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Abstract
A deterministic reference tracking model predictive con-
trol (MPC) is in use at Skagerak Kraft for flood manage-
ment of Lake Toke in Norway. An operational inflow esti-
mate is used to predict the optimal gate opening at Dalsfos
power station, with required constraints set by the Nor-
wegian Water Resource and Energy Directorate (NVE).
The operational inflow estimate is based on the meteo-
rological forecast, and is uncertain; this may lead to
broken concession requirements and unnecessary re-
lease of water through the floodgates. Currently not uti-
lized, the meteorological uncertainty is quantified by an
ensemble of possible weather forecasts. In this paper,
quantified inflow uncertainty is studied and how this af-
fects the operation of the current, deterministic MPC solu-
tion. Next, we develop an alternative, stochastic MPC so-
lution based on multi objective optimization which di-
rectly takes the inflow uncertainty into consideration. A
comparison of the results from both approaches con-
cludes that the stochastic MPC solution seems to give
better control by reducing the amount of water released
through the flood gates. Furthermore, with less frequent
update of the control signal, the benefit of the stochastic
MPC is expected to increase.

Keywords: model predictive control, hydrology, uncer-
tainty, multi objective optimization

1 Introduction
Lake Toke in Norway, is the water magazine for five run-
of-river hydro power plants operated by Skagerak Kraft1.
The Dalsfos hydro power plant is located at the outlet
from Lake Toke, and the remaining plants are located
along the Kragerø waterway, as shown in Figure 1. The
Dalsfos dam has intakes to three turbines, and has two
flood gates. A number of concession requirements speci-
fied by he Norwegian Water Resource and Energy Direc-
torate (NVE) must be fulfilled to ensure safe and envi-
ronmentally friendly operation. The requirements refer to
constraints on change of flow out of the dam, a minimum
downstream flow rate, specific seasonal lower and upper
limits on the water level during the year, etc. The catch-
ment area for Lake Toke is ca. 1150 km2, and the influent
flow rate to the lake from precipitation varies consider-
ably during the year. Skagerak Kraft subscribes to a

1www.skagerakenergi.no/forside/

Figure 1. Overview of Lake Toke and Kragerø Waterways from
(NVE, 2018).

weather forecast service provided by Storm.no, which
provides updates twice a day of a most likely scenario
as well as 51 possible meteorological scenarios indicat-
ing uncertainty. Based on these scenarios, Skagerak Kraft
use a hydrological model to predict transport of water into
Lake Toke. With uncertainty in the precipitation and the
temperature, it is of interest to utilize the quantified uncer-
tainty for improved accuracy. The use of ensemble predic-
tions for flood control in real time is widely studied (Raso
et al., 2014), (Breckpot et al., 2013a), (Breckpot et al.,
2013b), including an EU project (Butts et al., 2007).

In 2014, Skagerak Kraft commissioned an MPC proto-
type control algorithm from USN2 to suggest flood gate
openings, (Lie, 2014). Initially, the suggested opening is
set manually. Based on the experience, an improved solu-
tion was developed and installed in late 2018. The imple-
mented deterministic MPC solution is based solely on the
operational forecast, and the control signal/proposed gate
opening is recomputed every hour. It is now of interest
to assess the deterministic MPC algorithm based on the

2USN = University of South-Eastern Norway
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Figure 2. Assumed geometry of Lake Toke (Lie, 2014).

quantified uncertainty, and consider whether there is an
advantage in using a stochastic MPC algorithm instead;
(Schwanenberg et al., 2015) indicates advantages with a
stochastic approach, see also (Nasir et al., 2018).

In the sequel, concession requirements and operation
in flood situations are described. The paper is organized
as follows. Section 2 provides a summary of the current
MPC solution with model summary, relevant concession
requirements, and deterministic MPC formulation. Sec-
tion 3 provides an assessment of how the deterministic
MPC solution handles quantified uncertainty. Section 4
develops a stochastic MPC solution, with operational re-
sults. Section 5 gives a comparison of the deterministic
and the stochastic solution. Finally, some conclusions are
drawn in Section 6.

2 Current MPC solutions
2.1 Model Summary
Figure 2 depicts a simplified layout of the lake, which is
used as basis for a mass balance model.

