEEE, 2016)(NE-
PLAN AG, c)
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Abstract
A successful co-simulation standard is crucial in applying
co-simulation in large scale distributed development pro-
cesses. A factor that affects the success of a standard is
how easily a vendor can implement it. In this paper, we
describe an approach to facilitate the implementation of
the Functional Mock-up Interface standard. In particular,
we propose the use of model-based testing for evaluating
the tools that export Functional Mock-up Units (FMUs).
This has the benefit that the model used as documentation
to describe the possible behaviors of an FMU, can also be
used to test it. These principles are embodied in a tool,
which is open source, and available online. We then use
this tool to evaluate the FMUs available in the FMI Cross-
check repository.
Keywords: model-based testing, functional mock-up inter-
face standard, co-simulation

1 Introduction
Multi-paradigm modeling is a natural response to the chal-
lenges posed by the development of complex systems
(Vangheluwe; Vangheluwe et al.). These challenges arise
not only from essential system complexity (e.g., many in-
teracting, heterogeneous, components), but also from the
ensuing development process (e.g., concurrency and dis-
tribution) (Tomiyama et al.). Model integration is the
means by which multiple models, constructed in different
tools and formalisms, can be integrated to answer ques-
tions about the system these models represent.

Co-simulation is a technique where the models are in-
tegrated through their corresponding simulators (Kübler
and Schiehlen, a,b; Gomes et al., f; Hafner and Popper;
Palensky et al.). Each simulator, given inputs to the model,
is capable of producing outputs, both function over time.
Therefore simulators cooperate in producing the overall
behavior of the system.

While co-simulation can only be used to answer ques-
tions about a system’s behavior, it has the advantage that
the contents of each model need not to be disclosed, as the
model and solver can be encapsulated in a black box. It

is therefore a suitable technique to address the challenges
arising from concurrent and distributed development pro-
cesses, where many tools/formalisms might be used and
external suppliers may play a role.

Co-simulation standards are crucial enablers. These
prescribe the interfaces with which inputs/outputs/param-
eters can be set/obtained and, optionally, the interaction
protocol that each simulator abides to. For example,
the Discrete Event System (DEVS) specification that pre-
scribes the integration protocol between simulators (Zei-
gler; Gomes et al., f; Van Tendeloo and Vangheluwe). On
the other hand, the Functional Mock-up Interface (FMI)
Standard for co-simulation (FMIv2.0; Blochwitz et al.,
a,b) prescribes the interfaces, but under-specifies the in-
teraction protocol. In this paper, we focus on the FMI
version 2.0. In the FMI terminology, the simulators are
referred to as Functional Mock-up Units (FMUs).

Past research (Schweiger et al., a,b), and the co-authors’
experience, have shown that there are some ambiguities in
the FMI standard (see, e.g., Section 5.2), which lead to not
only technical difficulties (e.g., co-simulations crash), but
also numerical difficulties (e.g., instabilities. For instance,
the second and third most eminent barriers in the adoption
of the FMI standard are: “Lack of transparency in fea-
tures supported by FMI tools” and “insufficient documen-
tation and a lack of examples, tutorials, etc.” (Schweiger
et al., b). Other somewhat barriers include: “It is diffi-
cult to implement FMUs”, and “There is a lack of tools
that sufficiently support FMI” (Schweiger et al., a). In the
same empirical study, the authors identified the most ex-
perienced issue to be “Difficulties in practical aspects, like
IT-prerequisites in cross-company collaboration.”

Goal. We aim at supporting the community in rooting
out possible ambiguities and improving the conformance
to the standard. We propose an approach to the devel-
opment of an evaluation tool for a co-simulation stan-
dard. Ideally, such a tool would never be necessary, as the
ideal standard would allow for automated synthesis of co-
simulation interfaces. However, we recognize that it is dif-
ficult to rigorously specify a standard to the level required
by automated synthesis. In particular, we propose the use

149



150 10.3384/ECP20169         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020   MARCH 23-25, BOULDER, CO, USA

of Model-Based Testing (MBT) for the evaluation. This
has the benefit that the model used to describe the possible
behaviors of a simulator can also be used to test it, and can
be applied with minimal setup. We describe a tool that em-
bodies these principles and tests co-simulation Functional
Mock-up Units (FMUs) exported by tool providers. The
tool does not test the numerical performance of an FMU
(e.g., numerical error, freedom from stability problems,
etc.). This tool is open source and available online with
documentation and examples (Gomes et al., 2019). It is
our goal that it helps in the development of FMUs and
that our approach inspires standardization bodies to adopt
the same technique.

Structure. In the next section, we survey prior work.
Then, in Section 3, we describe our contribution. In
Section 4 we describe the application of our contribu-
tion to empirically evaluate 169 FMUs, downloaded from
the FMI Cross-check repository (Modelica Association,
2019a). Section 5 summarizes the results, lessons learned,
and discusses the limitations of our approach. Section 6
concludes.

2 Related Work
Our goal is similar to other researchers that have helped
identify ambiguities and omissions in the FMI standard.

In particular, the FMI development committee makes
available an FMU Compliance Checker on its website
(Modelica Association, 2019b). It verifies the consistency
of the FMU metadata, and runs a co-simulation with user-
defined input data using a fixed communication step size,
appropriate to the FMU under test. This tool, along with
the FMU-SDK (qTronic GmbH, 2019), available at the
FMI web site, play an important role in improving the
conformance of FMUs to the FMI standard. Moreover,
the work in (Bertsch et al.) focuses on the testing of FMU
importing tools, by the use of reference FMUs, build using
the FMU-SDK.

Battle et al. has produced a tool that focuses on the
conformance of the FMU metadata. It has been applied
to the FMI Cross-check repository (Modelica Association,
2019a), and has yielded important lessons:

• Roughly 17% out of 692 FMUs do not follow the
rules regarding the InitialUnknowns field of the
model structure (FMIv2.0, Section 2.2.8, p. 60).

• About 18% have inconsistencies related to the
derivatives declared. For instance, the derivative in-
dexes do not match the set of real scalar variables
with a derivative field declared; there are derivatives,
but no real scalar variables with a derivative field de-
clared; or there are real scalar variables with deriva-
tive field set, but no derivatives declared.

Our work aims at complementing the existing work by
modeling all possible interactions with an FMU allowed
by the FMI standard. In this sense, it obviously differs
from the tool described in Battle et al.. However, our ap-
proach also differs from the FMU Compliance Checker,

which runs a co-simulation with inputs prescribed by the
FMU. While our tool also uses the information declared
by the FMU, it may also stop a co-simulation, reset the
FMU, initialize some variables while leaving others unini-
tiated, etc, as long as these operations are allowed by the
standard.

Finally, we highlight the DCP-Test-Generator tool,
made available in (Leibniz University Hannover, 2019).
This tool was created with the same goal as ours, except
it targets the Distributed Co-simulation Protocol (DCP)
standard (Baumann et al.; Krammer et al., b,a). The DCP
standard focuses on Hardware-in-the-loop and real-time
co-simulations. It complements the FMI standard by en-
compassing information that is crucial for communica-
tion over a variety of transport protocols. At the heart of
the standard is a state machine that dictates how the co-
simulation progresses. This state machine was reused to
generate test cases, providing anecdotal evidence that our
approach has the benefit of leveraging any state machine
diagrams used for documentation, leading to an inexpen-
sive way of adopting any standard.

3 Model-Based Testing FMUs
In this section, we introduce Model-Based Testing (MBT)
and then we explain the language we created to develop
the FMU model, used in the MBT process.

3.1 Model-Based Testing
We adopt the terminology in Roy Awedikian and define
Model-Based Testing (MBT) as the use of a model of the
System-Under-Test (SUT) in order to guide test case gen-
eration. Such model can be represented as a state machine.
Figure 1 shows an example that captures some of the pos-
sible interactions with an FMU.

Figure 1. Example state transition system – Simplified FMU
interaction model. The initial state is called “start”, represented
as a circle, and the final state is “freed” (outlined rectangle).

Any finite path accepted by the state transition sys-
tem constitutes a possible test case of the SUT, and each
test case must be associated with an oracle that dictates
whether the SUT has passed the test or not. For instance,
in Figure 1, an accepted path could be:
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1. Start-e_Instantiate->instantiated
2. instantiated-e_SetupExperiment->experiment
3. experiment-e_EnterInitMode->initializing
4. initializing-e_ExitInitMode->step_complete
5. step_complete-e_Free->freed

where each edge corresponds to procedures that invokes
the corresponding operations on the FMU. Some of these
operations are detailed in Section 3 and all are available in
the online code (Gomes et al., 2019).

If a test case fails, the MBT tool cleans up allocated re-
sources, records the log of the SUT, and provides enough
information to reproduce the test case (e.g., a seed value).

MBT is applied to SUTs as a black box, i.e., affecting
only the SUT’s inputs, making an ideal technique to test
black box FMUs, and there is a large body of research
on how to optimize the generation of paths to discover
problems quickly (Li et al.; Peleska).

We have extended the Modbat (Artho et al., 2019;
Artho et al.) to perform MBT on a finite state machine-
based language that we developed. The language uses the
GraphML syntax (Brandes et al.), for which the graph ed-
itor yEd (yWorks, 2019) can be used.

In the following sub-section, we describe the syntax and
semantics of the proposed language.

3.2 Simulator Environment Language
We propose a language to describe all possible simula-
tor operations. Our language is largely based on non-
deterministic Extended Finite State Machines (EFSM),
with constructions that make it easier to deal with large
numbers of possible test paths.

Figure 1 shows an example of a traditional EFSM. Al-
beit a simple example, one can readily see the some of the
problems associated with using a traditional EFSM for the
description of simulator environments:

• There can be many edges between the same pair of
states (e.g., edges from step_complete onto it-
self);

• There are operations that can be performed in almost
all states (e.g., e_Free and e_Reset);

• There are many operations whose execution should
not be repeated, or should be repeated a fixed number
of times;

• Adding more interactions will quickly make the
EFSM unreadable;

As a result, we propose the following extensions that
are implemented in our language. These are purely syn-
tactic, as they do not add to the expressive power of EF-
SMs, and their implementation can be done by reduction
to a more complex traditional EFSM.

3.2.1 Edge-Or
This extension allows one to compactly represent multi-
ple possible operations in the same edge. Its syntax and
example reduction are described in Figure 2.

Figure 2. Edge-or syntactic extension and example reduction.
Each edge-or (left) gets expanded to a traditional EFSM edge
(right, in red).

3.2.2 State-Or
This extension allows one to compactly represent an oper-
ation between many possible states. Its syntax and exam-
ple reduction are described in Figure 3.

Figure 3. State-or syntactic extension and example reduction.
Each State-or (left) gets expanded to a state (right), preserving
the edges leaving/arriving at that state (in red).

3.2.3 Bounded Repetition
This extension allows one to compactly represent a self-
loop edge that should be repeated only a finite number
of times while in the same state. Its syntax and example
reduction are described in Figure 4.

Figure 4. Bounded Repetition syntactic extension and example
reduction. A bounded repetition edge (left) gets expanded to
a counter of the number of times that edge has been executed
(right). Notice that upon attaining the maximum number of edge
executions, the state machine can only execute other edges.

3.2.4 Edge and State Merge
This extension, in combination with the previous ones, al-
lows one to split the specification of the environment into
multiple models. The merging of multiple descriptions is
done by merging states with the same name, and taking
the union of their edges. Figure 5 illustrates this operation.
These reductions can be applied until none is applicable.

3.2.5 Edge Implementations
Each edge corresponds to a method, implemented in a
class, as exemplified in Figure 6.
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Figure 5. Edge and State Merge operation example. the two
descriptions on the left get merged into one, on the right.

When setting/getting variables, we followed the defini-
tions in (FMIv2.0, Fig. 11). For example, in Figure 6, the
set INIE is defined as follows:

INIE = vars.filter(v =>
v.causality==Causality.Input ||
(v.variability != Variability.Constant

&& v.initial == Initial.Exact))

3.2.6 Tess Success Criteria
Whether a test passes or not is decided when the code cor-
responding to an edge is executed: any uncaught excep-
tion, including an assertion on a false statement, represents
a test failure.

3.3 Model-Based Testing Tool for FMUs
The main use case and the structure of our tool are sum-
marized in Figure 7.

4 Empirical Evaluation of FMUs
In this section, we describe the application of our tool to
the FMUs made available for the FMI Cross-check repos-
itory (Modelica Association, 2019a).

4.1 Methodology
This goal of this study is to measure how well the FMUs
tolerate sequences of operations that are valid with respect
to the FMI standard.

The model used to generate test cases was created fol-
lowing (FMIv2.0, Fig. 11), and is partially illustrated in
Figure 9. The full model, and edge implementations, can
be consulted in the tool’s repository (Gomes et al., 2019).
Most operations are mapped directly to the FMI Standard
operations. The following are the noteworthy exceptions:

• The e_GetINIT and e_GetX operations select at
random one of the variables in the corresponding set
INIT and X.

• The e_SetINI, e_SetIN, and e_SetINIE, op-
erations select at random one of the variables in the
corresponding set INI, IN, and INIE. The value to
set the variable with is computed either from the de-
clared nominal value, or is equal to 1.

• The e_SetupExperiment operation chooses, at
random, whether the stop time, equal to 1s, is defined
or not.

class FMIGraphModel extends ModBatGraphModel {
// SUT and Time
var instance: IFmiComponent
var t = 0
...

// Edge Methods
def e_Instantiate() = {

instance = instantiate(fmu, getGuid(fmu))
}
def e_SetINIE() = {

// Pick a random var from the
// INIE set of variables
// Pick a value (e.g., nominal value), and
// invoke the corresponding
// instance operation.
setVar(getRandomElement(INIE))

}
def e_Terminate() = {

val s = instance.terminate()
assert(s == Fmi2Status.OK)

}
def e_Step() = {

// Choose a step size according to
// FMU Capabilities
var H = chooseH()
// Execute the step, and
// check if the step was carried out
val res = instance.doStep(t, H, true)
assert(res == Fmi2Status.OK)
t = t+H

}
def e_Free() = {

instance.freeInstance()
}
...

}

Figure 6. Pseudocode exemplifying implementation of some of
the operations introduced in Figure 1. The full code is available
online (Gomes et al., 2019).

• The e_Step operation will either pick a random
step size (from the set {0.001,0.01,0.1}) if the FMU
supports adaptive step size, otherwise 0.01 will be
used.

• The e_GetFmuState and e_SetFmuState are
only executed if the FMU supports the corresponding
operations, and the state is set with the most recent
state recorded.

Each operation is accompanied by a simple assertion
checking whether it ran successfully. The sets of variables
used are defined in Figure 8.

Our tool was applied to each FMU sequentially,
with the following parameters: • Number of Random
Walks=1000; • Self-Loop Execution Limit=10. The later
refers only to the self-loops that are not already con-
strained by the bounded repetition operator. Both param-
eters are forwarded to Modbat (Artho et al., 2019).

For each FMU, the 1000 tests are executed in sequence.
Before the first test is run, the FMU is loaded. Each test
creates a new FMU instance and, regardless of the test
result, that instance is always freed before the next test
begins. After the 1000-th test is concluded, the FMU is
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Our Tool

GraphML
FMU GraphML FMIOps.scala

FMU Supplier

Reductions

EFSM

ModbatResults

Figure 7. Main use case and structure of our tool. The FMU
Supplier provides an FMU. The GraphML files, created with
the simulator environment language (Section 3.2), along with
the implementation of the edges, are part of our tool. These are
loaded and transformed into a configuration that Modbat can use
to run the MBT.

unloaded. This method avoids any concurrency problems
within instances of the same FMU and different FMUs.

Each failed test is logged, along with the output log
of the FMU instance and the sequence of operations that
were executed from the instantiation until the failure.

Failed tests are grouped into equivalence classes. Two
test failures are considered equivalent if they occurred in
the same operation on an instance of the same FMU. For
example, two tests failures on the e_Reset operation of
an instance of the same FMU are considered equivalent,
even if the first test failure happened just after the instance
was instantiated, and the second test failure happened after
a step was completed.

To analyze the results, we selected a test from each
equivalence class and inspected the logs. The results are
summarized in the next sub-section.

4.2 Results
The data used to write the results in this section can be ob-
tained by contacting the authors. We do not mention any
concrete FMU failures because we recognize that the re-
sponsible companies are working to improve their FMUs.
Instead, we show aggregate statistics, and present a sum-
mary of the failures and the size of the respective equiva-
lence class.

The aggregate statistics are: • FMUs passing all
tests=77; • FMUs failing at least one test=55; • FMUs
with process crash=37; • Total FMUs tested (sum of pre-
vious items)=169; • Total Tests=169000; • Total Failed
Tests=14733; • Test Equivalence Classes/Analyzed Fail-
ures=102. When a process crash occurs, no other test on
the FMU that caused the crash is run. Since this should
never happen, we do not count such FMU as failing at
least one test even though it did fail one test. Rather, we
count it in the “FMUs with process crash” category.

The following is the list of the test failures:

INI = vars.filter(v =>
(v.variability != Variability.Constant &&

(v.initial == Initial.Approx ||
v.initial == Initial.Exact)) ||

(ders.contains(v) &&
v.`type`.`type` == Types.Real &&
v.causality == Causality.Input))

IN = vars.filter(v =>
v.causality==Causality.Input ||
(v.causality != Causality.Parameter &&

v.variability == Variability.Tunable))

INIE = vars.filter(v =>
v.causality==Causality.Input &&
(v.variability != Variability.Constant &&

v.initial == Initial.Exact))

INIT = vars.filter(v =>
v.causality==Causality.Output ||
ders.contains(v) ||
derMap.containsValue(v))

X = vars.filter(v => v.causality==Causality.Output)

Figure 8. Definition of the sets used in the get and set opera-
tions. The full code is available online (Gomes et al., 2019).

Failure 1. The FMU does not recognize the value refer-
ence for a variable declared in its model description. Such
a variable is set during initialization mode, and belongs to
the set INI, as defined in Figure 8.

Failure 2. After an FMU is terminated, it fails when a
variable belonging to the set X (Figure 8) is queried. Re-
call FMIv2.0, State “terminated”, Fig. 11.

Failure 3. During stepping mode, a tunable parameter
(i.e., a scalar variable with causality=“parameter” and
variability=“tunable”) is changed. The FMU then logs a
message that it cannot be changed, and returns an error.
Recall FMIv2.0, State “step Complete”, Fig. 11.

Failure 4. The getRealStatus (invoked as part of the
e_GetLST in Figure 9) operation is not supported after
an instance is terminated. Recall FMIv2.0, State “termi-
nated”, Fig. 11.

Failure 5. URI has multiple possible formats for the ab-
solute path of a file, and some FMUs only support one.
This causes a failure in the instantiation of the FMU.

Failure 6. The outputs are queried after a change in the
inputs, without a doStep in-between, causing the FMU
to return an error. We investigate this issue in Section 5.

Failure 7. The reset operation is not supported.

Failure 8. Some FMUs do not isolate instances in the
sense that one failed operation in an instance of an FMU
will affect the outcome of other operation calls in a differ-
ent instance of the same FMU.

Failure 9. A variable was set with a value that is outside
the scope of an FMU.
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Figure 9. Partial model used to generate test cases. We did not consider asynchronous FMUs.

The majority of the process crashes are caused by invo-
cation to the reset operation.

Figure 10 summarizes the number of occurrences of
each failure, and relates some of them to the failures de-
scribed above.

5 Discussion
In this section, we start by making explicit the limitations
of this study, and how to mitigate them. Then, we discuss
the lessons learned.

5.1 Limitations
An FMU that passes the tests provided in this tool does not
constitute a proof that the FMU is correct. Currently, our
tool uses the Modbat tool (Artho et al., 2019) to generate
random walks in the graph, from start to finish. The later
prints coverage information regarding the transitions taken
by the model. We chose the number of tests per FMU to
be 1000 because it allows us to cover about 95% of the
possible choices in the model of Figure 9. Note that the
coverage also includes the random choices made inside
each edge operation (e.g., the choice of the scalar vari-
able to set), as exemplified in Figure 6, but it depends on
the number of scalar variables declared in each FMU. The
self-loop limit is chosen to be a small value (10) because
our goal is not to run co-simulations to the end. The per-
formance of the tool was not a factor hindering our study.
For example, on the example FMU that is shipped with the
tool, it takes about 12 seconds to complete these tests.

An FMU failing a test does not necessarily mean that
the FMU does not conform to the FMU standard. For ex-
ample, it is acceptable that an FMU returns an error when
the invocation of the e_Reset operation is made, but our

tools will nevertheless signal a failed test. This enables us
to measure the capabilities of the FMUs, which is impor-
tant in the configuration of co-simulations involving those
FMUs.

We have used Scala to implement our tool, and the
INTO-CPS FMI library to load and interact with the
FMUs. It is possible that some of the failed tests and/or
process crashes are caused not by the FMU, but by the li-
brary. For the failures analyzed however, we did not find
any evidence of this.

The choices made in the implementation of each op-
eration are largely due to the co-authors’ experience, and
therefore can be a cause for error. Indeed, from the an-
alyzed failures, only one crash was caused by the choice
of parameters to run the co-simulation. The size of the
equivalence class for this failure is 14 (out of 14733 tests).
Whenever possible, we used the model description given
by the FMU (e.g., default experiment, nominal/max/min
values for variables). However, many FMUs do not pro-
vide such information.

Regarding the dataset used, it is worth noting that com-
panies are continuously improving their FMI support and
therefore these results will likely become outdated soon.
However, the methodology and principles are embodied
in an easy to use tool (Gomes et al., 2019).

Regarding the failure analysis, while there is some
anecdotal evidence that test failures from the same equiva-
lence class (as defined in Section 4.1) have the same cause,
this was not exhaustively checked. Hence, it is possible
that some test failures are not being reported here.

Regarding the model used for MBT, detailed in Fig-
ure 9, it does not yet cover all permissible operation se-
quences described in the FMI standard. In particular, we
did not consider asynchronous stepping and state serial-
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ization, assumed that state get/set operations can only be
called while in the stepping mode, and that there’s only
one setup experiment (hence the experiment state).
Moreover, a state based model may not be the best rep-
resentation to specify more complex test scenarios. For
example, a sound property of a rollback operation is that,
under the same input signals, an instance that has been
rolled back should have the exact same behavior as before
the rollback. We are convinced that such property is more
easily expressed in Linear Temporal Logic, rather than as
a state machine.

Finally, we considered the FMI Standard version 2.0,
and not the most recent (version 2.0.1), because, at the
time of this study, most tools in the FMI cross check repos-
itory implement version 2.0.

5.2 Lessons Learned and Ambiguities
Despite the above limitations, we have extracted interest-
ing insights and questions from these experiments.

Some FMUs have parameters that refer to numerical
properties (such as internal solver step size). Since these
are not model parameters, should they be standardized?
If not, should the FMU avoid disclosing these parameters
and, instead, attempt to infer appropriate values for these
parameters, from the information provided by the master
algorithm? There is some evidence that practitioners have
difficulties configuring co-simulations (Schweiger et al.,
b), leading us to believe that fewer parameters translates
to easier configuration. However, having such parameters
exposed can enable the implementation of adaptive master
algorithms (Gomes et al., b,a), or automated configuration
techniques (Gomes et al., d; Holzinger and Benedikt)

Some FMUs have internal limitations on the values that
variables can take, but fail to declare these constraints
in their model description. When values on those vari-
ables violate these constraints, the FMU causes the co-
simulation to fail, and the only way to know what caused
the co-simulation to fail is to inspect the logs of the FMUs.
Recognizing that there is a trade-of between demand-
ing more standardization in error reporting, and having a
wider adoption of such standardization, we recommend
that the log messages of the FMUs be made clear regard-
ing validity range violations.

We now focus on failure 6. We believe that such failure
is a actually an intended feature of version 2.0 of the FMI
standard (FMIv2.0). However, as we show next, this is not
so clear, and only one tool reported failure 6. In particu-
lar, (FMIv2.0, Page 104) contains “There is the additional
restriction in slaveInitialized state that it is not allowed to
call fmi2GetXXX functions after fmi2SetXXX functions
without an fmi2DoStep call in between”. However, this
is contradicted by the fact that the standard supports feed-
through dependencies, which induce algebraic dependen-
cies between inputs and outputs. To quote the standard:

• “output: The variable value can be used by another
model or slave. The algebraic relationship to the
inputs is defined via the dependencies attribute of

<ModelStructure><Outputs><Unknown>.”, page 45.
• “Attribute dependencies defines the dependencies of

the outputs from the knowns [. . . ] at the current
Communication Point (CoSimulation).”, page 58.

Since even the simplest mechanical systems, such as
mass-spring-dampers, when coupled with a power bond in
a co-simulation, exhibit such feed-through effect (Gomes
et al., e), it is not clear that failure 6 is a failure of the
standard.

