
Surrogate and Hybrid Models for Control

Bernt Lie

University of South-Eastern Norway, Porsgrunn, Norway, Bernt.Lie@usn.no

Abstract
With access to fast computers and efficient machine learn-
ing tools, it is of interest to use machine learning to de-
velop surrogate models from complex physics-based mod-
els. Next, a hybrid model is a combination model where
a data driven model is built to describe the difference
between an imperfect physics-based/surrogate model and
experimental data. Availability of Big Data makes it pos-
sible to gradually improve on a hybrid model as more data
become available. In this paper, an overview is
given of relevant ideas from model approximation/data
driven models for dynamic systems, and machine learn-
ing via artificial neural networks. To illustrate how the
ideas can be implemented in practice, a simple introduc-
tion to package Flux for language Julia is given. Several
types of surrogate models are developed for a simple,
illustrative system. Finally, the development of a hybrid
model is illustrated. Emphasis is put on ideas related to
Digital Twins for control.
Keywords: Digital Twin, surrogate models, hybrid mod-
els, dynamic systems, control

1 Introduction
Digital Twin (El Saddik, 2018) is a key concept in Indus-
trie 4.0 (Hermann et al., 2016), and is related to Internet
of Things and Big Data. Here, a Digital Twin involves
static and dynamic models for various uses such as anal-
ysis, optimization, control design, operator training, etc.;
a modeling languages such as Modelica (Fritzson, 2015)
is suitable for describing such systems. Detailed models
may be too complex for optimization/control, and need to
be simplified, (Benner et al., 2017). A surrogate model1

is a simplified model that allows for fast solution, derived
from a more complex model. Surrogate models can be de-
veloped directly from physics, e.g., using weighted resid-
ual methods (Finlayson, 2014), or by fitting a mathemat-
ical structure to simulation data, (Luo and Chen, 2018),
(Cueto et al., 2016), (Bishop, 2011), (Murphy, 2012).

A mechanistic/surrogate model allows for analysis prior
to building the system, while a data driven model uses data
from the real systems for training. A hybrid model, in this
context, is an imperfect mechanistic based model where
the deviation between model prediction and experimental
data is described by a data driven model, (Farrell and Poly-
carpou, 2006). A hybrid model allows for analysis prior
to building the system, with gradual improvement of the

1Surrogate: from Latin subrogatus = substitute

model as more data becomes available.
Machine learning (ML) for control involves dynamics,

and is more demanding than ML for static systems, (Far-
rell and Polycarpou, 2006). Today, a multitude of tools
for machine learning are available, e.g., TensorFlow2 with
interfaces to many scientific computing tools. Languages
MATLAB3, Python4, Julia5 (Bezanson et al., 2017), etc.,
have their own ML packages, e.g., Flux for Julia (Innes,
2018). Tools for solving mechanistic models include
OpenModelica6, the DifferentialEquations package for Ju-
lia (Rackauckas and Nie, 2017), etc. OMJulia allows for
integrating Modelica code with Julia, (Lie et al., 2019).
For data driven models, regularization and validation is
important (Boyd and Vandenberghe, 2018).

This paper gives an overview of traditional data driven
modeling principles, with relations to ML ideas, and give
examples of how to use a free ML package (Flux for Ju-
lia). Surrogate and hybrid models are illustrated through
an academic example. This way, core ideas of machine
learning for surrogate and hybrid models are introduced
with practical demonstrations of how to use simple, free
tools.

In Section 2, an overview of classical data driven mod-
eling principles is given. In Section 3, artificial neural net-
works are related to the classical principles. In Section 4,
the ideas of surrogate models and hybrid models are il-
lustrated on a concrete example. A brief discussion with
conclusions is given in Section 5. Practicalities such as
validation, pre-processing of data, etc., are very important
for data driven models; due to space limitations, these top-
ics are not discussed thoroughly here.

2 Data Driven Modeling Principles
2.1 Data and Input-output Mapping
We consider a mapping from an input vector (input node)
x ∈ X ⊆ Rnx to an output vector (node) y ∈ Y ⊆ Rny .
With Nd available data pairs (xi,yi) xi ∈ X and yi ∈ Y ,
we organize these data in two matrices Xd ∈ Rnx×Nd and
Yd ∈Rny×Nd . We then seek a mapping y = f (x) from these
data.

