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Abstract
Building Energy Management systems can reduce energy
consumption for space heating in existing buildings, by
utilising Model Predictive Control. In such applications,
good models of building thermal behaviour is important.
A popular method for creating such models is creating
Thermal networks, based cognitively on naive physical
information about the building thermal behaviour. Such
models have lumped parameters which must be calibrated
from measured temperatures and weather conditions.
Since the parameters are calibrated, it is important
to study the identifiability of the parameters, prior to
analysing them as physical constants derived from the
building structure. By utilising a statistically founded
parameter estimation method based on maximising
the likelihood function, identifiability analysis can be
performed using the Profile Likelihood method. In
this paper, the effect of different sensor locations with
respect to the buildings physical properties is studied by
utilising likelihood profiles for identifiability analysis.
The extended 2D profile likelihood method is used to
compute two-dimensional profiles which allows diagnos-
ing parameter inter-dependence, in addition to analysing
the identifiability. The 2D profiles are compared with
confidence regions computed based on the Hessian.

Keywords: building energy management systems, ther-
mal behavior, parameter estimation, parameter iden-
tifiability, Profile Likelihood

1 Introductions
1.1 Background
A significant portion of the worlds total energy produc-
tion is consumed by heating and cooling of buildings
(Perera et al., 2014). Building Energy Management Sys-
tems (BEMS) is therefore an important part of the ongo-
ing effort to reduce anthropogenic CO2 emissions. In par-
ticular, Model Predictive Control (MPC) has been shown
to reduce energy consumption in buildings by utilizing
models to predict the thermal behaviour of a building
(Fux et al., 2014; Killian and Kozek, 2016). Hence, the
development of models of building thermal behaviour
has received considerable interest by the scientific com-
munity in recent years.

1.2 Previous work
A common approach to the modelling of building thermal
behaviour is the use of thermal network models (Berthou
et al., 2014; Reynders et al., 2014). These models are of-
ten described using electric analogues Resistor-Capacitor
(RC) circuits. Based on a naive understanding of the ther-
modynamics involved, these RC circuits constitute sim-
plified lumped parameter models. Parameters are estim-
ated from measurements of temperature inside the build-
ing, weather conditions and input power consumed for
space heating. As simplified models based on both phys-
ical insight and measurement data, thermal network mod-
els constitute a compromise between fully physics based
white-box and purely data-driven black-box models. This
type of model, often called grey-box models, allows use
of prior knowledge of the system while also allowing cal-
ibration of parameters to adapt the model to a particular
building. This approach offers improved prediction accur-
acy while also allowing use of prior physical information
to be injected into the model (Madsen and Holst, 1995;
Bacher and Madsen, 2011; Kristensen et al., 2004).

Since the model structure is designed based on know-
ledge of a particular building, it is often assumed that the
parameters are determined by the physical properties of
that building. However, since the parameters are iden-
tified from data, this assumption needs to be verified in
the context of parameter identifiability (Reynders et al.,
2014; Deconinck and Roels, 2017; Ferrero et al., 2006).
In particular, testing of practical identifiability (Raue et al.,
2009), i.e., if sufficient dynamic information about the un-
derlying system is contained in the calibration data
(Ferrero et al., 2006), is of importance.

1.3 Overview of paper
Since weather is part of the experimental conditions, and,
typically, the acceptable range of indoor temperatures, as
well as input heater power, is limited, model calibration
must usually be performed on sub-optimal data. One ele-
ment which, to some degree, is open to experimentation is
the location of the sensors. As simplified models, thermal
networks reduce large indoor spaces and objects, such as
the building envelope, to point nodes in the RC circuit.
How these nodes correspond to the physical building is
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determined by the sensor location. In this work, we study
different sensor placements in an experimental building
to show how sensor location, with respect to the physical
properties of the building, affects the dynamic information
contained in the data and hence the practical identifiability
of model parameters. Parameter identifiability is analysed
using the Profile Likelihood method, both in the single
parameter dimension and in two parameter dimensions by
projecting the profile onto a plane in parameter space. The
latter method allows improved insight into the parameter
domain, including analysing parameter inter-dependence
and the effects of a constrained parameter space.