Volumetric inflow V̇i to Lake Toke is a system distur-
bance, based on meteorological forecasts and Skagerak
Kraft’s hydrology model. Volumetric flow V̇o out of Lake
Toke is the sum of flow rate through turbines (V̇t) and flood
gates (V̇g). Turbine flow is used to produce electric power
Ẇe which is scheduled daily by economists; Ẇe is consid-
ered a given disturbance, and V̇t is back-computed from Ẇe
and other quantities. Flood gate flow rate V̇g should ideally
be zero to conserve water for energy production. Because
production is constrained to V̇t ≤ 36m3/s, the flood gates
may be activated in flood situations to satisfy concession
requirements. The gate opening denoted hg is the control
input for the MPC. Figure 3 illustrates the operation of the
floodgate, resulting in a model based on Bernoulli’s law.

With disturbances V̇i and Ẇe, and control signal hg, a
model of relevant water levels is described in (Lie, 2014).
A summary of the model follows. Inflow V̇i and power
production Ẇe are provided by Skagerak Kraft as distur-
bances. States are considered to be the level offsets h1 of

Figure 3. Assumed geometry of flood gate (Lie, 2014).

Lake Toke and h2 in front of the dam,

dh1

dt
=

1
(1−α)A(h1)

(
(1−β )V̇i −V̇12

)
(1)

dh2

dt
=

1
αA(h2)

(
βV̇i +V̇12 −V̇t −V̇g

)
, (2)

with real water levels at Merkebekk Dam xM and Dalsfos
Dam xD expressed as

xM = h1 + xmin
LRV (3)

xD = h2 + xmin
LRV. (4)

Area A(h) is the experimentally found filling curve of the
reservoir:

A(h) = max
(

28×106 ·1.1 ·h
1
10 ,103

)
. (5)

Inter compartment flow V̇12 is given by:

V̇12 = K12 · (h1 −h2)
√
|h1 −h2|. (6)

Volumetric flow V̇t is computed from known power pro-
duction Ẇe, and a simple turbine model involving modeled
intake dam level xD and downstream level xq as

V̇t = a
Ẇe

xD − xq +b
(7)

where xq is found by choosing the correct root of the cubic
equation

0 = c1x3
q +(c2 − c1xD)x2

q

+
(
c3 − c2xD + c4V̇g

)
xq

+Ẇe − c3xD − c4V̇gxD − c5. (8)

In reality, xq is measured, but we need a model for xq for
predictions.

The model for flow V̇g, j through floodgate j is

V̇g, j =Cdw j min
(
hg,h2

)√
2gmax(h2,0); (9)

the two flood gates are identical except for their width w j,
and the total flood gate flow V̇g is the sum, V̇g = V̇g,1+V̇g,2.

Parameters for the model are given in Table 1.
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Table 1. Parameters for Lake Toke model.

Parameter Value Unit Comment
α 0.05 – Fraction of surface area in compartment 2.
β 0.02 – Fraction of inflow to compartment 2.

K12 800 m
3
2 /s Inter compartment flow coefficient

Cd 0.7 – Discharge coefficient, Dalsfos gates
w1 11.6 m Width of Dalsfos gate 1
w2 11.0 m Width of Dalsfos gate 2 Comment

xmin
LRV 55.75 m Minimal low regulated level value
g 9.81 m/s2 Acceleration of gravity
a 124.69 Pa−1 coefficient, 7
b 3.161 m coefficient, 7
c1 0.13152 W/m3 polynomial coefficient, 8
c2 −9.5241 W/m2 polynomial coefficient, 8
c3 1.7234 ·102 W/m polynomial coefficient, 8
c4 −7.7045 ·10−3 Pa/m polynomial coefficient, 8
c5 −8.7359 ·10−1 W polynomial coefficient, 8

2.2 Concession Requirements
Concession requirements are specified by NVE, and focus
on (i) providing safety, (ii) securing ecological diversity,
and (ii) avoiding damage to property, e.g., by maintaining
certain minimum and maximum levels at Merkebekk. The
key constraints for a flood situation are:

1. Abrupt changes of the water flow downstream from
Dalsfos power station should be avoided for safety
reasons; this is a qualitative requirement.

2. The water level xM of Lake Toke at Merkebekk
must lie in the seasonally varying interval xM ∈
[xLRV,xHRV]. Here xLRV refers to the lowest regu-
lated value and xHRV to the highest regulated value.
Level constraints are given in Figure 4.

3. In the event of a flood estimated to more than an in-
stantaneous value of 200m3/s, xM > xHRV is allowed
until the flood has culminated; after flood culmina-
tion, xM is required to decrease steadily until the wa-
ter level reaches xHRV again.

4. In case of little snow in the catchment (< 150Mm3)
as the winter production comes to an end, the sum-
mer lower limit must be met at once by the reservoir.
Thus, the flow should be limited to V̇o = V̇t + V̇g ≤
20m3/s until the level is reached for the first time.