In order to investigate how this ambiguity is being in-
terpreted in practice, we devised a simple test, that follows
the formal definition of feed-through: the input uc feeds
through to output yc when there exist two different values
v1,v2 and FMU state sc that lead to two different output
values (Gomes et al., c):

getc(setc(sc,uc,v1),yc) �= getc(setc(sc,uc,v2),yc).
(1)

The test tries to find two values for which the above holds.
If such values are found, the FMU is said to implement
feed-through.

Out of 113 FMUs, 7 implement feed-through as defined
in Equation (1). Moreover, from the authors’ experience
with the tool OpenModelica (Open Source Modelica Con-
sortium, 2019), FMUs from the latest version (1.13.2) im-
plement feed-through, whereas FMUs from the versions
1.12.X do not, further highlighting the uncertainty sur-
rounding this feature.

Acknowledging that different versions of the same tool
have different degrees of support for the FMI standard, we
argue that the tools listed in FMI standard website should
disclose which version is being used in the FMI Cross-
check. This helps users to determine to which degree their
version supports the standard.

Finally, we remark that, in the definition of the sets
of variables INI, IN, INIE, INIT, and X (recall Fig-
ure 8 and (FMIv2.0, Figure 11)), the authors had diffi-
culties understanding whether the Set* operations can-
not be made on variables whose causality is output, and
whether the Get* operation cannot be made on variables
whose causality is input. For instance, the definition of
INIE, is “any variable with variability �= ‘constant’ and
with initial=‘exact’” (FMIv2.0, Figure 11), and does not
explicitly state that causality=‘input’ should be the case.
Instead, elsewhere in the same page, “[In Initialization
Mode] Variables with initial = ‘exact’ , as well as vari-
ables with variability = ‘input’ can be set” (FMIv2.0, Page
103). We suspect that failures 1 and 2 might be caused by
misinterpretation of the definition of these sets.

6 Summary and Future Work
With the goal of rooting out possible ambiguities and im-
proving the conformance to the FMI standard, we describe
an approach to apply MBT to evaluate FMUs. We have
contributed with a state machine based language that can
be used to describe test cases for FMUs, and we package
it in an easy to use tool, available online (Gomes et al.,
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2019). We then used this tool to empirically evaluate ex-
isting FMUs and discussed the results. Our approach is
easy to apply in existing and subsequent version of co-
simulation standards. For the test failures observed, we
are currently contacting the companies responsible, with
the necessary information to ensure they can reproduce
the failure.

In the future, we intend to extend the state machine that
is used to generate tests. In particular, we will consider
FMU soundness properties such as rollback and reset con-
tracts, and step rejection (Broman et al.) and tunable pa-
rameter properties. Our language might have to be ex-
tended to specify such soundness properties. One possible
extension is to implement linear temporal logic monitors.
This will separate the property specification from the sys-
tem model, and the former should guide the model-based
testing of the latter.
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Figure 10. Number of occurrences of ea ch failure. Each failure leads to a trace. All traces were joined and counts were taken of
the edges that caused the failure. The size equivalence class of each failure can be computed by summing the occurrences for each
edge corresponding to an operation. Many tests failed at instantiation because of failure 5. Some of the test failures when entering
and exiting initialization mode are due to failure 9.
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Abstract
Many algorithms related to Modelica-based simulations
heavily rely on the efficient provision of Jacobian ma-
trices. Besides the accuracy of the derivative informa-
tion, the performance of the derivative evaluation is also
of great interest, since it can have a large share in the to-
tal simulation time. In this paper, we propose two com-
plementary approaches basing on identification of con-
stant parts and parallelization to accelerate Jacobian eval-
uation. Furthermore, the implementations of these tech-
niques in the open-source Modelica tool OpenModelica
are discussed. The gained speedup in Jacobian evalua-
tion is demonstrated on benchmark models of the Scal-
ableTestSuite.
Keywords: Jacobian Evaluation, Symbolic Differentia-
tion, Derivatives Computation, Coloring, Sparsity, Paral-
lelization, Modelica, OpenModelica

1 Introduction
Solving computational problems numerically often rely on
the access of derivative information, e.g. Jacobian matri-
ces. In the Modelica context this includes algorithms used
for solving algebraic loops, implicit integration methods
as well as optimization algorithms. Both the speed of the
derivatives generation and their accuracy can have a sig-
nificant impact on such algorithms w.r.t. runtime and ro-
bustness. From a mathematical point of view there are sev-
eral techniques to provide derivatives. A very common nu-
merical method are finite differences, which approximate
derivatives by difference quotients. For implicit integra-
tion methods with stepsize control, like DASSL or Sun-
dials/IDA, the accuracy of the Jacobian is subordinated,
since it is dominated by the current stepsize. The numer-
ical approach using finite differences is very reasonable
for this class of algorithms and therefore default in Open-
Modelica. So accuracy is not an argument for the contrary
symbolic differentiation (cf. (Braun, Gallardo Yances,
Link, and Bachmann 2012)) in case of implicit integra-
tion. But performance might be. The computation time of
the Jacobian matrices can have a major share in the total
simulation time of a model. To emphasize this statement

we consider the model DistributionSystemLinear from the
ScalableTestSuite (Casella 2015): In Table 1 the execution
time for the simulation and Jacobian evaluation using the
symbolical derivative module of OpenModelica, as well
as the total number of Jacobian evaluations over the simu-
lation time is stated for three different model sizes N. The
timings were obtained on an Intel Xeon E5-2680 v3 pro-
cessor using OpenModelica in version 1.12. Since these
models contain one large linear system, which makes the
compression futile, the Jacobian evaluation takes a signif-
icant amount of the total simulation runtime. Therefore,
the right hand side for the Jacobian has to be evaluated
significantly more often. Accelerating the evaluation of
Jacobians would lead to a sizeable reduction of the total
simulation runtime. Furthermore, the Jacobian evaluation
does not make use of the available parallel hardware re-
sources today’s multi-core processors, like the used Intel
Haswell processor, offer. This example serves as a rep-
resentative for models having evaluation expensive right
hand sides which are dominating the large algebraic loop.

Table 1. Timings for overall simulation ttotal and Jacobian
evaluation t jac for sequential execution and the total number of
Jacobian evaluations over a simulation run for three different
model sizes N.

N Dim. of J Evals. of J ttotal [s] t jac [s]

14 196×196 15 3.8 2.7
20 400×400 14 12.7 10.3
28 784×784 15 47.3 41.5

In previous work, it was shown how directional deriva-
tives are computed in OpenModelica within the sym-
bolic derivative module (Braun, Ochel, and Bachmann
2011). These techniques were combined with col-
oring approaches in (Braun, Gallardo Yances, Link,
and Bachmann 2012) and become extensively used by
other algorithms inside of the OpenModelica Com-
piler as for algebraic loops, optimization and FMI (cf.
(Braun and Bachmann 2014), (Ruge and Bachmann
2014), (Åkesson, Braun, Lindholm, and Bachmann 2012),
(Franke, Walther, Worschech, Braun, and Bachmann
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2015)). Algorithms for optimization and solving algebraic
loops strongly rely on fast calculation of accurate deriva-
tives. Therefore, the focus of this paper is on efficient
evaluation of directional derivatives necessary for evaluat-
ing symbolical Jacobians. We present two complementary
techniques to improve the performance of Jacobian evalu-
ation and apply them to the OpenModelica Compiler. The
first technique identifies recurring calculations with con-
stant parts in the directional derivatives. These constant
parts need to be evaluated only once and the results will
be reused in the construction of the Jacobian matrix. The
second approach introduces a parallelization approach for
the Jacobian evaluation and sketches the implementation
in the C simulation runtime of OpenModelica.

The paper is organized as follows: First, the con-
text, generation and evaluation of Jacobian matrices in
Modelica compilers is described in Section 2. Based on
that two complementary techniques to accelerate the Ja-
cobian evaluation are presented in Section 3. In Section 4
the proposed algorithms and improvements are evaluated
using Modelica models. Finally, the presented work is
summarized and an outlook for further improvements is
given.

2 Jacobians in Modelica Models
A Modelica model is typically translated to a basic math-
ematical representation of differential and algebraic equa-
tions (DAEs) and transformed to ordinary differential
equations (ODEs) before being able to simulate the model.
The result of the so-called flattening process is the equa-
tion system

F(x(t), ẋ(t),y(t),u(t), p, t) = 0, t ∈ [t0, t f ]

x(t0) = x0,
(1)

where x(t) ∈ Rnx are the potential states, ẋ(t) ∈ Rnx are
the potential state derivatives, y(t) ∈ Rny are the algebraic
variables and u(t) ∈ Rnu are the inputs. The simulation
time is given by t ∈ [t0, t f ]. For simplicity, the initial condi-
tions of the DAE states at start time t0 are given by x0. In-
troducing z = (ẋ y), denoting the unknown variables, and
v = (x u p), denoting the known variables, the DAE can
be re-written as

F(z,v, t) = 0. (2)

Next, the causalization process to get an ordering of the
unknown variables z(t) is applied, which enables to solve
them sequentially

z = G(v, t) ∈ Rnx+ny . (3)

The general form of the causalized system consists of a se-
quence of k assignment statements including implicit sys-
tems of equations. These assignments and so-called alge-
braic loops can be stated as

0 = gi(zi,z1,z2, . . . ,zi−1,v, t) ∈ Rni , i = 1, . . . ,k, (4)

with
(z1, . . . ,zk) := z, zi ∈ Rni and

k

∑
i=1

ni = nx +ny.

Each function gi assigns values to zi by utilizing previ-
ously computed values for z1, . . . ,zi−1.

The Jacobian of a function of vector-valued function
f : Rn → Rm,x �→ f (x) is defined as

∂ f
∂x

=




∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

· · · ∂ fm
∂xn


 . (5)

An important tool when computing Jacobians are direc-
tional derivatives. The directional derivative of a vector
valued function f (x) is defined by

d f =
∂ f
∂x

·dx, (6)

where dx ∈ Rn represents the direction in which the di-
rectional derivative d f ∈ Rm is evaluated. The vector dx
is also referred to as a seed vector. In the following, di-
rectional derivatives will be used extensively to construct
Jacobians. A straight forward, although naive, approach
to construct a Jacobian from directional derivative evalu-
ations is as follows: Using the identity matrix I ∈ Rn×n,
and the unit vectors e1, . . . ,en ∈ Rn it holds

∂ f
∂x

=
∂ f
∂x

· I

=
∂ f
∂x

·
(

e1 . . . en
)

=
(

∂ f
∂x · e1 . . . ∂ f

∂x · en

)
. (7)

Thus, a Jacobian with n columns may be constructed from
n evaluations of directional derivatives along the n unit
vectors. Applying the concept of directional derivatives
on the DAE (2) yields the relation

∂F
∂ z

dz+
∂F
∂v

dv = 0, (8)

where dv is the input seed vector and dz works as the di-
rectional derivative of the relation (3) with respect to the
direction dv. By solving the system of equations (8) for a
particular seed vector dv, the directional derivative of the
DAE is obtained. Technically this system of equations is
represented in OpenModelica as a symbolic equation sys-
tem, like the original equation system (3). This system
contains the desired partial derivatives dz as unknowns,
the seed vector dv and all other variables from the original
system are considered as known and needs to be trans-
formed like the original system into an explicit form. This
can be achieved by applying so-called block lower trian-
gular algorithms resulting in

dz =−
[

∂F
∂ z

]−1

· ∂F
∂v

·dv =: H(z,v, t) ·dv . (9)
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This form can be further passed to the code generation to
enable the evaluation of the directional derivative at sim-
ulation time. It is important to note that the system of
equations (9) is linear in the unknown variables dz and the
application of linear solvers is sufficient.

3 Accelerate Jacobian Evaluation
In this section we present two different but not incompat-
ible approaches to accelerate the Jacobian evaluation to
motivate the use of the symbolic differentiation module of
OpenModelica for simulation and optimization.

3.1 Reuse of Constant Parts
Analyzing system (9), it is obvious, that the calculation
of H(z,v, t) is independent from the seed vector. If no al-
gebraic loop is involved, the calculation is symbolically
realized sequentially as

A = H(z,v, t) (10)
dz = A ·dv . (11)

Therefore, the calculation of equation (10) can be evalu-
ated once for each Jacobian matrix construction. The im-
plementation within OpenModelica is realised on expres-
sion level and basing on the wrapFunctionCall mod-
ule to identify time-consuming function calls as well as
common subexpressions and separate them inside the code
generation phase of the OpenModelica Compiler backend.
In order to emphasize the approach Example 3.1.1 is out-
lined in the following.

Example 3.1.1. A simple Modelica model with some sort
of expensive function f oo is considered:

model r e u s e C o n s t a n t P a r t s
Rea l x_1 ( s t a r t =1 , f i x e d = t r u e ) ;
Rea l x_2 ( s t a r t =0 , f i x e d = t r u e ) ;
Rea l y _ 1 , y_2 ;

equat ion
y_1 = s i n ( x_1 ) * foo ( x_2 ) ;
y_2 = s i n ( x_1 ) * cos ( y_1 ) ;
der ( x_1 ) = y_1*y_2 ;
der ( x_2 ) = y_1 + y_2 ;

end r e u s e C o n s t a n t P a r t s ;

Let bar be the derivative of f oo and dv the seed vector
with respect to v := (x1,x2). Then, differentiation will lead
to

∂ y1

∂vi
= cos(x1) ·dv1 · f oo(x2)+ sin(x1) ·bar(x2) ·dv2

∂ y2

∂vi
= cos(x1) ·dv1 · cos(y1)− sin(x1) · sin(y1) ·

∂ y1

∂vi

∂ der(x1)

∂vi
=

∂ y1

∂vi
· y2 +

∂ y2

∂vi
· y1

∂ der(x2)

∂vi
=

∂ y1

∂vi
+

∂ y2

∂vi
.

OpenModelica will generate the additional common
subexpressions cse4=cos(x_1), cse5=bar(x_2), and

cse6=sin(y_1) independent of the seed vectors to be
reused. Those are needed for the Jacobian evaluation but
not the ODE-evaluation and only computed once for each
integrator step and reused for each seed vector. The subex-
pressions cse1 and cse2 are determined during the ODE-
evaluation, and will be reused for the Jacobian evalution.
Finally, OpenModelica will generate C source code for the
Jacobian evaluation similar to:

/ * C o n s t a n t e q u a t i o n s * /
c se4 = cos ( x_1 ) ;
c se5 = b a r ( x_2 ) ;
c se6 = s i n ( y_1 ) ;
/ * Dynamic e q u a t i o n s * /
y1 . pDER = cse4 * dv_1 * cse2 + cse1 * cse5 * dv_2 ;
y2 . pDER = cse4 * dv_1 * cse3 − c se1 * cse6 *y1 . pDER ;
d e r ( x1 ) . pDER = y1 . pDER*y2 + y1*y2 . pDER ;
d e r ( x2 ) . pDER = y1 . pDER + y2 . pDER ;

Furthermore, if the equation system (3) contains
(non-) linear algebraic loops, an additional optimization
of the Jacobian matrix generation can be achieved as fol-
lows: Implicit equation systems of the form

gi(zi,z1, . . . ,zi−1,v, t) = 0 (12)

are differentiated straightforwardly equation by equation
in order to compute the directional derivative dzi. This
yields into

∂gi

∂ zi
dzi +

i−1

∑
k=1

∂gi

∂ zk
dzk +

∂gi

∂v
dv = 0 (13)

and can be solved as a linear system

dzi =−
[

∂gi

∂ zi

]−1
(

∂gi

∂v
dv−

i−1

∑
k=1

∂gi

∂ zk
dzk

)
, (14)

for dzi. A LU factorization of the matrix

∂gi

∂ zi
= L ·U

is performed allowing to obtain the solution directly by
forward and backward substitution. At this, the deter-
mination of the lower triangular matrix U and the upper
triangular matrix L is the most computational expensive
step. Since the matrix is independent of the seed vari-
ables dv, the LU factorization is constant for every Jaco-
bian matrix construction. Up to now, the LU factoriza-
tion is performed for each Jacobian matrix evaluation in
OpenModelica. We implemented the reuse of the LU fac-
torization so that the LU factorization is computed only
for the first evaluation of equation (11) and than reused
for the subsequent evaluations. The performance benefits
of this improvement is quite huge for the OpenModelica
implementation as depicted in Section 4.
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3.2 Parallelization of Jacobian Evaluation
From a computer architecture view, the overall perfor-
mance of a system is driven nowadays by increasing core
count due to the fact that further scaling of single core
frequency has reached physical limits w.r.t. overheating
and power consumption (Kirk and Wen-Mei 2016). Thus,
algorithms and software need to be parallelized to bene-
fit from today’s multi-core chips (Sutter and Larus 2005),
(Olukotun and Hammond 2005). In this section, we de-
duce a parallelization using multithreading for evaluation
of Jacobians basing on representation (7).

For simplicity and without limiting the generality the
sparsity and coloring is omitted in the following. The
algorithms and results presented in this paper are di-
rectly applicable for colored Jacobians with compressed
columns.

The basic idea is to enable concurrent evaluations of
the independent columns (i.e. the directional deriva-
tives) in the Jacobian matrix. In Listing 1 the main
Jacobian construction loop of OpenModelica is de-
picted: The Jacobian columns are elemtwise evaluated
within two nested for loops by calls to the function
directional_der_JacA. The later corresponds to
the directional derivative function in equation (9) and the
main work here is to achieve a thread-safe version of it.
This means that all writable variables and structures, as
linear algebraic loops, need thread local data to enable si-
multaneous execution.

Listing 1. Main Jacobian construction
f o r ( i n t i = 0 ; i < j a c −>columns ; i ++) {

j a c −>s e e d V a r s [ i ] = 1 . 0 ;
c a l l b a c k s −> d i r e c t i o n a l _ d e r _ J a c A ( da ta , j a c ) ;

f o r ( i n t j = 0 ; j < j a c −>rows ; j ++)
matr ixA [ i ] [ j ] = j a c −> r e s u l t V a r s [ j ] ;

j a c −>s e e d V a r s [ i ] = 0 . 0 ;
}

Since the Jacobian can contain linear algebraic systems it
is necessary to deal with non-thread-safe solvers in paral-
lel regions. In general each thread has to solve the same
linear system for different seed vectors simultaneously.
Figure 1 provides a schematic overview. We decided for
our first implementation to provide a duplication of the
structure of all linear algebraic systems to every thread.
Each thread works (read and write) exclusively on its own
copy and is thus thread-safe. This approach is not the
most memory economical and will be changed in the fi-
nal implementation in OpenModelica. To switch from a
global to a thread local data structure is a major change
in the OpenModelica Compiler backend and its C simula-
tion runtime. The thread local Jacobian data structure is
depicted in Listing 2.

Listing 2. Thread local data structure for Jacobians.
t y p e d e f s t r u c t LINEAR_SYSTEM_THREAD_DATA {

void * s o l v e r D a t a [ 2 ] ; / * P r i v a t e d a t e f o r
e x t e r n a l l i n e a r s o l v e r s * /

Figure 1. Evaluate Jacobian columns with linear systems in
parallel

m o d e l i c a _ r e a l *x ; / * S o l u t i o n x * /
m o d e l i c a _ r e a l *A; / * Ma t r i x A * /
m o d e l i c a _ r e a l *b ; / * V e c t o r b * /
ANALYTIC_JACOBIAN * j a c o b i a n ; / * J a c o b i a n * /
. . .

} LINEAR_SYSTEM_THREAD_DATA;

The OpenMP API (OpenMP Application Programming
Interface 2018) for shared-memory parallelization is used
to implement the presented parallel Jacobian evaluation in
the C runtime of OpenModelica. We choose OpenMP over
possible alternatives, like Pthreads and Intel TBB, for two
significant reasons:

Availability: The OpenMP specifications are corpo-
rately developed by hardware, software and compiler
manufactures since 1997 and it has become a de-facto
standard for shared-memory parallelization of C/C++ and
Fortran applications. Thus, it is widely supported by all
major compiler collections as well as available and appli-
cable on most systems.

Suitability: Since OpenMP heavily supports the fork-
join model by providing work sharing constructs, like par-
allel for loops and parallel sections. This fits the need
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for alternating single- and multithreaded computing stages
in our presented approach. Parallelization is introduced
through so-called pragmas, which are ignored if the com-
piler does not support OpenMP or no OpenMP support is
requested. This leads to the huge advantage, that exist-
ing sequential code can be parallelized, but still remains
sequentially executable if OpenMP is not supported.

The developed parallelization approach makes use of
the fork-join model in the sense that the columns of the Ja-
cobian are computed in parallel while the remaining sim-
ulation is sequentially executed. The n columns of the
Jacobian matrix are evaluated in the existing sequential
implementation within n iterations of a for loop. For
the parallel implementation, this for loop is preceded by
a work sharing #pragma omp for clause, which dis-
tributes the several loop iterations to the available threads
at runtime. The implementation is free of explicit bar-
riers and critical sections, i.e., the spawned threads run
fully concurrently in the parallel region. The maximal
number of independent chunks is barely the total num-
ber of columns of the Jacobian. Consequently, the ap-
proach can be scaled up to a maximum of n threads for
a fixed model. In practice, the speedup gained from us-
ing an increasing number of threads will saturate because
of the ever increasing overhead due to thread management
will predominate the computations. The actual mapping
of the columns to the threads is performed by a schedul-
ing algorithm. The OpenMP API offers several schedul-
ing algorithms like static, guided and dynamic scheduling.
Which scheduler fits best depends among other things on
the number of columns, the system’s architecture and the
containing equations. The Section 4.3 holds studies on
using different schedulers.

4 Benchmarks
In the following, we study the characteristics and possible
accelerations of the proposed enhancements w.r.t. Jaco-
bian evaluation within OpenModelica using models from
the ScalableTestSuite. We choose the ScalableTestSuite
over other Modelica libraries for benchmarking for the fol-
lowing reasons:

Scalability: All contained models are scalable by set-
ting one or more integer parameters. This is essential for
the analysis of the scaling abilities of the approaches and
their implementations, since the size of the Jacobian scales
with the model size.

Significance: There are several models with a quite
time consuming Jacobian evaluation.

Open-source: The ScalableTestSuite is freely available
under the BSD 3-Clause License at GitHub1. Thus, the
models can be inspected, and the results can be retraced
and reproduced, respectively.

1https://github.com/casella/ScalableTestSuite

4.1 Hardware and Software Stack
In order to provide transparent, comparable and re-
producible results, we describe the hardware and the
relevant software stack on which the benchmarks are
evaluated. The software configuration is as follows:
The GNU Compiler Collection (GCC, 7.0.1) was used
as C and C++ compilers with the optimization flags
-O2 -march=native. The open-source Lapack imple-
mentation OpenBlas in version 0.2.20 is linked for basic
linear algebra routines. We implemented the proposed
algorithms and the parallelization of the Jacobian eval-
uation within a branch basing on OpenModelica 1.13-
dev. The OpenModelica compiler needs to be invoked
with --generateSymbolicJacobian to generate sym-
bolical Jacobians for a model and the simulation flag
-jacobian=symbolical must be passed for execution.

All benchmarks are evaluated on the High Performance
Computing system (HPC) Taurus at TU Dresden (Online
Documentation for HPC System Taurus 2018). In par-
ticular, we choose an Intel Haswell node comprising of
two Intel Xeon E5-2680 v3 CPUs with 12 cores each,
and 64 GB RAM in total. In order to obtain reproducible
benchmark results the Hyper-threading technology as well
as the turbo mode is disabled and the benchmarks run with
the CPU‘s base frequency of 2.5 GHz. The resources are
exclusively allocated, i.e., no noise from other users has to
be considered.

Unless otherwise stated, all benchmark configurations
are repeated five times and the average time over the runs
is determined and used for the analysis. Using the average
is reasonable due to the fact that the minimal and maxi-
mal timing values for all benchmarks are very close to the
corresponding mean value.

4.2 Reuse of Constant Parts
The thermal models HeatingSystem_N (N = 20,40,80)
and electric models PowerSystemStepLoad_N_64_M
(M = 4,8,16) from ScalableTestSuite are used to analyze
the proposed reuse of constant parts.

The HeatingSystem model represents a district heating
system with N heated units, supplied by a heat distribution
system. We noticed that for all N between 14 and 15 %
of the total number of equations for the Jacobian evalua-
tion is recognized as constant equations regarding the seed
vector and therefore computed only once per time step.

The PowerSystemStepLoad model assembles a power
system with a linear topology, obtained by connecting N
power generators with each M finite volumes in a linear
network with equal transmission lines, and with a load
connected to each generator. Similar to the model above
OpenModelica with reuse of constant parts is able to rec-
ognize between 22 and 23 % of the Jacobian equations to
be reusable for different seed vectors.