2 Theoretical basis
The framework presented in (Kristensen et al., 2004),
named Continuous Time Stochastic Modelling (CTSM),
is a statistically well founded approach to parameter es-
timation. The theoretical basis is briefly summarised be-
low. For a more detailed discussion see (Kristensen et al.,
2004). Consider the estimation problem:

θ̂ = argmin
θ

g(θ ;M ,K ,A ) (1)

s.t. θ ∈Θ

Here, M is a predetermined model structure paramet-
rised by θ ∈ Θ, where Θ ⊆ Rnθ is a set of feasible val-
ues for the model parameters that form inequality con-
straints for the optimisation problem in Eq. (1). Para-
meters in θ are varied over the feasible set Θ by a numer-
ical optimisation algorithm A . The experimental condi-
tions K include measurements for the continuous time
input ut ∈ Rnu and output yt ∈ Rny . The corresponding
ordered sequences of discrete time measurements uk and
yk taken from the system S are y[N] = [y0, y1, . . . , yN ]
and u[N] = [u0, u1, . . . , uN ], where the integer subscripts
k = 0, 1, . . . ,N denote the discrete time sampling instants,
and the subscript enclosed in [·] is used to indicate an
ordered sequence.

The likelihood function, i.e., the probability of ob-
serving the measurement sequence y[N] when θ and M are
given, is defined:

L
(
θ ;y[N],M

)
= p

(
y[N]|θ ,M

)
(2)

By assuming that the residuals are Normal distributed, and
applying the product rule to expand the probability in Eq.
(2), we obtain (Kristensen et al., 2004):

L
(
θ ;y[N]

)
=

 N

∏
k=1

exp
(
− 1

2 εT
k E −1

k|k−1εk

)
√

det
(
Ek|k−1

)(√
2π
)ny

 p(y0|θ)

(3)
The quantities ŷk|k−1, εk and Ek|k−1, which can be obtained
using a Kalman Filter (KF) (Kristensen et al., 2004), is
needed for evaluation of the multivariate Gaussian in Eq.
(3). By taking the negative logarithm, and eliminating the
factor 1

2 , the result `(θ) = −lnL(θ), where dependency
on y[N] and M is omitted for simplicity, can be used as the
objective g in Eq. (1).

2.1 Profile likelihood
Since the model structure M is a representation of a sys-
tem S , it is often assumed that S ∈M (Θ) and that
consequently there exists a true parameter vector θ ∗ such
that M (θ ∗) = S . However, this is rarely the case, es-
pecially for simplified grey-box models based on a naive
physical understanding of the system S . Typically, the es-
timate θ̂ depends on several factors, such as the amount of
dynamic information in K , the choice of objective func-
tion g, and to some extent on the optimisation algorithm
A . Hence, prior to interpretation of parameters as phys-
ical constants of S , it is necessary to perform an identi-
fiability analysis. Since the parameters are estimated us-
ing the Likelihood function, the Profile Likelihood (PL)
method (Raue et al., 2009; Deconinck and Roels, 2017) is
a natural choice. The likelihood profile `PL (θi) is defined
as the minimum log likelihood for θi when the remaining
parameters are freely optimised (Raue et al., 2009; Venzon
and Moolgavkar, 1988):

`PL (θi) = min
θ j 6=i

g
(
θ j 6=i;M ,K ,θi

)
(4)

Values of θi must be chosen prior to optimising the re-
maining θ j 6=i (Raue et al., 2009). The resulting likelihood
profile can be plotted as a function of θi and subsequently
analysed according to the definitions of structural and
practical identifiability for likelihood-based confidence in-
tervals (Deconinck and Roels, 2017). The likelihood-
based confidence interval obtains a confidence region by
applying a threshold to the likelihood function (Raue
et al., 2009; Venzon and Moolgavkar, 1988). Let{

θ : `(θ)− `
(
θ̂
)
< ∆α

}
, ∆α = χ

2 (α,ndf) (5)

where θ̂ is a freely estimated, presumed optimal, para-
meter vector, and the threshold ∆α is the α percentile of
the χ2-distribution with ndf degrees of freedom.