2.3 Reference Tracking MPC Operation un-
der Uncertainty

Model Predictive control (MPC) is an algorithm that con-
tinuously solves an optimal control problem at each time
step, with a performance measure involving a future time
horizon. At each time step, only the first computed con-
trol input is used to change model states. Before each
re-optimization, updated information about states is used;

Figure 4. Level constraints in Lake Toke during the year.

this provides feedback in MPC. This MPC strategy is also
known as receding horizon or sliding horizon optimal con-
trol, (Sharma, 2017). For the currently implemented MPC
algorithm at Skagerak, the following quantities are rele-
vant:

• Reference region (r): R

• Control input (uc): hg

• Disturbances (ud): V̇i,Ẇe

• Outputs (y): xM,xD,V̇t,V̇g,V̇o

• States (x): h1,h2

The following cost function is used, (Lie, 2014),

Jt =
H

∑
i=1

wRR2 (xM,t+i)+w∆u∆u2
c,t+i−1 +wuu2

c,t+i−1

(10)
where H is the length of the horizon and

∆uc,t+i−1 , uc,t+i−1 −uc,t+i−2,
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and subject to the dynamic model of the system:

xi+1 = f (xi,uc,i,ud,i) (11)

Expression R (xt+i) is related to the level at Merkebekk in
such a way that:

R (xM,t+i)=min
(

xM,t+i − rℓt+i,0
)
+max

(
xM,t+i − ru

t+i,0
)
.

Here rℓt+i and ru
t+i are lower and upper reference region

boundaries, respectively. The implication of this formula-
tion is that as long as xM,t+i ∈

[
rℓt+i,r

u
t+i

]
, R (xM,t+i) = 0.

When xM,t+i /∈
[
rℓt+i,r

u
t+i

]
, this is penalized in the cost

function. With this in mind, the reference region bound-
aries are chosen based on the knowledge that emptying
Lake Toke is faster than filling it, thus, being closer to
xHRV is considered less risky.

MPC provides feedback to reduce the effect of model
errors and unknown disturbances, and feed-forward to
take into account future reference values and known dis-
turbances, while also handling hard constraints on vari-
ables. With many free variables in the optimization prob-
lem, solution time may be considerable. In this case, the
operational forecast is 294 intervals (approximately 12d
with hourly updates) and two flood gates. By constraining
the two flood gate openings to one free variable and group-
ing the control predictions into 3 groups constant value in
each group, the problem is reduced to 3 free variables.
From an optimal control point of view, this is a crude ap-
proximation. However, MPC’s approach of frequent re-
computation of the control inputs leads to satisfactory re-
sults. In summary, every hour, a set of gate opening pro-
posals together with predicted water levels are obtained
for the specified horizon.

3 Stochastic analysis of a determinis-
tic MPC

3.1 Simulation principle
The available flow rate scenarios 294 steps into the future
into Lake Toke, V̇i,1:294, consist of the operational forecast
V̇ (o)

i,t and 50 “particles” V̇ (p)
i,t which can be described in a

matrix,

V̇i,1:294 ∈


V̇ (o)

i,1 V̇ (1)
i,1 · · · V̇ (50)

i,1
...

...
. . .

...
V̇ (o)

i,294 V̇ (1)
i,294 · · · V̇ (50)

i,294

 . (12)

Updated predictions are available twice daily. The morn-
ing forecast is available in the normal working hours. For
simplicity, only the morning forecast is used in this study.
Figure 5 depicts a forecast for the first day.

The resulting multi day forecast looks as in Figure 6.
With the deterministic MPC algorithm, the inflow pre-

diction ud,i used in predicting states via 11 and thus influ-
encing the value of the cost function Jt of 10, are always

Figure 5. Inflow forecast V̇i for 294 steps into the future at Day
1.

Figure 6. Inflow forecast V̇i, updated every day when new fore-
casts are made available.

the operational values of V̇i found in the first column of the
matrix in 12. The outcome of optimizing Jt is an optimal
sequence of future control inputs hg; only the first of these
inputs is used.

To assess how the deterministic MPC algorithm would
work with the given uncertainty, in turn we consider each
of the 50 additional “particles” of inflows V̇ (p)

i where
p ∈ {1, . . . ,50} in the matrix of 12. These 50 particles
are thought to represent reality in 50 parallel “universes”,
while the operational inflow V̇ (o)

i represents the idealized
model inflow. For each “universe”, the inflow V̇ (p)

i is used
to update the “real” state according to 11:

x(p)
t+1 = f

(
x(p)

t ,u(p)
c,t ,u

(p)
d,t

)
, (13)

where u(p)
d,t = V̇ (p)

i,t , while input u(p)
c,t is the input computed

from optimizing Jt with initial value x(p)
t and operational

input predictions V̇ (o)
i,t+i. With x(p)

t+1 computed as in 13, x(p)
t+1
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is used together with operational inflow V̇ (o)
i,t+1+i in opti-

mizing Jt+1, etc.
For each particle p in the ensemble for V̇i, we thus find

trajectories of the evolution of water levels and the evolu-
tion of flood gate openings hg.

