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Preface 
 
The 60th SIMS conference on Simulation and Modelling (SIMS 2016) was held in cooperation with ICAE, 
11th International Conference of Applied Energy in Våsteräs, Sweden. This was the 60th time for the 
conference SIMS. It was held the first time 1959, also in Vasteras, so this was a nice anniversary. Våsteräs is 
a city in Central Sweden on the shore of Lake Mälaren in the province of Västmanland, 100 kilometers west 
of Stockholm. The city has a population of approximately 120 000 out of the municipal total of 150 000. 

The conference was held together with ICAE 2019 and thus the first day we had joint keynote speeches. Esko 
Juuso (Chairman six years before Erik)  and Erik Dahlquist (Chairman SIMS last six years) had a presentation 
to all participants (800+) and the presentation is attached in the proceedings as well. It gives a bit of the history. 

The Scandinavian Simulation Society consists of members from five Nordic countries: Denmark, Finland, 
Norway, Sweden, and Iceland. The goal of SIMS is to further develop the science and practice of modelling 
and simulation in all application areas and to be a forum for information interchange between professionals 
and non-professionals in the Nordic countries. SIMS is a member society of The Federation of European 
Simulation Societies (EUROSIM) was set up in 1989. The purpose of EUROSIM is to provide a European 
forum for regional and national simulation societies to promote the advancement of modelling and simulation 
in industry, research and development. EUROSIM consists of 17 European Simulation Societies. The 
Scandinavian simulation society (SIMS) had Board and Annual Meetings during the conference. The six-year 
period of Prof. Erik Dahlquist as the SIMS Chairman ended and Prof. Bernt Lie was elected as the new 
Chairman. 

The SIMS 60 conference covered broad aspects of simulation, modeling and optimization in engineering 
applications, including many papers on bioprocesses, buildings, and electricity. Bioprocess cases cover 
biomass, biogas, anaerobic digestion, fed-batch fermentation, biofilm reactors, wastewater treatment, and 
waste conversion. Energy papers focus on buildings, including energy management, distributed power 
generation, thermal behavior, energy storage, occupation, and solar energy, and electricity focusing on 
synchronous generators, lighting, district heating, and power transmission. Several papers discuss fluidized 
beds in biomass gasification. Applications include also oil production, drilling, erosion, anti-icing, 
underground mining, and maintenance management. Cases utilize versatile methodologies, e.g.  multivariate 
regression, parameter estimation, Kalman filters, and computational fluid dynamics, enhanced with uncertainty 
handling, intelligent systems, machine learning, digital twins, model predictive control, and early diagnostics. 
Modelling and simulation tools include Aspen HYSYS, Aspen Plus, Delphi, Dialux, Julia, OLGA, 
OpenModelica, MATLAB, ROCX, and Visual MINTEQ.  

Panel discussions were organised on future directions of SIMS. The technical tours covered heat and power,  
water, wastewater, waste collection, and recycling. Industrial and environmental applications, development of 
modelling and simulation tools and strong support for PhD students continue for stimulating process 
development model-based automation. 
 
We would like to express our sincere thanks to the keynote speakers, authors, session chairs, members of the 
program committee and additional reviewers who made this conference such an outstanding success. Finally, 
we hope that you will find the proceedings to be a valuable resource in your professional, research, and 
educational activities whether you are a student, academic, researcher, or a practicing professional.  
 
Erik Dahlquist, Esko Juuso, Bernt Lie, and Lars Eriksson 
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Conferences location   
 
The main venues were the Aros Congress Center and Mälardalen University in the City of Västerås.   

Opening Ceremony, 13 August 2019 

Welcome by the Governor Minoo Akhtarzand, The Province of Västmanland 

Opening of the 11th International Conference on Applied Energy (ICAE2019) 

- Prof. Xiaoxin Zhou, Editor-in-Chief of CSEE JPES 
- Prof. Jinyue Yan, Editor-in-Chief of Applied Energy 

Opening of the 60th International Conference of Scandinavian Simulation Society (SIMS): SIMS 60 years 

- SIMS Chairman, Prof. Erik Dahlquist, Mälardalen University, Sweden 
- Dr. Esko Juuso, University of Oulu, Finland 

Keynote presentations (ICAE2019), 13 August 2019 

How process automation is making the world more resource and energy efficient – future trends      
Björn Jonsson, Head of Industrial Automation Division, and HUB Manager Control Technologies  
Northern Europe, ABB AB, Sweden 

Understanding Building Energy Data, a key to a More Equitable Energy Transition – Impacts of and on 
Urban Development and Digitalisation       

Prof. Stephanie Pincetl, Founding Director Center for Sustainable Communities, Institute  
of the Environment and Sustainability, UCLA, USA 

What do we know about the global negative emissions energy system – 2050+      
Dr. Michael Obersteiner, Program Director of the Ecosystems Services and Management Program, 
International Institute for Applied Systems Analysis, Austria 

SIMS 60 Years, 13 August 2019  

SIMS History and Future 
Esko K. Juuso, University of Oulu, Finland, 
Erik Dahlquist, Mälardalen University, Sweden 

Greetings from Federation of European Simulation Societies - Eurosim 
Dr. Miguel Mujica Mota, Eurosim President 

General discussion about future directions of SIMS 

Conference topics, 13 - 15 August 2019 

Control (pp. 1-35) 

Buildings (pp. 36-66) 

Measurement and properties (pp. 67-90) 

Oil production (pp. 91-105) 

Bioprocesses (pp. 106-157) 

Fluidized beds (pp. 158-189) 

Electrical applications (pp. 190-228) 

Maintenance (pp. 229-235) 
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Panel discussion on Future Directions of SIMS, 14 August 2019 

Chairs: Esko K. Juuso, University of Oulu, Finland 
Erik Dahlquist, Mälardalen University, Sweden 

Technical tours, 16 August 2019  

Eskilstuna Energy and Environment is handling everything related to heat and and power, tap water and 
wastewater treatment as well as waste collection, sorting and recycling for the cities Eskilstuna and Strängnäs, 
and for household waste also for Örebro. 

VafabMiljö works with sustainable and environmentally sound handling of waste, and is owned by the 
municipalities in Västmanland County together with municipalities Heby and Enköping. The population of the 
region is about 330 000, and there are more than 10 000 businesses that generate waste. 

Social program  

Conference Banquet, Aros Congress Center, 14 August 2019 

 

 

 

 
  

  IV

SIMS 60

DOI: 10.3384/ecp20170  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



  

Conference General Chair 
 

Prof. Erik Dahlquist, Malardalen University, Sweden 
 
 

International Program Committee 
 

Prof. Erik Dahlquist, Malardalen University, Sweden, 
Chair 

Prof. Bernt Lie, University of South-Eastern Norway, 
Norway, Co-Chair 

Dr. Esko Juuso, University of Oulu, Finland, Co-
Chair 

Prof. Lars Eriksson, Linköping University, Sweden, 
Co-Chair 

 

 

Prof. Brian Elmegaard, Technical University of
Denmark, Denmark

Prof. Tiina Komulainen, Oslo Metropolitan
University, Norway

Assist. prof. Sobhana Singh, Aalborg University,
Denmark

Prof. Lars Erik Øi, University of South-Eastern
Norway, Norway

 

 
International Reviewers 

 

 

 

  

Title Givenname Surname Affiliation Country

Assist. prof. Ioanna Aslanidou Mälardalen University Sweden

Assoc. prof. Alfredo Carella Oslo Metropolitan University Norway

Prof. Philip DeVaal Mälardalen University Sweden

MSc   	  Petri Hietaharju University of Oulu Finland

Prof. Yrjö Hiltunen University of Eastern Finland Finland

MSc                  Antti Koistinen University of Oulu Finland

Prof. Britt Moldestad University of South-Eastern Norway Norway

Adjunct prof.    Esa Muurinen University of Oulu Finland

MSc                  Riku-Pekka Nikula University of Oulu Finland

Assoc. prof. Lars O. Nord Norwegian University of Science and Technology Norway

Dr. Eva Nordlander Mälardalen University Sweden

Dr. Markku Ohenoja University of Oulu Finland

Dr. Shobhana Singh Aalborg University Denmark

Dr. Eva Thorin Mälardalen University Sweden

Dr. Jani Tomperi University of Oulu Finland

Prof. Anis Yazidi Oslo Metropolitan University Norway

Dr. Peter Ylen VTT Technical Research Centre of Finland Finland

MSc                  Nathan Zimmerman Mälardalen University Sweden

Assoc. prof. Evi Zouganeli Oslo Metropolitan University Norway

SIMS 60

DOI:  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019

   V

SIMS 60

DOI: 10.3384/ecp20170  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



Scandinavian Simulation 
Society, SIMS, 60 years

Erik Dahlquist

Energy Engineering
School of Business, Society and 

Engineering
Mälardalen University 

Västerås, Sweden

Esko Juuso

Control Engineering Environmental 
and Chemical Engineering 

Faculty of Technology 
University of Oulu

Finland

50th and beginning of 60th
• During the 40th & 50th computers were not 

used that much and simulation mostly for 
flight simulators and physical simulation like 
nuclear bombs and galactic dynamics

• First weather forecast with computer 1954 
(prof Carl-Gustav Rossby)

• Facit made first commercial computers in 
Sweden late 50th- early 60th

• Numerical methods became hot – how
formulate mathematical problems in a way
that could be solved by computers (prof
Germund Dahlquist, KTH, one of the 
pioneers)?

Scandinavian Simulation Council, 
Stockholm, November 1958
Scandinaviska 
Analogmaskinsällskabet, SAMS, 
Västerås, April 1959
• Steel industry, Flight simulators, 

Atomic energy
• Analog simulation
• Standardization
• 13 SAMS conferences: Sweden, 

Denmark and Norway

SIMS 60

DOI:  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019

  VI

SIMS 60

DOI: 10.3384/ecp20170  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



BESK-1

J35 Flight simulator 1959
3000 electronic tubes

First computer built in Stockholm

1968 - 1983

1968 Scandinavian Simulation 
Society (SIMS)
• Analog  Hybrid -> Digital computers
• Annual meetings, secretary general & 

committee
• 1972 SIMS first time in Finland
• Started to use computers with more 

advanced calculations, but not yet nice 
displays

• Process models in Fortran

Simulated how to go to the moon

International cooperation: 1976 
agreement with IMACS 
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1983 – 1992 SIMS
Organization
• 1983 Constitution
• Steering Committee
Simulation software products
• Matlab & Simulink
• VAX computers
International cooperation
• 1985 IMACS 11th World Congress 

in Oslo
• 1991 European Simulation 

Multiconference in Copenhagen

1986 Apros
by VTT and Fortum

1992 – 1999 SIMS
Annual conferences
Simulation
• Combined differential and 

algebraic equations
• Computational intelligence
• Matlab
• Model builders, gPROMS
• PCs … Supercomputers
International cooperation
• 1992 Eurosim founded, SIMS as a 

member society
• 1998 Eurosim Congress in Helsinki

1996 Modelica
- Modelica  Association
- Open access and  open 

source
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1999-2019

Amazon AWS platform – 3D, analytics tools, ….
Hackaton on how to use platform and given data
on energy in Vasteras

Watson beets
Jepardy master

Open source code –
Open Modelica, Python,…..

AI-functions added

Graphics becomes much
more advanced

Diagnostics, production planning, 
Optimization, MPC, on-line adaptation

NSSM

1999 – 2019 SIMS

New Organization
• Society of societies 
• Membership: national, SIMS and Eurosim
• Renewed website
• 2012 SIMS first time in Iceland
• Linköping University Electronic Press

International cooperation
• 2016 Eurosim Congress in Oulu (IEEE & IFAC)
• 2019  International Conference on Applied 

Energy
www.scansims.org

MIMOS

LIOPHANT KA-SIM

ALBSIM
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SIMS activities
• Tools: Stimulate use of new simulation tools like Open Modelica and 

Python
• Industry, Energy & Environment: Applications in energy field like 

power plants, geothermal at Iceland, process industry, oil & gas 
production, wastewater treatment, biogas production.

• Stimulated Automation generally and SIMS reps are Finnish
Automation, Automation region in Sweden and Norwegian
Automation.

• PhD students: Strong support in the five SIMS countries Denmark, 
Finland, Iceland, Norway and Sweden. www.scansims.org
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Surrogate and Hybrid Models for Control

Bernt Lie

University of South-Eastern Norway, Porsgrunn, Norway, Bernt.Lie@usn.no

Abstract
With access to fast computers and efficient machine learn-
ing tools, it is of interest to use machine learning to de-
velop surrogate models from complex physics-based mod-
els. Next, a hybrid model is a combination model where
a data driven model is built to describe the difference
between an imperfect physics-based/surrogate model and
experimental data. Availability of Big Data makes it pos-
sible to gradually improve on a hybrid model as more data
become available. In this paper, an overview is
given of relevant ideas from model approximation/data
driven models for dynamic systems, and machine learn-
ing via artificial neural networks. To illustrate how the
ideas can be implemented in practice, a simple introduc-
tion to package Flux for language Julia is given. Several
types of surrogate models are developed for a simple,
illustrative system. Finally, the development of a hybrid
model is illustrated. Emphasis is put on ideas related to
Digital Twins for control.
Keywords: Digital Twin, surrogate models, hybrid mod-
els, dynamic systems, control

1 Introduction
Digital Twin (El Saddik, 2018) is a key concept in Indus-
trie 4.0 (Hermann et al., 2016), and is related to Internet
of Things and Big Data. Here, a Digital Twin involves
static and dynamic models for various uses such as anal-
ysis, optimization, control design, operator training, etc.;
a modeling languages such as Modelica (Fritzson, 2015)
is suitable for describing such systems. Detailed models
may be too complex for optimization/control, and need to
be simplified, (Benner et al., 2017). A surrogate model1

is a simplified model that allows for fast solution, derived
from a more complex model. Surrogate models can be de-
veloped directly from physics, e.g., using weighted resid-
ual methods (Finlayson, 2014), or by fitting a mathemat-
ical structure to simulation data, (Luo and Chen, 2018),
(Cueto et al., 2016), (Bishop, 2011), (Murphy, 2012).

A mechanistic/surrogate model allows for analysis prior
to building the system, while a data driven model uses data
from the real systems for training. A hybrid model, in this
context, is an imperfect mechanistic based model where
the deviation between model prediction and experimental
data is described by a data driven model, (Farrell and Poly-
carpou, 2006). A hybrid model allows for analysis prior
to building the system, with gradual improvement of the

1Surrogate: from Latin subrogatus = substitute

model as more data becomes available.
Machine learning (ML) for control involves dynamics,

and is more demanding than ML for static systems, (Far-
rell and Polycarpou, 2006). Today, a multitude of tools
for machine learning are available, e.g., TensorFlow2 with
interfaces to many scientific computing tools. Languages
MATLAB3, Python4, Julia5 (Bezanson et al., 2017), etc.,
have their own ML packages, e.g., Flux for Julia (Innes,
2018). Tools for solving mechanistic models include
OpenModelica6, the DifferentialEquations package for Ju-
lia (Rackauckas and Nie, 2017), etc. OMJulia allows for
integrating Modelica code with Julia, (Lie et al., 2019).
For data driven models, regularization and validation is
important (Boyd and Vandenberghe, 2018).