The constant equations in these models consists en-
tirely of trigonometric functions, depending only on state
variables. While they are not especially expensive, there
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are a lot of them. For example the PowerSystem-
StepLoad_N_64_M models contain each 4032 constant
equations and up to 14210 equations dependent of the
seed vector, while the Jacobian is of dimension up to
1537×1537.

The Tables 2 and 3 present the achieved timings for the
HeatingSystem and PowerSystemStepLoad models using
colored symbolical Jacobians. The columns with heading
No RcP refer to the previous implementation without any
reusage of constant parts in Jacobian evaluation. In con-
trast, the timings provided by the improved implementa-
tion, which considers constant parts, are stated within the
columns RcP. For completeness and comparison reasons,
the timings obtained from the default numerical technique
for Jacobian evaluation are also given. The best timings
for the Jacobian evaluation are highlighted in bold face.

As can be seen from Table 2, the reusage of constant
parts significantly accelerates the Jacobian evaluation for
symbolical Jacobians by a factor of 1.8 up to 2.0.

For this model, it would be advantageous to use dense
symbolical Jacobians, since the number of colors found
by the used heuristic is equal to the dimension of the
Jacobian. Overall, the best timings are obtained for all
model sizes using symbolic Jacobians in conjunction with
reusage of constant parts. Furthermore, the symbolical Ja-
cobian evaluation is considerably faster than the default
numerical method. For example, the time spent to evalu-
ate the Jacobian matrices drops from 316.61 s to 62.96 s
for model size N = 80.

The benchmark results for the model PowerSystem-
StepLoad_N_64 are depicted in Table 3. For this model,
the gained speed-up from the reusage of constant parts
while Jacobian evaluation is about 1.7. The presented ap-
proach speeds up the Jacobian evaluation to such an ex-
tent, that it now outperforms the numerical evaluation.

The effect of the reusage of constant parts technique
depends on the ratio between function calls that can be
gathered as common sub expressions and then extracted
with RemoveSimpleEquations and the total number
of equation for the Jacobian evaluation.

4.3 Parallel Jacobian Evaluation
The model DistributionSystemLinear_N_M
(N = 14,20,28, M = N) is used to demonstrate the
application of the parallel Jacobian evaluation. This
model represents an AC current distribution system,
where the amount of segments can be scaled by the two
parameters N for the primary distribution line and M for
each secondary distribution line. The considered model
sizes and the corresponding attributes are depicted in
Table 4. Since the columns of the Jacobian matrix can
be evaluated completely independently from each other
and the implementation is free of explicit synchronization
constructs (e.g., barriers and critical clauses), we expect
near linear scalability for the parallelization approach.
Full linear scalability cannot be expected, because the
columns evaluated by the various threads need to be

written to the global Jacobian matrix which is in shared
memory. And on the other hand, the OpenMP loop
scheduling will introduce some parallelization overhead
as well. Figure 2 shows the strong scaling of the parallel
Jacobian evaluation for models of size N = 14, N = 20
and N = 28, whereas the speedups refer to execution
time with one thread. The black doted curve refers to the
ideal (i.e, linear) speedup. As can be seen, the achieved
speedup curves of all three models are nearly identical
and the scalability is very close to linear speedup. This is
a very good result and shows that the Jacobian evaluation
can be significantly accelerated by parallelization. We
also like to stress that the parallel Jacobian evaluation
scales up to almost the full system size for all model sizes.
Because the synchronization on OS level using the full
system with 24 threads dominates the small amount of
calculations w.r.t. thread-local Jacobian evaluations, the
scaling slumps for model sizes N = 14 and N = 20 at this
point. For model size N = 28 the computational portions
overlay the overhead due to OS synchronization.

Figure 2. Strong scaling of parallel Jacobian evaluation for
models with size N = 14, N = 20 and N = 28.

Next, we study the impacts of the four loop scheduling
algorithms that the OpenMP API offers. Loop schedul-
ing can have an serious impact on the scaling behavior
and execution time of a parallel loop. This is especially
true if not all iterations of a loop are equal in terms of
computational effort. Such disequilibrium is called load
imbalance. With respect to the considered parallelization
approach for the Jacobian evaluation we do no expect load
imbalances. But, eventually the good scaling behavior can
be continued to full system size even for small models.
The available scheduling algorithms are an in short:

Static: Without specification of the chunk size, the loop
is divided into approximately equal chunks. They are as-
signed to the available threads.

Dynamic: The iterations are distributed to threads in
the team in chunks. Each thread executes a chunk of itera-
tions, then requests another chunk, until no chunks remain
to be distributed. The chunk size defaults to 1.
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Table 2. Comparison of timings (in seconds) for total simulation and Jacobian evaluation for the HeatingSystem models achieved
by using numerical and symbolical Jacobian evaluation without and with reuse of constant parts.

Numerical Symbolical colored
No RcP RcP

N t_total t_jac #Jac Eval t_total t_jac t_total t_jac #Jac Eval

20 11.70 6.20 54780 8.87 2.91 7.49 1.51 54647
40 67.82 43.64 102521 52.71 21.21 43.76 11.59 102548
80 451.65 316.61 189576 404.59 153.70 324.56 75.98 190012

Table 3. Comparison of timings (in seconds) for total simulation and Jacobian evaluation for the PowerSystemStepLoad_N_64_M
models achieved by using numerical and symbolical Jacobian evaluation without and with reuse of constant parts.

Numerical Symbolical colored
No RcP RcP

M t_total t_jac #Jac Eval t_total t_jac t_total t_jac #Jac Eval

4 4.29 0.62 17 4.46 0.84 4.11 0.49 21
8 4.76 0.78 20 4.92 0.85 4.57 0.50 21

16 5.25 0.83 19 5.26 0.84 4.89 0.49 19

Table 4. Model size N and the corresponding values for
number of variables, states and algebraic loop size and columns
in Jacobian matrix.

N Vars States Loops Cols. in J Evals. of J

14 12364 196 1621 196 15
20 25096 400 3277 400 14
28 49016 784 6381 784 15

Guided: The iterations are assigned to threads in the
team in chunks. Each thread executes a chunk of iter-
ations, then requests another chunk, until no chunks re-
main to be assigned. For a chunk size of 1, the size of
each chunk is proportional to the number of unassigned
iterations divided by the number of threads in the team,
decreasing to 1. It defaults to 1.

Auto: The decision regarding scheduling is delegated
to the compiler and/or runtime system. The programmer
gives the implementation the freedom to choose any pos-
sible mapping of iterations to threads in the team.

The OpenMP API provides the runtime clause, via
which the schedule type can be specified at runtime. Thus,
recompilation of the entire project is not necessary. In Fig-
ures 3 and 4 the speedups of the four different schedul-
ing types for model size N = 14 and N = 28, respectively,
are diplayed. The speedup is calculated with respect to
the sequential execution time of the default scheduling
type, which is dynamic for GNU libgomp (Online Doc-
umentation for GNU libgomp: OMP_SCHEDULE 2018).
The speedups for the different schedulers are very tightly
bunched together for 1 to 23 threads. There is a mean-
ingful difference in performance using 24 threads for the
smaller model. At this point, the computational parts be-
come to small compared to the overhead introduced by the

thread managment. The scalibility of the approach is not
limited to 23 threads, but depends on the number of Ja-
cobian columns. The larger model scales up to the full
system using dynamic and guided scheduling. Overall,
the default scheduler (i.e., dynamic with chunk size of 1)
provides the best results. Hence, no adjustments from the
users will be necessary.

Figure 3. Speedup obtained for the scheduling types static,
dynamic, guided and auto for model size N = 14.

5 Conclusion and Outlook

The presented work contributes to the efficient and par-
allel Jacobian evaluation using symbolic differentiation.
For that, two complementary techniques are proposed to
accelerate the computations:
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Figure 4. Speedup obtained for the scheduling types static,
dynamic, guided and auto for model size N = 28.

Reuse of Constant Parts
While the speedup for many models from the Scal-
ableTestSuite are enormous there are still examples for
which OpenModelica currently is not able to find all con-
stant parts. For example for the SteamPipe models no
constant parts are found, despite big potential. The prob-
lem is, that removeSimpleEquation currently can’t
handle array equations and equations with function calls
inside function calls. We plan to extend the described
implementation in this way and expect a significant im-
provement for all examples inside ScalableTestSuite using
Modelica.Fluid and Modelica.Media models.

Parallel Jacobian Evaluation
The parallelization approach allows for concurrent evalu-
ation of the several columns of a Jacobian, which are in-
dependent. The OpenMP API is used for the implemen-
tation in OpenModelica. As discussed from a theoretical
point of view and as shown by benchmarks, the parallel
Jacobian evaluation provides near linear scalability. Sim-
ulations where Jacobian evaluations have a large share and
optimization algorithms can greatly benefit from this. Al-
though, only GCC was considered as compiler set, the
scaling property of the approach and the implementation
should be independent from the particular tool chain and
will also hold for smaller shared-memory systems.

Furthermore the same approach can be adapted to the
numerical and colored Jacobian evaluation in a similar
way and should speed up the default simulation with
OpenModelica significantly.

Sparse Rows Evaluation
As published in (Braun, Gallardo Yances, Link, and Bach-
mann 2012) the sparsity pattern of the Jacobian matrix can
be calculated in OpenModelica and used to compress the
matrix by combining columns with no shared non-zero el-
ements in the same rows. This process is well-know as
coloring and applied by replacing the identity matrix I in

(7) with a compressed matrix, where all non-zero elements
of the same color are combined into one compressed col-
umn as depict in Figure (5). Although the speed-up by

Figure 5. A matrix and its compressed representation from
(Gebremedhin, Manne, and Pothen 2005).

compressing Jacobian matrices is enormous, still in every
column the full directional derivative (9) is evaluated. This
also includes all rows that are structurally zero.

To address this issue we propose to exploit the spar-
sity pattern further by attributing every equation whether
it needs to be evaluated for the current column or not. To
make this decision the sparsity pattern is used to mark the
output rows of every column. In the next step an algorithm
is applied to detect the minimal equation set that is needed
to evaluate the marked output rows. The developed algo-
rithm is based on Tarjan’s algorithm as proposed in (Man-
zoni and Casella 2011). A necessary input for this algo-
rithm is the directed graph, which is based on matching of
the system (9). The output of the algorithm is mapped to
every equation, so that at runtime every equation of (11)
includes the dependency characteristic.

Since a large portion of the costly function calls can be
reused as shown in section sec:ConstantParts it is not clear
how big the remaining impact of this approach is. A first
implementation of the described approach, but without the
reuse of constant parts, leads to no clear results and needs
further study.

Combination of Described Techniques
When writing this paper, the presented techniques are im-
plemented on different branches of OpenModelica. Both
branches base on a recent OpenModelica version and are
very close to the mainline development branch and should
be included into the master branch in the near future and
be part of the next release.
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Abstract
Design, development, and analysis of complex Cyber
Physical Systems (CPSs) using models involves a collab-
oration of expertise from different engineering domains.
Heterogeneous artefacts are generated, often using dif-
ferent lifecycle modeling languages and simulation tools.
Capturing the traceability information among these arte-
facts can be used to support several activities such as re-
quirements tracing, impact analysis of change requests,
verification, validation, and documentation. However,
creating trace links among these heterogeneous artefacts
is challenging as different tools in the development lifecy-
cle are usually disparate and there is no precise semantic in
the terminology used between requirement engineers, ver-
ification engineers, and system modelers. In this paper, we
present a linked data-based approach to capture traceabil-
ity information and create trace links that relate heteroge-
neous artefacts in the model-based design process of CPSs
through a standardized interface and format using OSLC.
This enables artefacts from different tools to be connected
and queried through a standardized interface and format.
A practical prototype system for supporting traceability
is designed through integration with the INTO-CPS tool-
chain of CPS design. The traceability data is stored in
Neo4j graph database which can be queried for generating
various reports such as impact analysis, variant handling,
etc.
Keywords: Traceability, Trace links, Linked data, Tool in-
tegration, OSLC, Open Service for Lifecycle Collabora-
tion, Model Based Design, Cyber-Physical-Systems

1 Introduction
Cyber-Physical Systems (CPSs) are complex systems that
typically consist of computing elements, physical ele-
ments and communication channels (Song et al., 2016).
CPSs can for example be found in the aerospace do-
main, in automotive engineering, building automation or
robotics, where they often have safety-relevant features.
Therefore, exhaustive testing of the systems is necessary.
To minimize cost and development time, much of the test-

ing needs to be done virtually, while the actual device is
not yet fully ready. To allow this in an efficient manner,
model-based systems engineering (MBSE) methods are
being applied to the design of CPSs, to develop and test
those systems in a time and cost-efficient manner. The
MBSE approach requires that parts and features of the
system can be related to the design requirements in an au-
tomated fashion, supported by appropriate tools. This is
the requirements traceability challenge, where the differ-
ent steps of the implementation and validation of require-
ments need to be traceable to the original requirements.
Only then is it possible to reliably demonstrate that all re-
quirements have been taken into account in the design of
the CPS. The software tools that are used to develop and
test such complex systems are often heterogeneous.

One important challenge for MBSE of CPS therefore is
to enable the engineers to trace the different elements of a
CPS along its development cycle back to the requirements.
For the tools that are used for the development, this means
that they require a common approach to provide and pro-
cess the traceability-relevant data, and to have a common
syntax and semantics for generating and transmitting the
data.

During the past decade, the Open-Services for
Lifecycle Collaboration (OSLC) specifications (Open-
services.net, 2008) have emerged for integrating develop-
ment lifecycle tools (e.g., modeling tools, change manage-
ment tools, requirements management tools, quality man-
agement tools, configuration management tools) using
Linked Data (Heath and Bizer, 2011) approach. The goal
of OSLC is to make it easier for tools to work together by
specifying a minimum amount of protocol without stan-
dardizing the behavior of a specific tool. The OSLC spec-
ifications use the Linked Data method to enable integra-
tion at the data level via links between artefacts. The arte-
facts information is represented as Resource Description
Framework (RDF) (Manonla and Miller, 2004) resources
identified by HTTP URIs. OSLC also provides a common
protocol for manipulating those RDF resources through
standard RESTful (Richardson and Ruby, 2007) web ser-
vices such as creation (HTTP POST) and retrieval (HTTP
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GET), update (HTTP PUT) and delete (HTTP DELETE)
operations on RDF resources.

The main contribution of this paper includes the fol-
lowings. First, we demonstrate a Linked Data-based ap-
proach for traceability in the model-based design process
for CPSs, and the implementation of this traceability ap-
proach in the respective tools. This enables recording
and establishing the traceability links of model elements
(e.g., requirements, activities, artefacts, modeling tools,)
through a standardized interface and format using OSLC.
Second, we build a flexible trace links ontology of arte-
facts between requirements, simulation models, FMUs,
simulation results, and test results. Third, we validate
the ontology through an example workflow with hetero-
geneous artefacts in systems engineering.

2 Background
While there have been significant efforts dedicated to the
introduction of traceability, there are several challenges
that prevent traceability from being used in all the cases
where such an application would be beneficial.

First, for traceability to be accepted in industrial use,
the overhead that is created by it, must be minimal. There-
fore, most functions need to be automated, and well inte-
grated into different tools. Due to the heterogeneity of
software tools that are used in systems engineering, all
tools need to be equipped with interfaces that exchange
data in a unified format, so that the syntax and semantics
of the traceability data are compatible. Different “trace-
ability information models” (TIM) have been developed
that define the data model used to describe the traceabil-
ity links between different entities (Mustafa and Labiche,
2017). However, up to now, no universal TIM was estab-
lished.

For the usability of traceability, considering the repre-
sentation of the essential traceability data depending on
the context is important (Li and Maalej, 2012). Here, vi-
sualisation of the data as matrices, lists or trees was ex-
plored.

This paper describes the concept and following imple-
mentation of traceability in the INTO-CPS project, that
was running from 2015 until 2017 (Larsen et al., 2016a).
In this project, an integrated tool-chain for model-based
design of CPS was developed. On the tooling side, INTO-
CPS covers abstract modelling in SysML with the Mod-
elio1 tool. Detailed modelling of the different parts of a
CPS is done in the tools Overture2, 20-sim3 and Open-
Modelica4. System simulation is executed through a
newly created Co-Simulation Orchestration Engine (COE)
based on the FMI standard (Blochwitz et al., 2012). The
FMI standard allows creation of executable units, called
Functional Mock-up Units (FMUs) that contain a simu-

1see https://www.modelio.org/
2see http://overturetool.org/
3see http://www.20sim.com/
4see https://openmodelica.org/

lation model and its solver. Such an FMU can be con-
trolled with a standardized API, and its input and out-
put signals are described with an XML file, which is
called the modelDescription.xml. Test automation
and model checking are performed by the RT-Tester tool-
suite5. INTO-CPS enables a smooth workflow between
the different tasks of CPS development, and the corre-
sponding tools. Regarding traceability, the different tools
initially had no interface for exchanging traceability data.

License rights for distribution and usage of INTO-CPS
application, along with the COE and the traceability dae-
mon and the SysML profile for Modelio, which also con-
tains the traceability features, reside with the INTO-CPS
association 6 under open source. The traceability func-
tions for Overture and OpenModelica belong to the re-
spective organisations and are also available under an open
source license.

3 Traceability in the INTO-CPS
project

3.1 Scope
The primary scope for traceability in INTO-CPS is
demonstration of the basic traceability tasks across the
tool-chain. This includes mostly tracing of the require-
ments and connecting them with the models, the simula-
tion results, the produced code and test results. Further-
more, analysing the impact of changes (e.g. in require-
ments) to the overall system can be supported through
traceability. Traceability is meant to create as little over-
head for the user as possible, so that most actions should
occur automatically without the need for user interaction.
The openness of the INTO-CPS tool-chain shall be main-
tained, by defining open interfaces and formats, such as
the ones described in this paper.

However, it is not in the primary scope of the traceabil-
ity work in INTO-CPS to be able to trace back all steps
of the development and revert to each step in the devel-
opment’s history. For this, other parts of the INTO-CPS
project and tools are seen as more appropriate, such as
versioning tools (SVN, Git) or functionality of the INTO-
CPS Application. Therefore, as will be described below
in Section 5, some of the tools support Git for versioning.

3.2 Ontology
The traceability ontology for INTO-CPS uses concepts
from the PROV working group of the World Wide Web
Consortium (W3C)7. PROV deals with three objects: en-
tity, activity and agent. Entities can include requirements,
models, simulation configuration files or simulation re-
sults. Activities can be saving of a model, running a co-
simulation or more. An agent is a user that performs these
activities.

5see https://www.verified.de/products/
6see http://into-cps.org/
7see https://www.w3.org/TR/prov-overview/
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Figure 1. Block Definition Diagram showing the FMU Export activity.

In the context of traceability, these objects are con-
nected by relations. PROV proposes relations such as
“used”, “was generated by” or “was derived from”. In ad-
dition to these relations, further relations are used for the
ontology of INTO-CPS, to express the relevant relations.
These are taken from the OSLC8 definitions. Furthermore,
custom relations are proposed. The complete list of rela-
tions is described in the following table:
prov:used one entity used another

one
prov:wasAttributedTo attribution of entities
prov:wasAssociatedWith association of activities
prov:wasGeneratedBy one entity is generated

from another
prov:wasDerivedFrom one entity is derived

from another
prov:hadMember one entity has one or

more members
oslc:elaborates an entity that elaborates

on a requirement
oslc:satisfies an entity that satisfies a

requirement
oslc:verifies an entity that verifies an

assumption
into:doesNotVerify an entity that does not

verify an assumption
into:violates an entity that violates an

assumption
A number of activities are defined which shall create

traces, using the objects and relations shortly described
above. To illustrate this concept, a single activity is de-
scribed in the following Figure 1 with its SysML Block
Definition Diagram. The Activity “FMU Export” is as-
sociated with an agent and related to a number of enti-
ties. It generates an FMU (e.g. a file) and uses a simu-
lation tool and a Component Simulation Model, and may
in addition use a Test FMU, a Model Check Model and

8see http://open-services.net/

a Model Checking Suite, if the FMU is derived from a
Model Checking activity. Finally, the FMU Export ac-
tivity is associated with an Agent, and the FMU itself is
attributed to this agent.

3.3 Architecture
This section introduces an outline of the tool and file sys-
tem elements that support the traceability activities in the
INTO-CPS tool-chain, and this outline is shown in Figure
2.

The central element of the traceability architecture is
the traceability daemon, along with an interface (a REST-
API9) that can be used in two ways: The tools (e.g. 20-
Sim, OpenModelica, Overture, Modelio, RT-Tester, the
COE, the INTO-CPS application) write data to the inter-
face (e.g. they send traceability information from actions
that happened within the tools to the daemon), the INTO-
CPS application queries the interface (e.g. for retrieving
information from the database). The daemon acts as front-
end to the database (both for write and read operations, as
explained later).

A schema 10 for the traceability messages is developed,
which defines the format of the messages, and restricts
their content. The schema defines the valid syntax of
data submissions from the various tools. The tools need
to implement the correct format, and the daemon vali-
dates if the tool has done it properly. This makes sure
that the database contains only information that follows
the same format, and therefore can be queried easily. Cru-
cially, since the schema is machine-readable, the valida-
tion is done automatically. Furthermore, since the schema
is public, traceability can be easily implemented in other

9REST: Representational State Transfer; API: Application Program-
ming Interface

10see https://github.com/INTO-CPS-Association/
into-cps-application/tree/development/src/
resources/into-cps/tracability/schemas
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Figure 2. Schematic architecture of the traceability-related
tools.

tools (e.g. tools from vendors outside the INTO-CPS con-
sortium, for instance from the INTO-CPS association) so
that these can send valid traceability messages to the dae-
mon. In the schema, all allowed traceability-related en-
tities, such as activities, artefacts or tools are contained.
Relations between entities, such as prov:wasGeneratedBy,
oslc:satisfies and more are also described in the schema. It
is therefore important in such a tool-chain-wide approach
as with traceability, that all the tools comply with the
schema and that the whole ontology (see Section 3.2) is
covered by it. The process of generating messages, send-
ing them to the daemon and validating them, is shown in
the Figure 3 below. The user action, which in this ex-
ample is the export of a modelDescription.xml file
from the Modelio tool, triggers the generation of a mes-
sage with the file ending *.dmsg, which shall comply to
the Schema. This message is sent via HTTP to the dae-
mon, who validates the message according to the schema.
If the message is valid, the daemon adds the content of this
message to the global database and saves the *.dmsg file
in the project folder.

4 Example Workflow
To illustrate the methods that have been described in the
previous sections, we introduce an example. Figure 4 il-
lustrates on the left side a complete workflow for the pro-
cess from System Modelling, Behaviour Modelling and
Co-Simulation, here performed using the tools Modelio,
OpenModelica and the INTO-CPS Application..

The user starts with System Modelling, where the
system is described by using SysML blocks includ-
ing their ports and attributes. Requirements are writ-
ten down and linked to the different SysML blocks
that shall implement them. From a single block, a
modelDescription.xml file can be exported, which
is then imported into a modelling tool such as OpenMod-
elica, to give the frame in which the behaviour will be
implemented. This model will be saved, and finally ex-
ported to an FMU. Multiple of these FMUs will be con-
nected in the INTO-CPS Application to form a Multi-
model. The Co-Simulation will be set up with parameters

Figure 3. Schematic process of generating and saving a trace-
ability message. For readability, the message content is omitted.

such as time-stepping or simulation duration. Finally, the
Co-Simulation is run to give the simulation traces.

The right hand side of Figure 4 shows the main arte-
facts, from the requirements over the model files to the
simulation results, and their relations in the Prov or OSLC
notation (see Section 3.2), as they are stored in the trace-
ability database. Note that for readability, we show only
the most relevant artefacts here, and omit those that are
created by the tools to represent authors, activities, tools,
timestamps or additional information. The figure shows
that all the artefacts are linked, so that it is for instance
possible to see that a particular requirement has been im-
plemented in a system element, and later its behavior has
been simulated. As we will discuss in Section 6, it is also
possible with the usage of a test automation tool, to add
information about the verification or violation of require-
ments.

This example only shows a very simple workflow, with-
out advanced activites such as Model Checking or Design
Space Exploration. It does, however, illustrate the relation
between the engineering workflow, the traceability data
and its representation. The different steps in the develop-
ment cycle of a CPS that are depicted in Figure 4 are usu-
ally performed by multiple people or organisations, using
different tools.

5 Implementation in the INTO-CPS
tools

This section describes the implementation of the trace-
ability features in the different tools, which are shown in
Figure 2. OSLC is chosen as an implementation specifi-
cation to manage traceability information from different
lifecycle tools used in the model-based design of Cyber-
Physical Systems. In our prototype, artefacts and their
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Figure 4. Example workflow (left), and most relevant artefacts and their trace relations (right).

relationships are described using an RDF/JSON format.
The structure of the RDF consists of RDF triples with a
Uniform Resource Identifier (URI) grouped into graphs:
artefacts(subjects), relations (Predicates) and what it be-
longs to (objects). For instance, "Model (Subject) satisfies
(Predicate) a requirement (Object)". The type of link (i.e.,
the predicate used in the link triple) defines the semantics
of the link thus providing traceability between artefacts.