3.2 Simulation results
At initial time, all particles have the same initial values for
the states and the control input. Thus, computed control
inputs in the first time step are the same for all the parti-
cles, since the operational forecast is fed to the MPC algo-
rithm. By contrast, the next computed states can differ
from particle to particle because ensemble disturbances
are introduced. For each time instance in the evolution
of the 50 particles, mean and standard deviation over the
particles are used to measure the uncertainty involved in
the evolution of levels and flood gate opening.

During testing of the computations in Python, it is ob-
served that optimization of the cost function Jt for a sin-
gle particle at a single time instance under a flood situation
can take up to 30s, as opposed to 2s if the optimal solu-
tion is to keep the flood gates closed. In the simulations
carried out, about 2.5-3 days were required. One way to
reduce the computation time is to use less frequent con-
trol updates, e.g., recompute the control input, say, every
24h instead of every 1h. However, we have chosen to use
a 1h frequency of control updating with the MPC. The
following conditions for the simulations are used in the
uncertainty analysis.

• xLRV = 55.75m until April 30, and thereafter xLRV =
58.85m.

• xHRV = 60.35m until April 30, and thereafter xHRV =
59.85m.

• h(0)g = 0cm; initial gate levels are set to 0cm.

• V̇i : inflow forecasts as in Figure 6 and Ẇe = 36m3/s.

• h1 and h2 are set to 59.0 and 58.8, respectively.

• N = 294 (length of the operational inflow forecast in
hours).

Simulation results are shown in Figures 7, 8, and 9; gate
opening hg,2 is similar to hg,1. The particles of possible
outcomes are represented by gray, dotted lines. The statis-
tics of the outcomes is represented by the mean value (blue
line) and standard deviation (yellow area). In this manner,
it is possible to link each particle’s gate opening with cor-
responding water level and outflow prediction.

From the figures, it is possible to have an indication
of the worst possible situation and take safety measures
if needed. In Figure 7, green dashed lines show the up-
per and lower constraints of levels given by concession
requirements. Figure 9 shows both the stochastic behav-
ior of the water flowing through the flood gates V̇g and the
given flow through the turbines, V̇t. As Figure 6 indicates,
the inflow forecasts are updated every 24h.

Figure 7. Water Level at Merkebekk for 50 particles with de-
terministic MPC: lower plot gives a detailed view of upper plot.

Figure 8. Gate opening hg for 50 particles with deterministic
MPC.

Figure 9. Flow out V̇g and V̇t for 50 particles with deterministic
MPC.
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4 Stochastic MPC
4.1 Stochastic MPC approach
Stochastic MPC algorithms can be posed in different
ways, e.g., as scenario tree based algorithms (Raso et al.,
2014), (Krishnamoorthy et al., 2018), or as multi objective
based algorithms (Peitz and Dellnitz, 2018). Here, the fo-
cus is on a multi objective based algorithm.

Multi objective optimization (MOO) is based on try-
ing to satisfy a set of objectives with their individual con-
straints, at the same time. MOO is often a way to find
solutions as a best compromise among competing objec-
tives, in a Pareto front manner, e.g., (Boyd and Vanden-
berghe, 2018). A simple way to handle MOO is to cre-
ate a combined objective as a scalar weighing of all ob-
jectives, while simultaneously satisfying all constraints,
(Marler and Arora, 2010), (Sharma, 2017). In the case of
our MPC problem, we create an objective J

(p)
t for each

of the particles p (each column) in the inflow matrix of 12.
Our formulation has only constraints on the gate opening,
h(p)

g . There is no reason to say that one objective is more
important than the others, so we simply sum the objectives
for each particle to set up the total objective,

Jt = ∑
p

J
(p)

t . (14)

The constraints are given by the models with each indi-
vidual inflow particle V̇ (p)

i , and we require that the control
input h(p)

g is the same for each particle, i.e., h(1)g = . . .h(50)
g .

