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Abstract 
Moving bed biofilm reactor (MBBR) is a robust, 
flexible and compact technology for treatment of 
medium to high strength wastewater. However, while 
treating wastewater with high concentration of 
ammonium, phosphorus and metal ions, scaling on the 
biofilm carriers can occur, causing biofilm carriers to 
sink the bottom of reactors. That leads to less carrier 
motion, higher energy consumption and deteriorated 
mass transfer, causing lower process efficiency and 
increased operational cost. This can be a major MBBR 
operational challenge for certain types of wastewater. In 
this study, scaling on biofilm carriers in an MBBR 
reactor treating reject water from anaerobically digested 
wastewater sludge was investigated. The 67 L reactor 
was operated at 16 h hydraulic retention time (HRT) for 
over 250 days. The metal ion concentrations in the reject 
wastewater in and out of the MBBR were analyzed 
using microwave plasma-atomic emission spectroscopy 
(MP-AES). The chemical equilibrium simulation tool --
Visual MINTEQ 3.1 was applied to determine the 
possible mineral precipitates. The measured 
concentrations of Mg2+, Ca2+, Fe3+, NH4-N, PO43-, SO42- 
and alkalinity from the inlet and outlet of the reactor 
were used as inputs to the model. Dry biomass and 
precipitates from biofilm carriers were digested by a 
DigiPREP digestion system and element analysis 
performed using MP-AES for simulated data validation. 
The results show that Fe3+ and Ca2+ had the highest 
potential to form mineral precipitates and scaling on the 
biofilm carriers. Hematite, Maghemite, Hydroxyapatite, 
Geothite and Magnesioferrite were the first five 
predominant forms of mineral precipitates, in the pH 
range from 6.0 to 9.0. The saturation indices (SI) of 
these five minerals increased with pH, implying that 
measures to lower pH may reduce the problem. Digested 
biomass composition and inorganic solid analysis 
confirmed that calcium is the major cause for scale 
formation on the biofilm carriers. Crystal formations in 
the biofilms were confirmed by optical microscopy 
images. 
Keywords: Visual MINTEQ, scaling, moving bed 
biofilm reactor, reject water 
 

1 Introduction 
Scaling on biofilm carriers is a major problem in moving 
bed biofilm reactors (MBBR) treating wastewater with 
high concentration of ammonium, phosphorus and metal 
ions. Scale formation occurs, e.g., in treatment of reject 
water from sludge digestion. When sludge is digested 
anaerobically, ammonia and soluble orthophosphate 
will be released from the sludge and end up in the reject 
water when such sludge is dewatered, and, in the 
presence of magnesium, calcium or ferric ions, could 
result in crystallization of inorganic salts. The amount 
of active biomass is an important factor in assessment 
the performance of MBBR, and the biomass growth 
chiefly depends on the designed carrier’s effective 
surface area (ESA). During the MBBR operation, ESA 
can decrease because of excess biofilm biomass 
accumulation so that the area of biofilm exposed to the 
liquid (EBA) decreases. Surplus biofilm thickness may 
thereby have negative effect on the reactor’s efficiency 
by reducing EBA and mass transfer and also by 
increasing carrier weight (Ødegaard, 2006; Piculell, 
2016). 

Crystallization can happen when a solution is 
supersaturated. This occurs when the solute 
concentration surpasses the equilibrium and nucleation 
occurs due to high free energy. Saturation index (SI) is 
an important parameter for determination of the 
probability for mineral precipitation. SI is a logarithmic 
ratio between ion activity product (IAP) and equilibrium 
constant (Ksp) in the wastewater treatment process 
(Sharp et al.,  2013)  

SI = log  IAP
Ksp

         (1)                                   

   IAP (ion activity product) is quantified as a product 
of all comprised ion concentrations which should be 
measured as soluble ions. Ionic strength (I) depends on 
dissolved solids concentrations and can be calculated 
from (2).  

𝐼𝐼 = 1
2

 ∑𝑍𝑍𝑖𝑖2 𝐶𝐶𝑖𝑖                      (2) 
Where, 𝑍𝑍𝑖𝑖 is the valency of the ion and 𝐶𝐶𝑖𝑖 is the 
concentration. Ionic strength for wastewater is in the 
range of 0 to 0.2. If the composition of wastewater is 
unknown, it can be approximated as the dissolved solids 
[g/L] x 2.5 x 10-5 × 2.5 × 10−5 .Debye-Huckel method 
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uses mean ionic activity (γ) for activity correction as 
follows (Cellen, 2010): 