5.1 Traceability Daemon

The traceability daemon is essentially the core of the
traceability tool support. In our implementation, it is
launched or terminated by the INTO-CPS Application.
The daemon’s primary function is to create an OSLC com-
pliant HTTP port and listen for the POST and GET ac-
tions. The different tools send data to an IP address at
which the daemon is running (which, in our implementa-
tion, must be known to the tools). It stores the data sent
via a POST request and will return a suitable response
to a GET request. The requests are sent from the dif-
ferent tools, and the received data is stored in the Neo4J
database. The daemon provides an interface that allows to
retrieve the required data. This interface basically passes
Cypher (see Section 6) queries to the Neo4J database.

The database is stored in a binary format, which causes
problems when it is versioned (e.g. in a Git or SVN sys-
tem) and changed by multiple users. To solve this, a step
is added between receiving of the traceability messages
and storing them in the Neo4J database. Each message
the daemon receives is saved as plain text into a single
file (with .dmsg file ending) in the project folder. The

content of one such file is indicated in Figure 3. At the
startup of the INTO-CPS Application, the daemon builds
the database from these single files. This allows multiple
users to work on the project simultaneously. Each user
generates traceability messages by the different actions
he/she performs. These messages are stored in the project
folder. After completion of a task, the user pushes the files
to the global repository. Merging of the database is then
done by combining the .dmsg files. After an update of the
project folder, each user has access to the whole database.
The schematic process is shown in Figure 5 below.

In addition, the daemon is validating the messages it re-
ceives from the tools with respect to the schema, to make
sure that only those messages that comply with the schema
are written into the database. Only when all tools use the
same message format will the queries (see Section 6) re-
turn meaningful information.

5.2 Modelio
The requirements definition part is handled only by Mod-
elio. Modelio represents the Architecture Modeling ac-
tivity in the INTO-CPS workflows. Modelio records
the following traceability actions: Architecture creation,
Architecture modification, ModelDescription export, Co-
Simulation configuration export, Requirements generation
and linking to SysML blocks.

Consequently, these actions are traced11. The Archi-
tecture creation / modification captures the generation and
modification of a SysML block in Modelio. The genera-

11In this context, “traced” means that messages are generated and sent
to the daemon
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Figure 5. Schematic process of merging multipe messages from
different users and building the Neo4J database from them.

tion of modelDescription.xml files from a SysML
block is the next step in the workflow. Exporting a co-
simulation configuration from a SysML connections dia-
gram, which can be transformed in the INTO-CPS appli-
cation into a Multi-model, is also traced. Generation of
requirements, and association of these requirements with
SysML blocks is traced. This association can either be of
the type oslc:verifies or oslc:satisfies.

In addition to the ad-hoc generation of traceability mes-
sages, which are created when the related action is be-
ing performed, Modelio also offers the option to convert
the Git history of a Modelio project into traceability mes-
sages. This is particularly useful for situations, where
traceability was not used from the very beginning.

5.3 Modeling tools

While Modelio is the starting point for requirement trac-
ing, the modeling tools OpenModelica, 20-sim and Over-
ture capture specific functional and non-functional aspects
of the system design. They are described briefly in this
section. Generation of models, either from scratch or from
an imported modelDescription.xml file (e.g. com-
ing from Modelio in the previous step) is the next step
in the workflow, and consequently traced, together with
their modification. FMUs can be imported from other
tools, to include them in the native models. Exporting
an FMU is the next step in the workflow, and is conse-
quently also traced. OpenModelica, 20-sim and Overture
record the following traceability actions: Model creation,
model modifiation, FMU export, FMU import, modelDe-
scription.xml import.

20-sim 20-sim is a modeling and simulation tool for
mechatronic and control systems. Because Git is needed
for the INTO-CPS traceability daemon, it is not possible to
only enable the traceability daemon without enabling Git
version control. If both options (for Git version control
and for communication with the traceability daemon) are
enabled, every traceable action in 20-sim will store a copy
of its data in the indicated Git repository. If the model
itself is already in a Git repository, this will also make
sure to commit the changes to this repository automati-
cally. There is an additional option named “Write custom
save messages”, which will ask the user to write a custom
message whenever a traceable action is performed. This
message will be stored in Git as the Git commit message.

The “Model creation” action is a “Save as” action,
which is the moment when the user officially saves a
new model to disk. In the same line of reasoning, a
“Model modification” action is a “Save” action in 20-
sim, because the user modifies an existing model on
disk. 20-sim has no support for deleting a model from
within its user interface, therefore there is no traceabil-
ity query to delete a model from 20-sim. 20-sim also
has support to export and import an FMU and to import
a modelDescription.xml file. These three actions
are also traced. The exported or imported FMU or the
imported modelDescription.xml file will also be
placed under version control in the Git repository. Cur-
rently 20-sim does not support tracing the export of a tool-
wrapper FMU.

OpenModelica OpenModelica is an open-source mod-
eling and simulation tool which uses the Modelica lan-
guage (Fritzson et al., 2018). Traceability support in
OpenModelica is very similar to the one implemented in
20-sim. After an initial configuration of the Git repository
and traceability daemon, the actions for saving a model,
import of a modelDescription.xml file and export
of an FMU are traced without further user interaction.
Traceability in OpenModelica is described in more detail
in (Mengist et al., 2017).

Overture In Overture, which is a modeling tool using
the Vienna Development Method (Larsen et al., 2010),
traceability is implemented as an additional package (as a
.jar file), that can be downloaded from the GitHub page
12. This package extracts traceability information from the
Git repository, where the current Overture project is stored
in. It can be either triggered manually, or simply added to
a Git post-commit hook, to send new traces to the dae-
mon after the user commits the changes to the model to
the repository. Similar to Modelio, this way of extracting
traceability messages from the Git repository is useful if
traceability has not been used since the start of the project.

12see https://github.com/overturetool/
intocps-tracability-driver/releases
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5.4 RT-Tester
RT-Tester is a tool for test automation and model check-
ing. It records the following traceability actions: Define
test model, define test objectives, run test, define model-
checking model, define continuous time abstraction, run
model-checking query.

There is no need for the user to configure these oper-
ations, because per default valid settings (for the INTO-
CPS Application) are used.

5.5 INTO-CPS Application
The INTO-CPS Application is the graphical user inter-
face for configuring and running co-simulation scenar-
ios, design-space exploration, test automation and model
checking (Larsen et al., 2016b). It records the following
traceability actions: Multi-model creation, Co-Simulation
configuration creation, run simulation.

These actions are automatically recorded once the user
creates a multi-model from an exported SysML configu-
ration diagram, generates a Co-Simulation configuration
from a multi-model, or modifies these configurations. Fi-
nally, the start of a simulation run is also recorded.

6 Queries and Visualisation
In order to bring a benefit to the user, the traceability data
not only needs to be recorded, but also analysed and pre-
sented in a way that is helpful to the user. The tools there-
fore must have a way of querying the database, for spe-
cific information, such as relations between requirements,
models, test results, users or simulation results.

The results from these queries are displayed within the
INTO-CPS Application as lists, separated between differ-
ent categories (FMUs, Users, Simulations, Requirements),
as discussed below in Section 6.2. These categories can
be extended and minimized, to present a neatly arranged
view to the user. Additionally, for expert users that have
a good understanding of the underlying structure, and that
are proficient in generating queries to the database, it is
possible to manually enter queries to search the traceabil-
ity database, using the Cypher query language (see Sec-
tion 6.1 below).

While there is plenty of research on traceability in soft-
ware or systems engineering, only few industry standard
tools implement traceability. One of them, IBM Doors
Next Generation, is among the most popular tools (Win-
kler and Pilgrim, 2010), which displays traceability rela-
tions between requirements on different levels (e.g. high-
level requirements and their refinements) as trees or lists
13. Another common way of displaying traceability re-
lations is the matrix view, which shows the relations be-
tween different artefacts in a 2-dimensional table. How-
ever, due to the heterogeneity of the different artefact types
(requirements, models / FMUs, simulation results, config-

13see also https://jazz.net/library/article/88104

uration files etc.), the matrix view is not implemented in
the context of INTO-CPS. Another standard way of pre-
senting links is the graph view, where the different arte-
facts and their relations are shown in a graph. This is
possible using the built-in Neo4J interface which allows
browsing the complete graph. In principle, however, the
openness of the INTO-CPS tool-chain allows for creation
of new views, if they are required by a specific use-case.

6.1 Cypher query language
The Neo4J database uses a query language called Cypher.
This language uses ASCII syntax to represent nodes and
relations. Nodes are surrounded by parentheses “(” and
“)”, and relationships are identified by square brackets
“[” and “]”. More information can be found on 14. In a
study by Rath et at, graph query languages such as Cypher
were also identified as suitable for requirements traceabil-
ity (Rath et al., 2017).

6.2 Implementation in the INTO-CPS appli-
cation

For representation of the traceability links to the users,
pre-defined queries were integrated to the INTO-CPS Ap-
plication. They allow the user to search for different arte-
facts and relations between artefacts. The user interface is
identical to the rest of the INTO-CPS Application, which
lowers the entry barriers for users. The search queries gen-
erate lists of items, which can be minimized to keep an
overview of all the presented data.

The following queries are implemented in the INTO-
CPS Application to allow for an easy usage.

1. FMUs: Query the database for all requirements that
are related to a specific FMU.

2. Users: Query the database for all activities and arte-
facts that are related to a specific user.

3. Simulations: Query the database for all the Co-
Simulation results that are associated with a multi-
model.

4. Requirements: Query the database for test results
that are linked to requirements.

Right-clicking on the “Traceability” button on the left-
hand side of the window opens a context menu (see Figure
6). Clicking on “Trace Objects” shows the overview of
the different queries, that can then be extended and mini-
mized.

FMU and requirements This query is ran in two steps.
The first query lists all the FMUs that are stored in the
database (e.g. after FMU export in Overture, 20-sim or
OpenModelica, see Section 5.3.)

In the Cypher language (see previous Section), the first
query is achieved with the following command:

14https://neo4j.com/developer/
cypher-query-language/
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Figure 6. Overview of the traceability queries in the INTO-CPS
Application.

match(n{type:’fmu’})
return n.uri, n.path

In the next step, all requirements that are related to
a specific FMU (<FMU_name>) are queried by the fol-
lowing command (note that “act” denotes an activity, and
“elem” denotes an element):

match (act)<-
[:Trace{name:"prov:wasGeneratedBy"}]-
({uri:’<FMU_name>’})
-[:Trace{name:"oslc:satisfies"}]->
(elem)

return
elem.uri, elem.hash, act.time, elem.type

order by act.time desc

This returns all the requirements that are linked by the
oslc:satisfies relationship to the particular FMU.

Users, artefacts and activities The INTO-CPS project
aims explicitly the collaborative modelling, which means
that multiple people are typically involved in the process.
To support this, all the users and their actions can be
traced. First, all users are queried from the database by
using the following command:

match (usr{specifier:’prov:Agent’})
return usr.name, usr.uri

Next, all the artefacts that were influenced by a partic-
ular user (here identified by the URI, which contains the
e-mail address Agent.user@mail.com) can be found by:

match (usr{uri:’Agent.user@mail.com’})<-
[:Trace{name:’prov:wasAttributedTo’}]-
(entity)

return entity.uri, entity.type

These artefacts are for example simulation results,
FMUs, model description files or simulation configura-
tions. A complete list of activities can be found in the
schema under the enumeration for ArtefactType. In
addition, all the activities performed by this user can be
traced by:

match (usr{uri:’Agent.user@mail.com’})<-
[:Trace{name:’prov:wasAssociatedWith’}]-
(entity)

return entity.uri, entity.type

The activities are for example architectureModelling,
modelDescriptionExport, simulationModelling and so
forth. A complete list of activities can be found in
the schema under the enumeration for ActivityType.
Those activities reflect the activities as described in the
ontology (see Section 3.2).

Simulation results and files To show which resources
were used to generate simulation results, all the simulation
results are queried first by the following command:

match (n{type:’simulationResult’})-
[:Trace{name:"prov:wasGeneratedBy"}]->(m)

return n.uri, m.time, m.type

In the next step, all files that were used (i.e. that have
the relation prov:used) to produce a particular simulation
result (<Result_file>) are queried by the following
command:

match({uri:’Entity.<Result_file>’})-
[:Trace{name:"prov:wasGeneratedBy"}]->
(simulation)-
[:Trace{name:"prov:used"}]-
(entity)

return entity.uri, entity.path, entity.hash

This query lists the FMUs, the configuration files and
the log files which are related to this particular simulation
result.

Requirements and Test results To relate requirements
with the test results from RT-Tester (see Section 5.4), three
different queries were implemented. Requirements with-
out positive simulation or test results are queried by:

match (req{type:’requirement’})
where not (req)<-
[:Trace{name:"oslc:verifies"}]-()

return req.uri

This query indicates to the user all those requirements
that have not been validated yet. Requirements without
any simulation or test result are queried by the following
command:

match (req{type:’requirement’})
where not (req)<-
[:Trace{name:"into:violates"}]-()

and not (req)<-
[:Trace{name:"oslc:verifies"}]-()

return req.uri
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This query finds all requirements that have not yet been
tested, and therefore were neither found to violate a re-
quirement, nor to verify one. And finally, requirements
with at least one positive but no negative test result are
queried by:

match (req{type:’requirement’})
where (req)<-
[:Trace{name:"oslc:verifies"}]-()

and not (req)<-
[:Trace{name:"into:violates"}]-()

return req.uri

This finds those requirements that have been tested
positively and can be seen as fulfilled, since no counter-
example was found.

6.3 Evaluation of the current tool-chain
While the presented implementation in the different tools
is mainly a proof of concepts, some conclusions for a gen-
eral evaluation of the concepts can be drawn. The open
architecture that relies on OSLC allows different tools,
independent of their platform, to exchange data through
well-established standards (such as HTTP or JSON). The
format of the messages is published in a JSON schema
file, which allows any other tool to verify its messages
and connect to the workflow. The overhead in terms of the
amount of data that is being sent and stored is considered
to be little, as the JSON files are lightweight, and only rel-
evant activities are recorded. The Neo4J database with its
Cypher querying language allows flexible querying of the
database, so that additional activities or tools could easily
be integrated. The current solution with the traceability
daemon running locally with the INTO-CPS application
should in future be replaced with a centralised traceabil-
ity service, which is however easy to implement. There-
fore, the tool prototypes currently implement no dedicated
error handling if no connection to the daemon is avail-
able. Furthermore, no mechanism to handle user authen-
tification was implemented in our prototype. In summary,
we consider our approach to traceability to be simple and
yet powerful enough, due to its openness and little over-
head. Especially for larger project in safety critical do-
mains, where documentation of the relation between re-
quirements, tests and validation results is required, the
presented approach is promising.

7 Related Work
There are several existing techniques that aim to model
traceability among heterogeneous domains. However, in
a systematic literature review conducted in (Mustafa and
Labiche, 2017), existing traceability approaches are either
limited to a specific domain and problem, or they lack to
specify traceability link semantics. For example, a Trace-
ability Information Model (TIM) has been proposed in
(Taromirad et al., 2013) for capturing heterogeneous arte-
facts in the context of the safety-critical systems domain

where the TIM is defined on top of multi-domains us-
ing Ecore (Steinberg et al., 2009) metamodeling language.
This model, however, lacks to specify how source and tar-
get artefacts can be linked and it is not clear how to clas-
sify a trace link or an artefact.

In (Hung Le Dang and Hubert Dubois and Sébastien
Gérard, 2008), the authors proposed a traceability model
for tracing heterogeneous artefacts (requirements model,
design artefacts, and verification and validation model) in
automotive systems. This solution only supports specific
types of trace links and cannot be extended to support a
new traceability link and various modeling languages.

The Traceability Metamodeling Language (TML) is
also presented in (N. et al., 2009) for defining the syntax
and semantics of traceability metamodels. It can support
any type of traceability links including the newly created
ones. However, only artefacts from Meta Object Frame-
work (MOF)-based models can be traced and linked.

ModelBus (Hein et al., 2009) is a tool integration
framework in the domain of system engineering, which
uses traceability data such as timestamps for artefact cre-
ation and modification, and information about the creator
of a specific artefact. But, it rather uses a one to one
transformation for the integration of two tools since there
is no common data format. As with ModelBus, our ap-
proach also builds the integration based upon Web Ser-
vices. However, the usage of common data format and
OSLC in our approach makes the integration more up to
date to the latest industrial standard of managing traceabil-
ity data in the whole development lifecycle in the model-
based design of CPSs.

Compared to the above existing approaches, we pre-
sented a linked data-based approach to handle standard-
ized traceability links for heterogeneous artefacts from
different lifecycle modeling languages and simulation
tools. The integration is based upon the standardized de-
fined schema to ensure that all tools use the same format
for sending their data, and an ontology was defined to de-
scribe the data that is collected at different events.

8 Conclusion
This paper presents the results of the traceability and
model management efforts in the INTO-CPS project. A
common architecture for traceability was designed, using
a central database as repository for all traceability infor-
mation, and a daemon to receive data from the different
tools. A message schema was defined that ensures that
all tools use the same format for sending their data, and
an ontology was defined to describe the data that is col-
lected at different events. Collaborative work involving
multiple users is supported. All tools record the relevant
actions, and the whole workflow of INTO-CPS is covered,
with respect to traceability data. Collection of data is au-
tomated as far as possible, minimizing overhead for the
users. Queries were implemented in the INTO-CPS appli-
cation to return meaningful data to the user.
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While the INTO-CPS tool-chain is well covered with
respect to traceability, external tools are not supported.
For example, if FMUs were generated in other tools, this is
not listed in the traceability database. Therefore, methods
for covering these artefacts coming from external tools,
could be developed in the future. Since interface, ontol-
ogy and format for the messages are public, support for
external tools can easily be integrated by their developers.
In principle, traceability should be used since the begin-
ning of a project, such as CPS design. However, parsing
of the Git repository, as it is enabled by Overture or Mod-
elio, enables users to take advantage of traceability even
though it was not used from the very beginning.

In the context of INTO-CPS, we enabled requirements
traceability in the whole tool-chain of CPS design, from
requirements collection, systems modeling, through phys-
ical and cyber modeling, down to co-simulation and test
automation. This presents an important step in the true in-
tegration of the different tools that are used in CPS design.
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Abstract 
We compare a number of different methods for 
estimating model parameters based on external stimuli. 
We examine the trade-offs between the different 
methodologies with respect to the modelling effort 
necessary to implement them and the granularity of the 
estimation obtained. In implementing these methods, we 
utilize Modelica and FMI.  

As an application we show how these methods can be 
combined with component fault modes to provide 
effective real-time estimates of the health of a physical 
asset based on thermal sensor data. In particular, we 
contrast the effectiveness of the different estimators in 
predicting the degree and location of fault. 
Keywords:     Parameter estimation, parameter tuning, 
fault diagnosis, Modelica, FMI 

1 Introduction 
Parameter estimation methods are applicable to 
scenarios that are describable by a physical or data-
driven models. Such scenarios include virtual testing, 
virtual commissioning, fault identification and control 
optimization. Parameter estimation is also a vital 
method for tuning parameters in control systems in order 
to produce robust control (Astrom, 1994). 

Typically, physical products are designed to meet 
predefined specifications. Prototypes of these products 
are built and tested in an effort to confirm their behavior 
in standardized, well-defined conditions. Today, by 
building a virtual prototype, (virtual) testing can be done 
sooner in the design cycle and quicker. In this way, 
virtual testing supports faster iteration of the re-
engineering of the physical product. 

Beyond the design cycle, it is becoming increasingly 
important to leverage these methods in order to make 
informed decisions about the condition of the product 
in-operation. As the digital representation of the 
physical asset is updated in real-time using sensor data 
from instrumented components it becomes possible to 
optimize the asset’s performance and identify possible 
sources of failure.  

Likewise, we can imagine a scenario in an 
instrumented manufacturing plant where application of 
these methods would allow flexible adjustment of 

operating parameters to optimize production. In the 
same way, faults could be detected by comparing 
estimated operating parameters to expected (nominal) 
values corresponding to normal operating conditions. 

We can divide methods used for condition estimation 
of a physical asset into two broad categories: those that 
use only data, and those that utilize a physical model of 
the system. 

Data-driven methods are applicable when there is an 
abundance of labelled historical sensor data. 

Model-based methods, such as state estimators, are 
particularly applicable when there is a paucity of 
available labelled historical sensor data. Furthermore, as 
they relate the fault to a physical component in the 
model, they allow us to identify more easily the root 
cause. The location of the fault in the model can be 
directly associated with a component. In contrast, with 
a purely data-driven approach we can detect the 
presence of a fault, but not its location.  

In this paper, we present a comparison of different 
parameter estimation methods and exemplify how they 
can be implemented using Modelica and FMI.  

2 Estimation methodology 
A problem that is often encountered when employing 
standard parameter estimation methods is that they may 
require a mathematical model. With models constructed 
using Modelica, for example, the model of the physical 
system is typically constructed using connected 
components. In this context, using standard parameter 
estimation methods, requires that the mathematical 
equations of the system are modified to directly 
compute parameter values. Often this is difficult, 
especially if the user does not have access to such a 
model or the strong domain background to construct 
one. Moreover, some components may be black boxes, 
in which case this kind of modification is impossible.  

Using a different approach such as the particle filter 
method (Liu, 1998), we can extend the scope to black 
box-type models without requiring knowledge of the 
mathematical details of the system. To avoid being 
required to modify a Modelica model in order to 
estimate its parameters, for example, we can use 
standardly-available tools to convert the model to an 
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FMU and then apply these methods to perform 
estimations.  

Other approaches each have their own disadvantages. 
Kalman filters, for example, require knowledge of the 
governing equations of the system. Furthermore, the 
approach is limited to linear systems (Kalman, 1960). 
Extended Kalman filters do not require the system to be 
linear, but do require knowledge of the mathematical 
model/matrix of the system (Julier, 2004; Cocho et al, 
2017).  

Particle filters do not have these disadvantages. They 
can operate with nonlinear systems without knowledge 
of the governing equations and can be used to estimate 
parameters of the system without prior knowledge. 

We can distinguish between the applicability of 
estimators by categorizing them as either “global” or 
“local”. We use the term “local estimator” for methods 
that are applied inside the model and require knowledge 
of the mathematical equations of the components inside 
the system. Furthermore, each physical component in 
the system for which you want to estimate its parameters 
requires an instance of the estimator. In contrast, we can 
use the term “global” estimator to refer to a method such 
as a particle filter that is applied outside the model and 
can estimate all required parameters of the system, 
treating the model as a black box. 

A number of studies have already been undertaken to 
develop parameter estimation methodologies using 
Modelica or FMI. An optimization library Ceres 
(Agarwal, 2012) was used to develop a parameter-
estimation framework for FMUs, exemplified with the 
estimation of parameters of a delta robot.  By posing the 
problem as a non-linear least squares problem 
depending on the error between the measured output and 
estimated output of a simulated FMU. An Extended 
Luenberger Observer (Bortoff, 2014) was implemented 
for estimating heat flows and heating load using FMUs. 
In both these studies, the estimation method required 
knowledge of the Jacobian of the system, unlike some 
of the methods described in the present paper, which 
require no a priori knowledge of the Jacobian  

Similarly, FMI has been used in conjunction with the 
unscented Kalman filter (UKF) as a nonlinear parameter 
estimator.  Unlike the non-linear least squares 
optimization methods, the UKF estimator does not 
require knowledge of the Jacobian of the model. 
Nevertheless, the UKF approximates the Gaussian 
distribution of the state by using a set of points called 
sigma points, while, the particle filter algorithm can 
approximate any arbitrary distribution (Bonvini, 2014).  

In (Videla, 2008; Brembeck el at, 2014; Brembeck, 
2019), three different variants of the Kalman filter 
(extended Kalman filter, unscented Kalman filter and 
ensemble Kalman filter) were implemented to estimate 
the system parameters of a Modelica model. In all cases, 
the estimators are “global” in nature, utilizing a stand-

alone executable version of the model was used to 
represent the model. 

A number of open source tools have been developed 
for parameter estimation using FMI such as ModestPy 
(Arendt et al, 2018), RaPId (Vanfretti et al, 2016) and 
Optifmus (Bonilla et al, 2017). These tools are 
configurable to allow the user to select the desired 
estimation algorithm, either by using one of the 
provided algorithms, or by incorporating new, user-
implemented estimation algorithms. In the present 
paper, we do not focus on a particular toolkit, rather we 
describe a set of methods appropriate for state 
estimation. We note that the extensible nature of those 
toolkits means that any of the estimation methods 
described here could be incorporated into those 
toolchains.  