4.2 Simulation results
The MOO algorithm can use up to 20min for each opti-
mization under a flood situation. If implemented in in a
real time system, this would imply a 20min time delay
in the control loop would reduce the performance of the
controller. In our simulation study, we may neglect this
time delay. Simulating the system with hourly sampling
time for a 294h horizon, this implies about 100h (4d) of
simulation time

The conditions for the experiment are as in Section 3.2.
With this stochastic MPC algorithm, the operational in-
flow is still used as the prediction of inflow in the cost
functions J

(p)
t , and the total cost function Jt is found

by summing over all particles p as in 14. This time, the
operational input is also used to represent “reality”, i.e., in
updating the real water levels according to

xt+1 = f
(

xt ,uc,t ,u
(o)
d,t

)
, (15)

where u(o)d,t = V̇ (o)
i,t , while input uc,t is the input computed

from optimizing Jt according to 14 with initial value xt

and operational input predictions V̇ (o)
i,t+i.

The water level result is shown in Figure 10; the blue
curve represents the water level at Merkebekk for which
the concession requirements are imposed, while the red

curve is the water level at Dalsfos. Likewise, the gate
opening result can be seen in Figure 11, with hg,1 (blue
line) and hg,2 (red line). The predicted outflow result is
described in Figure 12, with V̇t (red line), V̇g (blue line),
and V̇o = V̇t +V̇g (yellow line).

Figure 10. Predicted Water Levels.

Figure 11. Optimal Gate Openings.

5 Deterministic vs. Stochastic MPC
In both the deterministic case and the MOO case, Figure 6
illustrates the inflow disturbances. In the deterministic ap-
proach, the operational inflow is the “deterministic” dis-
turbance used in the MPC algorithm while each of the par-
ticles are used to compute corresponding water levels. By
contrast, in the MOO stochastic MPC approach, the MPC
algorithm uses all particles, while the operational inflow
is used to compute water levels.

Figures 13–16 illustrate the difference in behavior of
the deterministic controller vs. that of the stochastic con-
troller; in the legends, variable x_mean indicates the mean
value of variable x for the particles in the determinis-
tic MPC solution, while x_MOO simply is variable x for
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Figure 12. Predicted outflow.

the stochastic multi objective optimization based (MOO)
MPC algorithm.

Figure 13. Merkebekk water level xM comparison: lower plot
gives a detailed view of upper plot.

Figure 14. Dalsfos water level xD comparison.

Figure 15. Optimal gate opening hg,1 comparison.

Figure 16. Predicted outflow V̇o comparison.

Figure 13 displays the predicted water levels at Merke-
bekk. The dark blue curve (xM) refers to the water level for
the MOO case. The gray dotted curves together with the
light blue curve (xM_mean) corresponds to the water level
result from the deterministic approach. In the simulated
case, none of the constraints are broken.

Figure 14 displays the predicted water levels at Dalsfos.
The dark red curve (xD) refers to the water level for the
MOO case. The gray dotted curves together with the light
red curve (xD_mean) corresponds to the water level result
from the deterministic approach.

Figure 15 illustrates the resulting gate opening hg,1. The
dark blue curve (u1) refers to the gate opening for the
MOO case. The gray dotted curves together with the light
blue curve (u1_mean) corresponds to the deterministic ap-
proach.

Figure 16 shows the predicted outflow. The dark blue
curve (Vdo) refers to the water flow rate for the MOO case.
The gray dotted curves together with the light blue curve
(Vdo_mean) corresponds to the flow rate result for the de-
terministic approach. As expected, the behavior is consis-
tent with the gate openings.
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6 Conclusions
The stochastic MOO MPC gives markedly better results
than the current, deterministic MPC, indicating a clear ad-
vantage in introducing a more advanced stochastic MPC
algorithm. It should be noted that the study reported here
is limited since only a single instance of real inflow predic-
tions and measurements under flood conditions has been
available. Furthermore, it has been assumed that the con-
trol input is recomputed every 1h and injected every 1h
without delay. In reality, with manual injection of the
computed control inputs, these may be injected irregularly
and with time delay. This manual injection of the control
input will lead to a more pronounced effect of the uncer-
tainty. Thus, in real life, a stochastic MOO MPC algo-
rithm may be even more advantageous than what appears
in the comparison of Section 5.

It is therefore recommended to further the study initi-
ated here, with other flood periods. In particular, the oper-
ational forecast may lie in the mainstream of the ensemble
as in Figures 5 and 6; other times, the operational forecast
lies at the outskirts of the ensemble: the location of the op-
erational forecast within the ensemble may influence the
relative advantage of using stochastic MOO MPC. The re-
ported computation time for finding the control signal in
the MOO algorithm can be significantly reduced. Exam-
ples of strategies to reduce the computation time are uti-
lizing parallelization over threads, more efficient Python
code, compiled code, etc.
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