Profile likelihood in two parameter dimensions

By freely estimating all but one parameter, the PL method
essentially projects the nθ dimensional space Θ onto the
single parameter θi. This projection is known to overes-
timate the width of the likelihood-based confidence inter-
val if there are inter-dependent parameters. A step towards
remedying this issue is to modify the PL method to hold
out two parameters (PL2) rather than one, i.e.;

`PL2 (θi,θ j) = min
θk 6=i, j

g
(
θk 6=i, j;M ,K ,θi,θ j

)
(6)

This projects the parameter space Θ onto the plane Θi, j =
(θi,θ j) s.t. θi,θ j ∈ Θ. In addition identifiability is-
sues, these profiles can also diagnose parameter inter-
dependence by inspecting the shape of the confidence
regions. The resulting two-dimensional profiles can be
analysed similarly to the one-dimensional profiles (Raue
et al., 2009), using the definition in Eq. (5). These profiles
are computed for all possible combinations of parameters.
A confidence region in the Θi, j plane is obtained by ap-
plying the ∆α threshold. Observe that since θ̂ has nθ free
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Figure 1. PL2 improved warm start algorithm

parameters while the PL2 estimate has nθ − 2, this gives
ndf = 2 for the computation of ∆α from the χ2-distribution
in Eq. (5). The free estimate θ̂ may with advantage be
chosen as the minimum `PL2 (θi,θ j) obtained from all pro-
files. This search procedure approximates, since it is sub-
ject to the brute force discretisation performed in PL2, a
free optimisation of all parameters using the already com-
puted `PL2 results. Since the PL2 profiles covers the entire
parameter space Θ, this procedure is less affected by local
minima than a direct numerical optimisation. Parameter
identifiability is obtained if the region is bounded in all
directions and the size and shape of this region determ-
ines the accuracy of the parameter estimates. If the region
contains an unbounded equipotential valley in the log like-
lihood space, the parameter is considered structurally non-
identifiable. If the profile has a well defined minima, but
is unbounded in one direction, i.e., the log likelihood is
below the ∆α threshold, this indicates a practically non-
identifiable parameter (Raue et al., 2009).

Implementation and computation time

In (Brastein et al., 2019), a brute force method was used,
running individual optimisations for each predetermined
combination of θi,θ j, each iteration starting from the
nominal parameter vector θ0. Here, the profiles are con-
structed by a set of chained optimisations where each new
point uses a previously optimised θ̂ k 6=i, j from a near-by
point in Θi, j as a warm start, working from the centre of
the plane Θi, j towards the edges. This process is illustrated
in Fig. 1. This modification reduced the computation time
by approximately 4-10 times, since for each computation
of `PL2 (θi,θ j), the initial guess for the free parameters are
taken from a near-by, previously optimised, solution and
hence are already close to optimal.

2.2 Parameter estimation uncertainty
An estimate of the uncertainty of the estimated parameters
can be obtained by computing the covariance of the esti-
mated parameters Σ = 2H−1 where H = ∇T ∇`(θ)

∣∣
θ=θ̂

is
the Hessian of `(θ), whose elements are approximated as
(Kristensen et al., 2004; Raue et al., 2009):

hi, j ≈
(

∂ 2

∂θi∂θ j
`(θ)

)∣∣∣∣
θ=θ̂

(7)

The partial derivatives of `(θ) can be numerically ob-
tained using the central difference approximation. From
the covariance matrix, asymptotic point-wise confidence
limits on the estimated parameters can be computed (Raue
et al., 2009)

θ̂i±
√

χ2 (α,ndf)Σi,i (8)

where for point-wise intervals ndf = 1. Alternatively, con-
fidence ellipsoids of dimension nθ as a set of θ can be
defined from the inequality:{

θ :
(
θ − θ̂

)T
Σ
−1 (

θ − θ̂
)
0 ∆α

}
, ∆α = χ

2 (α,ndf)

(9)
where the scale of the ellipsoid is determined by the factor
∆α computed as in Section 2.1 (Johnson and Wichern,
2007). Given that the covariance matrix is symmetric and
positive definite, the boundary of an ellipsoid can be ob-
tained by the Cholesky decomposition Σ = LLT , hence
(Press et al., 1992):(