An extension to RaPId was developed (Bogodorova 
et al, 2017) to implement an extended particle filter 
method. That method takes a similar approach to the 
“global” particle filter algorithm we present here. 
However, the architecture of the RaPId toolbox, isolates 
the estimation algorithm from the Modelica model 
itself, thereby precluding the implementation of a 
“local” variant of the algorithm such as the one we 
present in this paper.  

2.1 Local estimators 
In the present context, we use the term “local 

estimator” to refer to a method that can be implemented 
directly inside an individual Modelica component, 
without requiring the use of any other software tool for 
implementation. In a local estimator, the estimation 
takes place over the course of a single simulation. 

Focusing on a single element of the whole system is 
easy because of the componentized nature of Modelica 
models; we can estimate parameters for a single 
component without having to construct an estimator for 
the whole system. 

In Modelica, parameters cannot change over the 
course of a simulation. It is therefore desirable to 
restructure the model such that the parameters to be 
estimated are replaced by (unknown) variables. In turn, 
these variables can be defined to have a dependence on 
(time-varying) inputs to the system. In this way, the 
estimated parameters can be driven by external stimuli 
(e.g. sensor data). This, in turn, though, means that to 
implement the estimator it is necessary to modify the 
mathematical description of the individual components 
for which we would like to estimate parameters. For this 
reason, this technique is more suited to individual 
components rather than the whole system. Moreover, 
because of the correlations between components 
induced by connections in Modelica, it is difficult to 
implement a single estimator for connected sets of 
components.  

One attraction of Modelica-based approaches is that 
we can imagine developing libraries of self-tuning 
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(individual) components where parameters will adjust 
automatically based on data from other physical 
components. 
 

2.2 Global estimators 
Sometimes we may want to estimate multiple 
parameters (in multiple components) simultaneously, 
for example when estimating the degree of fault in 
multiple faulty components. In this case, we use the term 
“global estimator” to refer to any method which takes 
into account the whole system and does not require 
modifications to the governing equations. In fact, in 
some “global” estimation algorithms, no knowledge of 
the equations is even necessary. 

A global estimator can run a simulation multiple 
times, taking as input the result of a previous iteration 
for initial values of state variables or parameters. 

3 Tuning parameters 
 When a fault occurs in a physical system it can be 
interpreted as a change in the parameters of 
the model.  The fault can be recognized by monitoring 
the difference between the output of the model and 
measured data. The value or the degree of fault can 
be determined by retuning the parameters of the 
system so that the new parameters give the same output 
response as the fault. In this work, we consider three 
kinds of parameter-tuning methods, specifically:  

1. Direct Calculation  
2. Least Square Method  
3. Particle Filter Estimator  

3.1 Direct calculation  
In a Modelica model, the parameters define values 
which stay constant during the solution (simulation) of 
the model (Modelica Association, 2012).  To solve the 
model, the number of equations must be equal to the 
number of (time-varying) variables.  As an example, let 
us take a system of two springs and two masses (Figure 
1).  

 
 

 
Figure 1. Two springs and masses system. 

 
The model of the system is described by four 

parameters and six states or variables. The model 
parameters are the two masses M1 and M2 and the 
stiffnesses of the two springs K1, K2 respectively. The 
system states are the displacements of the masses 𝑥𝑥1 and 
𝑥𝑥2, velocities 𝑣𝑣1and 𝑣𝑣2, and accelerations 𝑎𝑎1and 𝑎𝑎2. The 

outputs of the system are the displacement of the 
masses.  

If the displacement of the M2 is measured, M1 can be 
calculated by declaring M1 as a time-varying state 
variable instead of a parameter and changing the 
declaration of 𝑥𝑥2 to an input. In this way, the number of 
variables is kept equal to the number of the equations.  

To test this method, a simulation was run from t=0s 
to t=10s, in which the value of the mass M1 was changed 
from 5kg to 2kg at t=5s (Figure 3). It can be seen from 
(Figure 2) that, as the vibration signal changes, the 
estimator was able to capture the change in the system 
parameter. 

This estimator is very easy to implement, but it is 
noted that by construction, there needs to be a connected 
reference signal/external stimulus (e.g. sensor data 
source) per parameter to be estimated. Furthermore, it is 
very sensitive to noise in these signals.  

 
 

 
Figure 2. Displacement of M2. 

 

 
 

Figure 3. Mass of M2 as a function of time (reference 
signal). 

3.2 Recursive Least Squares Estimation 
 The recursive least squares method (RLS) can be 

used on-line and off-line to estimate parameters of static 
and dynamic linear systems (Watson, 1967) such as the 
two masses and two springs system seen above. If there 
is a linear system described as follows: 

 
𝑦𝑦 = 𝑋𝑋𝑇𝑇𝐴𝐴 = 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 … … + 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 (1) 

 

M1 M2

kg 

Time (s) 
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where y is the output of the system, x is the state of 
the system and A is the parameters of the system.  

The parameters of the system can be estimated in 
RLS using the following set of equations: 

𝐾𝐾𝑗𝑗 =  𝑃𝑃𝑗𝑗−1𝑋𝑋𝑗𝑗(1 + 𝑋𝑋𝑗𝑗
𝑇𝑇𝑃𝑃𝑗𝑗−1𝑋𝑋𝑗𝑗)−1  (2) 

𝑃𝑃𝑗𝑗 = 𝑃𝑃𝑗𝑗−1 − 𝐾𝐾𝑗𝑗𝑋𝑋𝑗𝑗
𝑇𝑇𝑃𝑃𝑗𝑗−1  (3) 

�̂�𝐴𝑗𝑗 = �̂�𝐴𝑗𝑗−1 − 𝐾𝐾𝑗𝑗(𝑋𝑋𝑘𝑘�̂�𝐴𝑗𝑗−1 − 𝑦𝑦𝑗𝑗)  (4) 
 
Where j the current sample time, 𝐾𝐾 is the estimator gain,  
𝑃𝑃 is the covariance matrix,  �̂�𝐴 is the parameters of the 
system. The subscripts j denotes the value of that 
variable at that (time) iteration. 

To estimate the value of the mass, when a connector 
class is used, the mass has two connectors ctr1 and ctr2 
to connect with the springs.  The connector ctr1 has four 
variables: the force F, a flow variable between 
components, and the displacement x, a potential 
variable, as well as the velocity v and the acceleration a.   

 
 

 
 
Figure 4. Mechanical connectors of mass. 

 

𝑎𝑎 = 𝑑𝑑(𝑣𝑣)
𝑑𝑑𝑑𝑑  (5) 

𝑣𝑣 = 𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑  

(6) 

 
𝑚𝑚𝑎𝑎 = (𝐹𝐹1 + 𝐹𝐹2) (7) 

 
 

So, to estimate the model mass of the object M1 using 
the RLS the relevant part of the model can be written in 
Modelica as: 
ctr2.x=ctr1.x; // Displacement of ctr1 is 
equal to displacement of ctr2 
x=ctr1.x; // Displacement of the mass is 
equal to displacement of ctr1 
F=ctr1.F+ctr2.F; // Force on the mass is 
equal to sum of the forces at connectors. 

when sample(0, tSample) then 
   P = pre(P) - pre(P)^2*ctr1.a^2(1+ 
pre(P)*ctr1.a^2)^-1; 
   K=pre(P)*ctr1.a*(1+ pre(P)*ctr1.a^2)^-
1; 
   m=pre(m)-1*K*(pre(m)*ctr1.a-F);  
end when; 
 

Where x is the displacement, F is the force, P is the 
covariance in (3), and ctr1 and ctr2 are the mechanical 
connectors shown in  
Figure 4 and tSample is a (Real) parameter 

representing the sample rate at which to apply the 
estimation.  

Figure 5 shows the estimated value of the mass, 
where the RLS algorithm took approximately two 
seconds to compute the real value of the mass. 

 

 
 

Figure 5. Estimated mass of M2 as computed by RLS 
algorithm. 

 
This method is easy to implement, and is robust 

against sensor noise, but is only applicable to linear 
systems.  

 

3.3 Particle Filter Estimation 
As well as estimating the states of a system, the 

particle filter algorithm can also be used to estimate its 
parameters. Unlike the recursive least squares estimator, 
this algorithm is suitable for estimating the parameters 
of both linear and nonlinear systems (Moral et al, 2012; 
Gordon et al, 1993).  

The particle filter uses the results of multiple 
concurrent simulations to produce an instantaneous 
estimate of the value(s) of parameters.  

In this scheme, selection criteria are used that weight 
the uncertainty in the model versus the uncertainty in a 
reference signal. These selection criteria are used to 
weight the outputs of each of the concurrent simulations. 
These outputs are in turn used to run another set of 
simulations, updating parameter values and initial 
conditions accordingly. 

The particle filter algorithm mainly consists of four 
steps namely initialization, prediction, updating and 
resampling. In the initialization step, the set of particles 
is created, where each particle includes initiation guess 
of the parameters. In the prediction step, for each 
particle, the FMU is run after assigning the parameters 
of the system with the particle’s parameters. The 
updating step uses the residual, i.e. the error between the 
outputs of the summation and the measurement, to give 
an importance weight to each particle. In the last step, 
the resampling step, the parameters stored in each 
particle are redistributed depending on their weights. 
This algorithm is represented as a flow chart in Figure 
6. 

M1
ctr1 ctr2

kg 

Time (s) 
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These stages were implemented in Modelica for the 
mass-estimation example previously described. 

   

 
Figure 6. Particle filter algorithm. 

 
To test this implementation, the particle filter 

algorithm was executed using 50 particles. The results 
of the estimation of the mass are shown in Figure 7.  It 
was observed that the particle filter took less than one 
second to adapt the estimate to the correct value of the 
mass. 

It is noted that the particle filter algorithm is an 
iterative method involving multiple simulations of the 
whole model. In the case of large models, or indeed 
large parameter sets, this could result in CPU-intensive 
calculations that could limit the method’s applicability 
in real-time applications. A detailed investigation of this 
aspect is considered to be outside of the scope of this 
paper. 

 

 
 
 
Figure 7. Estimated mass of M2 as computed by the 

particle filter algorithm 
 
 So far, the three tuning methods considered were 

implemented using Modelica by explicitly changing the 
mathematical model of the component and replacing it 
with the respective estimator algorithm. 

While the Modelica implementation of the particle 
filter algorithm was seen to work well for simple 
models, we observed that the computation time 
increased significantly for more complex models. There 
is not a standardized framework defined in the Modelica 
specification for the parallel execution of Modelica 
models. This makes the parallelization of models a 
proprietary solution, that is tool-dependent (Modelica 
Association, 2012). For this reason, we developed an 
alternative implementation in Python that utilizes the 
easy conversion of a Modelica model to an FMU, to 
allow execution of simulations concurrently. Our 
implementation makes use of the PyFMI framework to 
manage interaction with the FMUs (Andersson et al, 
2016). An additional advantage of utilizing FMI, is that 
we can apply the implementation to FMUs generated by 
non-Modelica tools. Furthermore, with this 
implementation, we realize a global estimator that can 
be used to estimate parameters without changing the 
mathematical structure of the system.    

To demonstrate this approach, we consider the model 
of a thermo-mechanical system (Figure 8). Here, the 
input mechanical energy, Pin, is converted to heating 
energy according to a loss rate U, while the heating 
energy is converted to an (effective) temperature 
through the heating capacity of the component material.  
The heating energy is in turn exchanged with the cooling 
system Tc subject to a thermal resistance. The model has 
four parameters, namely: loss rate U, heating capacity 
C, thermal resistance Rth and cooling temperature Tc. In 
order to emulate the effect of a fault in the real system, 
an artificial error/fault was produced by changing the 
loss rate. In this example, measured mechanical power 
from a real mechanical system, is connected to the 
model via Pin. Readings from a temperature sensor in 
the real system are used as a reference signal in order to 
measure the validity of the estimated value.  

To test the implementation of the global particle filter 
estimator, we converted the Modelica model in (Figure 
8) to an FMI 2.0 Co-Simulation FMU using 
SimulationX. Table 1 show the quantities that were 
exported as tunable parameters in the FMU.   

 

Table 1. Parameters of the thermal model 

Parameter Name Value 
Thermal Capacitor (C) 0.5 𝐽𝐽/𝐾𝐾 

Loss Rate (𝑈𝑈) 0.73 

Thermal Resistance 
(𝑅𝑅𝑡𝑡ℎ) 

28.011 𝐾𝐾/ 𝑊𝑊 

Cooling Temerature (𝑇𝑇𝑐𝑐) 360 

 
 

Initialization  
Set an initial guess of the 

parameters 

Prediction  
Simulate the FMI model for each 

particle 

Updating  
Assign importance weights 

depending on the error between 
the simulation and measurement 

Resampling 
Assign the parameters of the 

particles based on the particles’ 
weight 

M
ass (kg) 

Time (s) 
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Subsequently, the particle filter was applied to tune 
the parameters, thus quantifying the degree of fault in 
the system. 

Figure 9 shows that without tuning of the loss rate 
parameter U, there is a significant difference between 
measured data and the output of the model.      
 

 
 
Figure 8.  Thermal System. Pin is the input power, U, 
loss rate, C, Rth and Tc are the heating capacity, heating 
resistance and cooling temperature respectively. 

 

 
Figure 9.  Estimated temperature of thermal model 
without tuning via particle filter (blue) compared to 
reference thermal signal (red) 

When applying parameter tuning, the particle filter was 
seen to correct the estimated temperature to the 
measured temperature (Figure 10) by changing the value 
of the loss rate from 0.70% to 0.93% (Figure 11). 

 

Figure 10.  Estimated temperature of thermal model with 
tuning via particle filter (blue) compared to reference 
thermal signal (red) 

 

 
Figure 11.  Tuned thermal loss factor, representing 
degree of fault in thermal system 

4 Conclusions 
In this paper we considered a number of different 
parameter estimation algorithms and how they could be 
implemented using Modelica and FMI. We examined 
the applicability of two different types of estimation 
methodology (local and global). In each case, we 
detailed the level of knowledge of the system necessary 
to implement the estimation method. We investigated 
the tradeoffs between the modelling effort and 
granularity of the estimation obtained. 

We demonstrate how these methods can be applied to 
use external stimuli, in this case thermal sensor data, to 
obtain an estimate of the health of a real system. 
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Abstract
One of the key uses enabled by the functional mockup
interface (FMI) standard is the ability to combine Mod-
elica models governed by differential-algebraic equations
with measurement data to systematically estimate unmea-
sured quantities in physical systems. While it is clear
how this might be done in theory, many implementation
challenges can make this difficult in practice. This paper
provides a tutorial connecting the mathematical formula-
tion of two different estimators, the extended Kalman filter
(EKF) and the ensemble Kalman filter (EnKF), to an FMI-
based Modelica implementation of these estimators. The
efficacy of these methods are demonstrated on an exam-
ple of a small motor model and a larger thermodynamic
model of a building, and some of the advantages and dis-
advantages of this FMI-based approach to estimation are
discussed, as well as limitations of FMI associated with
constraint management for these estimation methods. The
code for the motor example is publicly available and is
attached to this publication.

Keywords: observers, state estimation, extended Kalman
filter, ensemble Kalman filter, functional mockup interface
(FMI)

1 Introduction
Information about unmeasured physical quantities is of-
ten desired when designing complex engineered systems
to improve system control, implement performance moni-
toring, or perform fault detection and analysis. Data about
such variables may not be available for a variety of rea-
sons, such as sensor cost or the fact that quantities of inter-
est may be very difficult or impossible to measure directly.
As an example, measurements of the amount of heating or
cooling energy delivered by an HVAC system to an oc-
cupied space in a building would be useful in the design
of improved air temperature controllers, but accurate esti-
mates of this variable are difficult to obtain because they
depend on local temperature differences and airflow rates
that cannot be easily characterized.

This problem is commonly addressed by combining
sensor data with a model of the system, thereby leverag-
ing knowledge about the system structure which cannot be
directly inferred from a given set of sensor data. Though
a wide variety of modeling approaches can be used de-
pending on the type of system under study, models of
physical systems often benefit from the use of equation-

oriented tools such as Modelica (Modelica Association,
2017) because their physics-based structure allows the in-
ternal states to have a meaningful interpretation, and their
first-principles construction tends to produce good extrap-
olative performance over high-dimensional range of po-
tential operating conditions.

A variety of estimation and observer-based techniques,
including the range of Kalman filters and particle filters,
have been developed since the mid-twentieth century to
solve the problem of estimating unknown system quanti-
ties of interest given a model and a set of observations.
These methods can be more precisely described by con-
sidering a system model described by a set of ordinary
differential equations

ẋ =M(x,u, t; µ)+W (1)
y =H(x,u, t; µ)+V (2)
z = G(x,u, t; µ), (3)

where M is the forward model operator, H is the obser-
vation operator, G is the map from the states and inputs
to the performance variables of interest, x represents the
system state, u represents the system input including both
the control inputs and the unmeasured or measured dis-
turbances, µ represents the system parameters (which we
will assume for the present work are known), and W and
V represent the process and observation noise with covari-
ances Q and R, respectively. We assume that the physi-
cal system is governed by the model (M,H), while the
noise terms are included in our approximate model repre-
sentation to describe model and measurement errors. In
this context, these methods are designed to produce an es-
timate x that minimizes a metric related to the error be-
tween the model output y and the measured system output
ym, with the expectation that the estimated system state is
sufficiently close to that of the plant that the performance
variables will accurately describe the variables of interest.

Unfortunately, the Modelica language is not designed
to implement these state estimation methods, as it can-
not readily update the state vector for the compiled model
to incorporate additional measurement information. The
functional mockup interface (FMI) standard (Modelica
Association, 2019) was thus created, in part, to enable
the use of Modelica models in this setting. The co-
simulation interface provides an efficient method to eval-
uate the right-hand sides of Equations 1-3 at a given time
step and correct the state vector to assimilate updated sen-
sor data, which enables the implementation of these state
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estimation methods on top of the existing Modelica mod-
els.

Early work in using FMI 1.0 to implement state estima-
tion methods was presented by Brembeck et al. (2011),
which demonstrates the use of weighted least-squares
and Kalman filters to estimate the state-of-charge for a
lithium-ion battery. This work was significantly extended
by Brembeck et al. (2014) to cover a draft implementa-
tion of FMI 2.0 standard for co-simulation, and test im-
plementations of an extended Kalman filter and a moving
horizon estimator are demonstrated on an electric vehi-
cle application. Brembeck (2019) further develops this
work and implements a number of practical refinements
on the state-of-charge estimator. Other recent work done
by Vytvytskyi and Lie (2019) compares the performance
of unscented Kalman filters and ensemble Kalman filters
for state estimation in hydropower plants and finds that
these methods work well in this application. The present
paper is an extension of the work presented by Bortoff and
Laughman (2019), in which we demonstrated the use of
a model-exchange functional mockup unit (FMU) to con-
struct an extended Luenberger observer (ELO) with output
injection to estimate the heat capacity of a water-cooled
fan coil unit in a building.

While this prior work demonstrates the potential and
some of the capabilities of using FMI to construct esti-
mators based on Modelica models, an engineer with an
interest in implementing these methods is faced with the
daunting task of understanding the details of the FMI stan-
dard, as well as the API for the standard in a given lan-
guage (e.g., Modelica, Python, or C++), before an esti-
mator can be implemented for a given FMU. Moreover, a
host of practical issues must be addressed in the process
of this implementation that depend on the type of estima-
tion method that is used. Larger Modelica models (tens
to hundreds of states) are also associated with a variety of
challenges that are not encountered for smaller models.

In this paper, we provide a tutorial-oriented descrip-
tion of two different types of estimators: an extended
Kalman filter (EKF) (Simon, 2006) and a stochastic en-
semble Kalman filter (EnKF) (Evensen, 2009a), so that
a reader might obtain an improved understanding of the
theory and process behind the implementation of these
methods using the FMI. The EKF represents a traditional
Kalman filter formulation for a nonlinear model, while the
EnKF represents a particle-based approach which is sim-
ilar to the EKF, but seeks a reduced computational effort
by avoiding the integration of the covariance matrix. Both
of these methods are first implemented in this paper on a
simple model of an electrical machine, and then on a much
larger model that describes the thermofluid dynamics of a
building application, to provide an indication of the differ-
ences inherent in using them for practical Modelica mod-
els. While we could conceivably instantiate the FMU via
any available API (e.g., pyFMI, FMPy, or other tools), we
choose to instantiate the FMUs back into Modelica using
the Dymola 2020 compiler (Dassault Systemes, 2019) be-

cause of the extensive Modelica support of the FMI in-
terface and because this framework can easily be used to
interface these estimators to other Modelica models.

The remainder of this paper is organized as follows: in
Section 2, we will describe the theory of both the EKF and
the EnKF in the context of the simple motor example, and
connect the mathematical description of these estimators
to the code listings provided in this paper. A complete im-
plementation of this motor example is also available and is
attached to this paper. Issues relating to the practical im-
plementation of these estimators, as well as the simulation
results from their application to the motor problem, will
be discussed in Section 3. These same estimation meth-
ods will then be used in Section 4 to estimate the cooling
capacity on a larger building model. Conclusions and di-
rections for future development and work will briefly be
discussed in Section 5.

2 Tutorial: EKF & EnKF with FMI
2.1 Extended Kalman Filter
As described in (Simon, 2006), the Kalman filter updates
the state of a system model whenever measurements are
available, and is the optimal variance-minimizing algo-
rithm for linear systems with Gaussian process and mea-
surement noise. While this state estimation method is
thoroughly documented in many textbooks, it is helpful
to review it because it is closely related to both the EKF
and the EnKF. Assume a linear system model

xk = Axk−1 +Buk−1 +wk (4)
yk =Cxk + vk, (5)

where wk and vk are the zero-mean, independent, and
identically distributed Gaussian process and measurement
noise with covariances Q and R. As a result we can char-
acterize the statistical properties of the state by its mean
and variance, e.g.,

x̂k = E[xk] (6)

Pk = E[(x̂k − xk)(x̂k − xk)
T ]. (7)

The Kalman filter proceeds in two phases to update and
correct the state at time k given the state at k − 1 and a
set of measurements yk. The first of these phases is re-
ferred to as the forecast step, which predicts the state at
the next time step without the knowledge of any additional
measurements, and the second phase is the analysis step,
which corrects the state forecast using the received mea-
surements. In the forecast step, we update the state from
k − 1 at time k by propagating forward the state and the
covariance via the original system model, e.g.,

x̂ f
k = Ax̂a

k−1 +Buk−1 (8)

P f
k = APa

k−1AT +Q, (9)

where the covariance matrix P can be derived by explicitly
calculating the variance from Equation 7. Now that the
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state of the system has been propagated forward during the
forecast step, we can correct the state during the analysis
step using the measurements. This formulation minimizes
the trace of the estimation error covariance at each time
step.

x̂a
k = x̂ f

k +Kk(yk −Cx̂ f
k ) (10)

Pa
k = (I −KkC)P f

k (11)

Kk = P f
k CT (CP f

k CT +R)−1 (12)

The state is corrected at each time step k to optimally
tradeoff between predictions of the model forecast and the
information obtained from the measurements. The state
will be biased towards the forecasts if the errors in the
measurements are large, while the state will be corrected
towards the measurements if the errors are small.

Because this estimator is designed for linear systems,
it must be modified to work on the nonlinear models of-
ten studied in Modelica. The EKF represents perhaps the
most straightforward modification of the basic Kalman fil-
ter equations for this purpose, which is to linearize the
nonlinear system model at each time step, and correct
the state based upon the predictions from the linearized
model. Given the original system description in Equa-
tions 1-3, we can linearize the system at each time step
k,

ẋ =M(x,k)x+M(u,k)u (13)

y =H(x,k)x (14)

where M(x,k) = ∂ M/∂x|k, M(u,k) = ∂ M/∂u|k, and
H(x,k) = ∂ H/∂x|k. This model can then be discretized for
a system with sample time Ts using the matrix exponential,
e.g., A = eM(x,k)Ts , which yields the linear system at this
operating point represented by Equations 4 and 5. Once
in this discrete-time representation, the previous Kalman
filter equations (8-12) can be implemented.

In order to describe the implementation of the EKF as
explicitly as possible, we present a simple nonlinear model
of a two-phase permanent magnet machine from Simon
(2006) to provide context for the derivation of these mod-
ifications, and to provide a concrete example for which
we can develop the EKF and EnKF code listings of Fig-
ures 1 and 2. This model consists of four coupled ODEs
that describe the electrical and mechanical dynamics of
the machine, e.g.,

L
dia
dt

=−Ria +ωλ sinθ + va (15)

L
dib
dt

=−Rib −ωλ cosθ + vb (16)

J
dω
dt

=
3
2

λ (−ia sinθ + ib cosθ)−Bω (17)

dθ
dt

= ω, (18)

where i represents electrical current, v represents voltage,
R is the winding resistance, L is the winding inductance,

λ is the flux linkage of the coil, J is the rotational inertia
of the shaft, and B is the damping factor of the load.