This paper gives an overview of traditional data driven
modeling principles, with relations to ML ideas, and give
examples of how to use a free ML package (Flux for Ju-
lia). Surrogate and hybrid models are illustrated through
an academic example. This way, core ideas of machine
learning for surrogate and hybrid models are introduced
with practical demonstrations of how to use simple, free
tools.

In Section 2, an overview of classical data driven mod-
eling principles is given. In Section 3, artificial neural net-
works are related to the classical principles. In Section 4,
the ideas of surrogate models and hybrid models are il-
lustrated on a concrete example. A brief discussion with
conclusions is given in Section 5. Practicalities such as
validation, pre-processing of data, etc., are very important
for data driven models; due to space limitations, these top-
ics are not discussed thoroughly here.

2 Data Driven Modeling Principles
2.1 Data and Input-output Mapping
We consider a mapping from an input vector (input node)
x ∈ X ⊆ Rnx to an output vector (node) y ∈ Y ⊆ Rny .
With Nd available data pairs (xi,yi) xi ∈ X and yi ∈ Y ,
we organize these data in two matrices Xd ∈ Rnx×Nd and
Yd ∈Rny×Nd . We then seek a mapping y = f (x) from these
data.

The input data vector x is often extended into a feature
vector ϕ (x) ∈Rnϕ ; ϕ (x) is also known as a regressor vec-

2https://www.tensorflow.org/
3https://www.mathworks.com/
4https://www.anaconda.com/
5https://julialang.org/
6www.openmodelica.org
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tor. A common strategy is to postulate that f (x) can be
expressed as a linear combination of the feature vector,

y = f (x) = θϕ (x)+ e, (1)

where e is some error. Here, θ ∈ Rny×nϕ is a matrix; in
other models, θ may be a vector or an ordered collection
of objects; the shape of θ will be clear from the context.
A predictor ŷ for y is ŷ = θϕ (x), where it is assumed that
e does not contain valuable information.

Some examples of feature vectors: (i) the identity
function, ϕi (x) = xi with nϕ = nx, (ii) polynomials, for
nx = 1: ϕi (x) = xi−1, (iii) Fourier series, with nx = 1:
ϕ1 (x) = 1, i > 1 : ϕ2i (x) = sin

( 2πx
i

)
, ϕ2i+1 = cos

( 2πx
i

)
,

(iv) splines: zero order splines consist of a sequence of
non-overlapping, adjacent, single pulses. Higher order
splines are found recursively by integration.

With the given data set Xd, we form Φd , Φ(Xd) ∈
Rnϕ×Nd . Combined with 1, this leads to

Yd = θΦd +Ed. (2)

A common strategy is to find an estimate θ̂ such that the
squared errors Ed = Yd − θΦd are minimized, e.g., that
loss7 function L1 is minimized:

θ̂ = argmin
θ

L1 (3)

where :L1 = ∥Ed∥2
F (4)

and ∥·∥F is the Frobenius norm. Then Êd is orthogonal to
regressor Φd,

Êd ⊥ Φd ⇔ ÊdΦT
d = 0 ⇔

(
Yd − θ̂Φd

)
ΦT

d = 0 (5)

which is known as the normal equation.
The normal equation is linear in the unknown θ̂ , and

can easily be solved using linear algebra solvers. Com-
puter tools such as MATLAB, Julia, etc. find θ̂ by using
the slash operator, θ̂ =Yd/Φd. The slash operator applies
the Moore-Penrose pseudo inverse of Φd if Φd has a non-
trivial nullspace.

2.2 Case study: B-spline regressors
Consider the random data set (Xd,Yd) of Nd = 10 points in
the upper panel of Figure 1, with corresponding zero order
and first order splines.

The kth order mappings fk (x) are given as fk (x) =

∑
nϕ
j=1 yd, j · ϕ

(k)
j (x) where ϕ (k)

j is the kthorder spline at po-
sition x j. Interpolation is achieved by setting nϕ = Nd.
Regularly spaced Nd data points Xd corresponding to the
center of the splines results in interpolants as in the lower
panel of Figure 1. With noisy data, a least squares solution
with nϕ < Nd is used instead of interpolation.

7Loss of model accuracy; alternatively denoted cost.

Figure 1. Upper panel: Data set Xd vs. Yd (orange, circle +
dotted line), with chosen set of zero order splines ϕ (0)

j (x) (alter-
nating red, solid and dotted square pulses) and first order splines
ϕ (1)

j (x) (alternating blue, solid and dotted saw tooth shapes).
Lower panel: Data set Xd vs. Yd (orange, circle + dotted line), fit-
ted interpolation functions f0 (x) (red line) and f1 (x) (blue line).

Remark 1. Observe that the nϕ = 10 zero order splines
ϕ (0)

j (x), j ∈ {1, . . . ,10} given by the square pulses in Fig-
ure 1, one for each Nd = 10 of the data points in (Xd,Yd),
can be expressed by Nd +1 Heaviside functions (unit step
functions) Hξ (x) as

ϕ (0)
j (x) =Hxd, j− 1

2
(x)−Hxd, j+

1
2
(x)

where

Hξ (x) =

{
0, x < ξ
1, x ≥ ξ

.

The implication of this is that any scalar data set can be
expressed by Nd zero order splines, and can equally be
expressed by Nd + 1 Heaviside (unit step) functions. The
idea generalizes to nx > 1 and ny > 1. N

2.3 Regularization
Depending on the choice of regressors ϕ j (x), the result-
ing regressor matrix Φd may be well conditioned or ill-
conditioned. Choosing a high order polynomial mapping
often leads to an ill-conditioned problem. Ill-conditioned
problems can be handled by introducing additional infor-
mation; this is known as regularization. In regularization,
additional hyper parameters are introduced, and selected
by the user through validation

A common method to regularize the problem is by Prin-
cipal Component Regression (PCR), where the hyper pa-
rameter is the “practical rank” r. A related approach is
Partial Least Squares (PLS).

Another type of regularization method is based on multi
objective optimization, (Boyd and Vandenberghe, 2018),
with primary loss function L1 from Equation 4, and a
secondary loss L2. Examples of secondary loss functions
are: (i) L2 = ∥θ∥2

F (Tikhonov/ridge regularization, weight
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decay), (ii) L2 = ∥θ −θ ◦∥2
F where θ ◦ is some prior esti-

mate (similar to Bayes statistics), (iii) various measures
of the model solution such as L2 =

∥∥Ŷ − Ỹ
∥∥2

F (closeness
to a pre-specified solution ỹ), constraint in model slope

L2 =
∥∥∥ ∂y

∂x

∥∥∥2

F
, model curvature L2 =

∥∥∥ ∂ 2y
∂x2

∥∥∥2

F
, etc. We

then choose some positive weight λ (hyper parameter),
and create a modified loss function

L = L1 +λL2, (6)

where L is minimized for a number of hyper parameter
values λ . Finally, λ is chosen via validation.

We could also add constraints on the model as part of
the regularization, e.g., require that θ ⊆ Θ, Ŷ ⊆ Ỹ , etc.

2.4 Validation and generalization
It is common to fit/train multiple models from data, based
on a series of user selectable hyper parameters, Sec-
tion 2.3. Additional hyper parameters could be model or-
der, number of iterations in model fitting, etc. Choosing
hyper parameters is an optimization problem in itself; the
various hyper parameters are assessed by comparing their
primary loss function from training data (Xt,Yt) vs. from
fresh, validation data (Xv,Yv), (Boyd and Vandenberghe,
2018). When the model has been validated and hyper pa-
rameters have been chosen, a final grading of how well
the model generalizes is made from other fresh, grading
data

(
Xg,Yg

)
.8

For numeric reasons, all data sets should be pre-
processed by removing their mean. Furthermore, the data
should be scaled to have either

1. unit standard deviation (standardized data), or

2. variation in the region [−1,1] or [0,1] (normalized
data).

Missing data and outliers should be removed, replaced by
interpolation, etc.

2.5 Nonlinear mappings
As a slight generalization of the linear mapping with basis
functions, we can define predictors

ŷ = θΦ(x;ω)

where θ is a linear model parameter and ω is a nonlin-
ear model parameter. Examples could be spline functions
with parametric location and width, Gaussian functions
with parameterized mean value (location) and standard de-
viation (width), etc. Mappings that are nonlinear in the
parameters require iteration to find the parameters mini-
mizing the loss function, and may exhibit multiple (local)
minima.

8“Grading” data are sometimes denoted “test” data.

2.6 Time series modeling
Continuous time: Assume that the data are generated
from a continuous time model, say,

dx
dt

= f (x,u)

and that we know
( dx

dt ,x,u
)

at a number Nd of data points.
We can then arrange the data into data structures

Xd =

(
x1 x2 · · · xNd
u1 u2 · · · uNd

)
Yd =

(
dx
dt

∣∣
1

dx
dt

∣∣
2 · · · dx

dt

∣∣
Nd

)
,

and fit a model to the data set. For experimental data, this
may not be a realistic approach since noise makes it hard
to find dx

dt

∣∣
j. With data generated from a simulation model,

this approach may work: differential algebraic equation
(DAE) solvers often make dx

dt

∣∣
j available.

Discrete time: A common approach to time series mod-
eling is to postulate a discrete time model — either an
input-output model of form

yt = f
(
yt−1, . . . ,yt−ny ,ut , . . . ,ut−nu ;θ

)
(7)

or a state space model of form

xt = f (xt−1,ut−1;θ)
yt = g(xt ,ut ;θ) .

For a state space model, the initial value x1 is unknown
and must be included in model parameter θ .

Predictors and data structures: The loss function L
for data fitting can either be based on minimizing the one
step-ahead error ∑i

(
yi − ŷi|i

)2 (prediction error, PE) or

multi step-ahead error ∑i
(
yi − ŷi|1

)2 (output error/shoot-
ing error, SE). The resulting PE predictor has form

ŷt|t−1 = fPE
(
yt−1, · · · ,yt−ny ,ut , · · · ,ut−nu ; θ̂PE

)
,

while the resulting SE predictor has form

ŷt|1 = fSE

(
ŷt−1|1, · · · , ŷt−ny|1 ,ut , · · · ,ut−nu ; θ̂SE

)
.

Normally, θ̂PE ̸= θ̂SE, and fPE (·) ̸= fSE (·). Here, it should
be observed:

1. The PE predictor constitutes a static mapping from
known data to the one step-ahead prediction. As
such, the predictor is guaranteed to be stable. The
SE predictor, on the other hand, constitutes a dynam-
ic/difference equation predictor which may or may
not be stable.
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2. It is simpler to find the PE estimate θ̂PE than the SE
estimate θ̂SE because (i) the PE problem has a sim-
pler loss function/data structure, and (ii) the PE prob-
lem is relatively linear with few (local) minima while
the SE problem may be highly nonlinear with multi-
ple (local) minima.

3. Because the PE predictor is one step-ahead, it is not
suitable for, e.g., Model Predictive Control where
long-term predictions are used.

4. Creating a dynamic predictor suitable
for long-term prediction from ŷt|1 =

fPE

(
ŷt−1|1, · · · , ŷt−ny|1 ,ut , · · · ,ut−nu ; θ̂PE

)
is not

guaranteed to work, and may fail miserably.

For the model in 7 (assume nu = ny), the data are arranged
as

Xd =



yny−1 yny · · · yNd−1
yny−2 yny−1 · · · yNd−2

...
...

. . .
...

y1 y2 . . . yNd−ny

uny uny+1 · · · uNd
...

...
. . .

...
u1 u2 · · · uNd−ny


Yd =

(
yny yny+1 · · · yNd

)
.

are suitable for fitting a PE model.
A state space model use data arranged as

Xd =
(

u1 u2 · · · uNd

)
Yd =

(
y1 yd · · · yNd

)
,

and will by the very nature of an unknown initial state
x1 ∈ θ lead to a shooting error estimator.

Model fitting based on one step-ahead prediction error
allows for random permutation of the columns in (Xd,Yd).
Model fitting based on the shooting error, however, re-
quires that the data are kept in the correct order.

3 Artificial Neural Networks
3.1 Neural Networks
Artificial neural networks (ANNs) were originally in-
spired by some hypotheses on how the brain works, but
have been generalized into mathematical structures which
have direct resemblance with approximation theory. Es-
sentially, ANNs attempt to describe arbitrary mappings
from input vectors x ∈ Rnx to output vectors y ∈ Rny ,

y = f (x;θ)+ e

where θ is some model parameter and e is some model
error. In ANNs, this mapping consists of chaining a set of
parameterized layer mappings and then tuning the param-
eters to achieve good description of available data. Here,
we will consider the classical Feed forward Neural Net-
work (FNN).

Figure 2. Structure of layer in Feed forward Neural Network
(FNN; upper diagram), chained FNN layers (lower diagram),
with update of parameter estimate θε =

(
. . . ,W (ℓ),b(ℓ), . . .

)
at

epoch ε which reduces the loss function L (θε).

3.2 Feed forward Neural Network
A Feed forward Neural Net (FNN) is composed of layer
mappings from input x to output y. The layers have the
structure as in the upper diagram of Figure 2.

For an FNN of nℓ layers, layer ℓ has form

ξ (ℓ) = σ (ℓ)
(

W (ℓ)ξ (ℓ−1)+b(ℓ)
)

with weight matrix W (ℓ) ∈ Rn(ℓ−1)
ξ ×n(ℓ)ξ , bias vector b(ℓ) ∈

Rn(ℓ)ξ , and activation function σ (·) mapped on each in-
dividual element in the vector argument. The boundary
conditions are

ξ (0) ≡ x

y ≡ ξ (nℓ),

while ξ (ℓ) ∈ Rn(ℓ)ξ is denoted a hidden variable for ℓ ∈
{1, . . . ,nℓ−1} . The number of hidden variables (nodes)
n(ℓ)ξ may vary from layer to layer, and is a design choice.

The (non-)linear activation function σ (ℓ) (·) may differ
from layer to layer; often a (strictly) increasing, sigmoid
shaped activation function is used. Typical choices of the
activation function are given in Table 1.

For the first layer,

ξ (1) = σ (1)
(

W (1)x+b(1)
)
.

The classical activation function was the binary step
function, which is identical to a Heaviside function. By
also shifting the function argument via biases, we can cre-
ate a sequence of n(1)ξ equally spaced Heaviside functions.
Combining this with a second, identity activation output
layer, this allows us to create n(1)ξ − 1 zero order splines,

Remark 1. With arbitrary large n(1)ξ , we can then create
arbitrarily many zero order splines. In summary, a FNN is
strongly related to classical spline regression.

By changing the activation function of the hidden layer
to another, sigmoid shaped function, this is akin to the use
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Table 1. Common ANN activation functions σ (x).