θ − θ̂
)T

Σ
−1 (

θ − θ̂
)
= ∆⇒

∣∣L−1 (
θ − θ̂

)∣∣2 = ∆α (10)

Next, suppose x is a point on a unit hypersphere, then the
ellipsoid boundary is obtained by the affine transformation

θ = θ̂ +
√

∆Lx (11)

Elliptic regions in the plane Θi, j can be computed by pro-
jecting the nθ dimensional ellipsoid onto Θi, j. With the
χ2 confidence bound given with ndf = 2, assuming all un-
certainty on the parameters in the plane Θi, j, these elliptic
confidence regions are comparable to the PL2 method
presented in Section 2.1. Observe that the confidence re-
gion based on applying a threshold on the likelihood func-
tion as in Eqs. (4) and (6) are often considered superior to
the Hessian method, since the Hessian assumes symmetric
distributions and therefore cannot be used to identify prac-
tical identifiability (Raue et al., 2009). However, the Hes-
sian approach is much faster to compute and gives a reas-
onable estimate of the estimated parameter uncertainty if
the parameters are approximately Normal distributed.

3 Experimental setup

3.1 Experimental building

The experimental building, which is located at Campus
Porsgrunn of the University of South-Eastern Norway
(USN), is shown in Fig. 2. The building is constructed
with three different types of walls. As shown in Fig. 2, the
North wall is constructed using materials with high insula-
tion quality, which is typically used in modern sustainable
buildings. The South wall is constructed using traditional
building materials, with lower thermal insulation capabil-
ities.
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Figure 2. The experimental building has walls constructed using different techniques for insulation. Sensors are located on all
walls at different height above floor, and in different insulation layers. The sensors used in this project, N3 and S1, are measuring
the wall temperature inside the building on the north and south wall, respectively.

Figure 3. RC circuit model of the building.

3.2 Model

Figure 3 shows a possible model structure, which was de-
veloped to approximate the thermal behaviour of the ex-
perimental building, partially based on the R4C2 model
presented in (Berthou et al., 2014). The RC circuit con-
sists of five components: the thermal resistance between
room air and wall Rb, the building envelope Rw, and the
thermal resistance of windows and doors Rg. The two ca-
pacitances Cb and Cw represent the thermal capacitance
of the building interior and envelope, respectively. The
model has two outputs: the room temperature Tb and the
wall surface temperature Tw, and two inputs: the con-
sumed power by an electric heating element Q̇ and the
outside temperature T∞. The parameter vector θ holds
the value of each of the five components. By applying
Kirchoff’s balance laws to the circuit, the model can be
expressed as a linear stochastic differential equation

dx
dt

= Axt +But +wt (12)

yt = xt + vt (13)

Table 1. Nominal parameter values and min/max limits for res-
istances [K/W] and capacitances [J/K].

Rg Rb Rw Cb Cw
θ0 0.15 0.20 0.30 1000k 200k

θmin 0.03 0.03 0.03 800k 1k
θmax 0.25 2.00 2.00 1800k 1000k

where

xt =

[
Tb
Tw

]
, ut =

[
Q̇
T∞

]
, B =

[
1

Cb

1
CbRg

0 1
CwRw

]

A =

[
− 1

CbRb
− 1

CbRg
1

CbRb
1

CwRb
− 1

CwRb
− 1

CwRw

]
and wt ∼ N (0,W ) is the process noise (model error), W is
the spectral density of wt . All states are measurable, hence
Eq. (13) with measurement noise vt ∼ N (0,V ). Observe
that the model equations are expressed in continuous time,
and discretised by the estimation software using a Runge-
Kutta 4th (Runge, 1895) order approximation. Observe
also that while the model is linear, the algorithm is not
restricted to linear models. The choice of Kalman Filter
implementation is determined by the type of model being
used (Brastein et al., 2019).

Table 1 lists a set of experimentally obtained nominal
parameters, which are used as initial guesses for model
calibration, and min/max limits which corresponds to the
bounds of the constrained parameter space Θ.