log 𝛾𝛾 = −0.5𝑍𝑍2 √𝐼𝐼
1+√𝐼𝐼

              (3)                                                                
Visual MINTEQ 1.3 is based on Equations 1-3 and is 

one of the most used chemical equilibrium simulation 
tool to determine possible mineral speciation and 
estimate its solubility at chemical equilibrium. Visual 
MINTEQ is a simulation tool which can be used to 
compute the equilibrium composition of dilute aqueous 
solutions. It is a Windows version of MINTEQA2 
equipped with inclusive thermodynamic data to estimate 
speciation, solubility and equilibrium of minerals in the 
solutions. It was found to be a good simulation tool in 
several studies which have been implemented in 
different versions of Visual MINTEQ to predict and 
control of possible mineral precipitations in wastewater. 
Jia (2014), applied Visual MINTEQ 3.0 to analyze  the 
formation of struvite from sludge dewatering effluent 
from Bolivar wastewater treatment plant in south 
Australia. Visual MINTEQ 2.23 was used of struvite 
formation in a wastewater treatment by (Çelen et al., 
2007; Çelen and Türker, 2010) to estimate  the required 
modifications for phosphates precipitation in liquid 
swine manure.  Chand (2018), investigated the struvite 
formation possibility from anaerobically digested 
sludge by calculating the values of saturation indices 
with help of Visual MINTEQ 1.3.  

In our study, the model is applied with the objective 
to investigate the possible precipitates in moving bed 
biofilm reactors (MBBR) treating reject water. The 
model calculations were done mainly based on chemical 
element’s concentrations of magnesium, phosphorous, 
ammonium, iron and calcium. The Debye-Huckel 
method was use for activity corrections during model 
setup for precipitation prediction (Jia, 2014). Specified 
temperature, alkalinity and pH values were used for 
determination of saturation index (SI).  

2 Materials and methods 
A moving bed biofilm reactor (MBBR) was installed on 
the lines of reject water directed to main wastewater 
inlet as shown in Figure 1. The MBBR has a dimension 
of LxBxH=0.35x0.35x0.55m (effluent level) with a 
working volume of 67 L. It was filled with bio carriers 
to a filling degree of approximately 70 % of the reactor 
volume. The bio carriers, BWT S® (Biowater 
Technology AS), made of high-density polyethylene 
(HDPE) with dimensions of 14.5x18.5x7.3 mm and 
protected surface area of 650 m2/m3, were used as 
biofilm attaching substratum. The reactor was fed by 
centrifuged effluent from anaerobic sludge digestion. 
Since the centrifuge works intermittently (i.e., 6-9 hours 
during week days) the reject wastewater is stored in an 
intermediate bulk container (IBC) onsite to ensure that 
there is constant supply of feed into the reactor. The 

reactor was continuously aerated with air flow 26 ± 2 
L/min. 
 

 
Figure 1. Flow diagram of Knarrdalstrand municipal 
wastewater treatment plant, Porsgrunn showing the MBBR 
position. 
  At the beginning, carriers moved freely in the MBBR 
reactor as intended but gradually carriers started to sink 
after strong biofilm growth and eventually settled 
permanently with heavy scaling on the bottom of the 
reactor after ~200 d of operation (Figure 2) 
 

2.1 Sampling and wet chemical analysis 
Samples of influent and effluent were collected two 
times per week and various chemical analyses such as 
ammonium, total chemical oxygen demand (CODt), 
soluble COD (CODs), total suspended solids (TSS), 
volatile suspended solids (VSS), PO4-P and Alkalinity 
were carried out. The analyses were performed based on 
the standard methods according to APHA (1995). 
 

2.2 Element analysis by Microwave plasma 
atomic emission spectroscopy 

Microwave plasma atomic emission spectroscopy (MP-
AES 4210) was used to estimate the total ion 
concentrations for elements, Ca, Fe, Mg, P and Al in the 
reject water. MP-AES provides analytical techniques to 
determine the elemental composition of samples by 
surveying their electromagnetic spectrum or mass 
spectrum. MP-AES uses nitrogen extracted from air by 
nitrogen generator to form plasma. Axial magnetic and 
radial electrical fields strengthen the nitrogen plasma. 
The sample aerosol was injected into plasma and the 
axial emission was directed into scanning 
monochromator. The different elements have a different 
wavelength. The emissions of selected wavelength 
range are reflected on high efficiency charge coupled 
device (CCD) detector. 
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2.2.1 Liquid sample preparation for element analysis 
Samples from influent and effluent of the reactors were 
centrifuged, filtered and then diluted with 2% nitric acid 
(HNO3) to 100 and 1000 dilution factors. Subsequently, 
the samples were measured by the MP-AES instrument 
for the elements Ca, Fe, Mg and P. Agilent Technologies 
ICP-OES Calibration Solution was used for wavelength 
calibration and Sigma-Alorich Periodic table mix 1 was 
used for wastewater standard calibration. 