Name Function σ (x) Julia name
Identity x identity

Binary step, H0 (x)

{
0, x < 0
1, x ≥ 0

Logistic/sigmoid, σ (x) 1
1+exp(−x) sigma

Hyperbolic tangent tanh(x) tanh
Rectified Linear Unit function max(0,x) relu

of higher order splines, or other basis functions with local
or exponential support. Because of this, FNNs for regres-
sion problems often contain a single hidden layer, and an
output layer with identity activation.

3.3 Measures of model fit
In regression problems, the tuning parameter θ of the net-
work,

θ =
{

W (1),b(1), . . . ,W (nℓ),b(nℓ)
}
,

is sought such that it minimizes some loss function mea-
suring the deviation between observations y ∈ Yd and pre-
dictions ŷ = f (x) where x ∈ Xd. The chosen loss function
is typically the Residual Sum of Squares (RSS),

LRSS ,
Nd

∑
i=1

∥yi − ŷi∥2
2 ,

or the Mean Squared Error (MSE) LMSE , 1
Nd

LRSS.
Sometimes, the Root Mean Squared Error (RMSE)
LRMSE ,

√
LMSE is used. All three loss functions have

identical minimizing parameter θ . Sometimes, regulariza-
tion is used, Section 2.3.

3.4 Training of the Neural Network
Training of a network implies tuning parameters θ such
that loss function L is minimized. Standard methods for
doing this is using some gradient or Newton method. Gra-
dient methods do iterations in the gradient direction ∂L

∂θ ,

∆θε = θε+1 −θε =−η
∂L

∂θ

∣∣∣∣
ε

; (8)

η is the “learning rate”, typically η = 0.01, and ε is the
major iteration number known as the epoch. Alternatively,
η can be found via line search.

The chaining of several layers increases the nonlinear
relationship in L (θ), leading to local minima. Computa-
tion of the gradient involves the recursive back propaga-
tion algorithm to propagate gradients through the layers.
Modern tools often use Automatic Differentiation to com-
pute gradients for each layer.

For “Big data” that do not fit into local memory, cal-
culating the full gradient is challenging. One solution is
to sample a random subset from the data, compute the
“stochastic” gradient from this smaller data set, and do

many stochastic gradient descents. This tends to give sim-
ilar/better results than using the full data set gradient.

Each major iteration ε in the parameter tuning is known
as an epoch; an epoch consists of a number of minor iter-
ations such as back-propagation updating, line searches,
stochastic gradient descent steps, etc.

Newton methods are known to be more efficient than
gradient methods. Because neural networks may have a
large number of parameters, computation and storing of
the Hessian ∂ 2L

∂θ 2 is very demanding. Some algorithms use
various types of quasi Newton methods in combination
with line search, (Bishop, 1994). Still, the most common
tuning algorithms are based on gradient descent. Table 2
gives an overview of some gradient descent based meth-
ods.

3.5 FNN in Julia Flux
Package Flux (Innes, 2018) in the modern computer lan-
guage Julia9 provides easy access to machine learning
algorithms, and combines well with the OMJulia inter-
face between OpenModelica and Julia. After importing
Flux by julia> using Flux, an FNN layer is created
by command julia> L = Dense(n_lm1,n_l,sigma
) where L is our chosen name of the layer, while n_lm1

= n(ℓ−1)
ξ , n_l= n(ℓ)ξ , and the activation function is sigma

= σ . If input argument sigma is skipped, the activa-
tion function defaults to identity mapping. The values of
weight matrix W and bias vector b can be inspected by at-
tributes julia> L.W.data and julia> L.b.data. In
general, typing the object name (L) followed by period,
L., and then hitting the tabulator key gives a pop-up menu
with possible attributes.

By default, instantiating the layer with command
Dense(n_lm1,n_l,sigma) populates matrix W and
bias vector b using a type Float32 random number gen-
erator — this choice is made to ease optional training of
the neural network on GPUs10. Other data types can be
specified at instantiation of the layer.

Layers can be chained together with command mod =
Chain(L1,L2,...). To “unchain” the model into sep-

arate layers, command mod.layers results in a tuple of
the layers, thus mod.layers[2].W.data produces the
W matrix of layer L2.

9www.julialang.org
10GPU = graphical processing unit
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Table 2. Common gradient descent methods in ANN training.

Name Julia name
Classical gradient descent, learning rate η Descent(eta)
Momentum gradient descent, learning rate η ,
momentum ρ

Momentum(params,eta=0.01;rho=0.9)

Nesterov gradient descent, learning rate η , Nesterov
momentum ρ

Nesterov(eta;rho=0.9)

Stochastic gradient descent, learning rate η , moment
estimate exponential decay rates β

ADAM(eta=0.001,beta=(0.9,0.999))

Assuming we have created a Feed forward Neural Net-
work model mod by chaining several FNN layers, we need
to specify the loss function loss, define the parameters
par to tune, specify the optimization algorithm opt, and
prepare the data set data consisting of Xd ∈ Rnx×Nd and
Yd ∈ Rny×Nd .

loss(x, y) = mean((mod(x).-y).^2) #
Statistics package

par = params(mod) # Flux
command

opt = ADAM(eta=0.001,beta=(0.9,0.999)) # See
Table 2

data = [(Xd,Yd)]

We are now ready to train the network, which implies
taking a major iteration step to adjust par such that the
value of loss is reduced, e.g., 8. Command julia>
train!(loss,par,data,opt) carries out one training
epoch, where exclamation mark ! in train! indicates
that the model parameters are changed in place. We can
thus train the network over nE epochs with a for loop:

nE = 1_000 # number of epochs
for i in 1:nE

train!(loss,par,data,opt)
end

(Bishop, 1994) tests how well an FNN with 1 hidden
layer of 5 elements/nodes, σ = tanh(x), and identity out-
put can describe 4 different scalar functions. Using Julia
Flux and 3000 epochs, this can be done as follows (for
function y = x2):

# Generating 50 data points
x_d = reshape(range(-1,1,length=50),1,50)
y_d = x_d.^2
D = [(x_d,y_d)]
#
# Model
mod = Chain(Dense(1,5,tanh),Dense(5,1))
# Loss/cost function
loss(x, y) = mean((mod(x).-y).^2)
# Optimization algorithm
opt = ADAM(0.002, (0.99, 0.999))
# Parameters of the model
par = params(mod);
# Running 3000 epochs
for i in 1:3000

Flux.train!(loss,par,D,opt)
end

Figure 3. Experimental data of model in 9.

# Generating model output
y_m = Tracker.data(mod(x_d));

Bishop carries out similar training for functions |x|,
sin2(πx), and 2H0 (x)− 1; the results from using Julia
are similar to those presented in (Bishop, 1994). How-
ever, Bishop achieved far superior fitting with 1000 “cy-
cles”, presumably because he used a BFGS quasi-Newton
method instead of Stochastic Gradient Descent.

4 Case: first order system with input
4.1 Model
For illustrating key ideas, a simple model is chosen which
can be visualized in 2D or 3D. A scalar differential equa-
tion dy

dt = f (y,u) allows to plot dy
dt as a function of y and u.

Consider the model

dy
dt

= 2(4− y)−102 exp
(
−1

u

)
y2 +103 exp

(
−1

u

)
y,

(9)
where y can, e.g., be a concentration cA and u can, e.g., be
scaled absolute temperature T .

4.2 Experiments
Figure 3 indicates possible experimental data generated by
the model in Equation 9 using OMJulia.

In Figure 4, the experimental simulation data are over-
laid on the surface plot of the model given by Equation 9.

For experiments on real systems, the initial state y(0)
can not be chosen, but has to be accepted as is. Because
of this, real world data typically only cover a fraction of
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Figure 4. Experimental data from a range of initial states y(0)
over a control variation u(t). Comparison with true vector field
surface.

the vector field surface. On the other hand, if the pur-
pose of model fitting is to develop a surrogate (or: sim-
plified) model of a more complex model, we have much
more freedom in choosing y(0).

4.3 FNN based surrogate models

Building a continuous model based on (y,u) → dy
dt as in

Section 2.6, and based on the data in Section 4.2 leads to
the results in Figure 5.

Figure 5. Solid lines: experimental data. Dotted lines: fitted
FNN model dy

dt = FNNc (y,u). Left panel: using only data from
experiment with y(0)= 15. Right panel: using all available data.

Observe from the left panel of Figure 5 that models fit-
ted to data from a particular operating regime, may be poor
for other regimes.

Building a discrete time model based on
(yt−1,ut ,ut−1) → yt as in Section 2.6, and based on
the data in Section 4.2 leads to the results in Figure 6.

Observe that the left panel results in Figure 5, are pre-
dictions based on a “moving average” of the data,

ŷt = FNNd,PE (yt−1,ut ,ut−1) ;

with the given prediction error (PE) loss function, this is
the correct predictor formulation. The right panel results
in Figure 5 are based on a recursive predictor

ŷt = FNNd,PE (ŷt−1,ut ,ut−1)

Figure 6. Solid lines: experimental data. Dotted lines: fitted
FNN model yt = FNNd (yt−1,ut ,ut−1) using all available data.
Left panel: PE predictor, Right panel: ad hoc recursive use of
PE predictor.

which is somewhat ad hoc, Section 2.6. From Figure 6,
the ad hoc recursive model is not suitable for long range
predictions.

Next, we consider building a discrete time model based
on (yt−1, . . . ,yt−5,ut , . . . ,ut−5)→ yt as in Section 2.6, and
based on the data in Section 4.2 leads to the results in Fig-
ure 7.

Figure 7. Solid lines: experimental data. Dotted lines: fit-
ted FNN model yt = FNNd (yt−1, . . . ,yt−5,ut , . . . ,ut−5) using all
available data. Left panel: PE predictor, Right panel: ad hoc
recursive use of PE predictor.

With this more complex model, both the “moving aver-
age” predictor

ŷt = FNNd,PE (yt−1, . . . ,yt−5,ut , . . . ,ut−5) ;

with the given prediction error (PE) loss function, the re-
cursive ad hoc PE predictor

ŷt = FNNd,PE (ŷt−1, . . . , ŷt−5,ut , . . . ,ut−5) (10)

give decent predictions — even with the use of n(1)ξ = 3
nodes in the hidden layer.

4.4 Hybrid model
Often, a simplified model is available which does not rep-
resent the system well over an extended operating regime.
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In Figure 8, the simplified model is a linear approximation
at u = 0.15 (left panel).

Figure 8. Solid lines: experimental data. Dotted lines: approx-
imate models. Left panel: linear approximation, Right panel:
hybrid model with ad hoc recursive PE predictor as correction
to linear approximation.

With available experimental data, a model using 5 past
deviations ∆y=y − yℓ as in 10 was trained, and used to
correct the linear approximation in a hybrid model yh

t =
yℓt +FNNd,PE (. . . , ŷt− j, . . . , ,ut− j, . . .) with results as in the
right panel of Figure 8.

5 Discussion and Conclusions
This paper has aimed at illustrating some important con-
cepts related to digital twins for control relevant models.
As Figure 4 indicates, physics-based models give much
more information than experimental data do — under nor-
mal operation, experimental data will only cover a small
fraction of the space of inputs, states, and derivatives.
However, physics-based models typically involve some
approximations that makes it impossible with perfect fit
to experimental data. Data driven methods normally do
not impose such restrictions.

A sub goal has been to inspire to experiment with freely
available computing tools for machine learning. Exam-
ples of building both continuous time and discrete time
surrogate models are given. Continuous time model build-
ing requires access to some state derivative, and give de-
cent prediction capabilities — for the simple case where
all states are available. When using Feed forward Neu-
ral Nets, the resulting model is normally a prediction error
(PE) model, which in principle only offer one step-ahead
prediction with limited suitability for, e.g., Model Predic-
tive Control. By making a PE model recursive, some suc-
cess may be achieved. An interesting alternative is to use
Recurrent Neural Nets (RNN), which gives a state descrip-
tion. Due to space limitations, RNN is not treated here.
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Flood Management of Lake Toke: MPC Operation under
Uncertainty

Itsaso Menchacatorre1, Roshan Sharma1, Beathe Furenes2, Bernt Lie1

1University of South-Eastern Norway, Porsgrunn, Norway, Bernt.Lie@usn.no
2Skagerak Kraft AS, Porsgrunn, Norway

Abstract
A deterministic reference tracking model predictive con-
trol (MPC) is in use at Skagerak Kraft for flood manage-
ment of Lake Toke in Norway. An operational inflow esti-
mate is used to predict the optimal gate opening at Dalsfos
power station, with required constraints set by the Nor-
wegian Water Resource and Energy Directorate (NVE).
The operational inflow estimate is based on the meteo-
rological forecast, and is uncertain; this may lead to
broken concession requirements and unnecessary re-
lease of water through the floodgates. Currently not uti-
lized, the meteorological uncertainty is quantified by an
ensemble of possible weather forecasts. In this paper,
quantified inflow uncertainty is studied and how this af-
fects the operation of the current, deterministic MPC solu-
tion. Next, we develop an alternative, stochastic MPC so-
lution based on multi objective optimization which di-
rectly takes the inflow uncertainty into consideration. A
comparison of the results from both approaches con-
cludes that the stochastic MPC solution seems to give
better control by reducing the amount of water released
through the flood gates. Furthermore, with less frequent
update of the control signal, the benefit of the stochastic
MPC is expected to increase.

Keywords: model predictive control, hydrology, uncer-
tainty, multi objective optimization

1 Introduction
Lake Toke in Norway, is the water magazine for five run-
of-river hydro power plants operated by Skagerak Kraft1.
The Dalsfos hydro power plant is located at the outlet
from Lake Toke, and the remaining plants are located
along the Kragerø waterway, as shown in Figure 1. The
Dalsfos dam has intakes to three turbines, and has two
flood gates. A number of concession requirements speci-
fied by he Norwegian Water Resource and Energy Direc-
torate (NVE) must be fulfilled to ensure safe and envi-
ronmentally friendly operation. The requirements refer to
constraints on change of flow out of the dam, a minimum
downstream flow rate, specific seasonal lower and upper
limits on the water level during the year, etc. The catch-
ment area for Lake Toke is ca. 1150 km2, and the influent
flow rate to the lake from precipitation varies consider-
ably during the year. Skagerak Kraft subscribes to a

1www.skagerakenergi.no/forside/

Figure 1. Overview of Lake Toke and Kragerø Waterways from
(NVE, 2018).

weather forecast service provided by Storm.no, which
provides updates twice a day of a most likely scenario
as well as 51 possible meteorological scenarios indicat-
ing uncertainty. Based on these scenarios, Skagerak Kraft
use a hydrological model to predict transport of water into
Lake Toke. With uncertainty in the precipitation and the
temperature, it is of interest to utilize the quantified uncer-
tainty for improved accuracy. The use of ensemble predic-
tions for flood control in real time is widely studied (Raso
et al., 2014), (Breckpot et al., 2013a), (Breckpot et al.,
2013b), including an EU project (Butts et al., 2007).