The input data vector x is often extended into a feature
vector ϕ (x) ∈Rnϕ ; ϕ (x) is also known as a regressor vec-

2https://www.tensorflow.org/
3https://www.mathworks.com/
4https://www.anaconda.com/
5https://julialang.org/
6www.openmodelica.org
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tor. A common strategy is to postulate that f (x) can be
expressed as a linear combination of the feature vector,

y = f (x) = θϕ (x)+ e, (1)

where e is some error. Here, θ ∈ Rny×nϕ is a matrix; in
other models, θ may be a vector or an ordered collection
of objects; the shape of θ will be clear from the context.
A predictor ŷ for y is ŷ = θϕ (x), where it is assumed that
e does not contain valuable information.

Some examples of feature vectors: (i) the identity
function, ϕi (x) = xi with nϕ = nx, (ii) polynomials, for
nx = 1: ϕi (x) = xi−1, (iii) Fourier series, with nx = 1:
ϕ1 (x) = 1, i > 1 : ϕ2i (x) = sin

( 2πx
i

)
, ϕ2i+1 = cos

( 2πx
i

)
,

(iv) splines: zero order splines consist of a sequence of
non-overlapping, adjacent, single pulses. Higher order
splines are found recursively by integration.

With the given data set Xd, we form Φd , Φ(Xd) ∈
Rnϕ×Nd . Combined with 1, this leads to

Yd = θΦd +Ed. (2)

A common strategy is to find an estimate θ̂ such that the
squared errors Ed = Yd − θΦd are minimized, e.g., that
loss7 function L1 is minimized:

θ̂ = argmin
θ

L1 (3)

where :L1 = ∥Ed∥2
F (4)

and ∥·∥F is the Frobenius norm. Then Êd is orthogonal to
regressor Φd,

Êd ⊥ Φd ⇔ ÊdΦT
d = 0 ⇔

(
Yd − θ̂Φd

)
ΦT

d = 0 (5)

which is known as the normal equation.
The normal equation is linear in the unknown θ̂ , and

can easily be solved using linear algebra solvers. Com-
puter tools such as MATLAB, Julia, etc. find θ̂ by using
the slash operator, θ̂ =Yd/Φd. The slash operator applies
the Moore-Penrose pseudo inverse of Φd if Φd has a non-
trivial nullspace.

2.2 Case study: B-spline regressors
Consider the random data set (Xd,Yd) of Nd = 10 points in
the upper panel of Figure 1, with corresponding zero order
and first order splines.

The kth order mappings fk (x) are given as fk (x) =

∑
nϕ
j=1 yd, j · ϕ

(k)
j (x) where ϕ (k)

j is the kthorder spline at po-
sition x j. Interpolation is achieved by setting nϕ = Nd.
Regularly spaced Nd data points Xd corresponding to the
center of the splines results in interpolants as in the lower
panel of Figure 1. With noisy data, a least squares solution
with nϕ < Nd is used instead of interpolation.

7Loss of model accuracy; alternatively denoted cost.

Figure 1. Upper panel: Data set Xd vs. Yd (orange, circle +
dotted line), with chosen set of zero order splines ϕ (0)

j (x) (alter-
nating red, solid and dotted square pulses) and first order splines
ϕ (1)

j (x) (alternating blue, solid and dotted saw tooth shapes).
Lower panel: Data set Xd vs. Yd (orange, circle + dotted line), fit-
ted interpolation functions f0 (x) (red line) and f1 (x) (blue line).

Remark 1. Observe that the nϕ = 10 zero order splines
ϕ (0)

j (x), j ∈ {1, . . . ,10} given by the square pulses in Fig-
ure 1, one for each Nd = 10 of the data points in (Xd,Yd),
can be expressed by Nd +1 Heaviside functions (unit step
functions) Hξ (x) as

ϕ (0)
j (x) =Hxd, j− 1

2
(x)−Hxd, j+

1
2
(x)

where

Hξ (x) =

{
0, x < ξ
1, x ≥ ξ

.