3.3 Calibration data
Figure 4 shows a set of calibration data, which consist of
four temperature measurements and one measurement of
supplied input power. The data was recorded in February
2018. Originally, the data was collected at 1 minute in-
tervals but has been downsampled to 30 min time-step, by
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Figure 4. Data recorded from sensor at different locations in the
building

Table 2. Estimated covariance matrices with corresponding KS
test result (critical value for 95% conf. is 0.062) .

# W
1
2

Tb
W

1
2

Tw
V

1
2

Tb
V

1
2

Tw
KSTb KSTw

S1 0.115 0.104 0.028 0.037 0.054 0.042
N3 0.117 0.077 0.019 0.145 0.046 0.035

extracting every 30th measurement. Two of the temperat-
ures correspond to model state Tb and the model input out-
door temperature T∞. The remaining two measurements
correspond to different alternative sensor locations for Tw,
one on the north wall (sensor N3) and one on the south
wall (sensor S1). Figure 4 shows that there is significant
differences between these two measurements in dynamic
content, due to the different construction materials used in
the North and South wall, which will lead to differences
in the identifiability analysis of the estimated parameters.
In the sequel, two different cases S1 and N3 are analysed,
distinguished by the choice of reference measurement for
the output Tw.

Optimisation algorithm

In (Brastein et al., 2019) COBYLA (Powell, 1994), based
on linear approximations, was used as the optimisation
algorithm A in Eq. (1). In this work, further experi-
mentation with other optimisation algorithms showed that
a quadratic approximation algorithm, such as BOBYQA
(Powell, 2009), gives significantly faster convergence, by
approximately a factor of 5, as well as more consistent res-
ults by improved ability to avoid local minima. BOBYQA
is therefore used in the sequel.

4 Results and discussion
A requirement for using Kalman Filters to obtain resid-
uals for subsequent evaluation of the likelihood function
in Eq. (3) is obtaining reasonable estimates for process
and noise covariance matrices, respectively W and V . In
(Brastein et al., 2019) V was obtained from data, while W
was found by manual experimentation. A better approach
is to estimate them from data, by including them in θ .

In order to reduce the number of free parameters, both
covariance matrices are assumed diagonal. Further, the

Figure 5. CP diagram of residuals for outputs Tb(red) and
Tw(green)

Figure 6. PL results for Cases S1 and N3. Green lines indicate
in increasing order 90%, 95% and 99% confidence limits.

square root of the diagonal elements are added to the para-
meter vector θ with some appropriate bounds in Θ and
subsequently estimated by numerical optimisation of Eq.
(1). The resulting covariances are shown in Table 2. Ob-
serve that the results corresponding to the state/measure-
ment Tb are similar for both cases, while the results for
Tw differ significantly. This is expected due to the dif-
ferences in noise characteristics and dynamic information
content in the data collected from the two sensors. For
Case S1 the estimates for W is similar for both states,
where as for Case N3 the differences between measure-
ments of Tb and Tw results in different estimates for the
corresponding elements in W .

The residuals obtained after optimising all parameters
must be analysed for normality, in order to justify the use
of the multivariate Gaussian in Eq. (3) for evaluation of
the likelihood function (Kristensen et al., 2004). Figure
5 shows a cumulative periodogram (CP), with 95% con-
fidence bounds obtained from the Kolmogorov-Smirnov
criterion (Madsen, 2007; Madsen and Holst, 1995; De-
coninck and Roels, 2017; Bacher and Madsen, 2011). The
CP plot shows that the residuals are well approximated
by a normal distribution. Additionally, the Kolmogorov-
Smirnov normality-test results are listed in Table 2. After
calibration of the parameters, including the noise covari-
ance matrices, residuals are found to pass the normality
tests.

4.1 Profile likelihood
Once the covariance parameters have been determined, the
remainder of this paper is focused on analysing the para-
meter space Θ by use of the Profile Likelihood (PL) (Raue
et al., 2009) method, first in a single parameter dimension,
and next in two parameter dimensions. The PL results
in Fig. 6 show, as expected, that some of the paramet-
ers have narrower profiles for the S1 Case compared with
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Figure 7. PL2 results for Case S1 (left) and Case N3 (right). Confidence limits, base on the χ2 distribution with 2 degrees of
freedom is indicate on the figure legend to the right.

the N3 Case. Since the excitation in Tw is much larger
for Case S1, it is expected that the identifiability analysis
reflects this by computing tighter confidence regions for
the parameters most affected by Tw. Observe in particu-
lar how the profiles for Cw and Rg indicates considerably
improved identifiability of these parameters for Case S1.
The profiles for parameter Cb is almost identical, which is
expected, since this parameter is not influenced by Tw.