In 2014, Skagerak Kraft commissioned an MPC proto-
type control algorithm from USN2 to suggest flood gate
openings, (Lie, 2014). Initially, the suggested opening is
set manually. Based on the experience, an improved solu-
tion was developed and installed in late 2018. The imple-
mented deterministic MPC solution is based solely on the
operational forecast, and the control signal/proposed gate
opening is recomputed every hour. It is now of interest
to assess the deterministic MPC algorithm based on the

2USN = University of South-Eastern Norway
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Figure 2. Assumed geometry of Lake Toke (Lie, 2014).

quantified uncertainty, and consider whether there is an
advantage in using a stochastic MPC algorithm instead;
(Schwanenberg et al., 2015) indicates advantages with a
stochastic approach, see also (Nasir et al., 2018).

In the sequel, concession requirements and operation
in flood situations are described. The paper is organized
as follows. Section 2 provides a summary of the current
MPC solution with model summary, relevant concession
requirements, and deterministic MPC formulation. Sec-
tion 3 provides an assessment of how the deterministic
MPC solution handles quantified uncertainty. Section 4
develops a stochastic MPC solution, with operational re-
sults. Section 5 gives a comparison of the deterministic
and the stochastic solution. Finally, some conclusions are
drawn in Section 6.

2 Current MPC solutions
2.1 Model Summary
Figure 2 depicts a simplified layout of the lake, which is
used as basis for a mass balance model.

Volumetric inflow V̇i to Lake Toke is a system distur-
bance, based on meteorological forecasts and Skagerak
Kraft’s hydrology model. Volumetric flow V̇o out of Lake
Toke is the sum of flow rate through turbines (V̇t) and flood
gates (V̇g). Turbine flow is used to produce electric power
Ẇe which is scheduled daily by economists; Ẇe is consid-
ered a given disturbance, and V̇t is back-computed from Ẇe
and other quantities. Flood gate flow rate V̇g should ideally
be zero to conserve water for energy production. Because
production is constrained to V̇t ≤ 36m3/s, the flood gates
may be activated in flood situations to satisfy concession
requirements. The gate opening denoted hg is the control
input for the MPC. Figure 3 illustrates the operation of the
floodgate, resulting in a model based on Bernoulli’s law.

With disturbances V̇i and Ẇe, and control signal hg, a
model of relevant water levels is described in (Lie, 2014).
A summary of the model follows. Inflow V̇i and power
production Ẇe are provided by Skagerak Kraft as distur-
bances. States are considered to be the level offsets h1 of

Figure 3. Assumed geometry of flood gate (Lie, 2014).

Lake Toke and h2 in front of the dam,

dh1

dt
=

1
(1−α)A(h1)

(
(1−β )V̇i −V̇12

)
(1)

dh2

dt
=

1
αA(h2)

(
βV̇i +V̇12 −V̇t −V̇g

)
, (2)

with real water levels at Merkebekk Dam xM and Dalsfos
Dam xD expressed as

xM = h1 + xmin
LRV (3)

xD = h2 + xmin
LRV. (4)

Area A(h) is the experimentally found filling curve of the
reservoir:

A(h) = max
(

28×106 ·1.1 ·h
1
10 ,103

)
. (5)

Inter compartment flow V̇12 is given by:

V̇12 = K12 · (h1 −h2)
√
|h1 −h2|. (6)

Volumetric flow V̇t is computed from known power pro-
duction Ẇe, and a simple turbine model involving modeled
intake dam level xD and downstream level xq as

V̇t = a
Ẇe

xD − xq +b
(7)

where xq is found by choosing the correct root of the cubic
equation

0 = c1x3
q +(c2 − c1xD)x2

q

+
(
c3 − c2xD + c4V̇g

)
xq

+Ẇe − c3xD − c4V̇gxD − c5. (8)

In reality, xq is measured, but we need a model for xq for
predictions.

The model for flow V̇g, j through floodgate j is

V̇g, j =Cdw j min
(
hg,h2

)√
2gmax(h2,0); (9)

the two flood gates are identical except for their width w j,
and the total flood gate flow V̇g is the sum, V̇g = V̇g,1+V̇g,2.

Parameters for the model are given in Table 1.
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Table 1. Parameters for Lake Toke model.

Parameter Value Unit Comment
α 0.05 – Fraction of surface area in compartment 2.
β 0.02 – Fraction of inflow to compartment 2.

K12 800 m
3
2 /s Inter compartment flow coefficient

Cd 0.7 – Discharge coefficient, Dalsfos gates
w1 11.6 m Width of Dalsfos gate 1
w2 11.0 m Width of Dalsfos gate 2 Comment

xmin
LRV 55.75 m Minimal low regulated level value
g 9.81 m/s2 Acceleration of gravity
a 124.69 Pa−1 coefficient, 7
b 3.161 m coefficient, 7
c1 0.13152 W/m3 polynomial coefficient, 8
c2 −9.5241 W/m2 polynomial coefficient, 8
c3 1.7234 ·102 W/m polynomial coefficient, 8
c4 −7.7045 ·10−3 Pa/m polynomial coefficient, 8
c5 −8.7359 ·10−1 W polynomial coefficient, 8

2.2 Concession Requirements
Concession requirements are specified by NVE, and focus
on (i) providing safety, (ii) securing ecological diversity,
and (ii) avoiding damage to property, e.g., by maintaining
certain minimum and maximum levels at Merkebekk. The
key constraints for a flood situation are:

1. Abrupt changes of the water flow downstream from
Dalsfos power station should be avoided for safety
reasons; this is a qualitative requirement.

2. The water level xM of Lake Toke at Merkebekk
must lie in the seasonally varying interval xM ∈
[xLRV,xHRV]. Here xLRV refers to the lowest regu-
lated value and xHRV to the highest regulated value.
Level constraints are given in Figure 4.

3. In the event of a flood estimated to more than an in-
stantaneous value of 200m3/s, xM > xHRV is allowed
until the flood has culminated; after flood culmina-
tion, xM is required to decrease steadily until the wa-
ter level reaches xHRV again.

4. In case of little snow in the catchment (< 150Mm3)
as the winter production comes to an end, the sum-
mer lower limit must be met at once by the reservoir.
Thus, the flow should be limited to V̇o = V̇t + V̇g ≤
20m3/s until the level is reached for the first time.

2.3 Reference Tracking MPC Operation un-
der Uncertainty

Model Predictive control (MPC) is an algorithm that con-
tinuously solves an optimal control problem at each time
step, with a performance measure involving a future time
horizon. At each time step, only the first computed con-
trol input is used to change model states. Before each
re-optimization, updated information about states is used;

Figure 4. Level constraints in Lake Toke during the year.

this provides feedback in MPC. This MPC strategy is also
known as receding horizon or sliding horizon optimal con-
trol, (Sharma, 2017). For the currently implemented MPC
algorithm at Skagerak, the following quantities are rele-
vant:

• Reference region (r): R

• Control input (uc): hg

• Disturbances (ud): V̇i,Ẇe

• Outputs (y): xM,xD,V̇t,V̇g,V̇o

• States (x): h1,h2

The following cost function is used, (Lie, 2014),

Jt =
H

∑
i=1

wRR2 (xM,t+i)+w∆u∆u2
c,t+i−1 +wuu2

c,t+i−1

(10)
where H is the length of the horizon and

∆uc,t+i−1 , uc,t+i−1 −uc,t+i−2,
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and subject to the dynamic model of the system:

xi+1 = f (xi,uc,i,ud,i) (11)

Expression R (xt+i) is related to the level at Merkebekk in
such a way that:

R (xM,t+i)=min
(

xM,t+i − rℓt+i,0
)
+max

(
xM,t+i − ru

t+i,0
)
.

Here rℓt+i and ru
t+i are lower and upper reference region

boundaries, respectively. The implication of this formula-
tion is that as long as xM,t+i ∈

[
rℓt+i,r

u
t+i

]
, R (xM,t+i) = 0.

When xM,t+i /∈
[
rℓt+i,r

u
t+i

]
, this is penalized in the cost

function. With this in mind, the reference region bound-
aries are chosen based on the knowledge that emptying
Lake Toke is faster than filling it, thus, being closer to
xHRV is considered less risky.

MPC provides feedback to reduce the effect of model
errors and unknown disturbances, and feed-forward to
take into account future reference values and known dis-
turbances, while also handling hard constraints on vari-
ables. With many free variables in the optimization prob-
lem, solution time may be considerable. In this case, the
operational forecast is 294 intervals (approximately 12d
with hourly updates) and two flood gates. By constraining
the two flood gate openings to one free variable and group-
ing the control predictions into 3 groups constant value in
each group, the problem is reduced to 3 free variables.
From an optimal control point of view, this is a crude ap-
proximation. However, MPC’s approach of frequent re-
computation of the control inputs leads to satisfactory re-
sults. In summary, every hour, a set of gate opening pro-
posals together with predicted water levels are obtained
for the specified horizon.

3 Stochastic analysis of a determinis-
tic MPC

3.1 Simulation principle
The available flow rate scenarios 294 steps into the future
into Lake Toke, V̇i,1:294, consist of the operational forecast
V̇ (o)

i,t and 50 “particles” V̇ (p)
i,t which can be described in a

matrix,

V̇i,1:294 ∈


V̇ (o)

i,1 V̇ (1)
i,1 · · · V̇ (50)

i,1
...

...
. . .

...
V̇ (o)

i,294 V̇ (1)
i,294 · · · V̇ (50)

i,294

 . (12)

Updated predictions are available twice daily. The morn-
ing forecast is available in the normal working hours. For
simplicity, only the morning forecast is used in this study.
Figure 5 depicts a forecast for the first day.

The resulting multi day forecast looks as in Figure 6.
With the deterministic MPC algorithm, the inflow pre-

diction ud,i used in predicting states via 11 and thus influ-
encing the value of the cost function Jt of 10, are always

Figure 5. Inflow forecast V̇i for 294 steps into the future at Day
1.

Figure 6. Inflow forecast V̇i, updated every day when new fore-
casts are made available.

the operational values of V̇i found in the first column of the
matrix in 12. The outcome of optimizing Jt is an optimal
sequence of future control inputs hg; only the first of these
inputs is used.

To assess how the deterministic MPC algorithm would
work with the given uncertainty, in turn we consider each
of the 50 additional “particles” of inflows V̇ (p)

i where
p ∈ {1, . . . ,50} in the matrix of 12. These 50 particles
are thought to represent reality in 50 parallel “universes”,
while the operational inflow V̇ (o)

i represents the idealized
model inflow. For each “universe”, the inflow V̇ (p)

i is used
to update the “real” state according to 11:

x(p)
t+1 = f

(
x(p)

t ,u(p)
c,t ,u

(p)
d,t

)
, (13)

where u(p)
d,t = V̇ (p)

i,t , while input u(p)
c,t is the input computed

from optimizing Jt with initial value x(p)
t and operational

input predictions V̇ (o)
i,t+i. With x(p)

t+1 computed as in 13, x(p)
t+1
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is used together with operational inflow V̇ (o)
i,t+1+i in opti-

mizing Jt+1, etc.
For each particle p in the ensemble for V̇i, we thus find

trajectories of the evolution of water levels and the evolu-
tion of flood gate openings hg.

3.2 Simulation results
At initial time, all particles have the same initial values for
the states and the control input. Thus, computed control
inputs in the first time step are the same for all the parti-
cles, since the operational forecast is fed to the MPC algo-
rithm. By contrast, the next computed states can differ
from particle to particle because ensemble disturbances
are introduced. For each time instance in the evolution
of the 50 particles, mean and standard deviation over the
particles are used to measure the uncertainty involved in
the evolution of levels and flood gate opening.

During testing of the computations in Python, it is ob-
served that optimization of the cost function Jt for a sin-
gle particle at a single time instance under a flood situation
can take up to 30s, as opposed to 2s if the optimal solu-
tion is to keep the flood gates closed. In the simulations
carried out, about 2.5-3 days were required. One way to
reduce the computation time is to use less frequent con-
trol updates, e.g., recompute the control input, say, every
24h instead of every 1h. However, we have chosen to use
a 1h frequency of control updating with the MPC. The
following conditions for the simulations are used in the
uncertainty analysis.

• xLRV = 55.75m until April 30, and thereafter xLRV =
58.85m.

• xHRV = 60.35m until April 30, and thereafter xHRV =
59.85m.

• h(0)g = 0cm; initial gate levels are set to 0cm.

• V̇i : inflow forecasts as in Figure 6 and Ẇe = 36m3/s.

• h1 and h2 are set to 59.0 and 58.8, respectively.

• N = 294 (length of the operational inflow forecast in
hours).

Simulation results are shown in Figures 7, 8, and 9; gate
opening hg,2 is similar to hg,1. The particles of possible
outcomes are represented by gray, dotted lines. The statis-
tics of the outcomes is represented by the mean value (blue
line) and standard deviation (yellow area). In this manner,
it is possible to link each particle’s gate opening with cor-
responding water level and outflow prediction.

From the figures, it is possible to have an indication
of the worst possible situation and take safety measures
if needed. In Figure 7, green dashed lines show the up-
per and lower constraints of levels given by concession
requirements. Figure 9 shows both the stochastic behav-
ior of the water flowing through the flood gates V̇g and the
given flow through the turbines, V̇t. As Figure 6 indicates,
the inflow forecasts are updated every 24h.

Figure 7. Water Level at Merkebekk for 50 particles with de-
terministic MPC: lower plot gives a detailed view of upper plot.

Figure 8. Gate opening hg for 50 particles with deterministic
MPC.

Figure 9. Flow out V̇g and V̇t for 50 particles with deterministic
MPC.
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4 Stochastic MPC
4.1 Stochastic MPC approach
Stochastic MPC algorithms can be posed in different
ways, e.g., as scenario tree based algorithms (Raso et al.,
2014), (Krishnamoorthy et al., 2018), or as multi objective
based algorithms (Peitz and Dellnitz, 2018). Here, the fo-
cus is on a multi objective based algorithm.

Multi objective optimization (MOO) is based on try-
ing to satisfy a set of objectives with their individual con-
straints, at the same time. MOO is often a way to find
solutions as a best compromise among competing objec-
tives, in a Pareto front manner, e.g., (Boyd and Vanden-
berghe, 2018). A simple way to handle MOO is to cre-
ate a combined objective as a scalar weighing of all ob-
jectives, while simultaneously satisfying all constraints,
(Marler and Arora, 2010), (Sharma, 2017). In the case of
our MPC problem, we create an objective J

(p)
t for each

of the particles p (each column) in the inflow matrix of 12.
Our formulation has only constraints on the gate opening,
h(p)

g . There is no reason to say that one objective is more
important than the others, so we simply sum the objectives
for each particle to set up the total objective,

Jt = ∑
p

J
(p)

t . (14)

The constraints are given by the models with each indi-
vidual inflow particle V̇ (p)

i , and we require that the control
input h(p)

g is the same for each particle, i.e., h(1)g = . . .h(50)
g .