The implication of this is that any scalar data set can be
expressed by Nd zero order splines, and can equally be
expressed by Nd + 1 Heaviside (unit step) functions. The
idea generalizes to nx > 1 and ny > 1. N

2.3 Regularization
Depending on the choice of regressors ϕ j (x), the result-
ing regressor matrix Φd may be well conditioned or ill-
conditioned. Choosing a high order polynomial mapping
often leads to an ill-conditioned problem. Ill-conditioned
problems can be handled by introducing additional infor-
mation; this is known as regularization. In regularization,
additional hyper parameters are introduced, and selected
by the user through validation

A common method to regularize the problem is by Prin-
cipal Component Regression (PCR), where the hyper pa-
rameter is the “practical rank” r. A related approach is
Partial Least Squares (PLS).

Another type of regularization method is based on multi
objective optimization, (Boyd and Vandenberghe, 2018),
with primary loss function L1 from Equation 4, and a
secondary loss L2. Examples of secondary loss functions
are: (i) L2 = ∥θ∥2

F (Tikhonov/ridge regularization, weight
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decay), (ii) L2 = ∥θ −θ ◦∥2
F where θ ◦ is some prior esti-

mate (similar to Bayes statistics), (iii) various measures
of the model solution such as L2 =

∥∥Ŷ − Ỹ
∥∥2

F (closeness
to a pre-specified solution ỹ), constraint in model slope

L2 =
∥∥∥ ∂y

∂x

∥∥∥2

F
, model curvature L2 =

∥∥∥ ∂ 2y
∂x2

∥∥∥2

F
, etc. We

then choose some positive weight λ (hyper parameter),
and create a modified loss function

L = L1 +λL2, (6)

where L is minimized for a number of hyper parameter
values λ . Finally, λ is chosen via validation.

We could also add constraints on the model as part of
the regularization, e.g., require that θ ⊆ Θ, Ŷ ⊆ Ỹ , etc.

2.4 Validation and generalization
It is common to fit/train multiple models from data, based
on a series of user selectable hyper parameters, Sec-
tion 2.3. Additional hyper parameters could be model or-
der, number of iterations in model fitting, etc. Choosing
hyper parameters is an optimization problem in itself; the
various hyper parameters are assessed by comparing their
primary loss function from training data (Xt,Yt) vs. from
fresh, validation data (Xv,Yv), (Boyd and Vandenberghe,
2018). When the model has been validated and hyper pa-
rameters have been chosen, a final grading of how well
the model generalizes is made from other fresh, grading
data

(
Xg,Yg

)
.8

For numeric reasons, all data sets should be pre-
processed by removing their mean. Furthermore, the data
should be scaled to have either

1. unit standard deviation (standardized data), or

2. variation in the region [−1,1] or [0,1] (normalized
data).

Missing data and outliers should be removed, replaced by
interpolation, etc.

2.5 Nonlinear mappings
As a slight generalization of the linear mapping with basis
functions, we can define predictors

ŷ = θΦ(x;ω)

where θ is a linear model parameter and ω is a nonlin-
ear model parameter. Examples could be spline functions
with parametric location and width, Gaussian functions
with parameterized mean value (location) and standard de-
viation (width), etc. Mappings that are nonlinear in the
parameters require iteration to find the parameters mini-
mizing the loss function, and may exhibit multiple (local)
minima.

8“Grading” data are sometimes denoted “test” data.

2.6 Time series modeling
Continuous time: Assume that the data are generated
from a continuous time model, say,

dx
dt

= f (x,u)

and that we know
( dx

dt ,x,u
)

at a number Nd of data points.
We can then arrange the data into data structures

Xd =

(
x1 x2 · · · xNd
u1 u2 · · · uNd

)
Yd =

(
dx
dt

∣∣
1

dx
dt

∣∣
2 · · · dx

dt

∣∣
Nd

)
,

and fit a model to the data set. For experimental data, this
may not be a realistic approach since noise makes it hard
to find dx

dt

∣∣
j. With data generated from a simulation model,

this approach may work: differential algebraic equation
(DAE) solvers often make dx

dt

∣∣
j available.

Discrete time: A common approach to time series mod-
eling is to postulate a discrete time model — either an
input-output model of form

yt = f
(
yt−1, . . . ,yt−ny ,ut , . . . ,ut−nu ;θ

)
(7)

or a state space model of form

xt = f (xt−1,ut−1;θ)
yt = g(xt ,ut ;θ) .

For a state space model, the initial value x1 is unknown
and must be included in model parameter θ .