In general, electrical variables can be observed easily
and reliably, whereas the mechanical variables are more
expensive to measure. We consequently assume that we
have observations of the the input voltages va and vb, as
well as the currents ia and ib, but want to obtain esti-
mates of the shaft speed ω . This model can thus be writ-
ten down in the form of Equations 1-3, where the state
x = [ia ib ω θ ]T and the input u = [va vb]. Equations 15-18
are straightforward to implement as a model in Modelica;
we chose to avoid the specification of the phase voltages as
explicit inputs, and instead defined them as time-varying
real variables.

We create an estimator from a Modelica model on the
basis of the above theory by first exporting the underly-
ing Modelica model (representing (M,H)) from a Mod-
elica tool as an FMU, reimporting the same FMU back
into Modelica as a co-simulation FMU, and then imple-
menting the EKF by modifying the Modelica code that is
autogenerated upon reimportation. The co-simulation for-
mat is needed because of the discrete-time formulation of
the EKF. This autogenerated code contains a wide vari-
ety of helper functions (often encapsulated in their own
package, such as fmiFunctions in Dymola) that are
needed to interface with the FMI API and run the FMU in
the Modelica tool, and which are the building blocks from
which the estimators are built. These helper functions do
not necessarily have the same API as that which is de-
scribed in the FMI standard because they provide an inter-
face between the specific tool and the functions defined by
the standard. However, the functions used in the estimator
are relatively straightforward, and would be expected to
be found in most complete FMI implementations.

Two aspects of this reimported FMU are of par-
ticular note. First, the variables in the Modelica-
instantiated FMU are referred to by 9-digit integer
labels, rather than by their original names. The
modelDescription.xml file included in the FMU
lists the correspondence between these labels and their
names, but use of particular variable names in the estima-
tor requires explicitly re-establishing this correspondence
in the estimator code (Brembeck et al., 2014). Second,
though the derivative variables are separately enumerated
in the XML file in the element modelStructure, the
FMU does not maintain an easily parsed list of the integer
labels corresponding to the state variables. The set of state
variable integer labels can instead be obtained by import-
ing the FMU in the model-exchange format for this ex-
press purpose, though this model-exchange FMU must be
unloaded so that it can be reimported in the co-simulation
format to create the estimator code. Once loaded, the ini-
tialization section of the model-exchange FMU contains
a list of the state variables selected during compilation as
well as their associated integer labels. Because the pro-
cess of reading and correcting the state in the EKF requires
the manipulation of these integer labels (which are often
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sequential for the state variables), this is of major impor-
tance when implementing the estimator.

The essential code implementing the EKF is provided
in Figure 1, while the complete code is provided in an
attachment to this paper. To make this code more read-
able, certain simplifications were adopted with the hope
that they do not obfuscate the overall intent. Some boil-
erplate code, such as variable definitions, was eliminated
when the information about the variable could be inferred
from its context. In addition, some sections of code that
were autogenerated during the FMU import were also
commented out. Finally, integer labels were shortened to
improve readability.

This code excerpt begins in lines 1-13 with the defini-
tion of the fmiFunctions section (fmiF), which is auto-
generated upon FMU import, and the user-specified def-
inition of a number of important variables for the EKF,
such as the number of states and outputs Nx and Ny, the
process noise covariance matrix Q, and the measurement
noise covariance R. We also create a new set of inputs
and outputs y and yhat (lines 15-16), since we will be
reading the measurements of the actual plant that will be
assimilated by the estimator in variable y, and we want to
study the performance variables yhat. Once these vari-

ables are set up, the FMU enters a when loop that will
step through the stimulation and is initialized in an auto-
generated block of code represented by line 21.

Lines 23-41 create of the linearized forward model
operator M(x,k) and linearized observation operator
H(x,k). The fmiGetDirectionalDerivative
function takes the directional derivative of the integer la-
bels corresponding to the derivatives of the state variables
(in the array of the second argument) with respect to the
dot product of the integer labels corresponding to the state
variables (the third argument) and the column of the iden-
tity matrix INx×Nx corresponding to the number of the col-
umn (the fourth argument). While this function could be
used to take the mixed derivative with respect to multi-
ple variables, the array IdentityMatrixA is used in
this case to construct the Jacobian by computing the gra-
dient of the state vector with respect to each individual
state variable. Note that M(x,k) is of size Nx×Nx, whereas
H(x,k) is of size Ny ×Nx, and the entries of the output vec-
tor in lines 37-38 are the same as the state vector because
the states ia and ib are assumed to be measured.

Once these linearized Jacobians have been created for
the current time step, we apply the correction terms cal-
culated at the end of the last time step and step the simu-

1 import MSL.Math.Matrices.exp;
2 import MSL.Math.Matrices.inv;
3

4 package fmiF
5 ...
6 end fmiF;
7 public
8 parameter Integer Nx=4, Ny=2;
9 parameter Real Hz[1,Nx]=cat(2,

10 {{1}}, {{1}}, zeros(1,2));
11 parameter Real Q[Nx,Nx]=transpose(Hz)*Hz;
12 parameter Real R[Ny,Ny]=identity(Ny);
13 // {Other variable declaration code}
14

15 MSL.Blocks.Interfaces.RealInput y[2];
16 MSL.Blocks.Interfaces.RealOutput yHat[2];
17

18 algorithm
19 when {initial(),
20 sample(startTime, stepSize)} then
21 // {Initialization/slave-mode code}
22

23 for i in 1:Nx loop
24 dz := fmiF.fmiGetDirectionalDerivative(
25 fmi,
26 {560, 561, 562, 561},
27 {432, 433, 434, 435},
28 IdentityMatrixA[i,:]);
29 dF[:,i] := dz;
30 end for;
31

32 F := exp(dF*stepSize);
33

34 for i in 1:Ny loop
35 dh := fmiF.fmiGetDirectionalDerivative(
36 fmi,
37 {432, 433},
38 {432, 433, 434, 435},
39 IdentityMatrixC[i,:]);
40 H[:,i] := dh;
41 end for;
42

43 PPred := F*PCorr*transpose(F) + Q;
44 K := PPred*transpose(H)*inv((H*PPred*

transpose(H)) + R);
45

46 // Apply state correction after 5 steps
47 if time >= (startTime + 5*stepSize) then
48 fmiF.fmiSetReal(fmi,
49 {432, 433, 434, 435}, xCorr);
50 end if;
51

52 // {Step forward with fmiDoStep()}
53

54 xPred := fmiF.fmiGetReal(
55 fmi, {432, 433, 434, 435});
56 yPred := fmiF.fmiGetReal(
57 fmi, {432, 433});
58 xCorr := xPred + K*(y - yPred);
59 PCorr := (identity(4) - K*H)*PPred;
60

61 // {Variable allocation code}
62 equation
63 yHat[1] = ’x[1]’;
64 yHat[2] = ’x[2]’;

Figure 1. Extended Kalman filter (EKF) code.
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lation forward. The Kalman gain matrix and the forecast
for the covariance matrix are calculated in lines 43-44, and
the state correction is applied to the state integer labels in
lines 46-50 by using fmiSetReal. The if statement in
line 47 is used to allow the values of the covariance matrix
to accumulate before applying the corrections to the state
variables. Once the state vector has been corrected, the
FMU is stepped forward to compute the forecast step us-
ing fmiDoStep() auto-generated code. After this step,
the corrections to the state vector x̂ and the covariance ma-
trix P for the analysis step are computed in lines 54-61 for
application to the next cycle. Finally, we need to add two
equations in line 63-64 to assign the outputs to be the state
estimates that we want to examine.

2.2 Ensemble Kalman Filter
While the EKF is a popular estimation technique because
it embodies a logical extension of the Kalman filter to non-
linear systems, it has been shown to have a few drawbacks.
First, the entire covariance matrix Nx ×Nx matrix P must
be integrated at each time step; while this does not present
a burden for small systems, the quadratic growth of the
size of this matrix with the length of the state vector poses
significant computational barriers for large-scale problems
involving thousands of states. Second, the development of
the EKF as an extension of the linear KF uses a linearized
equation to describe the propagation of the error covari-
ance matrix. This may not be a valid assumption, and can
result in unbounded linear instabilities of the error evolu-
tion (Evensen, 2009b).

An alternative approach created to address the size limi-
tations of the EKF is called the ensemble Kalman filter, or
EnKF (Evensen, 2009b). Rather than directly propagate
all of the covariances forward at each time step, the EnKF
uses a sequential Monte Carlo approach to propagate for-
ward an ensemble of statistically sampled state vectors, or
particles, through the system dynamics and directly esti-
mate the covariance matrix from this distribution. This
avoids the computation of the Jacobians for the forward
model and the observation operator. This algorithm is
summarized with a range of variants by Vetra-Carvalho
et al. (2018), and will be briefly presented here.

As indicated above, the essential distinction between
the EKF and the EnKF can be seen by examining the for-
mulation of the covariance matrices. Whereas the EKF
formulates the covariance matrix P as

Pk = E[(x̂k − xk)(x̂k − xk)
T ], (19)

the EnKF uses the fact that it propagates forward an en-
semble of particles to define the ensemble covariance ma-
trices around the ensemble mean rather than the true mean,
e.g.,

Pk = E
[
(x̂k −E[x̂k]) (x̂k −E[x̂k])

T
]
. (20)

This allows us to approximate the error covariance matri-
ces by using simple multiplications, rather than integrat-
ing the full set of differential equations for the covariance

matrix forward at every time step. This method has been
successfully used in numerical weather prediction models
with more than 106 states, which would not be generally
feasible with an EKF.

Because the ensemble of particles evolves forward with
time, it is also necessary that we formulate the problem
in terms of the ensemble mean and the ensemble perturba-
tions. Taking Xa as Ne particles sampled from a state space
of Nx so that Xa has dimension Nx ×Ne, we construct the
analysis mean and perturbation ensemble by

Xa = Xa
+X ′a. (21)

As a result, the covariance matrix Pa can be written as

Pa =
X ′a(X ′a)T

Ne −1
. (22)

We summarize the construction of the filter as follows,
emphasizing the similarity to the linear Kalman filter. The
ensemble forecast is constructed by propagating the non-
linear forward operator and observation operator by a step,
e.g. integrating forward the model equations

X f
k =M(Xa

k−1,uk−1, tk−1; µ) (23)

HX f
k =H(Xa

k , tk; µ) (24)

where HX f
k indicates the integation of the nonlinear ob-

servation operator forward on the ensemble by one time
step. We then calculate the output error covariance HPHk
and the innovation term Ck by computing

HX ′ f
k = HX f

k −HX f
k (25)

HPHk =
HX ′ f

k (HX ′ f
k )T

Ne −1
(26)

Ck = (HPH +R)−1
(

Yk −HX f
k

)
(27)

We construct the ensemble perturbation matrix X ′ f
k =

X f
k −X f

k and compute the correction ensemble

Xa
k = X f

k +
1

Ne −1
X ′ f

k (HX ′ f
k )TCk (28)

which completes the calculation of the analysis step for
the EnKF.

As was the case for the EKF, much of the imple-
mentation of the EnKF using the FMU is relatively
straightforward. Many of the specific modifications
needed to implement the EnKF by using the autogener-
ated Modelica code pertain to the generation and prop-
agation of the particles used to characterize the esti-
mator’s statistical properties, as well as the computa-
tion of the ensemble mean. While random number
generation code from the Modelica Standard Library
(MSL) (included in Modelica.Math.Random and
Modelica.Math.Distributions) was used in the
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creation of the perturbations, separate implementations of
the noise generation functions were required because the
models in Modelica.Blocks.Noise could not be in-
cluded in the algorithm sections of the FMU.

The EnKF code described in Figure 2, and which is
also available in its entirety in the attachment, bears many
similarities to the EKF code discussed previously. Many
of the variables are first defined in lines 1-21, with some
of the variable definitions commented out for the sake of
brevity. The random number generation code imported
from the MSL is abbreviated as MSL* for similar reasons,
though these functions can be quickly found through a
search. Two variables (initState and nextState)
were also required to maintain and evolve the state of the
random number generator. The inputs and outputs are de-

fined in lines 20-21, and the model is initialized using the
autogenerated code in lines 23-26.

The initial ensemble of particles is generated in lines
28-35 during the initialization phase of simulation by us-
ing the MatrixPerturbation function. This function
takes a set of initial guesses for the state variables and cre-
ates Ne perturbed instances of this Nx × 1 state vector by
adding zero-mean noise with a standard deviation based
upon the order of magnitude of the initial guesses. This
scaling of the particle perturbations is important, as per-
turbations that are too small will not provide sufficient di-
versity to estimate the covariance, while perturbations that
are too large could result in incorrect model behavior or
otherwise reduce the information provided by these initial
guesses.

1 import distribution=MSL*.quantile;
2 import generator=MSL*.Xorshift128plus;
3 import MSL*.impureRandomInteger;
4 package fmiF
5 ...
6 end fmiF;
7 public
8 parameter Integer Nx=4, Ne=5, Ny=2;
9 parameter Real R[Ny,Ny]=[0.01, 0; 0, 0.01];

10 parameter Real[Nx] x_init={0, 0, 0, 0};
11 parameter Real[Nx,Ne] X_init=[x_init,

x_init, x_init, x_init, x_init];
12 parameter Real mu=0, sigma=0.1;
13

14 MSL.Blocks.Noise.GlobalSeed globalSeed;
15 parameter Integer actualGlobalSeed=

globalSeed.seed;
16 final parameter Integer localSeed=

impureRandomInteger(
globalSeed.id_impure)

17 Integer initState[generator.nState];
18 Integer nextState[generator.nState];
19 // {Other variable declaration code}
20 MSL.Blocks.Interfaces.RealInput y[Ny];
21 MSL.Blocks.Interfaces.RealOutput yHat[Ny];
22

23 algorithm
24 when {initial(),
25 sample(startTime, stepSize)} then
26 // {Initialization/slave-mode code}
27

28 if initial() then
29 // Create particle distribution
30 initState := generator.initialState(
31 localSeed, actualGlobalSeed);
32 (X, nextState) := MatrixPerturbation(
33 X_init, initState);
34 initState := nextState;
35 end if;
36

37 if time >= startTime + (5*stepSize) then
38 X := XCorr;
39 end if;

40

41

42 for i in 1:Ne loop
43 fmiF.fmiSaveFMUState(fmi);
44 fmiF.fmiSetReal(fmi,
45 {432, 433, 434, 435}, X[:,i]);
46 // {Step ensemble member with fmiDoStep}
47 X[:,i] := fmiF.fmiGetReal(fmi,
48 {432, 433, 434, 435});
49 HX[:,i] := fmiF.fmiGetReal(fmi,
50 {432, 433});
51 if i<Ne then
52 fmiF.fmiRestoreFMUState(fmi);
53 else
54 continue;
55 end if;
56 end for;
57

58 // EnKF computations
59 X_bar := MatrixMean(X,1);
60 HX_bar := MatrixMean(HX,1);
61

62 for i in 1:Ne loop
63 X_prime[:,i] := X[:,i]-X_bar;
64 HX_prime[:,i] := HX[:,i]-HX_bar;
65 end for;
66

67 HPH:=1/(Ne-1)*HX_prime*transpose(HX_prime);
68 A := HPH + R;
69 (Y, nextState) := MatrixPerturbation(
70 [y, y, y, y, y], initState, sigma=0.01);
71 initState := nextState;
72

73 D := Y - HX;
74 C := MSL.Math.Matrices.solve2(A,D);
75 E := transpose(HX_prime)*C;
76 XCorr := X + (Ne-1)*X_prime*E;
77 yHat := HX_bar;
78

79 // {Variable allocation code}
80 equation
81 yHat[1] = ’x[1]’;
82 yHat[2] = ’x[2]’;

Figure 2. Stochastic ensemble Kalman filter (EnKF) code.
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Figure 3. Estimated and measured phase A currents for the EKF
and EnKF experiments.

After creating this ensemble, the corrected state vector
is applied to the system in lines 37-39; this is performed
after 5 time steps as was the case for the EKF. Lines 42-
56 then use this ensemble and the corrected state vector
during model integration to evolve each particle forward
according to the dynamics of the nonlinear model. This is
accomplished by

1. Saving the state of the FMU using
fmiSaveFMUState,

2. Setting the integer labels of the state variables to the
values of the current particle,

3. Stepping the system dynamics forward with this par-
ticle using fmiDoStep(),

4. Saving the results of the integration step to the vari-
ables X and HX, and

5. Resetting the state of the FMU using
fmiRestoreFMUState so the next particle
can be integrated forward.

Note that the evolution of the model does not depend on
the evaluation of the Jacobians, which can potentially re-
duce the amount of computation required. However, the
requirement that each particle be individually stepped for-
ward in time can also present significant computational
requirements, depending on the implementation of the in-
tegrator and the relative scales of the state variables.

The analysis phase of the EnKF is completed in lines
59-77 of the EnKF example. This implementation fol-
lows Vetra-Carvalho et al. (2018) closely, and culminates
in the computation of the corrected state vector in line 76.
The outputs of interest are then assigned in lines 81-82 to
complete the construction of this estimator.

3 Simple Motor System
The construction of these estimators was based upon a
Modelica model of the simple motor described in Equa-
tions 15-18, with model parameters set to the values pro-
vided in Table 1. After generating a co-simulation FMU
for this model, we saved the model into a separate folder
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Figure 4. Shaft speed.

that was expressly set up for the storage of FMUs, as
FMUs cannot be stored within the package directory struc-
ture. This imported Modelica model was then duplicated
and modified to create the EKF and the EnKF estimators,
which remained distinct from the original imported FMU.
Note that the path to the FMU DLL is stored as a text
string in the autogenerated Modelica code, and must be
changed manually if the FMU is moved after it is reim-
ported.

We evaluated these estimators by creating a test model
that included both the original Modelica motor model and
the new estimator. Zero-mean noise with a standard devia-
tion of 0.05 A was added to the motor current observations
before feeding these signals into the estimator to evaluate
the robustness of the estimates. In addition, the states of
the initial motor model were each initialized to zero, but
the states of the estimator model were each initialized to 1
to test the estimator’s robustness to initial state errors. The
EnKF was configured to use 5 particles in its ensemble; we
found that the performance and convergence of this filter
was dependent upon the number of particles used.

One minor observation that merits a highlight is that the
simulation time is set in the FMU when it is reimported,
and is not set by the annotations usually used to capture in-
formation in Modelica models. As such, if the user wants
to change the start or end time of a simulation, or the num-
ber of time steps used, this must be done both in the sim-
ulation window, as usual, and by setting the appropriate
parameters of the FMU.

Figure 3 demonstrates the ability of both estimators to
construct good estimates of state ia from noisy observa-

µ Value µ Value
va sin(2πt) λ 0.1 V · s
vb cos(2πt) J 1.8e-4 kg ·m2

R 1.9 Ω B 1e-3 kg ·m/s
L 3 mH

Table 1. Motor parameters.
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Figure 5. Two zone (room/plenum) model including a fan coil unit.

tions of the original motor model. The upper plot in this
figure shows the performance of the EKF, while the lower
plot shows the performance of the EnKF; the state esti-
mate for both systems can be seen to be close to the mean
of the input signal.

Figure 4 illustrates the estimates of the motor speed
state ω as well as the estimates produced by the EKF and
EnKF. It is clear from a comparison between the original
plant signal and the estimates that both filters can produce
good estimates of this state without its measurement. It is
interesting to note that the estimate for this state from the
EKF is somewhat noisier than those estimates from the
EnKF, but that the mean of both of these estimates is quite
close to the state of the original plant.

4 Building System
Though we can gain significant insights into the process
of designing and implementing estimators by using the
previous simple motor model, our primary interest in this
technology lies in the ability to leverage large-scale Mod-
elica system models for use in estimation problems. As a
case study of this application, we constructed a two-zone
model of one floor of a commercial office building, in-
cluding both the occupied space and a plenum above, by
using the models provided by the Modelica Buildings li-
brary (Wetter et al., 2014) with the objective of estimating
the sensible heat load in the occupied space. This model
is very similar to that which was used by (Bortoff and
Laughman, 2019).

A schematic diagram of this building model is illus-
trated in Figure 5, which shows the two zones as well
as a water-source dry-coil fan coil model that is used to
manage the room air temperature. The use of the dry
coil model is somewhat atypical, and will be elaborated
later in this section. This fan coil is connected to a fixed
temperature water source (10 °C) and sink (16 °C), and

the room temperature is regulated by a PI controller that
adjusts the mass flow rate of water through the coil to
maintain the set point. The area of the floor is 415 m2,
while the room height is 2.6 m and the plenum height is
1.3 m; there is also a total of 83.6 m2 of window area
on the external walls. The heat load varies between 1.66
kW (4 W/m2) between the hours of 7pm and 8am, and
4.15 kW (10 W/m2) between the hours of 8am and 6pm,
with smooth ramps during the transition hours. The Tokyo
TMY3 weather file is used to provide the ambient condi-
tions, and this simulation is run for 5 days from June 12-17
to study its behavior over a practical duration of time.

The connections between the building model and the es-
timator are illustrated in Figure 6, which illustrate the use
of the original Modelica plant model and the FMI-based
estimator. This estimator is based on four measurements

Figure 6. Estimator.
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Figure 7. Estimated and measured plenum air temperatures.

from the plant: a measurement of the water flow rate pro-
vided by the control signal for the fan coil unit, the room
air temperature, the plenum air temperature, and the re-
turn water temperature. We then designed an EKF and an
EnKF to estimate the heat load on the room. This objective
necessitated a small modification of the model used for the
estimator; while the sensible load is customarily specified
as an input to the model, we added an integrator driven
by a constant value to the sensible load input for the es-
timator model. By incorporating this integrator, we force
the compiler to include the heat load as a state which can
then be estimated. The scales of the states also required
specific attention in the construction of the EnKF. In gen-
eral, the states in these thermodynamic models are poorly
scaled; for example, the internal energy of the water is on
the order of 107 J/kg, while the humidity ratio of the room
is on the order of 10−3 kg w/kg da. Perturbations of the
state vector therefore must be carefully designed so they
do not dominate its mean, which tends to be constructed
carefully in consideration of physical intuition.

We tested the EKF by adding 0.01 °C of quantization
noise to the measured outputs of the plant; while this
amount of quantization is small, it was chosen to ensure
that the observed variations in room and return water tem-
peratures (which were small due to the large coil capacity)
would not be hidden by the quantization. In using these
quantized inputs, we examined the ability of the EKF to
properly estimate both the states characterized by the in-
puts as well as the heat load. The upper plot of Figure 7 il-
lustrates the measured and estimated plenum temperatures
for the EKF, and it is clear that the estimator can accurately
capture the dynamics of the original plant. Moreover, Fig-
ure 8 demonstrates the rapid convergence of the estimates
to the imposed heat load, suggesting that the EKF is effec-
tive for solving this estimation task.

In comparison, the estimates of both the plenum air
temperature and the sensible heat load from the EnKF
are relatively poor. While the EnKF captures the general
shape of the plenum air temperature dynamics, there are
significant errors; moreover, the errors in the heat load

� �� �� 
� �� ��� ���

��������

�

�

	




�

�




��

��

��

Q

s
e
n
s
i
b
l
e

(
W

/
m

2

)

����� ��� ����

Figure 8. Imposed and estimated heat loads.

estimates are substantial, and completely miss the time-
varying behavior of the heat load towards the end of the
simulation.

The poor performance of the EnKF is fundamentally
related to interactions between the ensemble perturbations
and the state and output constraints of the model. Many
models of thermodynamic systems have limits of validity
on their variables; for example, the dry air model used in
the Buildings library is only accurate down to tempera-
tures of 200 K, while the humidity ratio in a space cannot
physically go below zero. However, the ensemble pertur-
bations in the EnKF are not designed to satisfy these con-
straints in a statistically valid manner. We found many
circumstances in which small perturbations in the ensem-
ble led to constraint violations either of the state variables
directly (e.g., humidity ratio), or of algebraically related
output variables (e.g., temperatures), causing the simula-
tions to crash. The need to place stringent limits on the
dispersion of the particles thus prevented the covariance
matrix from accurately characterizing the system dynam-
ics and producing an accurate estimate of the heat load.

This behavior was apparent in all of the experiments
with the EnKF. We found that there were effectively no
useful perturbations that could be applied to a wet-coil
fan coil model that would not violate the constraint that
the humidity ratio needs to be positive, and that even the
room with the dry coil model often had problems in which
the the mixed air humidity ratio would tend toward zero.
While the EnKF does demonstrate promise for problems
in which a suitably large ensemble can be used, it appears
to have significant limits when used in an FMI-based con-
text with constraints on state and output variables.