4.2 Simulation results
The MOO algorithm can use up to 20min for each opti-
mization under a flood situation. If implemented in in a
real time system, this would imply a 20min time delay
in the control loop would reduce the performance of the
controller. In our simulation study, we may neglect this
time delay. Simulating the system with hourly sampling
time for a 294h horizon, this implies about 100h (4d) of
simulation time

The conditions for the experiment are as in Section 3.2.
With this stochastic MPC algorithm, the operational in-
flow is still used as the prediction of inflow in the cost
functions J

(p)
t , and the total cost function Jt is found

by summing over all particles p as in 14. This time, the
operational input is also used to represent “reality”, i.e., in
updating the real water levels according to

xt+1 = f
(

xt ,uc,t ,u
(o)
d,t

)
, (15)

where u(o)d,t = V̇ (o)
i,t , while input uc,t is the input computed

from optimizing Jt according to 14 with initial value xt

and operational input predictions V̇ (o)
i,t+i.

The water level result is shown in Figure 10; the blue
curve represents the water level at Merkebekk for which
the concession requirements are imposed, while the red

curve is the water level at Dalsfos. Likewise, the gate
opening result can be seen in Figure 11, with hg,1 (blue
line) and hg,2 (red line). The predicted outflow result is
described in Figure 12, with V̇t (red line), V̇g (blue line),
and V̇o = V̇t +V̇g (yellow line).

Figure 10. Predicted Water Levels.

Figure 11. Optimal Gate Openings.

5 Deterministic vs. Stochastic MPC
In both the deterministic case and the MOO case, Figure 6
illustrates the inflow disturbances. In the deterministic ap-
proach, the operational inflow is the “deterministic” dis-
turbance used in the MPC algorithm while each of the par-
ticles are used to compute corresponding water levels. By
contrast, in the MOO stochastic MPC approach, the MPC
algorithm uses all particles, while the operational inflow
is used to compute water levels.

Figures 13–16 illustrate the difference in behavior of
the deterministic controller vs. that of the stochastic con-
troller; in the legends, variable x_mean indicates the mean
value of variable x for the particles in the determinis-
tic MPC solution, while x_MOO simply is variable x for
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Figure 12. Predicted outflow.

the stochastic multi objective optimization based (MOO)
MPC algorithm.

Figure 13. Merkebekk water level xM comparison: lower plot
gives a detailed view of upper plot.

Figure 14. Dalsfos water level xD comparison.

Figure 15. Optimal gate opening hg,1 comparison.

Figure 16. Predicted outflow V̇o comparison.

Figure 13 displays the predicted water levels at Merke-
bekk. The dark blue curve (xM) refers to the water level for
the MOO case. The gray dotted curves together with the
light blue curve (xM_mean) corresponds to the water level
result from the deterministic approach. In the simulated
case, none of the constraints are broken.

Figure 14 displays the predicted water levels at Dalsfos.
The dark red curve (xD) refers to the water level for the
MOO case. The gray dotted curves together with the light
red curve (xD_mean) corresponds to the water level result
from the deterministic approach.

Figure 15 illustrates the resulting gate opening hg,1. The
dark blue curve (u1) refers to the gate opening for the
MOO case. The gray dotted curves together with the light
blue curve (u1_mean) corresponds to the deterministic ap-
proach.

Figure 16 shows the predicted outflow. The dark blue
curve (Vdo) refers to the water flow rate for the MOO case.
The gray dotted curves together with the light blue curve
(Vdo_mean) corresponds to the flow rate result for the de-
terministic approach. As expected, the behavior is consis-
tent with the gate openings.
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6 Conclusions
The stochastic MOO MPC gives markedly better results
than the current, deterministic MPC, indicating a clear ad-
vantage in introducing a more advanced stochastic MPC
algorithm. It should be noted that the study reported here
is limited since only a single instance of real inflow predic-
tions and measurements under flood conditions has been
available. Furthermore, it has been assumed that the con-
trol input is recomputed every 1h and injected every 1h
without delay. In reality, with manual injection of the
computed control inputs, these may be injected irregularly
and with time delay. This manual injection of the control
input will lead to a more pronounced effect of the uncer-
tainty. Thus, in real life, a stochastic MOO MPC algo-
rithm may be even more advantageous than what appears
in the comparison of Section 5.

It is therefore recommended to further the study initi-
ated here, with other flood periods. In particular, the oper-
ational forecast may lie in the mainstream of the ensemble
as in Figures 5 and 6; other times, the operational forecast
lies at the outskirts of the ensemble: the location of the op-
erational forecast within the ensemble may influence the
relative advantage of using stochastic MOO MPC. The re-
ported computation time for finding the control signal in
the MOO algorithm can be significantly reduced. Exam-
ples of strategies to reduce the computation time are uti-
lizing parallelization over threads, more efficient Python
code, compiled code, etc.
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Abstract
In control theory for dynamic systems, the information
about observability and controllability of states plays a
key role to evaluate the possibility to observe states
from outputs, and use inputs to move states to a de-
sired position, respectively. Th automatic determination
of observability and controllability is possible, in partic-
ular for linear models where typically observability and
controllability grami-ans are considered. In the case
of large scale systems, e.g., complex models of regional
energy systems, standard analysis becomes challenging.
For large scale systems, structural analysis based on
directed graphs is an interesting alternative: structural
observability (or: controlla-bility) is a necessary require-
ment for actual observability (or: controllability). Di-
rected graphs can be set up directly for linear models, but
can also be extracted from nonlinear models.

Modelica is a suitable language for describing large
scale models, but does not support graph algorithms. One
possibility is to integrate the Modelica model into a lan-
guage supporting graph algorithms, e.g., Julia: this inte-
gration can be done using package OMJulia which works
with the free tool OpenModelica. OMJulia does not give
direct access to the nonlinear model in Modelica, but a
linear model approximation can be extracted and used for
setting up the system graph. In this study, an experimental
implementation of automated structural analysis is done
in Julia using the LightGraphs.jl package. As an exam-
ple, this structural analysis is tested on hydropower mod-
els of different complexity that are modelled in OpenMod-
elica using our in-house hydropower Modelica library —
OpenHPL, where different models for hydropower sys-
tems are assembled.
Keywords: observability, controllability, structural analy-
sis, graph theory

1 Introduction
1.1 Background
Modelling and simulation of dynamic systems (e.g., a hy-
dropower system in this paper) plays an important role as
efficient analysis tools for control analysis and design. As
an example, tools for designing a new or testing an ex-
isting controller for stability and performance in different
operating regimes might be of interest.

Model based analysis of state observability and control-

lability is important for control design, and it is of interest
to consider tools for aiding such analysis. Classically, ob-
servability and controllability properties might be checked
using the well known tests based on rank conditions, (Si-
mon, 2006; Šiljak, 2011). However, numerical problems
can arise for the rank computations in complex, large scale
systems. Still, structural observability and controllability
based on the system structure can be used in such cases
due to the simplicity of these methods. In addition, a rel-
ative degree of the system indicates how directly control
inputs affect outputs, and can also be defined based on the
system structure. Assuming linear models, analysis tools
based on graph theory can be implemented in Julia1, e.g.,
using the LightGraphs.jl package.

Models of various dynamic systems might be di-
rectly modeled in Julia using the DifferentialEquations.jl2

(Rackauckas and Nie, 2017) and ControlSystems.jl3 pack-
ages. However, an object-oriented language such as Mod-
elica4 has richer support for describing complex, large
scale systems with inputs and outputs. One such Mod-
elica based tool is OpenModelica5 which offers an open-
source modeling and simulation environment. OpenMod-
elica also comes with the OMJulia.jl package which offers
integration of Modelica models in Julia.

1.2 Previous Work
Basic graph theory for different engineering applications
is provided in (Deo, 2017). Structural modeling and
analysis of complex systems are described by (Šiljak,
2007, 2011; Lunze, 1992; Boyd and Vandenberghe, 2018).
Based on this graph theory, large scale systems can be fur-
ther tested and analyzed for control and parameter estima-
tion purposes; see, e.g., (Perera, 2016) who used structural
analysis of Modelica models in JModelica6 and Python7 to
analyze an industrial copper electrowinning process.

The OMJulia package8 (Julia API) for OpenModelica
provides possibilities to run simulations and carry out lin-
earization of OpenModelica. Julia in turn gives rich possi-
bilities for plotting, analysis, and optimization (e.g., using

1https://julialang.org/
2https://goo.gl/5wxZfR
3https://goo.gl/d2xyf2
4https://www.modelica.org
5https://openmodelica.org
6https://jmodelica.org/
7https://www.python.org
8https://goo.gl/WpAMds
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Julia packages Plots.jl, LightGraph.jl, JuMP.jl, etc.).
Some work on modeling a waterway for high head hy-

dropower system together with a generator, a Francis tur-
bine, and a governor, has already been carried out using
OpenModelica (Vytvytskyi and Lie, 2017, 2018a). Unit
models have been assembled in our in-house Modelica li-
brary OpenHPL9. Similarly to Julia, a Python API10 for
OpenModelica already exists and a use of this API for the
OpenHPL is presented in (Vytvytskyi and Lie, 2018b).

1.3 Overview of Paper
In this paper, the main contribution is the prototyping
and testing of automated structural analysis for dynamic
systems in Julia using directed graphs from the Light-
Graphs.jl package.

The paper is structured as follows: Section 2 gives
an overview of the graph and structural analysis theory.
The Julia implementation of these analysis methods is
discussed in Section 3. Applying the structural analysis
methods on hydropower models is presented in Section 4.
Finally, discussion and conclusions are given in Section 5.

2 Structural analysis
Structural analysis of models is the evaluation of model
behavior base on a model structure. In this study, the
model structure is represented by graphs. That is why,
the graph theory is described first.

2.1 Graph theory
A graph G connects nodes (vertices, points) N =
{n1,n2, . . . ,nN} via edges (lines) E = {e1,e2, . . . ,eE}.
Here, we will consider a directed graph (digraph); a di-
graph may be defined by a relation R consisting of a set of
ordered pairs (ni,n j) with unidirectional information flow
between these nodes.

As examples, Fig. 1 shows the undirected graph G1
(left) and the directed graph G2 (right). Observe that each
pair corresponds to an edge; G1 has 5 edges because its re-
lation R1 holds 5 (unordered) pairs, while G2 has 6 edges
because R2 holds 6 (ordered) pairs.

Instead of describing the graph via a relation, it can be
described via either an adjacency matrix A or an incidence
matrix I. The incidence matrix description I with dim I =
nE ×nN relates edges and nodes. The incidence matrix is
not suitable for describing self edges, and is not discussed
further here.

The adjacency matrix relates unidirectional flow be-
tween two nodes, and is defined by Ai, j = 1 for (i, j) ∈ R,
or Ai, j = 0 for (i, j) 6= R The adjacency matrix is square,
dimA = nN × nN , with nodes represented by both rows
and columns. Adjacency matrix A2 for G2 in Fig. 1 is

A2 =
[1 1 0 0

0 0 1 0
1 1 0 0
0 1 0 0

]
. Observe that nonzero diagonal elements

9Open Hydro Power Library is developed by the first author within
his PhD study.

10https://goo.gl/Qyjqq2

Figure 1. Examples of (a) undirected graph, and (b) directed
graph.

in the adjacency matrix implies self edges, i.e., edges that
emanates from the node and returns to the node.

An important concept in graph theory is the length `
between two nodes: the length is the number of nodes tra-
versed to go from node ni to node n j. In G2 of Fig. 1, the
length in going from n1 to n1 is ` = 1 because of the self
edge. The length in going from n1 to n3 is ` = 1 because
there is an edge from n1 to n3. The length in going from
n1 to n2 is ` = 2: it is necessary to first go from n1 to n3,
and then from n3 to n2.

The same principal can be used to represent a model
structure of linear models with inputs and outputs, (Šiljak,
2011). These models can be represented by Eq. 1:

ẋ = Ax+Bu
y =Cx+Du (1)

Here, x ∈ Rnx is the state, u ∈ Rnu is the input/control sig-
nal, and y ∈ Rny is the output. A ∈ Rnx×nx , B ∈ Rnx×nu ,
C ∈Rny×nx and D∈Rny×nu are constant matrices and con-
sist of elements ai, j, bi, j, ci, j and di, j, respectively.

In order to represent a structure of this system, the in-
terconnection square matrix M should be created, (Šiljak,
2007). This interconnection matrix M combines informa-
tion from all the constant matrices, A, B, C, D, and repre-
sents the relationships between states, inputs and outputs.
The matrix M is found as follows:

M =

A B 0
0 0 0
C D 0

 (2)

In M, the second block row is zero because uk is an input
and not a response variable, while the third block column
is zero because yk is a response variable and not an input.

2.2 Structural controllability
In control theory, the mathematical duals observability
and controllability are important properties of control sys-
tems. Using controllability, it is possible to evaluate the
capability of the external input capability to influence the
internal state. Observability, on the other side, gives an
understanding of the possibility of a system state to be in-
ferred from an external output.
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Figure 2. Examples of (a) structurally controllable, and (b)
structurally observable systems.

As mentioned above, numerical problems can arise in
the classical methods for observability and controllability
computations in complex, large scale systems. As an alter-
native, structural observability and controllability are con-
sidered in this study due to the simplicity of these meth-
ods. In addition, structural observability and controlla-
bility provide necessary conditions for observability and
controllability. This means that if the complex system is
not structurally observable or not controllable, then it is
not observable or not controllable. On the other hand, the
system may be structurally observable/controllable, while
in reality the system is not observable/controllable, (Šil-
jak, 2011).

Consider a linear system with an external input, see
Eq. 1, e.g., A =

[
1 1
1 0

]
and B =

[
1
0

]
. First, the system struc-

ture based on the digraph G should be created with the in-
terconnection matrix, M =

[1 1 1
1 0 0
0 0 0

]
, see Fig. 2 (a). Then,

structural controllability of the system can be demon-
strated if there is a directed path in the digraph G from
(at least one) input-node to every single state-node. As
seen in Fig. 2 (a), the system is structurally controllable,
because there are paths from the input-node u1 to the state-
node x1 with the edge b1 and to the state x2 with the edges
b1 and a2,1.

2.3 Structural observability
Similarly to structural controllability, structural observ-
ability requires that there is a directed path from every
single state-node to (at least one) output-node in the di-
graph G. Let us suppose a linear system with an external
output, see Eq. 1, e.g., A =

[
1 1
1 0

]
and C =

[
0 1
]
. The in-

terconnection matrix is then as follows, M =
[1 1 0

1 0 0
0 1 0

]
. The

system structure based on the digraph G is created using
the matrix M and is show in Fig. 2 (b). Here, the structural
observability of the system is proven due to state-nodes x1
and x2 with directed paths (a2,1,c2) and (c2) to the output
node y1, respectively.

2.4 Relative degree of system
Another property that can be found from structural analy-
sis is the relative degree of the system, which shows how
the input affects the system output. More precisely, the

relative degree r represents the number of differentiations
of the output y needed for the input u to appear, (Slotine
and Li, 1991). From the digraph structure of the system,
this relative degree can be found as the smallest number of
state-nodes through which a directed path from an input-
node to output-node goes.