Predictors and data structures: The loss function L
for data fitting can either be based on minimizing the one
step-ahead error ∑i

(
yi − ŷi|i

)2 (prediction error, PE) or

multi step-ahead error ∑i
(
yi − ŷi|1

)2 (output error/shoot-
ing error, SE). The resulting PE predictor has form

ŷt|t−1 = fPE
(
yt−1, · · · ,yt−ny ,ut , · · · ,ut−nu ; θ̂PE

)
,

while the resulting SE predictor has form

ŷt|1 = fSE

(
ŷt−1|1, · · · , ŷt−ny|1 ,ut , · · · ,ut−nu ; θ̂SE

)
.

Normally, θ̂PE ̸= θ̂SE, and fPE (·) ̸= fSE (·). Here, it should
be observed:

1. The PE predictor constitutes a static mapping from
known data to the one step-ahead prediction. As
such, the predictor is guaranteed to be stable. The
SE predictor, on the other hand, constitutes a dynam-
ic/difference equation predictor which may or may
not be stable.
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2. It is simpler to find the PE estimate θ̂PE than the SE
estimate θ̂SE because (i) the PE problem has a sim-
pler loss function/data structure, and (ii) the PE prob-
lem is relatively linear with few (local) minima while
the SE problem may be highly nonlinear with multi-
ple (local) minima.

3. Because the PE predictor is one step-ahead, it is not
suitable for, e.g., Model Predictive Control where
long-term predictions are used.

4. Creating a dynamic predictor suitable
for long-term prediction from ŷt|1 =

fPE

(
ŷt−1|1, · · · , ŷt−ny|1 ,ut , · · · ,ut−nu ; θ̂PE

)
is not

guaranteed to work, and may fail miserably.

For the model in 7 (assume nu = ny), the data are arranged
as

Xd =



yny−1 yny · · · yNd−1
yny−2 yny−1 · · · yNd−2

...
...

. . .
...

y1 y2 . . . yNd−ny

uny uny+1 · · · uNd
...

...
. . .

...
u1 u2 · · · uNd−ny


Yd =

(
yny yny+1 · · · yNd

)
.

are suitable for fitting a PE model.
A state space model use data arranged as

Xd =
(

u1 u2 · · · uNd

)
Yd =

(
y1 yd · · · yNd

)
,

and will by the very nature of an unknown initial state
x1 ∈ θ lead to a shooting error estimator.

Model fitting based on one step-ahead prediction error
allows for random permutation of the columns in (Xd,Yd).
Model fitting based on the shooting error, however, re-
quires that the data are kept in the correct order.

3 Artificial Neural Networks
3.1 Neural Networks
Artificial neural networks (ANNs) were originally in-
spired by some hypotheses on how the brain works, but
have been generalized into mathematical structures which
have direct resemblance with approximation theory. Es-
sentially, ANNs attempt to describe arbitrary mappings
from input vectors x ∈ Rnx to output vectors y ∈ Rny ,

y = f (x;θ)+ e

where θ is some model parameter and e is some model
error. In ANNs, this mapping consists of chaining a set of
parameterized layer mappings and then tuning the param-
eters to achieve good description of available data. Here,
we will consider the classical Feed forward Neural Net-
work (FNN).

Figure 2. Structure of layer in Feed forward Neural Network
(FNN; upper diagram), chained FNN layers (lower diagram),
with update of parameter estimate θε =

(
. . . ,W (ℓ),b(ℓ), . . .

)
at

epoch ε which reduces the loss function L (θε).

3.2 Feed forward Neural Network
A Feed forward Neural Net (FNN) is composed of layer
mappings from input x to output y. The layers have the
structure as in the upper diagram of Figure 2.

For an FNN of nℓ layers, layer ℓ has form

ξ (ℓ) = σ (ℓ)
(

W (ℓ)ξ (ℓ−1)+b(ℓ)
)

with weight matrix W (ℓ) ∈ Rn(ℓ−1)
ξ ×n(ℓ)ξ , bias vector b(ℓ) ∈

Rn(ℓ)ξ , and activation function σ (·) mapped on each in-
dividual element in the vector argument. The boundary
conditions are

ξ (0) ≡ x

y ≡ ξ (nℓ),

while ξ (ℓ) ∈ Rn(ℓ)ξ is denoted a hidden variable for ℓ ∈
{1, . . . ,nℓ−1} . The number of hidden variables (nodes)
n(ℓ)ξ may vary from layer to layer, and is a design choice.