While the design of the FMI standard is suited to de-
scribe sets of differential equations for the purpose of
simulation as well as estimation using Kalman filters and
EKFs, the fact that it does not provide a direct association
between variables and their constraints imposes a crucial
limitation in the practical implementation of constrained
estimators (Simon, 2010) or particle filters for large-scale
problems (Van Leeuwen et al., 2019). For example, an
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estimator designed for the system

dx1

dt
= f1(x1,x2,x3; µ) (29)

dx2

dt
= f2(x1,x2,x3; µ) (30)

x3 = f3(x1,x2; µ) (31)
a1  x1  b1 (32)
a3  x3  b3 (33)

must take the state and inequality constraints imposed by
Equations 32 and 33 into account when generating the per-
turbation ensembles for the state vector [x1 x2]. While
these constraints could be incorporated manually into an
estimator for a small system when modifying the Mod-
elica code generated upon import of the co-simulation
FMU, the application of these estimation methods would
be much more practical if the FMU included the infras-
tructure needed to systematically associate the variables
with their constraints.

5 Conclusions & Discussion
While the basic infrastructure used to construct FMI-
based system models might not always have the most intu-
itive interface, their capabilities make them excellent can-
didates for use in a variety of estimation problems. We
found that the implementation of the extended Kalman fil-
ter is relatively straightforward once the FMI API is fully
understood, and that these filters demonstrated good per-
formance on both a small test problem and a larger esti-
mation problem that utilized the capabilities of Modelica
for building models of complex physical systems. We also
found that the FMI interface also enabled the construction
of other types of estimators, such as the ensemble Kalman
filter, suggesting that there is potential in the further in-
vestigation of other FMI-based interfaces for estimation
applications.

However, this study also revealed some important lim-
itations of FMI for the application of constrained estima-
tion approaches, such as ensemble Kalman filters or other
particle filtering methods. The lack of a direct association
between a state variable and its constraints posed signifi-
cant difficulties in the implementation of ensemble-based
methods. Future work on systematically accommodating
such constraints in FMI could have a significant impact on
FMI’s use on the range of estimation problems, especially
for the large-scale applications to which Modelica models
are so well-suited.
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Abstract 
This paper communicates on the implementation of 
Physics-based Solving in the Modelon Jet Propulsion 
library, driven by requirements from industrial jet 
engine design workflows. On- and off-design simulation 
modes are typically sequential and iterative steps in a 
model-based design process of jet engines. The solution 
Modelon provides – based on the Jet Propulsion Library, 
Optimica Compiler Toolkit, FMI Toolbox and pyFMI – 
enables performing a robust design of a gas turbine for 
a design point satisfying relevant constraints of typical 
off-design scenarios. This paper illustrates this 
workflow with component and system level examples. 
Keywords:     Jet Propulsion, Physics-based Solving, 
Steady-State, On-Design, Off-Design, Optimization 

1 Introduction 
The sizing of a gas turbine is typically performed over a 
set of different scenarios. The design point would be the 
first step in identifying basic parameters as it would be 
the most constraining scenario for most components. 
Computing the component parameters from the 
boundary conditions on this point will be qualified as 
on-design simulation. For a jet engine, this would 
typically be the cruise mode at the top of climb. Other 
scenarios will be run to validate the design for 
conditions that are relevant for the expected operation 
such as takeoff or landing. In addition to the validations, 
iterative tuning of variables (e.g., cooling flow fraction) 
can be included – these would be named off-design 
simulations. 
Running these scenarios in a disconnected fashion 
would be tedious and error prone. Model Based System 
Engineering applied to the design of gas turbines 
provides a relevant workflow that is addressed in this 
paper and serves as source of requirements for 
augmenting the Jet Propulsion library with additional 
features. Section 2 of this paper discusses such 
workflows, the resulting requirements and the 
associated implementation within Modelon Jet 
Propulsion Library. Section 3 provides some key 
benefits of using Modelica language and Modelon 
Optimica Compiler Toolkit to address this problem. 
Section 4 presents two component examples and 

discusses their specific on- and off-design behaviors. 
Section 5 illustrates all these topics within a system level 
example: the cycle model design of a jet engine. 

2 Discussion on Model-Based System 
Engineering 

2.1 Simulation Modes in a MBSE Design 
Cycle 

In an industrial Model-Based System Engineering 
(MBSE) development, the customer needs, system goal, 
and purpose would define the system requirements (R 
from the RFLP acronym). The system would be split 
into several subsystems – most likely through a function 
breakdown structure process (F from the RFLP 
acronym) – and requirements would be propagated and 
incremented, with traceability and rationale, to the 
subsystems. This step would be reproduced as many 
times as necessary to reach a level of subsystems that 
can be assigned to a given company department – 
typically organized by physical domains or main 
product functions. 

Based on a requirement specification and the 
functions and scenarios it shall fulfill – assuming 
correctness, completeness and consistency –a 
subsystem can be designed. In a model-based design 
approach, lumped parameter modeling and simulation 
(L for logical from the RFLP) can be used to define a 
viewpoint of the subsystem architecture, select 
component technologies (assisting trade-off studies) and 
size each of them. At this stage, it is relevant to highlight 
that some efforts exist in verifying that models satisfy 
the requirements using the Modelica language (see for 
example [OTT15] or [BOU18]). Finally, the detail 
design would be performed using 3D drawings, Finite 
Element Analysis, Computational Fluid Dynamics, etc. 
– this would be the P for physical from the RFLP. 

One of the main added values of using model-based 
development is the possibility to run virtual tests during 
the design cycle, prior to manufacturing any physical 
prototype. This enables iterating on the design in a cost- 
and time-effective manner. 

This statement enables deriving two different 
simulation modes, based on the different steps of the 
design process: 

196



197DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

1. On-design: the boundary conditions (design point 
scenarios) are known and the aim of the simulation 
is to compute the parameters of the system (sizing). 

2. Off-design: the parameters are all known at this 
stage and the system and experiments can be run 
based on some boundary conditions. The outcomes 
will be the system behavior. 

It is quite intuitive based on the above description to 
see these two modes as sequential and probably 
iterative. A user would first run the on-design simulation 
on a design point and then run the simulation and 
validate his design. The iteration process would come 
from the fact that the design point might not be unique 
– e.g., it might be different for each component or 
subsystem of the system – and thus convergence of the 
system design can only be achieved by iterating on the 
on-design simulations. 

Figure 1 presents the double-V-model from 
VDI 2206 [VDI04] standard, displaying the RFLP steps, 
on which the on- (1) and off-design (2) simulations and 
potential design iterations (3) have been drawn onto in 
orange. 

       

    

 
Figure 1. Simulation modes on a design cycle, based on 
[EIG12] 

2.2 Requirements for models 
The notion of system and subsystem is a question of 
perspective. When changing viewpoint, one system 
might become a subsystem and vice-versa – e.g., when 
sizing an aircraft, the jet engine is a subsystem; 
however, when sizing the jet engine, the engine is the 
system while the turbine might be a subsystem. Models 
in a MBSE development are a “key tool” for the design. 
For a model developer, the model shall be considered as 
a system. A good practice is thus to have requirements 
for the model development, in the same way that we 
have requirements driving the physical system itself. 

The authors already contributed in: 
• adding requirements when it comes to model 

development [COI16], quoting: 
o R1 Realism. The model architecture shall enable 

incremental modelling to progressively increase 

realism regarding the key physical effects that 
impact performance. 

o R2 Genericity. As far as possible, the model shall 
be made of a combination of generic sub-models 
that can be re-used for other modelling purposes. 

o R3 Interfacing. The model shall have standard 
interfaces that are conserved throughout 
modelling levels in order to ensure models’ 
replaceability. 

o R4 Balancing. The model shall be balanced 
(mechanically, energetically, etc.). 

o R5 Ageing and faults. The model shall enable 
ageing effects or faults to be simulated. 

o R6 Causality. The model shall be developed to 
admit various causalities, including for inverse 
simulation. 

• developing model architecture that fits the main 
functions to fulfill [COI18]. 

 
It is relevant here to note that the Modelica language 

enables developing models that fulfill all these 
requirements. The Modelon Jet Propulsion library is a 
great example of that. In [SIE17], Sielemann et al. 
introduced this library dedicated to modeling and 
simulation of jet engines. This paper shows how the 
model architecting enables selecting different levels of 
realism of the subsystems (R1), based on the use of 
generic models (R2) and interfaces (R3) – see Figure 2. 
Balancing (R4) is ensured in the library in Modelon 
implementation of physical laws and following 
Modelica specification for model numerical balancing 
[OLS08]). The a-causality of Modelica enables 
satisfying the last requirement (R6). While ageing and 
faults (R5) are perfectly feasible with Modelica 
language, this topic is out of the scope of this library and 
communication, for now. 

 
Figure 2. Top-level turbofan model breakdown shown on 
the top, compressor break-down on the lower left, high 
pressure compression section break-down on the lower 
right – from [SIE17] 
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2.3 Additional requirements for the 
simulation modes in Steady-State 

Unfortunately, there is still a lack of standards when it 
comes to requirements for model development. In this 
paper, the authors would like to contribute on this topic 
by adding model requirements to fit the workflows of 
model-based design and more specifically for the 
simulation modes discussed in §1. 

Typically, the technical requirements needed to 
follow the design workflow are: 
• In terms of processing: 
o R7. The user shall be able to switch between on- 

and off-design without changing model structure 
or realism. 

o R8. The user shall be able to re-use the outputs 
from the on-design simulation as input to the off-
design simulations. 

o R9. The user shall access the model execution 
through convenient user interface and scripting 
tools. 

• In terms of user friendliness: 
o R10. Switching between simulation modes 

should not create execution overhead. 
o R11. Switching between simulation modes 

should be performed by changing a single 
parameter. 

o R12. The model shall have a robust steady-state 
embedded capability. 

2.4 Implementation of Steady-State 
simulation modes into Modelon Jet 
Propulsion Library 

To meet these requirements, Modelon developed a 
vendor-specific language construct, supported by the 
Modelon Optimica Compiler Toolkit (OCT), to support 
Physics-based Solving of systems. The Physics-based 
Solving implemented in our libraries relies on Modelon 
insights about the physical properties of components 

and systems to achieve a structure of the system of 
equations that yields vastly superior numerical 
properties as compared to traditional tearing algorithms. 

Tearing is a symbolic substitution technique well-
established in general system simulation. For an 
introduction in the context of Modelica, see [ELM94]. 
In most Modelica tools, the selection is fully automatic 
and based on heuristics. These heuristics are based on 
the structure of the equation system and code 
implementation, but not on physical insight. This 
typically works well for nonlinear algebraic equation 
systems with a small to medium size of iteration 
variables per block. However, when using automatic 
tearing, iteration variables can change unexpectedly for 
the user with small model changes (e.g., adding more 
components to the system, changing the type of a model, 
or with a structural parameter change). Then, hand-
tuned start values are lost. Additionally, automatic 
tearing may choose iteration variables for which the user 
has less intuition concerning suitable start values or 
bounds based on engineering insight. 

With the Physics-based Solving, the above 
challenges were solved, and the authors were able to 
implement this engineering in the library. Instructions 
embedded in component models guide the compiler and 
solver on which variables and equations should be 
selected respectively as iteration variables and residuals 
for the steady-state simulation. The Physics-based 
Solving enables a robust steady-state simulation (R12). 
This language construct enables changing the iteration 
variables and residuals based on Boolean parameters, 
without the need for recompilation. The information is 
stored in an object-oriented fashion, such that modelers 
can assemble systems graphically, and the desired 
solving can be deduced from the model topology (model 
instances and connections). In the discussed application, 
changing the simulation mode parameter from on- to 
off-design would change the set of iteration variables 
and residuals the solver would use. This feature was 
used to meet requirements R7, R10 and R11. 

 
Figure 3. Typical workflow using OCT with Python interface 
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Generally accepted choices for iteration variables and 
residual equations are documented in many textbooks 
and scientific papers from the gas turbine community 
(see Walsh and Fletcher [WAL04], Oates [OAT97], for 
instance). They are commonly referred to as 
“thermodynamic matching” by this community. All that 
was required for this work was encoding the information 
in the Modelica language through the above-mentioned 
language construct, and then testing and validating 
physical and numerical behavior. 

The Modelica compiler OCT generates Functional 
Mock-up Units (FMUs) – following the FMI standard. 
Using pyFMI or the FMI Toolbox from Modelon, it is 
easy to interact with the FMU, and thus requirements R8 
and R9 are both met using Python or Matlab scripting 
into Jupyter notebooks. Figure 3 shows the typical 
workflow using OCT with Python interface for steady-
state simulation. 

3 Steady-state simulation using OCT 
– a robust solution 

3.1 Modelica Compiler capabilities 
The Modelica language, being equation-based, enables 
the compiler to have more degrees of flexibility. All 
Modelica compilers are able to rearrange the acausal 
equations into causal algorithms, suitable for 
simulation. Modelica compilers are also usually able to 
automatically derive the sensitivities relevant for 
solving optimization problems. 

While these features are generic to most Modelica 
compilers, Modelon compiler (OCT) has the additional 
capability to hide residual equations and iteration 
variables from the solver in a compiled model. This 
feature is key to enable switching between simulation 
modes without recompiling the model. 

3.2 Solver Improvements 
Modelica models and FMUs usually use variables 
expressed in SI units. Variable values may therefore 
differ by several orders in magnitude [SIE12]. This can 
yield to ill-conditioned systems which are difficult to 
converge. In order to handle ill-conditioned systems, the 
solver supports scaling of both the residual equations 
and of the iteration variables, which is used in the 
criteria for a successful solution. Note that while for the 
Newton method the step is scaling-independent (i.e., 
direction and length do not change with scaling), for the 
steepest descent search direction as well as solver 
termination criteria, results are dependent on the scaling 
factors applied. 

Iteration variables are normally scaled based on the 
nominal values provided by the modeler. This is done 
using the nominal attribute 𝑥𝑥𝑛𝑛𝑛𝑛𝑚𝑚𝑗𝑗, according to 𝐷𝐷𝑥𝑥𝑗𝑗 =
1/|𝑥𝑥𝑛𝑛𝑛𝑛𝑚𝑚𝑗𝑗|. If the nominal attribute for a particular 

iteration variable is not set, then the corresponding 
scaling factor 𝐷𝐷𝑥𝑥𝑗𝑗 is set to one. 

Residual scaling factors utilized by the solver are 
evaluated based on the Jacobian and follow ideas similar 
to Jacobian equilibration. The automatic scaling is 
chosen as 𝐷𝐷𝑥𝑥𝑗𝑗 = 1/ ||𝐽𝐽�̅�𝑘(𝑥𝑥0)||∞, where 𝐽𝐽 ̅ is a scaled 

Jacobian calculated as 𝐽𝐽(̅𝑥𝑥) = ∇𝑥𝑥𝐹𝐹(𝑥𝑥)𝐷𝐷𝑥𝑥−1 and where 
𝑥𝑥0 is the initial guess. 

OCT steady-state solver relies on a combination of 
residual and step norm as exit criterion. Newton step 
norm-based criterion is typically used as the primary 
convergence indicator. If iterations fail to converge for 
that criterion an additional check on residual criterion is 
done and the solution is accepted if residuals are 
sufficiently small. 

3.3 Debugging capability 
The OCT solver generates log messages in XML format, 
enabling automated post-processing and debugging of 
non-convergence. OCT provides a dedicated Python 
package that facilitates parsing of the log and extraction 
of the most relevant information. 

To further facilitate interactive non-convergence 
debugging, the framework includes a Python package 
that enables user interaction with the equation system 
from the Python console. The interactive features 
include temporary elimination of some of the iteration 
variables and residuals from the equation system, local 
residual and Jacobian analysis, etc. The interactive 
framework facilitates equation debugging and enables 
localization of the problematic residual equation (e.g., 
with local extrema or discontinuity). 

4 Component level examples 
4.1 Combustor 
The combustor or burner is a key component for gas 
turbine simulation. It models the injection of a fuel 
stream into a gas stream, and its partial or complete 
combustion. It is usually modeled as a two-port or three-
port component, based on whether the fuel supply shall 
be modeled in a physical way (e.g., solving mass flow 
rates from pressure differences and correlations of wall 
friction) or simplified. In case of the latter, no physical 
fluid connector is used for the fuel supply. Instead, 
parameters or signal inputs are used to specify fuel 
supply information. In the case of the former, a physical 
fuel connector with complete information on convective 
transport quantities such as pressure, mass flow, 
composition, and specific enthalpy is included, and 
physical pipe or boundary condition models are 
connected to the burner. Independently of the modeling 
abstraction of the fuel supply, the gas inlet and outlet of 
the combustor are always normally modeled with 
physical connectors in the Jet Propulsion Library. 
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Engineering activities call for some flexibility in the 
modeling of such combustors. One aspect relates to the 
prescription of fuel flow. The most basic ways of 
prescribing the latter are to prescribe either the 
dimensional fuel flow (in units kg/s or a non-SI 
counterpart) directly, or the non-dimensional fuel-to-air 
ratio (“FAR”). Following the “thermodynamic 
matching” principle, upon evaluation of the combustor 
model equations, a guessed or correct air flow rate 
entering the combustor will be known. Thus, it is 
straightforward to compute the dimensional mass flow 
rate of fuel from FAR in case of the latter, and both are 
equivalent from a computational order principle. 
“Thermodynamic matching,” then, prefers the usage of 
non-dimensional FAR over dimensional fuel flow rate 
because of its higher robustness against variations in gas 
turbine requirements/size. (As the gas turbine becomes 
larger, the air flow rate increases. To compensate, an 
increase in fuel flow is required to maintain otherwise 
unchanged conditions, which is already accounted for 
when using FAR as iteration variable and not accounted 
for when using dimensional fuel flow as iteration 
variable.). 

However, the user typically wants to prescribe fuel 
flow or FAR indirectly via combustor outlet temperature 
(so-called “T4”), net thrust, etc. With this 
implementation, it is possible to switch between these 
prescriptions while iterating on commonly preferred 
FAR by switching out residual equations (that enforce 
equality of T4, net thrust, etc.). 

To enable switching between different equation 
systems for on-and off-design, similar functionality was 
implemented in the compressor. 

4.2 Compressor 
The compressor usually receives mechanical power 
from a shaft and converts it into thermofluidic power by 
compressing the entering gas – as its name indicates. 
Following the air flow path, it is typically located before 
the burner and the turbine and is aimed at bringing the 
gas to a higher pressure. It is modeled in the Jet 
Propulsion Library as a two-port component – it can also 
include vectorized bleed ports if desired – and uses maps 
to define the compressor performance. While the 
compressor is modeled in a physical way, its map is 
purely an algebraic abstraction of the performance that 
enables solving the compressor models in a more robust 
way. 
For the compressor, the library includes a model of the 
R-line map. R-lines are sets of curves that can be parallel 
to the surge line and evenly spaced among each other. 
The use of such an artificial interpolation to coordinate 
R-lines (sometimes also called argument lines or beta 
lines) ensures unique results in the regions of low 
corrected air flow, where pressure ratio is almost a 
constant and regions of constant air flow towards the 

highest air flow region for a given speed line (avoiding 
table look-up along vertical or horizonal tangents). 

The performance map is a good example of how on- 
and off-design sets of equations are different and how 
the Physics-based Solving is well suited to this 
workflow: 

- For on-design simulation, the scaling factors of 
the map are computed based on the design point 
performances.  

- For off-design simulation: 
o These scaling factors shall now be fixed 

parameters and therefore are held constant 
during the simulation, and the equations that 
defined them are hidden to the solver. 

o The off-design operating points and surge 
margin are an output of the map and are 
computed based on the off-design point 
definition. 

 
For both simulation modes, the R-line is an iteration 
variable that is associated to a residual equation that 
enforces the corrected air flow from the map to be equal 
to the physical airflow computed in the compressor. 

5 Optimization of a jet engine – a 
system example 

5.1 System under study 
In this part, the optimization of a jet engine (also 
described as cycle model in the literature – due to the 
importance of thermodynamics effects) is discussed. 
The architecture selected and objectives for the 
parameter values are based on [SIE19] in which the 
technology investigated corresponds to an Entry-into-
Service in year 2035 for geared turbofan engine. 

A geared turbofan is shown in Figure 4. It usually 
includes one inlet fan that can be divided into a center 
part that supplies the flow for the core region (fanCore) 
and a coaxial outer section that supplies air for the 
bypass (fanByp). The center part of the engine includes 
two compressor stages (ipc and hpc), the combustion 
chamber or burner (brn), and the turbine consisting of a 
high-pressure section (hpt) and a low-pressure section 
(lpt). There are two nozzles at the outlet, one for the 
bypass (nozByp) and one for the center part (nozCore). 
A gearbox (gear) between the turbine and the fan allow 
different rotational speed (e.g., for optimized efficiency 
of each section). It enables a design in which the speed 
of the inlet fan with its large blades is reduced and the 
compressor and turbine can be operated at higher 
speeds. 
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Figure 4. Cross-section view of a geared turbofan design 

 
Figure 5 presents the associated model of this geared 

turbofan developed using Modelon Jet Propulsion 
library. 

On the left of the schematic, the air flow enters the 
gas turbine via an inlet. Eventually, it is split into the 
core flow (through combustor and turbines) and bypass 
flow. The bypass flow terminates, after the bypass side 
of the fan and a duct model, with the bypass nozzle. The 
core flow passes through the usual set of compressors, 
the burner, and the usual set of turbines. The 
connections on the top of the compressor and turbine 
components represent the bleed air flow. Air is extracted 
from the high-pressure compressor both for customer 
uses (routed to boundary custBld) and to cool the high-
pressure and low-pressure turbines. At the bottom of the 

compressors and turbines, the mechanical shaft 
connections are made. The high-pressure spool and the 
low-pressure spool with fan gear are shown. Eventually, 
the core flow is disposed of via the core nozzle. Analysis 
overview 
In order to achieve a proper design of the cycle, a set of 
simulations on several operating points has been 
performed. The scheme involves the following steps: 
• Converging a simulation for the design point 
• Extracting the gas turbine sizing and initialization 

data for use in off-design points (see [BEC15] for 
more details on this) 

• Creating a simulator instance for all off-design 
points (e.g., cruise and take-off) 

 
We exemplify the need for iteration described in 

Figure 1 via the definition of cooling flows to be 
extracted from the high pressure compressor to the high 
pressure turbine and low pressure turbine (see above 
cycle description). Typically, they must be set to some 
approximate value on the design point, and then the 
resulting turbine blade metal temperatures must be 
computed in all off-design cases (so-called “uniform 
blade temperatures” in gas turbine parlance). In order to 
enforce a maximum temperature across all cases, the gas 
turbine designer must iterate on the cooling flow 
fractions on the design case until all temperature 
constraints are met.  

 

 
Figure 5. Architecture of the geared turbofan to optimize
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5.2 Cycle missions and simulation modes 
In [ZHA19], a slight variant of the above-shown geared 
turbofan model was investigated for a A320-200 type 
aircraft. The model setup was replicated for this effort. 
[SIE19] provides data on the accuracy of the resulting 
data match. The general missions presented in this 
communication are listed in Table 1, below. 

 Top of 
climb Cruise Take-off 

Thrust 24 kN 18 kN 92.5 kN 

Day type ISA ISA 
Hot day 
(ISA+15 

K) 

Altitude 35000 ft 35000 ft 0 ft 

Mach 
Number 0.78 0.78 0.25 

Type On-Design Off-Design Off-Design 

Table 1. Cycle design missions 
The design point in the missions under study is the 

“Top of Climb” – i.e., it is aerodynamically the most 
constraining mission point for the sizing of the gas 
turbine, optimizing its specific fuel consumption (SFC), 
while keeping the uniform blade temperature (UBT) 
below 1240°C. Note that the SFC corresponds to the 
ratio between the fuel consumption and the thrust of the 
jet engine. Nevertheless, the other missions are relevant 
to include as they represent the points with highest thrust 
requirement (take-off) and longest duration (cruise, thus 
driving overall mission block fuel consumption). 

5.3 Cycle design, results and discussions 
For the geared turbofan under study and modeled with 
Modelon Jet Propulsion library, the overall pressure 
ratio (OPR) technology variable was set to 55, which is 
a relevant order of magnitude for a 2035 technology. 
Overall pressure ratio is the product of all fan and 
compressor pressure ratios, and a key technology 
variable as it increases the thermal efficiency of the 
cycle. A manual convergence was achieved by varying 
the above-mentioned cooling flows on the design point, 
and all temperature criteria were eventually met for the 
different mission profiles. 

In a second step, in a small design space exploration 
exercise, the OPR was varied down to 50 and up to 60 
(however, the manual convergence of cooling flows and 
temperatures is not included in the analysis). Figure 6 
shows a key cycle design result: the specific fuel 
consumption (SFC) versus the OPR. 