2.2.2 Quantification of biomass on carriers 
Five carriers (N) were taken from the MBBR reactor, 
placed on an aluminum plate and dried at 105°C for 24 
h and cooled down for 10 min in the desiccator. Then 
dried carriers were weighted (m1). After that, carriers 
were soaked into hypochlorous acid (HOCl) for 2 hours, 
biomass was brushed and washed out by tap water. 
Again, the cleaned carriers were dried at 105°C for 24 h 
and weighted (m2). Eventually, biomass per carrier 𝑚𝑚 
was calculated as mentioned in (4).  

 
𝑚𝑚 = 𝑚𝑚1−𝑚𝑚2

𝑁𝑁
                                                        (4) 

 
Biomass per unit protected surface area was calculated 
according to (5). 
 

𝑊𝑊 = 𝑚𝑚. 𝑉𝑉𝐶𝐶
𝐴𝐴

                                              (5) 
Here: 
𝑊𝑊: Biomass per unit surface area (g/m2) 
𝑚𝑚 : Biomass per carrier (g/piece) 
𝑉𝑉𝐶𝐶: Number of carrier pieces per volume (piece/m3) 
𝐴𝐴: Protected surface area (m2/m3)  

2.2.3 Solid sample preparation for element analysis  
A DigiPREP Digestion System was used to digest 
organic materials included in dried sample of sludge and 
carrier’s biomass. The DigiPREP Digestion System 
involves a microwave – assisted acid digester (MAAD) 
equipped with a touch-screen controller, Digi- tubes and 

filters. Samples from sludge and carriers were dried for 
at least 10 hours in an oven at 105℃, then the carriers 
were rubbed off. Dried samples of mass 0.5 g were 
digested with 10 mL concentrated HNO3 (69% v/v) in 
special digested tubes placed in a MAAD. Digested 
samples were cooled and then filtered with 1.2-1.5µm 
pore size glass filter. Thereafter, samples were diluted 
up to 50 mL with distilled water. Again, the diluted 
samples were diluted with 2 % HNO3 up to 100 and 
1000 dilution factor. Subsequently, the samples were 
measured by MP-AES. 

2.3 Model inputs 
Metal ion concentration, temperature and pH were the 
main inputs for Visual MINTEQ simulations. These 
parameters were varying over the time, therefore 
average values were used as input for the model. The 
average temperature was set to 16.5oC and pH was 
attempted to be kept constant at value8.2. The ion 
concentration inputs are given in Table 1. Ionic strength 
was let it to be calculated by model itself based on 
Debye-Huckel activity model. 

Table 1. Input ion concentrations for Visual MINTEQ 
simulations. 

Elements Concentration (mg/L) 
Mg2+ 35 
Ca2+ 700 
Fe3+ 15 
NH4+ 440 
P(PO4) 40 
SO42- 4 

2.4 Crystal observation in solid samples 
The presence of crystals in biomass and sludge samples 
was investigated by stereo microscope Nikon SMZ745 
and fluorescence microscope Olympus IX70. Both 
microscopes are equipped with cameras to capture the 
pictures of biomass at 20x and 40x magnification.  

Figure 1. MBBR reactor setup with BWTS® carriers (a-MBBR with newly filled carriers, b- MBBR in good condition 
with freely moving carriers, c- MBBR with settled carriers. 
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3 Results and Discussion 
The effective biofilm thickness is crucial to maintain 
efficient mass transfer between biofilm and bulk liquid 
phase. Excessive biofilm accumulation and scaling on 
the bio-carriers was observed over the study period. For 
instance, the average values of biomass on carrier per 
unit surface area exceeded 135 g/m2 temporarily and 
stabilized in the range of 90-120 g/m2 as shown in 
Figure 3.  

    Due to the increasing biofilm density it was observed 
that freely moving carriers started to settle and the 
effectiveness of the process in removing organics 
deteriorated (data not shown). 

Table 2. Saturation indices for possible mineral 
precipitates in MBBR reactor, found in simulation result. 