The (non-)linear activation function σ (ℓ) (·) may differ
from layer to layer; often a (strictly) increasing, sigmoid
shaped activation function is used. Typical choices of the
activation function are given in Table 1.

For the first layer,

ξ (1) = σ (1)
(

W (1)x+b(1)
)
.

The classical activation function was the binary step
function, which is identical to a Heaviside function. By
also shifting the function argument via biases, we can cre-
ate a sequence of n(1)ξ equally spaced Heaviside functions.
Combining this with a second, identity activation output
layer, this allows us to create n(1)ξ − 1 zero order splines,

Remark 1. With arbitrary large n(1)ξ , we can then create
arbitrarily many zero order splines. In summary, a FNN is
strongly related to classical spline regression.

By changing the activation function of the hidden layer
to another, sigmoid shaped function, this is akin to the use
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Table 1. Common ANN activation functions σ (x).

Name Function σ (x) Julia name
Identity x identity

Binary step, H0 (x)

{
0, x < 0
1, x ≥ 0

Logistic/sigmoid, σ (x) 1
1+exp(−x) sigma

Hyperbolic tangent tanh(x) tanh
Rectified Linear Unit function max(0,x) relu

of higher order splines, or other basis functions with local
or exponential support. Because of this, FNNs for regres-
sion problems often contain a single hidden layer, and an
output layer with identity activation.

3.3 Measures of model fit
In regression problems, the tuning parameter θ of the net-
work,

θ =
{

W (1),b(1), . . . ,W (nℓ),b(nℓ)
}
,

is sought such that it minimizes some loss function mea-
suring the deviation between observations y ∈ Yd and pre-
dictions ŷ = f (x) where x ∈ Xd. The chosen loss function
is typically the Residual Sum of Squares (RSS),

LRSS ,
Nd

∑
i=1

∥yi − ŷi∥2
2 ,

or the Mean Squared Error (MSE) LMSE , 1
Nd

LRSS.
Sometimes, the Root Mean Squared Error (RMSE)
LRMSE ,

√
LMSE is used. All three loss functions have

identical minimizing parameter θ . Sometimes, regulariza-
tion is used, Section 2.3.

3.4 Training of the Neural Network
Training of a network implies tuning parameters θ such
that loss function L is minimized. Standard methods for
doing this is using some gradient or Newton method. Gra-
dient methods do iterations in the gradient direction ∂L

∂θ ,

∆θε = θε+1 −θε =−η
∂L

∂θ

∣∣∣∣
ε

; (8)

η is the “learning rate”, typically η = 0.01, and ε is the
major iteration number known as the epoch. Alternatively,
η can be found via line search.

The chaining of several layers increases the nonlinear
relationship in L (θ), leading to local minima. Computa-
tion of the gradient involves the recursive back propaga-
tion algorithm to propagate gradients through the layers.
Modern tools often use Automatic Differentiation to com-
pute gradients for each layer.

For “Big data” that do not fit into local memory, cal-
culating the full gradient is challenging. One solution is
to sample a random subset from the data, compute the
“stochastic” gradient from this smaller data set, and do

many stochastic gradient descents. This tends to give sim-
ilar/better results than using the full data set gradient.

Each major iteration ε in the parameter tuning is known
as an epoch; an epoch consists of a number of minor iter-
ations such as back-propagation updating, line searches,
stochastic gradient descent steps, etc.

Newton methods are known to be more efficient than
gradient methods. Because neural networks may have a
large number of parameters, computation and storing of
the Hessian ∂ 2L

∂θ 2 is very demanding. Some algorithms use
various types of quasi Newton methods in combination
with line search, (Bishop, 1994). Still, the most common
tuning algorithms are based on gradient descent. Table 2
gives an overview of some gradient descent based meth-
ods.

3.5 FNN in Julia Flux
Package Flux (Innes, 2018) in the modern computer lan-
guage Julia9 provides easy access to machine learning
algorithms, and combines well with the OMJulia inter-
face between OpenModelica and Julia. After importing
Flux by julia> using Flux, an FNN layer is created
by command julia> L = Dense(n_lm1,n_l,sigma
) where L is our chosen name of the layer, while n_lm1

= n(ℓ−1)
ξ , n_l= n(ℓ)ξ , and the activation function is sigma

= σ . If input argument sigma is skipped, the activa-
tion function defaults to identity mapping. The values of
weight matrix W and bias vector b can be inspected by at-
tributes julia> L.W.data and julia> L.b.data. In
general, typing the object name (L) followed by period,
L., and then hitting the tabulator key gives a pop-up menu
with possible attributes.