 
Figure 6. Design exploration, SFC v/s OPR 

Figure 6 shows how the specific fuel consumption 
improves with increasing OPR. The most relevant line 
is the orange one, which is weighed highly in the total 
mission block fuel. From this plot alone, we would be 
tempted to directly move to even higher OPR values to 
leverage the fuel consumption improvement. However, 
upon reviewing results on other key variables (the 
above-described temperatures), we see that further 
manual convergence work is required to yield the 
complete picture. 

In Figure 7 we see the corresponding results. Based 
on material and cooling technology constraints, the 
uniform blade temperature (UBT) shall remain below 
1240 K. The manual convergence was applied at OPR 
55 and yields exactly these or lower values for all 
operating conditions and turbines. Figure 7 shows how 
the UBT varies within the design exploration. 

 
Figure 7. Design exploration, UBT v/s OPR 

Keeping the cooling flow fractions constant results in 
violation of temperature constraints on turbine blade 
metal temperatures. This convergence would have to be 
achieved not only for an OPR of 55 but for all the OPR 
values to avoid dropping with UBT below acceptable 
temperatures at lower OPR (leaving unused efficiency 
potential on the table) and going beyond acceptable 
UBT at higher OPR (and thus resulting in an infeasible 
design). This plot thus illustrates the need for iterations 
on the flow fractions when sizing a cycle model. 
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To illustrate the challenge further, the variation in 
velocity ratio and specific thrust are plotted respectively 
in Figure 8 and Figure 9. To yield a balanced and 
efficient design, the gas turbine designer intends to 
maintain these at specific values, which lead to high 
efficiency [KYP17]. These values would have to be 
included in the manual convergence, too, and illustrates 
the complexity of the required analysis work. 

 
Figure 8. Design exploration, VR v/s OPR 

 
Figure 9. Design exploration, ST v/s OPR 

Figures 5 to 8 illustrate how robustly the steady-state 
cycle analysis problems can be solved with the new 
Physics-based Solving functionality. This analysis is 
enabled by the functionality introduced above, such as 
for the extraction of solutions from one simulation for 
the initialization of another. At the same time, the 
figures also illustrate how a full optimization of the 
cycle design for given objectives requires observing and 
satisfying constraints, which, based on problem 
complexity, can be tedious. This observation indicates a 
potential next step in our work – to implement automatic 
multi-point design techniques to solve the above-
described consistency via the already-used equation 
solver across the design point and all the off-design 
points. This is an ongoing development that is beyond 
the scope of this paper, and it will be described in a 
future publication. 

6 Conclusion and perspectives 
This paper discussed how the Modelon products 

enable suiting the design workflow of a typical cycle 
model. This simulation was made possible by properly 
addressing the technical requirements for following 
such a workflow and developing a dedicated Physics-
based Solving design in the library to meet these 
requirements. Additionally, Modelon Optimica 
Compiler Toolkit as well as pyFMI and FMIT products 
are enablers for this workflow. Illustrations of this 
statement were performed in component and system 
level examples. 

While this paper addresses the complexity of gas 
turbine design and illustrates the benefit of Modelon 
dedicated products, it also touches the multi-point 
design problem without covering it in the examples.  
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Abstract
In this paper the focus is on a particular type of con-
verters that is the two-level VSC (DC/AC Voltage Source
Converter). In this category the averaged model and the
switching model of an half-bridge converter are consid-
ered. The half-bridge is a building block for multiphase
and multilevel converters.

The implementation of the two models of half-bridge
converter using Modelica language is described with the
structure of the package developed in Dymola. Different
control strategies are introduced showing different behav-
ior of the models in the simulations. The goals of this pa-
per are several. First of all the modeling choice was to use
Modelica for this type of work, that is traditionally car-
ried out with domain specific tools, to show that it is pos-
sible to perform implementation and studies in the same
field where traditional commercial softwares have been
commonly and extensively used, with additional benefits
that the language provides. In addition to that, this paper
shows that the control design studies for an half-bridge
converter, typically performed using averaged value mod-
els, can result in a set of control parameters values that
are not successfully applicable to switching models of the
same power electronic device.
Keywords: VSC converters, half-bridge, averaged model,
switching model, STATCOM, Modelica, Dymola, PI con-
trol, lead compensator, lag compensator, resonant control

1 Introduction
1.1 Motivations
With the enhancements of power semiconductors the ap-
plication of power electronics has been extended from
traditional domestic and industrial applications to elec-
tric power systems. The power-electronic converters for
power systems are used especially for power compensa-
tion and power filtering. Such converters consist of a
power circuit realized through different configurations of
switches and passive components coupled with a control
system (Yazdani and Iravani, 2010).
In the past, the applications of power-electronic converter
systems in electric power systems were limited to the
HVDC (High Voltage Direct Current) transmission sys-
tems and static reactive power compensators like SVC
(Static Var Compensator). With time the application ar-

eas for generation, transmission and distribution of elec-
tric energy have been extended for several reasons. The
main incentives are represented by:

• Continuosly growing development of power elec-
tronics technology for electric power systems

• Development of signal processing and control strate-
gies

• Issues with power line congestions

• Growing of energy consumption leading to the uti-
lization of the existent electric infrastructure at its
technical limits (stability issues)

• Increasing penetration of renewable energy sources
due to the economic feasibility and to environmental
concerns

The use of power-electronic converters in power systems
is also motivated by the need to improve the efficiency
and reliability of the existent electric infrastructure for in-
tegrating large scale renewable energy sources and storage
systems.
The main applications of power-electronic converters in
power systems are:

• Active filters: they synthesize and inject specific
components of current or voltage into the grid to im-
prove the power quality (Rashid, 2017)

• Compensation: the aim is to improve the power
transfer capability of the lines, the voltage stability,
the power quality. In this category we have the STAT-
COM (Static Synchronous Compensator). The func-
tion of the STATCOM is to act as power compen-
sator by injecting or absorbing reactive power from
the grids (see Figure 1).

• Power conditioning: the idea is to allow for a power
exchange between two electrical systems under con-
trol to meet specific requirements like frequency,
voltage magnitude, etc. (Maza-Ortega et al., 2017)

This paper focuses on the implementation and design
of a simple power electronic DC/AC converter, the half-
bridge. The first modeling choice is to use Modelica for
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Figure 1. Behavior of the STATCOM as compensator (reactive
power Q1 injection and reactive power Q2 absorption).

this type of work that is traditionally carried out with do-
main specific tools. In contrast with the current practice,
the use of a modern object-oriented equation based pro-
gramming language like Modelica allows to show that it
is possible to perform implementation and studies in the
same field where traditional commercial softwares have
been commonly and extensively used, with additional ben-
efits that the language provides. The models used in this
paper have been chosen on purpose from the literature
(referenced in the bibliography) to show that it is possi-
ble to obtain comparable results with this alternative tool
instead of the classical PSCAD, etc.; and so that a reader
from the power engineering community can quickly real-
ize the value of the Modelica approach.

1.2 Previous Works

Modeling of power electronic converters in Modelica has
been described in previous studies like (Haumer and Kral,
2011). It is a very informative work and it provides a very
thorough description for an active front end converter with
PWM (three phase AC/DC converter), however, from the
authors point of view it requires that the reader is already
quite familiar with Modelica. The paper also deals with
an example more appropriate for engineers in the area of
machine drives. The aspect of the synchronization of the
control of the inverter to the grid voltage, discussed in
(Haumer and Kral, 2011), would require the implementa-
tion of a PLL (Phase-Locked Loop) component that is part
of the on-going work of the authors for a three-phase full
STATCOM model. The main objective of this paper is to
use the application illustrated as the starting point for the
implementation of more complex power electronics mod-
els and it is focusing more on the differences of a couple
of output current control strategies and tuning depending
on the considered model of the half-bridge converter if av-
eraged or switching.
In power system analysis studies, different levels of mod-
eling detail are used to represent the converter switches.
This is because when simulating a large number of
switches, for example in modular multilevel converters,
even ideal switches will lead to very large simulation time.
Hence, different modeling approaches to represent each
module (i.e. switches) are used (Saad et al., 2016). In this
paper the switching behavior of the switches is considered
ideal. This means that they can be turned off or on instan-
taneously. In reality a switch, combination of a transistor

and its anti-parallel diode, cannot be turned on and off in-
stantaneously. Those processes require a so called dead
time or blanking time during which the signal to the gate
of the switch is set to zero to reach the complete on or off
condition. In other words the switching devices have finite
turn-on and turn-off delays (Zammit et al., 2016). This
is necessary because if we consider the leg of the half-
bridge converter, as in this paper, if one switch has not
yet completed the turn-off process and, at the same time,
the other switch is turned-on then a shoot-through failure
(short-circuit current through the leg) can happen damag-
ing the converter (De Doncker et al., 2010). The dead time
introduces a non-linearity which causes distortion in the
output voltage and current (Zammit et al., 2016).
Another example of half bridge converter implementation
using Modelica is given in (Winter et al., 2015) where a
DC/DC converter, extensively used in the automotive in-
dustry, is considered. An averaged model of the converter
is taken into account and the study covers aspects like con-
verter losses in addition to a validation versus a SPICE
model.
In (Olenmark and Sloth, 2014) an investigation about the
implementation of different control strategies for power
electronic converters has been performed in Modelica
with the software tool Dymola, the same used in this pa-
per. However, a different tuning method for PI controllers
is implemented in this paper. It is the lambda method de-
scribed in (McMillan et al., 1999), (Pruna et al., 2017) and
usually applied in several industrial processes.

1.3 Contributions
In this paper a simple power electronic system has been
chosen as the basis for more complex power electronics
devices such as a three-phase STATCOM. One of the goals
of the authors is to illustrate to the power engineering com-
munity the value of adopting Modelica, and consequently
our approach attempts to make emphasis on how Model-
ica can be used for typical control design tasks considering
that the reader is not so familiar with Modelica. For ex-
ample, the simple use of records serves to illustrate how to
use them for control design and not only provide param-
eter data. Because the community in North America that
uses Modelica is still developing, the authors believe that
this paper can provide a good instructional value to the
readers, especially since we are making the models avail-
able on GitHub 1.
The modeling approach was based on using the Model-
ica Standard Library to build all the components with dia-
gram blocks similarly to a tool like PSCAD and Simulink.
One of the advantages of using Modelica and the Mod-
elica Standard Library is that the developed models can
work in different software environments like OpenModel-
ica, Dymola, Wolfram SystemModeler, SimulationX, etc.
without the need to load external third party libraries. This

1https://github.com/ALSETLab/Modeling-Control-Design-Power-
Electronics-Half-Bridge-Converter-Modelica
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is impossible with the current tools used by the power en-
gineering community.

2 Half-bridge converter applications
and modeling

In this section the authors present the typical modeling
approaches used to represent the half-bridge converter,
which will be implemented in the next section. This con-
verter can be seen as basic building block used to model
more complex power electronics systems. As an example
consider a STATCOM connected to the AC grid as shown
in Figure 2. The whole system includes the DC/AC con-
verter, the control system, the transformer and the heat
exchanger. The DC/AC converter and the control system
in this STATCOM are built from a basic half-bridge topol-
ogy. Hence, in this paper, the main goal is to derive an
implementation of the basic topology needed to build a
full STATCOM converter (see Figure 3).

Figure 2. Connection of the STATCOM to the AC grid.

In other words, the system considered in this project is
the first step in developing a 3-phase, three-wire, two-level
VSC converter that can represent a STATCOM. The half-
bridge is the basic building block needed to implement ei-
ther three phase VSC’s through parallel combination (see
Figure 3) or multimodule VSC converters through paral-
lel/series combination.

The two models of the half-bridge converter of this pa-
per are represented in Figure 4 and Figure 5. They also
include a resistance in series to each switch (current gener-
ator in Figure 4 and transistor in Figure 5) representing the
non ideal effect of the on-state resistance of the switches.

The two models have been implemented using Model-

Figure 3. Half-bridge converter as building block of a three
phase VSC converter.

Figure 4. Averaged equivalent circuit of the half-bridge con-
verter.

Figure 5. Switching equivalent circuit of the half-bridge con-
verter.
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ica language in the software environment Dymola. Model-
ica is an open-source object oriented language that is suit-
able for multidomain modeling of physical systems (Van-
fretti et al., 2013).
If we look at Figure 4, the dynamics of the AC current i,
that is the output of the system, can be described by Equa-
tion (1).

L
di
dt

+(R+ ron)i =Vt (1)

In Equation (1) R and L are the parameters of the AC
system to which the converter is connected to and ron is
the on-state resistance of each switch of the converter. A
switch is represented in this case by an equivalent current
source (see Figure 4) that is not ideal because of the pa-
rameter ron. For the analysis of this system ron is lumped
with the resistance R. From Equation (1) we can consider
the AC current i as state variable and Vt = mVDC/2 as our
control input since it can be changed by varying m, the
modulating signal.
A block diagram of the system represented by Equation
(1) is given in Figure 6 (Yazdani and Iravani, 2010).

Figure 6. Block diagram of the AC side of the half-bridge con-
verter.

3 Modelica model design and imple-
mentation

The objective of this paper is to implement the two models
of the half-bridge converter in Modelica. The structure
of the package created to model all the components and
systems is given in Figure 7. The different averaged and
switching models with and without controls are listed at
the top of the package HalfBridgeConverter. The first two
models of the list are the switching and averaged models
without controls, the second couple of models represents
those with a PI controller and the third couple of models
represents those with a modified control strategy. A record
package is used for tuning the PI controller through the
lambda method. Given the input parameters of the system
in the Plant record, the calculations of the PI parameters
are performed by the formulas in the PI_Lambda record
and the results are stored into the PI_par record used
to set the values of the PI controller parameters. The
package Components contains all the components used in
the models listed at the top of the HalfBridgeConverter
package. The components are created by using only the
Modelica Standard Library.

Figure 7. Modelica package for the models of this paper.

Another task of this paper regards the regulation of the
output current i of the open-loop system in Figure 6 to a
specified reference signal.

3.1 Modelica implementation
The first step consisted of modeling the system in the two
versions without any control. The averaged model of the
half-bridge converter in Figure 4 is represented in Figure
8.

The switching model of the half-bridge converter in
Figure 5 is represented in Figure 9.

Each switch encapsulates another block diagram (see
Figure 10 and Figure 11).

It should be noticed that for the averaged model the
gates and their signals in Figure 8 and Figure 10 are not
in use but they are already implemented for the switching
model of the half-bridge converter in Figure 5. This will
make easy to change the type of converter in the model
of the whole system by simply changing the class of that
component using the Modelica feature of replaceable.
The whole systems are then modeled as in Figure 12 and
in Figure 13. The same systems with a PI controller are
given in Figure 14 and in Figure 15. The output current
ripple of the switching models in Figure 13 and Figure 15
can be reduced by introducing a capacitor in parallel to the
series of resistance and inductance on the AC side of the
converter.

The block of the controller in Figure 14 and Figure 15
is represented in Figure 16 and it includes the PI compen-
sator in Figure 17.

Finally the systems with a more elaborated control
strategy still look like as in Figure 14 and Figure 15 but
in this case the controller block is represented in Figure
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Figure 8. Block diagram of the averaged model of the half-
bridge converter.

Figure 9. Block diagram of the switching model of the half-
bridge converter.

Figure 10. Block diagram of switch1 in Figure 8.

Figure 11. Block diagram of switch1 in Figure 9.

Figure 12. Block diagram of the system with the averaged
model of the half-bridge converter without any control.

Figure 13. Block diagram of the system with the switching
model of the half-bridge converter without any control.
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Figure 14. Block diagram of the system with the averaged
model of the half-bridge converter with PI control.

Figure 15. Block diagram of the system with the switching
model of the half-bridge converter with PI control.

Figure 16. Block diagram of the controller in Figure 14 and
Figure 15.

Figure 17. Block diagram of the PI compensator contained in
the controller block of Figure 16.

18.

Figure 18. Block diagram of the controller with modified strat-
egy for both the averaged and switching model.

In Figure 18 there is a gain and three blocks of trans-
fer functions that have been added for this new control
strategy. The three transfer functions correspond to a lead
compensator, a lag compensator and a resonant control.
This modification of the controller has been introduced be-
cause with only a PI controller it is not possible to track
a sinusoidal reference waveform without error but only a
step reference signal (Yazdani and Iravani, 2010).

3.2 Control design of the PI for the averaged
model of the half-bridge converter

The control of the output current can be obtained by creat-
ing a closed-loop including a controller that takes as input
an error signal generated by the difference between the
output current i and a reference current ire f . The block
diagram of the described closed-loop system is given in
Figure 19.

Figure 19. Block diagram of the closed-loop system with the
half-bridge converter and a controller.

From Figure 19, the compensator K(s) takes as input
the error signal e and gives as output the signal u that is
divided by VDC/2 to compensate for the voltage gain of
the converter since Vt = mVDC/2. In addition to that, the
modulating signal m must satisfy |m| ≤ 1 so the Saturation
block has been introduced in the block diagram.
Depending on the reference signal and the performance
to match different compensators may be used. If the ref-
erence signal ire f is a step function then a proportional-
integral (PI) compensator can be considered for control
purposes. Its generic descriptive expression is:

K(s) =
kps+ ki

s
(2)

From Equation (2) and Figure 19 the open-loop transfer
function of the system can be derived:

Gopen(s) = K(s)G(s) =
(

kp

Ls

)
 s+ ki

kp

s+ R+ron
L


 (3)
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From Figure 6 it is possible to see that the open-loop
system has a stable pole at p = −(R + ron)/L. In gen-
eral, considering the typical values for R, ron and L, the
pole p is quite close to the origin giving a slow natural re-
sponse. So to improve the open-loop frequency response
the pole p can be cancelled by the zero of the PI compen-
sator. Then, from Equation (3), it is possible to choose
for the compensator ki/kp = (R+ ron)/L and kp/L = 1/τi
where τi is the desired time constant of the closed-loop
system. With the previous choices the transfer function of
the closed-loop system becomes:

Gclosed(s) =
K(s)G(s)

1+K(s)G(s)
=

i
ire f

=
1

τis+1
(4)

The time constant τi should be small enough to have a
fast response of the current control. But it has also to be
considered that 1/τi should be smaller than the switching
frequency of the half-bridge converter. Considering the
mentioned aspects τi is usually in the range 0.5−5ms and
it can vary depending on the specific application of the
converter and its switching frequency (Yazdani and Ira-
vani, 2010).

4 Simulations
The analysis of results can start by considering as refer-
ence input of the half-bridge converter a step function with
a step of amplitude 50A applied at 0.1s. From Figure 12
we can just replace the sinusoidal source with a step block
that is used to calculate the duty cycle d necessary for the
modulation factor m (m = 2d − 1) that is one of the in-
puts of the block halfBridgeConverter. The output of the
halfBridgeConverter is connected to the AC system char-
acterized by the components R and L. The current sensor
in series with R and L is used to measure the AC output
current i that is fed back as input of the halfBridgeCon-
verter and that will be controlled in the following steps.

As application example, we can consider the following
parameters values (Yazdani and Iravani, 2010):

• L = 690µH

• R = 5mΩ

• ron = 0.88mΩ

• τi = 5ms

Applying these parameters to the system in Figure 12
we can run a simulation and plot the step input and the
output AC current of the system. The results are in Figure
20.

As we can see from Figure 20 the AC output current
does not track the step input. The final value of the output
AC current is much higher than the step input.
Then a PI compensator is introduced. From the parameters
previously defined, we can derive kp = L/τi = 0.138 and

Figure 20. Plot of the step input (blue curve) and AC output
current (red curve) of the system with averaged model without
controls. Due to the difference of magnitudes between the two
curves the step of 50A cannot be seen in the figure.

Figure 21. Plot of the step input (blue curve) and AC output
current (red curve) of the system with averaged model with PI
controller.
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ki = kp(R+ ron)/L = 1.176. We can run a new simulation
and the results are illustrated in Figure 21.

From Figure 21 we can see that now the system is able
to settle at a final value corresponding to the step input
value by using a PI controller. The initial negative over-
shoot of the current is due to the initial conditions of the
system.
If we now consider the same conditions for the system
with the switching model of the half-bridge converter, ap-
plying the same step without controls we get the results in
Figure 23. Introducing the same PI control of the previ-
ous case we get the results in Figure 24. The value of the
capacitance C at the output of the switching model of the
converter can affect the output current ripple. There are
also other requirements that need to be met, for example,
the admissible voltage ripple on the load and a reasonable
value of the capacitance C. An example is shown in Figure
22 where the switching model of the half-bridge converter
without any control has been used. It shows the impact of
the variation of the capacitance on the output current.

Figure 22. Plot of the AC output current of the system with
switching model without controls for different values of the out-
put capacitance C.

Figure 23. Plot of the step input (blue curve) and AC output
current (red curve) of the system with switching model without
controls. Due to the difference of magnitudes between the two
curves the step of 50A cannot be seen in the figure.

Figure 24. Plot of the step input (blue curve) and AC output
current (red curve) of the system with switching model with PI
controller.

From Figure 20 and Figure 23 we can see that with-
out any control the output current is not able to track the
step reference either with the averaged model or with the
switching model. Introducing a PI controller, from Figure
21 and Figure 24, the results are better even if we have a
large negative overshoot for the system with the averaged
model of the half-bridge converter and some oscillations
of the output current at the initialization of the system with
the switching model when the step is applied.
The next test consists of changing the source of the ref-
erence signal with a sinusoid of amplitude 1000 and fre-
quency 60Hz starting at t = 0.07s. Running a simulation
we get the results in Figure 25 for the system with the
switching model without any control.

Figure 25. Plot of the sinusoidal input (blue curve) and AC out-
put current (red curve) of the system with the switching model
without controls.

For the system with the averaged model without any
control we get the results in Figure 26.

From Figure 25 and Figure 26 the behavior of the sys-
tems with the switching model and the averaged model
without any control looks very similar but not able to track
the reference signal.
When introducing the same PI controller with the sinu-
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Figure 26. Plot of the sinusoidal input (blue curve) and AC
output current (red curve) of the system with the averaged model
without controls.

soidal reference signal we get the results in Figure 27 for
the system with the switching model and the results in Fig-
ure 28 for the system with the averaged model.

Figure 27. Plot of the sinusoidal input (blue curve) and AC out-
put current (red curve) of the system with the switching model
with PI controller.

From Figure 27 and Figure 28 we can see that the be-
havior of the system is better with the averaged model of
the half-bridge converter than with the switching model.
They both present errors in amplitude and phase compared
to the reference but the averaged model looks like more
aligned with the reference.
Then introducing a more elaborated control strategy de-
scribed in 3.1 a new simulation with the sinusoidal refer-
ence can be performed. The results for the system with the
switching model are in Figure 29 and for the system with
the averaged model in Figure 30.

From Figure 29 and Figure 30 the behavior of the sys-
tem with the switching model is better than the one with
the averaged model since the tuning of the control param-
eters has been performed on the switching model.
In order to get a similar behavior of the system with the av-
eraged model, like in Figure 31, the gain of the controller
has been increased from a value of 8680 to 450000.

Figure 28. Plot of the sinusoidal input (blue curve) and AC
output current (red curve) of the system with the averaged model
with PI controller.

Figure 29. Plot of the sinusoidal input (blue curve) and AC out-
put current (red curve) of the system with the switching model
with modified controller.

Figure 30. Plot of the sinusoidal input (blue curve) and AC
output current (red curve) of the system with the averaged model
with modified controller.
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Figure 31. Plot of the sinusoidal input (blue curve) and AC
output current (red curve) of the system with the averaged model
with modified controller.

The voltage distortion due to voltage drop at grid’s R-L
due to non-sinusoidal currents of switching converter has
not been shown because the focus of the paper is on the
control of the output current of the half-bridge converter.
There are also other aspects that can be analyzed starting
from what has been presented like voltage distortion, THD
content, other control strategies and so on. They can be
studied in a future work.

5 Further Work and Conclusions
The modularity of blocks of components and records
allows for an easy reuse in different models. This allowed
to run simulations very quickly. One of the objectives of
this paper is to communicate to the power system analysts
the benefits of Modelica language features, such as the
replaceable and redeclare features. In most power system
tools, the user would have to set up different system
models when using different representations. In future
work, the authors plan to illustrate how we can use these
features by changing from detailed component models,
to the ideal switches, to the averaged value model.
Simplifying model development and management.
The simulations show that the introduction of a feedback
control improves the reference tracking. A specific
combination of control parameters can work for a system
with the switching model of the half-bridge converter but
not for the one with the averaged model or viceversa. This
will also be the case if we consider a more detailed or less
detailed model of the switches, which will be illustrated in
a future work. So for the tuning of the controls other tools
can be considered for the estimation of their parameters.
Other control strategies can be analyzed, for example, to
reduce the initial overshoot of the output current of the
system with the averaged model of the half-bridge or the
initial oscillations of the system with the switching model.
They represent an additional stress for the components of
the converter.
The implementation of a three-phase converter will

follow this work that is an initial step. So different control
strategies can be taken into account for this more complex
case.
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