 
The chemical equilibrium model has shown several 

possible precipitates on the biofilm carriers that may 

have caused the high biofilm density and carrier settling 
(Table 2). The results show that Fe3+ and Ca2+ ions had 
the highest potential to form mineral precipitates and 
scaling on the biofilm carriers. Among other diverse 
forms of precipitates, Hematite, Hydroxyapatite, 
Magnesioferrite, Maghemite, and Goethite were the 
most predominant forms of mineral precipitates, with 
saturation indices (SI) of 21.6, 18.1, 15.8, 14.5, and 9.6, 
respectively. Digested dried sample of sludge and 
carrier’s biomass had 37 % and 28 % mass percentage 
of calcium, respectively. pH had effects on the 
precipitates’ SI in the pH range from 6.0 to 9.0 are 
shown in Figure 4. 

Struvite was not one of the major precipitates in this 
study because it has low saturation index 0.4 (Table 2 

and Figure 4). Struvite is magnesium ammonium 
phosphate and it normally precipitates when the ion 
concentration of magnesium, ammonium and phosphate 
are over saturated and the molar ratio is 1:1:1 (Tansel et 
al., 2018). 

The simulations have shown that pH has significant 
effect on the amount and type of precipitants on the 
biofilm carriers. Hematite, Maghemite, Hydroxyapatite 
and Magnesioferrite precipitation increased most with 
increase in pH. Goethite and Struvite were not much 
influenced by pH with a slight increase in struvite when 
the pH was above 8 (Figure 4). pH in the range of 7 to 
11 is generally known to be conducive for the formation 
of struvite, calcium phosphate and calcium carbonate  
and the crystallization rate decreases when the pH drops 
below this 7 to 11 range (Daneshgar et al., 2018). The 
aeration process in the MBBR reactor may have 
increased pH by CO2 stripping and by biological 
reactions (Organics consumption, NH4 increase etc.). 
The measured inlet pH in this study was ~ 7.5 and the 
reactor pH was ~ 8.2, respectively. 

Several studies have shown that crystallization occurs 
in biofilms when the bulk liquid solution contains more 
dissolved solute than the equilibrium saturation values. 
The ions involved in scale formation have intricate 
interaction and different crystals could be formed 

Mineral Saturation Index 
Hematite 21.6 
Hydroxyapatite 18.1 
Magnesioferrite 15.8 
Maghemite 14.5 
Goethite 9.6 
Lepidocrocite 9.1 
Ferrihydrite (aged) 7.2 
Ca3(PO4)2 (beta) 6.9 
Ca4H(PO4) 3:3H2O(s) 6.9 
Ferrihydrite 6.7 
Ca3(PO4)2 (am2) 5.5 
Strengite 4.2 
Ca3(PO4)2 (am1) 2.8 
CaHPO4(s) 1.1 
CaHPO4:2H2O(s) 0.8 
Struvite 0.4 
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Figure 3. Biomass accumulation on carrier in MBBR 
reactor over the time (01.03.2018 – 01.05.2019). 
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Figure 4. The saturation indices variation with pH for the 
predominant mineral precipitates predicted by the model. 
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depending on the system condition such as ionic 
concentrations, temperature and pH (Harker et al., 
2013). 

A microscopic image of the observed crystalsformed 
in the biofilm carriers is shown in Figure 5.  

The simulation result has showed that, the major 
proportion of the crystal is a combination of either iron 
or calcium precipitates. Comparing the microscopic 
image with other studies of scanning electron 
microscope the struvite crystallization was significantly 
low. Since the reject wastewater contains large amount 
of calcium, it might inhibit the struvite crystallization. 
Similar studies have indicated that calcium has effect on 
struvite crystallization at different magnesium to 
calcium molar ratios (Hao et al., 2008). When the molar 
ratio of calcium is high, the formed crystal shows 
transformation in morphology different from struvite. 

4 Conclusions 
Scaling on biofilm carriers of moving bed biofilm 
reactor (MBBR) is a major problem during treatment of 
reject wastewater, as it makes biofilm carriers heavy so 
that they sink to the reactor bottom. The study has 
confirmed that high concentration of ammonium, 
phosphorus and metal ions creates scaling on the biofilm 
carriers.  

The chemical equilibrium simulation tool Visual 
MINTEQ 3.1 is a useful tool to predict which mineral 
precipitates can occur in wastewater treatment process, 
to what extent they may form and factors influencing 
their formation.  

The pH and ionic concentration of metal ions play 
significant roles in the formation of different crystals. In 
this study, Fe3+ and Ca2+ had the highest potential to 
form mineral precipitates and scaling on the biofilm 
carriers. Among possible forms of precipitates 
Hematite, Hydroxyapatite, Magnesioferrite, 

Maghemite, and Goethite were the most predominant in
order of their saturation indices (SI). pH control,
generally by lowering pH, appears to be the most
realistic way to limit scaling.
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