By default, instantiating the layer with command
Dense(n_lm1,n_l,sigma) populates matrix W and
bias vector b using a type Float32 random number gen-
erator — this choice is made to ease optional training of
the neural network on GPUs10. Other data types can be
specified at instantiation of the layer.

Layers can be chained together with command mod =
Chain(L1,L2,...). To “unchain” the model into sep-

arate layers, command mod.layers results in a tuple of
the layers, thus mod.layers[2].W.data produces the
W matrix of layer L2.

9www.julialang.org
10GPU = graphical processing unit
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Table 2. Common gradient descent methods in ANN training.

Name Julia name
Classical gradient descent, learning rate η Descent(eta)
Momentum gradient descent, learning rate η ,
momentum ρ

Momentum(params,eta=0.01;rho=0.9)

Nesterov gradient descent, learning rate η , Nesterov
momentum ρ

Nesterov(eta;rho=0.9)

Stochastic gradient descent, learning rate η , moment
estimate exponential decay rates β

ADAM(eta=0.001,beta=(0.9,0.999))

Assuming we have created a Feed forward Neural Net-
work model mod by chaining several FNN layers, we need
to specify the loss function loss, define the parameters
par to tune, specify the optimization algorithm opt, and
prepare the data set data consisting of Xd ∈ Rnx×Nd and
Yd ∈ Rny×Nd .

loss(x, y) = mean((mod(x).-y).^2) #
Statistics package

par = params(mod) # Flux
command

opt = ADAM(eta=0.001,beta=(0.9,0.999)) # See
Table 2

data = [(Xd,Yd)]

We are now ready to train the network, which implies
taking a major iteration step to adjust par such that the
value of loss is reduced, e.g., 8. Command julia>
train!(loss,par,data,opt) carries out one training
epoch, where exclamation mark ! in train! indicates
that the model parameters are changed in place. We can
thus train the network over nE epochs with a for loop:

nE = 1_000 # number of epochs
for i in 1:nE

train!(loss,par,data,opt)
end

(Bishop, 1994) tests how well an FNN with 1 hidden
layer of 5 elements/nodes, σ = tanh(x), and identity out-
put can describe 4 different scalar functions. Using Julia
Flux and 3000 epochs, this can be done as follows (for
function y = x2):

# Generating 50 data points
x_d = reshape(range(-1,1,length=50),1,50)
y_d = x_d.^2
D = [(x_d,y_d)]
#
# Model
mod = Chain(Dense(1,5,tanh),Dense(5,1))
# Loss/cost function
loss(x, y) = mean((mod(x).-y).^2)
# Optimization algorithm
opt = ADAM(0.002, (0.99, 0.999))
# Parameters of the model
par = params(mod);
# Running 3000 epochs
for i in 1:3000

Flux.train!(loss,par,D,opt)
end

Figure 3. Experimental data of model in 9.

# Generating model output
y_m = Tracker.data(mod(x_d));

Bishop carries out similar training for functions |x|,
sin2(πx), and 2H0 (x)− 1; the results from using Julia
are similar to those presented in (Bishop, 1994). How-
ever, Bishop achieved far superior fitting with 1000 “cy-
cles”, presumably because he used a BFGS quasi-Newton
method instead of Stochastic Gradient Descent.

4 Case: first order system with input
4.1 Model
For illustrating key ideas, a simple model is chosen which
can be visualized in 2D or 3D. A scalar differential equa-
tion dy

dt = f (y,u) allows to plot dy
dt as a function of y and u.

Consider the model

dy
dt

= 2(4− y)−102 exp
(
−1

u

)
y2 +103 exp

(
−1

u

)
y,

(9)
where y can, e.g., be a concentration cA and u can, e.g., be
scaled absolute temperature T .

4.2 Experiments
Figure 3 indicates possible experimental data generated by
the model in Equation 9 using OMJulia.

In Figure 4, the experimental simulation data are over-
laid on the surface plot of the model given by Equation 9.

For experiments on real systems, the initial state y(0)
can not be chosen, but has to be accepted as is. Because
of this, real world data typically only cover a fraction of
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Figure 4. Experimental data from a range of initial states y(0)
over a control variation u(t). Comparison with true vector field
surface.

the vector field surface. On the other hand, if the pur-
pose of model fitting is to develop a surrogate (or: sim-
plified) model of a more complex model, we have much
more freedom in choosing y(0).