A second observation from Fig. 6 is that Rw is dia-
gnosed as practically non-identifiable, since the profile ex-
tend towards infinity in the positive direction. Observe
also that Rb follows a similar trend, but with an abrupt
break in the profile, which leads to a bounded profile
for Rb. However, if parameters Rb and Rw are inter-
dependent, the projection of the likelihood function for
the parameter space Θ onto Rb will be affected by Rw,
and subsequently by the constraint imposed by Θ. This
type of constraints, in the presence of parameter inter-
dependence, is known to produce such breaks in the com-
puted profiles (Brastein et al., 2019), as discussed in Sec-
tion 2.1.

4.2 Profile likelihood in 2D
Next, the two-dimensional profile likelihood (PL2)
method is applied in order to investigate parameter inter-
dependency. The result is shown in Fig. 7. By projecting
the ML function in Eq. (3) onto a plane of two paramet-
ers, rather then a single parameter axis as in PL, it becomes
possible to diagnose parameter identifiability by observing
the shape of the confidence regions. First, observe that the
PL2 results show a similar improvement in identifiability
for Case S1 over Case N3 for the same parameters. The
confidence regions for Cw and Rg are significantly reduced
for Case S1, whereas the region for Cb is similar for both
cases. Hence, the results of the PL analysis is confirmed

by the PL2 results.
Further, the PL2 results also show that Rb and Rw are

highly inter-dependent, a fact which was not easily ob-
served in Fig. 6. The projected topology of these two
parameters shows a near linear relationship between them.
This explains why the PL profile for Rb contains an ab-
rupt break, caused by the constraint on Rw and their inter-
dependence. In this context, it is interesting to consider
whether this lack of identifiability for parameters Rb and
Rw are of practical, i.e. related to information content in
data, or structural nature. Parameter inter-dependency is
clearly caused by the model structure, not the data. How-
ever, the PL2 profile shows that while the parameters are
linearly dependant, e.g. Rb = cRw, neither parameter is
identifiable, since the profile is unbounded in one direction
in Θ. Hence, it is accurate to claim that these two paramet-
ers are practically non-identifiable, but also that there is
a structural problem of parameter inter-dependency. The
latter may be eliminated by re-parametrising the model,
say, by introducing the relationship Rb = cRw with the
constant c pre-determined based on Fig. 7. However, there
is no physical reason to assume that the thermal resistance
between the inside wall and the building interior should be
depending linearly on the thermal resistance of the wall it-
self, hence this modification of the model equations seems
somewhat ad hoc. A better alternative is to modify the
RC circuit model structure such that the parameter inter-
dependency is resolved.

4.3 Reduced order model for Case S1
From Fig. 6 and 7 for Case S1 it appears that the value of
Cw tends towards zero as Rb and Rw increases. This could
indicate that removing Cw, and replacing the state Tw by a
measurement Tw = T∞Rb+TbRw

Rb+Rw
, is an appropriate modifica-

tion. However, after calibrating the reduced model, the re-
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Figure 8. PL2 results after removing Rg from the model, for Case S1 (left) and Case N3 (right). Confidence limits, base on the
χ2 distribution with 2 degrees of freedom is indicate on the figure legend to the right. Likelihood threshold isolines and a 95%
confidence error ellipse boundary, based on the inverse Hessian, has been added to the plot for N3.

sidual analysis for output Tw, based on a CP diagram, does
not support the normality assumption, which in turn indic-
ates that the model order is to low. Hence, removing Cw is
not an acceptable modification to the model structure.