Combining the two previous examples with one input
and one output, e.g., A =

[
1 1
1 0

]
, B =

[
1
0

]
and C =

[
0 1
]
,

it can be shown that the relative degree of the system
equals two, see Fig. 2 (a) and (b) together. This is because
the path from the input-node u1 to the output-node y1 is
(b1,a2,1,c2) and this path goes through two state-nodes x1
and x2. This statement can be also shown by the condition
for relative degree r from (Slotine and Li, 1991):

r = min
ρ

{
LgLρ−1

f h(x) 6= 0
}

(3)

Here, we consider the system ẋ = f (x)+ g(x)u and y =
h(x). Symbols Lg and Lf are the Lie derivatives of h(x)
along g(x) and f (x), respectively, i.e., Lgh(x) = ∂h(x)

∂x g(x)

and Lfh(x) =
∂h(x)

∂x f (x). Hence, in our example it is
proven by Eq. 4 that the relative degree r equals two:

for ρ = 1 : Lgh(x) =
[

0 1
][

1
0

]
= 0

for ρ = 2 : LgLfh(x) =
[

0 1
][

1 1
1 0

][
1
0

]
= 1 (4)

In the case of multiple inputs or outputs, a set of relative
degrees appears for each output-node. In such cases, in
addition to this set of relative degrees, a total relative de-
gree of the system is defined. The total relative degree is
nothing but sum of the set of relative degrees, (Slotine and
Li, 1991).

3 Julia implementation
For the prototype tools in this paper, a linear model in
state space form as in Eq. 1 is assumed. Such a repre-
sentation might be found in two ways. In one case, a
dynamic system is modeled directly in Julia with Differ-
entialEquations.jl package, (Rackauckas and Nie, 2017),
and then can be linearized using the ForwardDiff.jl pack-
age11, (Revels et al., 2016). Alternatively, the model
can be represented in Modelica, and OpenModelica with
OMJulia can be used for the model linearization. The Ju-
lia API of OpenModelica with OMJulia is similar to the
Python API of OpenModelica with OMPython which has
been discussed in previous work, (Vytvytskyi and Lie,
2018b).

In order to work with graphs in Julia the LightGraphs.jl
package12 and GraphPlot.jl package13 can be used for
graph creation and plotting, respectively. In addition to
these packages, other Julia packages for this study are also
required, i.e., Plots.jl14 and DataFrames.jl15 packages.

11https://goo.gl/en5JMu
12https://goo.gl/tveMx1
13https://goo.gl/ifVw1p
14https://github.com/JuliaPlots/Plots.jl
15https://github.com/JuliaData/DataFrames.jl
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It should be noted that examples with results of using all
functions presented in this section, are given in Section 4.

3.1 Graphical structure of system

The LightGraphs.jl package16 can be used to create a di-
graph of the linear system structure in Julia. Using inter-
connection matrix M (described in eq. 2) as an input to the
DiGraph() command, the digraph G can be created and
then plotted with the gplot() command from the Graph-
Plot.jl package17. An example, Julia code for creating and
plotting the digraph of a simple three by three interconnec-
tion matrix M previously presented for the controllability
example (see Fig. 2 (a)) looks as follows:

M = [ 1.0 1.0 1.0;
1.0 0.0 0.0;
0.0 0.0 0.0] // intercon. matrix

G = DiGraph(M) // create the digraph
gplot(G, layout=spring_layout,

NODESIZE = 0.1,
nodefillc=colorant"turquoise",
NODELABELSIZE = 5,
nodelabel=["x1","x2","u1"],
nodelabelc = colorant"black",
EDGELINEWIDTH=0.5,
edgestrokec=colorant"grey",
arrowlengthfrac=0.08,
arrowangleoffset = pi/10)) // plotting

Here, plotting of the graph with gplot() command has var-
ious options:

• various possibilities for graph layout (random, cir-
cular, spring, shell, stressmajorize, and spectral lay-
outs);

• setting size and color for nodes (NODESIZE, node-
fillc), nodes’ labels (NODELABELSIZE, nodela-
belc), or edges (EDGELINEWIDTH, edgestrokec);

• specifications of nodes’ labels names (nodelabel);

• setting edges’ arrows shape (arrowlengthfrac, ar-
rowangleoffset).

It should be noted that all color settings in the gplot() com-
mand might be specified with a vector of colors, one for
each nodes/edges, similarly to the presented name vector
for the nodes’ labels. All the discussed options can be
specified by the user according to their choice.

The results of running the presented code is shown in
Fig. 3, where the simple digraph of three nodes is pre-
sented. Hence, using the presented commands for graphs
creation and plotting, our own functions for system struc-
ture construction can be developed. The first function
is named obtain_graph_structure() and provides digraph
G together with interconnection matrix M and a data ta-
ble, where the nodes’ labels are structured with respect

16https://goo.gl/tveMx1
17https://goo.gl/ifVw1p

Figure 3. Digraph from the simple example of Julia code for the
system in Fig. 2 (a).

to state/input/output names. This function also gives spe-
cific color arrays for nodes, nodes labels and edges. All
nodes are colored according to their type, i.e., individual
colors for states (turquoise), inputs (light blue), and out-
puts (light green). Edges in turn are colored based on their
connection, i.e., individual color for self loops (red), state
interactions (grey), connections from input (blue), and to
output (brown). The inputs to this function are the con-
stant system matrices A, B, C, and D. Three string arrays
with the variables’ names of state, input and output are
inputs as well.

An example of the obtain_graph_structure() function
calling is provided below. Here, commands for display-
ing of the graph G and the data table d f are also used.
As it is seen, the gplot() command for the graph plot-
ting is specified with different options found with the ob-
tain_graph_structure() for the names of nodes and color
vectors for nodes, labels and edges.

G,M,df,Node_c,Edg_c,Nodelable_c,Nodelble =
obtain_graph_structure(A,B,C,D,
StateName,InputName,OutputName);

println(df) // display the data table
gplot(G, layout=circular_layout,

NODESIZE = 0.05,
NODELABELSIZE = 5,
nodefillc=Node_c,
EDGELINEWIDTH=0.3,
edgestrokec=Edg_c,
nodelabel=Nodelble,
nodelabelc = Nodelable_c,
arrowlengthfrac=0.08,
arrowangleoffset = pi/10)

In cases when the user does not want to display (print/-
plot) the results, another function system_structure() can
be used. The function gives the possibility to show the
structure of the system directly after execution. The use
of this function is provided below:

system_structure(A,B,C,D,
StateName,InputName,OutputName)
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3.2 Structural observability and controllabil-
ity

As presented above, structural digraph paths should be
checked in order to show the structural observability or
controllability of the system. To be structurally observ-
able, there should be a directed path from every state-node
to at least one output-node. Similarly, there should be a
directed path from at least one input-node to every state-
node in order to be structurally controllable.

Functions for checking structural observability and
controllability of the system have been developed:
check_sys_observ() and check_sys_control(), respectively.
The calling of these functions are the same as for the func-
tions presented in the previous subsection, and an example
is given below:

check_sys_observ(A,B,C,D,
StateName,InputName,OutputName)

check_sys_control(A,B,C,D,
StateName,InputName,OutputName)

Both functions operate in similar way, and in the case
that all states of the system are structurally observable/-
controllable, they return a message with the follow-
ing text: “All states are structurally observable/control-
lable”. Otherwise, these functions provide information
of which states are structurally unobservable/uncontrol-
lable. In both cases, the functions also display the di-
graph with a structure of the system. In addition, in the
case with some unobservable/uncontrollable states, some
transparency colors are used to display these state-nodes
and the edges connected to these nodes.

In some cases, it might be of interest to specifically
check some of the system states for observability or con-
trollability. Because of this, another two functions that
check structural observability/controllability of specified
states are developed. The use of these functions are simi-
lar to the previous two functions, but here the user should
also specify the state that will be checked. The state num-
ber from the node’s label (state_num) is used for this spec-
ification. An example looks as follows:

check_state_observ(A,B,C,D,StateName,
InputName,OutputName,state_num)

check_state_control(A,B,C,D,StateName,
InputName,OutputName,state_num)

Both functions return a message that shows if the spec-
ified state is structurally observable/controllable or not.
They also display the digraph with a structure of the sys-
tem where the specified state-node and a path (edges and
nodes) which shows its structural observability/controlla-
bility are highlighted. Colors of all other nodes and edges
are somewhat transparent.

3.3 Relative degree of system
In order to determine the relative degree of the system pre-
sented by digraph G, a smallest number of state-nodes
should be found through which a directed path from

an input-node to output-node goes. For this task, the
sys_relative_degree() function is developed. This function
defines the relative degree of the system and then returns
a message that shows the value of the defined relative de-
gree. For a system with multiple inputs and outputs, infor-
mation about the total relative degree is provided together
with a set of the relative degrees of all outputs. Moreover,
a digraph is displayed with the structure of the system. In
this digraph, colors of all nodes and edges are a bit muted,
except for the path/paths (edges and nodes) that is/are the
basis for the relative degree.

The use of the function for checking the relative degree
looks as follows:

sys_relative_degree(A,B,C,D,
StateName,InputName,OutputName)

4 Results
The various hydropower models that are implemented
in OpenModelica using our in-house hydropower library,
OpenHPL, are used here for testing of the developed func-
tions for system structural analysis. Description and infor-
mation about these hydropower models already have been
presented previously, (Vytvytskyi and Lie, 2017, 2018b).
For use with the structural analysis code, these models are
first linearized in Julia using package OMJulia for Open-
Modelica. The constant A, B, C, and D matrices for the
linearized hydropower state space models together with
ordered lists (vectors) of state, input and output names are
then used for structural analysis.

4.1 Simple waterway model
First, a simple model of the hydropower system with basic
models for the waterway (incompressible water and in-
elastic pipes, (Vytvytskyi and Lie, 2017)) is used. This
model consists of 5 states and has one input and one out-
put. The system_structure() function provides the model
structure, see Fig. 4. Here, the states (x1 − x5) are col-
ored turquoise and consist of the volumetric flow rates
in the penstock and surge tank, and the water masses in
the surge tank, reservoir, and tail water. The input (u1) is
the control signal for the turbine and is colored light blue.
The output (y1) is colored light green and represents the
flow rate in the turbine which is the same as the penstock
flow rate in this model. Figure 4 shows the digraph with
the model structure using the circular layout for the graph
plotting. This can be changed to another style in options
to the gplot() command.

Next, the hydropower model can be checked for
structural observability and controllability using
check_sys_observ() and check_sys_control() com-
mands. The results for these studies are shown in Fig. 5
for observability and in Fig. 6 for controllability. It is
seen from Fig. 5 that the system is structurally observable
because all system states transmit information through
digraphs to the output. In the same way, there are two
uncontrollable states which make system structurally
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Figure 4. The digraph with the simple model structure deter-
mined by the system_structure() function.

uncontrollable, see Fig. 6. This uncontrollability for
the water masses in the reservoir and tail water is
caused by model simplification: these masses are kept
constant in the model, (Vytvytskyi and Lie, 2018b); the
uncontrollability is thus fictitious in this case.

The relative degree of this simple hydropower model
can be found using the developed sys_relative_degree()
function. The result of running this command for the sim-
ple model is shown in Fig. 7. Here, it is seen that the rel-
ative degree, r, equals one, which means that the control
signal directly affects a state that influences the output.

4.2 Detailed waterway model
A more detailed model of the hydropower system is used
next. This model is similar to the previous simple model,
but here the penstock unit is described by a more de-
tailed pipe model instead of the basic pipe model (here,
compressible water and elastic pipes are considered in the
penstock, (Vytvytskyi and Lie, 2017)). This model con-
sists of 24 states and also has one input and one output.
The result of the system_structure() function provides the
model structure, see Fig. 8. Here, the states (x1 − x24)
consist of the pressures (U [1, ..,10]) and mass flow rates
(U [11, ..,20]) in the penstock segments, volumetric flow
rate in the surge tank, and the water masses in the surge
tank, reservoir, and tail water. The input (u1) is the control
signal for the turbine and the output (y1) is the flow rate
through the turbine. The state, input, and output nodes
are colored in the same way as previously. It is seen from
Fig. 8 that for more complex systems (more nodes), it be-
comes harder to observe visually how the nodes are con-
nected. One way to study the system structure is to decom-
pose the system in smaller subsystems. This can easily be

Figure 5. The results of checking the structural observability for
simple model by the check_sys_observ() function.

Figure 6. The results of checking the structural controllability
for simple model by the check_sys_control() function.
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Figure 7. The results of checking the relative degree for simple
model by the sys_relative_degree() function.

Figure 8. The digraph with the detailed model structure deter-
mined by the system_structure() function.

done by picking up the appropriate rows and columns in
the A, B, and C matrices with respect to interested states.

On the other hand, the structural analysis for observ-
ability, controllability, and relative degree of the sys-
tem may be still performed for the complete model.
This can be done by running the same functions for
the detailed model: check_sys_observ() — for observ-
ability, check_sys_control() — for controllability, and
sys_relative_degree() — for relative degree. The results
of these functions are not presented here to save space.
However, the resulting information is as follows:

• “All states are structurally observable”.

• “The uncontrollable states are: reservoir.m, tail.m”,
similarly to the case with simple waterway model.

• “Relative degree of the system is: r = 0”, the input
signal directly affects the output, i.e., the constant
matrix D is not zero.

4.3 Simple waterway model with generator
Here, the simple model presented above is studied with a
model of a synchronous generator that is connected to the
grid. The models of this electrical part (generator, grid,
etc.) are taken from the OpenIPSL18 library, and is used
in OpenModelica. OpenIPSL is the Open-Instance Power
System Library, where a wide variety of power system
components are available. The model of the simple hy-
dropower waterway and generator consists of 7 states and
has one input and 3 outputs. Here, the states (x1−x7) con-
sist of the generator shift angle and angular velocity, the
volumetric flow rates in the penstock and surge tank, and
the water masses in the surge tank, reservoir and tail water.
The input (u1) is the control signal for the turbine and the
outputs (y1− y3) are the generator power production and
angular velocity, and flow rate through the turbine. The
state, input and output nodes are colored in the same way
as previously.

The result of the system_structure() function provides
the model structure, Fig. 9. This structure is presented
with the digraph of another layout type (spring layout), in
order to demonstrate another structural view. The struc-
tural analysis for observability, controllability and rela-
tive degree of the system is also performed for this model
case. This can be done by running the same functions
as for the detailed model: check_sys_observ() — for ob-
servability, check_sys_control() — for controllability, and
sys_relative_degree() — for relative degree. The results
of executing these functions are not shown here, but the
results are summarized as follows:

• “All states are structurally observable”.

• “The uncontrollable states are: reservoir.m, tail.m”,
similarly to the two previous cases.

18https://openipsl.readthedocs.io/en/latest/
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Figure 9. The digraph of the model structure determined by
the system_structure() function. The model of the simple hy-
dropower waterway and generator is used.