4.3 FNN based surrogate models

Building a continuous model based on (y,u) → dy
dt as in

Section 2.6, and based on the data in Section 4.2 leads to
the results in Figure 5.

Figure 5. Solid lines: experimental data. Dotted lines: fitted
FNN model dy

dt = FNNc (y,u). Left panel: using only data from
experiment with y(0)= 15. Right panel: using all available data.

Observe from the left panel of Figure 5 that models fit-
ted to data from a particular operating regime, may be poor
for other regimes.

Building a discrete time model based on
(yt−1,ut ,ut−1) → yt as in Section 2.6, and based on
the data in Section 4.2 leads to the results in Figure 6.

Observe that the left panel results in Figure 5, are pre-
dictions based on a “moving average” of the data,

ŷt = FNNd,PE (yt−1,ut ,ut−1) ;

with the given prediction error (PE) loss function, this is
the correct predictor formulation. The right panel results
in Figure 5 are based on a recursive predictor

ŷt = FNNd,PE (ŷt−1,ut ,ut−1)

Figure 6. Solid lines: experimental data. Dotted lines: fitted
FNN model yt = FNNd (yt−1,ut ,ut−1) using all available data.
Left panel: PE predictor, Right panel: ad hoc recursive use of
PE predictor.

which is somewhat ad hoc, Section 2.6. From Figure 6,
the ad hoc recursive model is not suitable for long range
predictions.

Next, we consider building a discrete time model based
on (yt−1, . . . ,yt−5,ut , . . . ,ut−5)→ yt as in Section 2.6, and
based on the data in Section 4.2 leads to the results in Fig-
ure 7.

Figure 7. Solid lines: experimental data. Dotted lines: fit-
ted FNN model yt = FNNd (yt−1, . . . ,yt−5,ut , . . . ,ut−5) using all
available data. Left panel: PE predictor, Right panel: ad hoc
recursive use of PE predictor.

With this more complex model, both the “moving aver-
age” predictor

ŷt = FNNd,PE (yt−1, . . . ,yt−5,ut , . . . ,ut−5) ;

with the given prediction error (PE) loss function, the re-
cursive ad hoc PE predictor

ŷt = FNNd,PE (ŷt−1, . . . , ŷt−5,ut , . . . ,ut−5) (10)

give decent predictions — even with the use of n(1)ξ = 3
nodes in the hidden layer.

4.4 Hybrid model
Often, a simplified model is available which does not rep-
resent the system well over an extended operating regime.
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In Figure 8, the simplified model is a linear approximation
at u = 0.15 (left panel).

Figure 8. Solid lines: experimental data. Dotted lines: approx-
imate models. Left panel: linear approximation, Right panel:
hybrid model with ad hoc recursive PE predictor as correction
to linear approximation.

With available experimental data, a model using 5 past
deviations ∆y=y − yℓ as in 10 was trained, and used to
correct the linear approximation in a hybrid model yh

t =
yℓt +FNNd,PE (. . . , ŷt− j, . . . , ,ut− j, . . .) with results as in the
right panel of Figure 8.

5 Discussion and Conclusions
This paper has aimed at illustrating some important con-
cepts related to digital twins for control relevant models.
As Figure 4 indicates, physics-based models give much
more information than experimental data do — under nor-
mal operation, experimental data will only cover a small
fraction of the space of inputs, states, and derivatives.
However, physics-based models typically involve some
approximations that makes it impossible with perfect fit
to experimental data. Data driven methods normally do
not impose such restrictions.

A sub goal has been to inspire to experiment with freely
available computing tools for machine learning. Exam-
ples of building both continuous time and discrete time
surrogate models are given. Continuous time model build-
ing requires access to some state derivative, and give de-
cent prediction capabilities — for the simple case where
all states are available. When using Feed forward Neu-
ral Nets, the resulting model is normally a prediction error
(PE) model, which in principle only offer one step-ahead
prediction with limited suitability for, e.g., Model Predic-
tive Control. By making a PE model recursive, some suc-
cess may be achieved. An interesting alternative is to use
Recurrent Neural Nets (RNN), which gives a state descrip-
tion. Due to space limitations, RNN is not treated here.
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