4.4 Parameter inter-dependence
Observe from Fig. 6 and 7 that for Case N3 there is a
significant flat region in the profiles of both Rb and Rw.
Table 3 contains a selection of values from within this re-
gion, which has been computed by keeping Rb constant
while optimising the remaining parameters. This experi-
ment shows that by varying the parameters within this op-
timal region, the total thermal resistance between building
interior and the outside temperature, Rtot =Rg||(Rb +Rw),
where || indicates a parallel connection of resistors, is
constant. Also, the time constant for the wall capacitor
τw = (CwRb||Rw) is approximately constant for the same
experiments. Since the total resistance Rtot < Rg it follows
that Rb and Rw can grow large, by compensating with Rg
and Cw, without affecting the models predictions. Com-
bined with the PL2 analysis results, this indicates an over-
parametrised model.

4.5 PL analysis of model without Rg
A natural next step is to reduce the number of parameters
by removing the presumed redundant parameter Rg from

Table 3. Optimised values of Rw, Rg and Cw with fixed values
of Rb from within the flat region observed in the PL results.

Rb Rw Rg Cw Rtot τw
0.700 0.993 0.093 163k 0.088 67.0k
0.900 1.277 0.092 126k 0.088 66.5k
1.300 1.844 0.091 88k 0.088 67.0k

the model circuit. Repeating the PL2 analysis of the model
with Rg removed gives the plots shown in Fig. 8. The pro-
files for all parameter combinations are now approxim-
ately elliptical, which indicates parameter independence.
Observe also from Fig. 8 that the min/max limits which
constitutes the bounds Θ has been changed to comply with
the reduced model structure. Further, all parameters now
have bounded profiles, which indicates identifiability. By
comparing Case S1 and Case N3, the effect of low excit-
ation in Tw for Case N3 is observed also for the reduced
model. In addition to obtaining a different optimal value
for Cw, as expected, since the sensor is mounted on a dif-
ferent wall, the profile is much wider for Case N3. This in-
dicates a wider confidence region for this parameter, hence
a more uncertain estimate.

Table 4. Optimal parameters with Rg removed.

Rb Rw Cb Cw
S1 0.040 0.048 1267k 419k
N3 0.035 0.051 1137k 2735k

With identifiable parameters, it is interesting to com-
pare the optimal parameter estimates, listed in Table 4, for
each case. Observe first that for both cases, the total ther-
mal resistance between building interior and outside tem-
perature Rb +Rw h 0.088, which was the value obtained
for the total resistance in Table 3. Observe also that both
resistances and the interior capacitance Cb is similar for
both cases, while the value obtained for Cw is much lar-
ger for the N3 case, as expected, due to the high grade
insulation used in the North wall.
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Hessian vs Profile Likelihood

Observe from Fig. 8 that the super-imposed Hessian based
error ellipse at α = 95% are similar to the 95% confidence
regions computed by thresholds on the likelihood profile.
Observe especially for the profile Rb vs Rw that the two
confidence region methods produce almost identical re-
gions, since the projected likelihood profile is almost sym-
metric. For e.g. Cb vs Cw the Hessian ellipse and likeli-
hood thresholds are of similar size, but the Hessian has an
offset due to the non-symmetric likelihood profile. This
shows the advantage of the profile likelihood based re-
gions, in that they can produce accurate results for asym-
metric parameter distributions.

5 Conclusion
In this paper, two different sensor locations, giving dif-
ferent dynamic information in the recorded calibration
data, was used to estimate and analyse parameters of a
thermal network grey-box model of building thermal be-
haviour. The sensor locations differ with respect to the
physical properties of the building, with one sensor fitted
to a high insulation sustainable wall, and the other to a
standard insulation wall. The profile likelihood method
was used, projecting the likelihood function in both one
and two parameter dimensions, to show the difference in
confidence regions produced by lack of excitation in the
calibration data. Confidence regions computed by apply-
ing a threshold to the 2D profiles were compared with er-
ror ellipses computed based on the Hessian, which shows
that while the two confidence region methods give similar
results, the PL method better represents the uncertainty
when the parameter distribution is asymmetric. The two-
dimensional likelihood profile results were used to dia-
gnose parameter non-identifiability, and the model struc-
ture was subsequently modified to resolve the problem,
thus obtaining identifiable parameters.
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