• “The system have relative degree (2, 1, 1). Total rel-
ative degree of the system is: r = 4”: here is shown
first the relative degrees for each output and then the
total relative degree of the system.

5 Discussion and Conclusions
This paper has explored the possibilities of using graph
theory methods for structural analysis of dynamic system.
Although the chosen examples hardly qualify as com-
plex/large scale, graph methods scale well to huge sys-
tems. The presented methods have been implemented in
Julia using the LightGraphs.jl and GraphPlot.jl packages.
Using the OpenHPL hydropower library in OpenModel-
ica and OMJulia for OpenModelica, the structural anal-
ysis methods have been tested on hydropower models of
different complexity.

The results of testing the developed structural analysis
functions look reasonable and can be further used for anal-
ysis related to state estimation and control: observability
is a requirement for state estimators to work properly, con-
trollability is required for control design, and relative de-
gree is important in the design of nonlinear feedback con-
trollers. One experience with the developed tools is that
sometimes it can be hard to make a good visualization of
the graph structure of complex (large scale) system. It can
be hard to see the whole picture of the system structure
(small subsystems are not easily seen) using the circular
layout for the graph plotting. However, the user can do
some testing of different layout types for the graph plot-
ting to find the most appropriate one. Moreover, the graph

can be stored in a picture with higher resolution and big-
ger size that can help to see the system structure in a better
way. In addition, developers of LightGraphs.jl and Graph-
Plot.jl packages are planning to improve the plotting pos-
sibilities of graphs in future, e.g., to improve the display
self loop edges, etc.

In summary, this paper has explored some possibilities
with structural analysis. Further work should be put into
streamlining the functions into a package, with better use
of Julia coding conventions, integration with other model-
ing tools, integration with control packages, etc.
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Abstract
MSG Production is a company specializing in

automated washing, de-icing, anti-icing and inspection

of commercial passenger aircrafts. It is critically

important that the viscosity of the anti-icing fluid is

according to specifications. This study investigates if a

combination of acoustic/vibrational measurements on

the spraying nozzle of the system and multivariate

regression modelling provides reliable viscosity

estimates can be used for real time monitoring. The

estimated viscosity based on independent test data show

promising results for real time monitoring with a root

mean square error of prediction of 278 [cP] within the

valid range of the model which is 1900-8400 [cP].

Keywords: partial least squares, multivariate

regression, viscosity, anti-icing fluid, acoustic

monitoring

1 Introduction

MSG Production is a startup company, specializing in

automated washing, de-icing, anti-icing and inspection

of large commercial passenger/transport aircraft. The

company has built a machine that automates the above-

mentioned processes, by having an electric aircraft tug

pulling it through the machine, much like a car in some

automated commercial car-washes. Figure 1 shows the

automated machine from MSG in operation applying

anti-icing fluid to a passenger aircraft.

 

Figure 1. Anti-icing applied to a passenger aircraft using 

the new MSG technology. 

The machine has devices for chemical fluids application 

hanging down from what is essentially traverse cranes 

overhead, with vertical telescopes holding a horizontal 

boom with multiple nozzles at a constant distance from 

the aircraft body and wings.  

All control parameters for fluid application such as 

flow, pressure, temperature and fluid-quantity used are 

continuously monitored and documented. 

Various parameters for washing, de-icing and anti-

icing of any aircraft are described by the manufacturer, 

but there’s also parameters related to de-icing and anti-

icing that are dictated by the governing bodies of 

aviation, like SAE, FAA, IATA, GACA, ICAO etc. 

stating operational minimums for these procedures that 

are all related to aviation safety. 

1.1 Anti-icing fluids 

One of the objectives in this study is to investigate some 

of the physical (rheological) properties of the anti-icing 

fluid. The anti-icing fluid, of which there are several, 

(Type II, Type III and Type IV), is a polypropylene 

glycol, having a viscosity that is purposely thickened, 

and hence designed to make the fluid adhere to the 

aircraft wing during take-off and initial flight, until the 

aircrafts own anti-icing devices becomes effective 

enough to take over.  

The anti-icing fluid is also known as a “pseudoplastic 

non-Newtonian” fluid also called shear-thinning fluid. 

This means that the lower the velocity gradient in the 

fluid, the higher the viscosity. This also imply that the 

viscosity can vary at different locations in the fluid 

dependent on the velocity field.  

The anti-icing fluid is a polymer solution containing 

large polymer molecules. When the polymer is exposed 

to high mechanical stress (shear) the properties of the 

fluid can change, reducing the rheological properties of 

the fluid. This process is also called degradation of the 

polymer. 
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1.2 On-line monitoring of anti-icing viscosity 

The main objective in this study is to assess if the 

vibrations occurring in the spraying nozzle of the system 

can be used for on-line real time monitoring of the 

viscosity of the fluid. Real time monitoring is preferred 

because the alternative approach involving manual 

sampling and off-line analysis using a rheometer is time 

consuming and does not provide continuous viscosity 

measurements. 

The method which will be evaluated is called acoustic 

chemometrics (Halstensen et al., 2010) The proposed 

method involves acoustic/vibrational measurements in 

the range 0-200kHz, digital signal processing (Fast 

Fourier Transform) and multivariate regression 

modelling based on Partial Least Squares Regression 

(PLS-R). The results can be used to investigate if the 

polymeric (viscous/rheological) properties of type II 

anti-icing fluid be degraded by exposing them to 

mechanical stress caused by the choice of technology in 

the anti-icing fluid spraying system. 

An experimental test rig facility was used to simulate 

the mechanical stress that the anti-icing fluid is exposed 

to during application on the aircraft. The data acquired 

from these tests was used to train the PLS-R model. An 

independent data set was acquired for validation of the 

model in order to determine the model complexity 

(number of latent variables). 

 

2 Materials and methods 

A laboratory scale experimental test rig was designed 

and built to simulate the full-scale application process 

for anti-icing fluid. Viscosity was measured by taking 

samples from the transportation tank with fresh fluid 

from the manufacturer, and then again after being 

exposed to mechanical stress through the test rig.  

Figure 2 shows the test rig piping and instrumentation 

diagram (P&ID). As can be seen in Figure 2 the pressure 

of the system is measured at various locations along the 

pipe to monitor the pressure loss. Temperature, pressure 

pertaining to the anti-icing fluid was recorded 

automatically during the tests. Five replicate samples 

were taken before and after being put through the test 

rig.  

 

Figure 2. P&ID for the experimental test rig 

The actual implementation of the test rig is shown in 

Figure 3. The rig has a pressure vessel containing test 

fluid, and a receiver tank to collect the fluid. The 

receiver tank holds the nozzle for fluid application. ID 

Ø-9.0 mm tubing connects the pressure vessel with the 

receiver tank and spray nozzle. The nozzle is a Veejet 

S.S.CO H1/4USS 8020 flat fan type, which in turn is 

used to apply anti-icing fluid to the aircraft. The pressure 

vessel was pressurized with air to 7.0 bar(g) for all of 

the tests. A pressure drop of approximately 1,8 bar from 

the pressure vessel to 5.2 bar(g) at the nozzle was 

observed. The pressure loss is affected by the design 

properties of the test rig and can be attributed partly to 

the hoses and partly to the rather restrictive inner 

diameter of the output valve from the pressure vessel. 

 

Figure 3. Anti-icing nozzle test rig (top), nozzle with 

acoustic sensor (bottom). 

An acoustic sensor (accelerometer) from Brüel & 

Kjær (BK 4518-002) was glued directly to the spraying 

nozzle as can be seen in Figure 3. 

2.1 Anti-icing Safewing type II 

The anti-icing fluid used was “Clariant SafeWing MP II 

Flight” polypropylene glycol which is a so-called type 

II anti-icing fluid. The viscosity of anti-icing fluid is a 

critically important property. Since this is a non-

Newtonian fluid, the effect of strain to stress is rather 

complex. The anti-icing type II is as previously 

mentioned, a non-Newtonian fluid called pseudoplastic 

or shear-thinning fluid. The property characteristics of 

this fluid is such that the viscosity will decrease, as shear 

forces increases.  
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In this experiment, the viscosity for the anti-icing fluid 

was measured at various conditions. A Brookfield DV-

III Rheometer was used for all the tests in accordance 

with ASTM D-2196-18 “Standard Test Methods for 

Rheological Properties of Non-Newtonian Materials by 

Rotational Viscountess” (ASTM D-2196-18 2018).  

As per instructions given in ASTM D-2196-18, A 

600 ml low form griffin beaker was filled with test 

solution. The instrument was zeroed, and the spindle 

was put into the solution. The rotation was set to desired 

value and the viscosity and temperature was recorded 

after 30 min. 

2.2 Acoustic chemometrics  

A survey of published literature concerning acoustic 

chemometrics shows that it has gained widespread use 

in industry. The publications span a broad variety of 

industrial applications demonstrating the potential of the 

method (Arvoh et al., 2012,2012; Esbensen et al., 1999; 

Halstensen et al., 2006,2010; Ihunegbo et al., 2012). 

These applications include studies on liquids, 

particulate materials, and slurries. The advantages of 

acoustic chemometrics are: 

 Non-invasive sensor technology 

 Real time acoustic signal acquisition and processing 

 Easy clamp-on/glue-on installation of acoustic 

sensors 

 Several parameters of interest can be predicted from 

the same acoustic measurement 

The main reason for choosing acoustic chemometrics is 

the on-line and non-invasive nature of this measurement 

approach which allows monitoring without disturbing 

the process. Furthermore, the total cost including both 

acoustic monitoring equipment and installation is 

relatively low compared to other on-line methods.  

The sensor is an accelerometer which in this case is 

mounted directly onto the spraying nozzle of the anti-

icing test rig. Figure 4 shows an overview of the most 

important signal processing steps involved in this 

method. In the first step shown in Figure 4 a) a time 

series of 4096 samples is recorded from the sensor. The 

time series is then multiplied with a Blackman Harris 

window (Ifeachor and Jervis 1993) shown in Figure 4 b) 

cancelling out the signal towards the ends of the series, 

the result is shown in Figure 4 c). This is important to 

prevent so-called spectral leakage in the final acoustic 

frequency spectrum.  

The final step is the Discrete Fourier Transform 

which is used to transform the signal into frequency 

domain (Figure 4 d). 

 

Figure 4. Acoustic chemometrics signal processing steps.

 

The Discrete Fourier transform (DFT) can be 

expressed as 

 

𝑋𝑘 = ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛/𝑁𝑁−1

𝑛=0    𝑘 = 0,… ,𝑁 − 1    (1) 

A more efficient implementation of the DFT is the Fast 

Fourier Transform (FFT) which in this work has been 

implemented in LabVIEW 2017 for fast real time 

calculation of the Fourier spectrum. 

2.3 PLS-R 

Partial Least Squares Regression is an empirical data 

driven modelling approach which is well explained in 

literature (Esbensen et al., 2018; Martens and Næs, 

1989) thus only a short introduction is given here.  

PLS-R relies on representative training data for two 

variable blocks, often called X and Y respectively. In the 

present study the X data matrix contains the acoustic 

frequency spectra, and Y is a vector containing the 

viscosity of the anti-icing fluid. 

The NIPALS algorithm is the most widely used 

algorithm in PLS regression. In this algorithm, the 

intention is to model both X and y simultaneously, make 

the error as small as possible and at the same time 

extract as much useful information from the X matrix in 

order to describe the y response variable. A simplified 

version of the NIPALS algorithm is presented below 

(Ergon, 2009). A is the optimal number of components 

in the model. 

1. Let 𝑋0 = 𝑋. For a = 1, 2,…, A perform steps 2 to 6 

2. 𝑤𝑎 = 𝑋𝑎−1
𝑇 𝑦 ‖𝑋𝑎−1

𝑇 𝑦‖⁄  (with length 1) 

3. 𝑡𝑎 = 𝑋𝑎−1𝑤𝑎 

4. 𝑞𝑎 = 𝑦𝑇𝑡𝑎(𝑡𝑎
𝑇𝑡𝑎)

−1 

5. 𝑝𝑎 = 𝑋𝑎−1
𝑇 𝑡𝑎(𝑡𝑎

𝑇𝑡𝑎)
−1 

6. Compute the residual 𝑋𝑎 = 𝑋𝑎−1 − 𝑡𝑎𝑝𝑎
𝑇 
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𝑋 = 𝑇𝑤𝑃
𝑇𝑊𝑊𝑇 + 𝐸              (2) 

𝑦 = 𝑇𝑤𝑞𝑤 + 𝑓                                                           (3) 

 

where the score matrix 𝑇𝑤 = [𝑡1 𝑡2⋯ 𝑡𝐴] is 

orthogonal, loadings matrix 𝑃 = [𝑝1 𝑝2⋯ 𝑝𝐴], 

𝑞𝑤 = [𝑞1 𝑞2⋯ 𝑞𝐴] and the loading weight matrix 

𝑊 = [𝑤1 𝑤2⋯ 𝑤𝐴] 

The loading matrix, 𝑃, is calculated as  

𝑃 = 𝑋𝑇𝑇(𝑇𝑇𝑇)−1                                          (4) 

The prediction vector for 𝑦 = 𝑋𝑏 + 𝑓 corresponds to: 

𝑏̑ = 𝑊(𝑊𝑇𝑋𝑇𝑋𝑊)−1𝑊𝑇𝑋𝑇𝑦                       (5) 

The response vector 𝑦̑ = 𝑋𝑏̂
 
   (6) 

In evaluating the regression model, the root mean 

squared error of prediction RMSEP offset, slope and 

correlation coefficient are commonly used. Besides 

these, visual evaluation of the relevant score plots, 

loading weights plots, explained variance plots also 

provide useful information for calibrating and 

development of the prediction model.                                                                                       

The root mean squared error of prediction is 

calculated as:  

RMSEP = √∑ (𝑦̂i,predicted−𝑦i,reference)
2𝑛

𝑖=1

𝑛
             (7)                                                                         

                                            

3 Experimental 

A controlled degradation test was performed in a pre-

shearing rig where the purpose was to degrade the fluid 

to compare with the shear caused by the nozzle in the 

test rig. The fluid that was exposed to pre-shearing was 

mixed with factory fresh fluid and run through the test 

rig. A Brookfield DV-3 rheometer was used for all 

viscosity reference measurements. 

In order to calibrate the PLS-R model it is important 

to vary the viscosity of the anti-icing fluid within a 

relevant range. Therefore, eleven different mixtures of 

factory fresh and pre-sheared fluid were prepared. The 

11 fluids thus span a viscosity range of 1900 – 8400 

[cP]. 10 liters of each viscosity was prepared and stored 

in plastic containers. All the eleven batches of anti-icing 

fluid mixtures were then run through the test rig and the 

corresponding acoustic signals from the accelerometer 

on the nozzle were recorded.  

The signal from the accelerometer was amplified in a 

signal adaption module (SAM) developed by Applied 

Chemometrics Research Group at the University of 

South-Eastern Norway. The amplified signal was 

recorded using a data acquisition unit from National 

Instruments NI USB-6363 and a laptop computer.  

An average of 50 spectra were used as basis for the 

final frequency spectra which was stored in the 

computer for further analysis based on multivariate 

regression modelling. The duration of each of the 11 

tests was about 1 minute, and this resulted in 100 

averaged frequency spectra for each viscosity. The 

temperature and pressure of the fluid in the tank and 

upstream of the nozzle were recorded during the tests to 

ensure comparable conditions for all the 11 viscosity 

tests. All the eleven batches of anti-icing fluid mixtures 

were then run through the test rig and the corresponding 

acoustic signals from the accelerometer on the nozzle 

were recorded.  

 

4 Results & Discussion 

Partial Least Squares Regression (PLS-R) was used to 

calibrate a multivariate model based on the acoustic data 

and the reference viscosity values. The reference 

viscosity values in each of the 11 mixtures were 

measured using the Brookfield DV-III Rheometer.  

The acoustic data used to calibrate the PLS-R model 

was a 550x2048 matrix containing 550 frequency 

spectra. The calibration spectra were randomly selected 

from the total data matrix containing 1100 spectra. Each 

spectrum consisted of 2048 frequencies covering the 

frequency range 0-200 kHz. 

4.1 PCA results 

The resulting score plot t1-t2 for the first and second 

PLS-R component is shown in Figure 5.  

 

Figure 5. Score plot t1-t2, the viscosity of each sample is 

indicated by color according to the range given at the top 

of the plot. 

The score plot shows how the acoustic spectra 

corresponding to the different viscosities relates to each 

other. Each acoustic spectrum is represented by a point 

with a color indicating the viscosity.  

The score plot shows a promising trend in the data 

from low viscosity on the left side (blue) to the highest 

viscosity in the upper right corner (grey). 
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4.3 PLS-R prediction of viscosity 

The PLS-R model was validated (Esbensen and Geladi, 

2010) against a random selection of 550 spectra which 

is 50% of the total data set. Based on the test set 

validation the model complexity was determined using 

the residual validation variance plot shown in Figure 6. 

Five components were selected as optimal for the final 

prediction model. 

 

Figure 6. Residual validation variance. 

The 550 predicted viscosities were plotted against the 

viscosities measured by the reference instrument and 

can be seen in Figure 7.  

 

Figure 7. Predicted vs. Reference viscosity [cP]. The target 

line (black) and the regression line (red) are indicated. 

The statistical parameters used to evaluate the 

prediction performance of the model are: slope=0.97, 

R2=0.98 and RMSEP=278 [cP]. 

The same results plotted in time can be seen in Figure 

8. The green line is the reference viscosity and the red 

curve is the predicted viscosity.  

The spread in the predicted values is mainly caused 

by air bubbles passing through the nozzle. Air bubbles 

in the anti-icing fluid is difficult to avoid, but if the fluid 

is left to settle for a significantly longer period than what 

was possible in this study the bubbles will surface, burst 

and disappear. 

 

Figure 8. Predicted and Reference viscosity [cP].

The RMSEP=278 [cP] corresponds to 4.3% of the

viscosity range 1900-8400. It can be observed that there

are slightly lower prediction errors for the viscosity

8400 [cP]. The reason for this is probably that the 8400

[cP] fluid was taken directly from the tank as delivered

from the manufacturer thus no mixing was required. It

was also observed that the fluid with this viscosity

contained significantly less air bubbles than the other

batches of which all had been prepared as mixtures.

 

5 Conclusion

The main objective of this research study was to assess

if acoustic measurements from the spraying nozzles in

the system provide reliable predictions of the viscosity

of anti-icing fluid. The results based on independent test

data provided reliable predictions of the viscosity of the

anti-icing fluid. It is concluded that the acoustic

chemometric method which provided prediction

performance indicated by the statistical parameters

slope=0.97, R2=0.98 and RMSEP=278 [cP] is

promising for real-time monitoring of viscosity.

However, long term testing is advised to assess the

stability of the method in an industrial environment over

time.

The advantage of the acoustic chemometric method

will make it possible to monitor fluid viscosity during

application to an aircraft in real-time. This is a

significant improvement in risk assessment, mitigation

and control.
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Abstract
In this paper several discontinuous pulse width modula-
tion methods (DPWM) are compared with space-vector
pulse width modulation (SV-PWM) method. The com-
parisons are done based on measurements of motor
magnetic noise and total drive losses for inverter
switching frequencies from 500Hz to 4000Hz. It is con-
cluded that using SV-PWM it is possible to reach lower
magnetic noise on the traction motor without increasing
the total losses significantly.

Keywords:     DPWM, SVM, magnetic noise, inverter
losses, harmonic losses traction, Metro

1 Introduction

The typical voltage source inverter (VSI) used in a
variable speed drive (VSD) use a pulse width
modulation (PWM) method to generate the required
motor phase voltages. Depending on the application and
requirements, different control algorithms and different
PWM methods are used. Typical control methods are
direct torque control (DTC), direct self-control (DSC),
indirect self-control (ISC) and field-oriented control
(FOC). All these control methods rely on the control of
certain electrical machine quantities by controlling the
switching states of the VSI, in doing so the control
method and PWM method can become intervened and it
can become difficult to describe the PWM method as
separate from the control method. However, during
ideal steady state conditions the control method and
PWM method can be characterized separately. Some
important PWM methods are sinusoidal PWM (S-
PWM) (Schonung and Stemmler, 1964), space vector
PWM (SV-PWM) (Van Der Broeck, et al., 1986)
and Discontinuous PWM (DPWM) (Depenbrock,
1977). The main difference between S-PWM or SV-
PWM and the DPWM methods is that the DPWM
methods clamp one of the phases at certain angles.
The purpose with the clamp is to reduce the inverter
switching losses of the clamped phase, the reduc-
tion of switching losses depends on the phase cur-
rent magnitude during the clamp. In (Hava et al., 1998)
it is reported that inverter switching losses are signifi-
cantly reduced using DPWM methods. In
(Binojkumar et al., 2016) it is reported that the inverter
related switching noise is lower using DPWM methods.
In (Andersson and Thiringer, 2017), the inverter

losses and magnetic noise from the motor was
investigated using an experimental setup, a reduction in
inverter losses was noted. However, the motor magnetic
noise did not improve.
    In this paper, several DPWM methods are compared
experimentally with SV-PWM in terms of motor mag-
netic noise and both inverter and motor harmonic
losses. In order to further understand the relations be-
tween motor magnetic noise, losses and PWM meth-
ods measurements are performed using switching fre-
quencies between 500Hz and 4000Hz.
   Section 2 describes the characteristics of the tested
PWM methods and Section 3 presents data from 
loss and noise tests. Section 4 present an analysis 
of the noise measurements, Section 5 summarizes 
and concludes.

2 Characteristics of tested PWM
methods

The different modulation methods are commonly
described, and easily implemented using their
characteristic duty ratio (Hava et al., 1998). In Figure
1, the characteristic duty-ratio for SV-PWM is shown
side by side with the characteristic duty ratio of
DPWM1. At the times, where duty ratio is 0 or 1, the

phase is clamped, i.e. not switching. In terms of voltage 
harmonics, the main difference between SV-PWM and 
DPWM lies in the amplitude of the main switching 
harmonics. For the SV-PWM method the largest voltage 
and current harmonics occurs at twice the switching 
frequency and four times the switching frequency. The 
discontinuous methods produce a harmonic spectrum 
where the first harmonic is largest, the second is the 

Figure 1. Duty ratio of SV-PWM (left)
and DPWM1 (right) method.
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second largest and so on. This is illustrated in Figures 2 
to 4, where the measured phase voltage spectrums for 
SV-PWM and two of the tested DPWM methods are 
plotted. 

3 Measurements

3.1 Loss measurements
The traction motor is operated at 627rpm and 1017 
Nm, corresponding to full tractive effort at a speed of 15 
km/h for typical metro train. Losses in both inverter and 
motor are measured. The inverter losses are reduced 
for the tested discontinuous PWM methods; how-
ever, the motor harmonic losses are increased. This 
is seen in Figures 5 and 6.

A comparison of total switching related losses, inverter 
and motor harmonic losses is shown Figure 7.  
  

Figure 6. Measured motor harmonic losses using different
PWM methods.

Figure 7. Measured inverter and motor harmonic losses
using different PWM methods.

Figure 2. Measured phase voltage spectrum of SV-PWM
operating at 1022Hz.

Figure 3. Measured phase voltage spectrum for DPWM
Max.

Figure 5. Measured losses in the inverter using different
PWM methods.

Figure 4. Measured phase voltage spectrum of DPWM1
operating at 1000Hz.
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3.2 Noise measurements 
In order to investigate the pulse patterns more in detail, 
the magnetic noise from the motor is measured using 
different inverter switching frequencies and pulse 
patterns. For each pulse pattern the inverter switching 
frequency is changed in steps of approximately 110Hz. 
Each frequency is kept for 5seconds, so that the average 
sound pressure level (SPL) can be measured. The 
measurements are done at no-load since at full load the 
Silicon (Si) based IGBTs of the inverter could overheat 
during such a test. A comparison of measured sound 
pressure level (SPL) using different PWM methods and 
switching frequencies is presented in Figure 8. 

From the measurement it is seen that SPL varies 
significantly with the switching frequency and that 
relatively small changes in switching frequency can 
result in large changes in noise. It is also seen that above 
1.8kHz, SV-PWM offers the lowest magnetic noise. 

4 Analysis of noise measurements 
In order to understand the behavior of the magnetic 

noise more in detail, the raw data from a single 
microphone, which was used during the tests, is 
analyzed more in detail. An FFT is performed and the 
amplitude and frequency of the two harmonics with 
largest amplitude are plotted in Figure 9. The largest 
amplitudes are recorded for frequencies between 2 kHz 
and 4 kHz (Figure 9). This behavior can be explained by 
considering that the structural mechanical resonance 
modes 0 and 4, of a traction motor this size, is typically 
located between 2kHz and 4kHz. Considering the 
relationship between harmonic amplitudes for SV-
PWM and DPWM pulse pattern, one can explain the 
behavior in figure 9. The SV-PWM method generate the 
largest voltage harmonics at twice the switching 
frequency. The highest magnetic noise appears at 
roughly 1500Hz switching frequency. The DPWM 
methods, where the first harmonic is the largest, 

generate the highest noise for switching frequencies
around 3000Hz as seen in Figure 8.

 

In order to further investigate, if the measured 
magnetic noise is mainly related to the frequency of the 
main voltage harmonics. The measured noise using SV-
PWM between 500-2000Hz is frequency shifted into 
1000-4000Hz and plotted together with the noise 
measurement from DPWM1. The result from the 
calculation is shown in Figure 10, the general behavior 
in the noise measurement using DPWM1 maps well 
with the noise measurement using SV-PWM using half 
the switching frequency. Indicating that it is the 
frequency of the main harmonics which is relevant for 
the magnetic noise. 
 

5 Conclusions 
The comparisons and analysis on loss and noise 
measurements for SV-PWM and DPWM methods 

Figure 8. Measured SPL for different pulse patterns and
inverter switching frequencies.
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Figure 9. Raw amplitude and frequency of two 
largest harmonics for all noise tests.

Figure 10. comparison of frequency shifted SV-PWM
and DPWM1 noise.
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show, that the magnetic noise using PWM methods can 
be understood by considering the resonance frequencies 
of the motor and the frequencies of the main voltage 
harmonics, generated by the PWM method. A more in-
depth analysis reveals that in terms of noise, the DPWM 
methods produce similar results as an SV-PWM, 
operating at half the switching frequency. The 
measurements further show that SV-PWM operated at 
2kHz switching frequency generate both low losses and 
low noise for the tested traction motor. 

References
A. Andersson and T. Thiringer. Experimental determination

of inverter losses and sound consequences of using DPWM
in an HEV. In 2017 IEEE Applied Power Electronics
Conference and Exposition (APEC), Tampa, FL, pages
1382-1388, 2017.

A.C. Binojkumar, B. Saritha and G. Narayanan, Experimental
comparison of Conventional and Bus-Clamping PWM
Methods Based on Electrical and Acoustic Noise Spectra of
Induction Motor Drives. IEEE Transactions on Industry
Applications, 52(5):4061-4073, Sept.-Oct. 2016.

H. Van Der Broeck, H. Skudelny, and G. Stanke. Analysis and
realization of a pulse width modulator based on voltage
space vectors. In Conf. Rec. IEEE-IAS Annu. Meeting,
pages 244–251, 1986.

M. Depenbrock. Pulse width control of a 3-phase inverter with
nonsinusoidal phase voltages. In Conf. Rec. IEEE Int.
Semiconductor Power Conversion Conf., pages 399–
403, 1977.

A. M. Hava, R. J. Kerkman, and T. A. Lipo. A 
highperformance generalized discontinuous PWM algo-
rithm. IEEE Transactions on Industry Applications, 34(5): 
1059-1071, 1998. doi: 10.1109/28.720446.

A. Schonung and H. Stemmler. Static frequency changers
with subharmonic control in conjunction with reversible
variable-speed ac drives, Brown-Boveri Rev., pages 555-
577, 1964.

SIMS 60

35DOI: 10.3384/ecp2017032  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



Impact of distributed power generation at the customer

Marius Salen1 Dietmar Winkler2

1University of South-Eastern Norway, salen93@gmail.com
2University of South-Eastern Norway, dietmar.winkler@usn.no

Abstract
In collaboration with the Distributed System Operator
(DSO) at Hvaler which is Norgesnett, a weak grid is simu-
lated in NETBAS. The aim with the simulation is to study
the impact clouds have on the production at the solar pan-
els since the production drops locally at the customers
from passing clouds. Also, the impact this has on the DSO
with the requirements given from § 3.4 in the Norwegian
Directive on Quality of supply (FoL) regarding ∆Ustationary
are considered. The simulations are conducted with dif-
ferent scenarios which illustrate the power production in
the solar panels when cloudy. In collaboration with the
Norwegian Meteorological Institute (MET Norway) solar
data is used to get a more realistic picture of the sun con-
dition at Hvaler and the corresponding scenarios. The
main findings are that the passing clouds had a large im-
pact on the voltage drop at the customers simulated in
the weak grid at Søndre Sandøy. Also the objects at
Søndre Sandøy without solar panels are affected by the
clouds reducing the power output from the objects with
solar panels. As a result, both of the objects with and
without solar panels exceeded the requirement given
from FoL § 3.4 in some of the scenarios. The conclusion
is that clouds had a significant impact on the customers
simulated at the weak grid at Hvaler, resulting in a volt-
age drop which gives challenges for the DSO regarding
FoL.

Keywords: distributed power generation, solar produc-
tion, FoL, DSO, prosumer

1 Introduction
Hvaler is an island community outside Fredrikstad, with
a population of 4 400 inhabitants. In summer, the pop-
ulation of Hvaler increases to about 30 000 since Hvaler
is a popular holiday resort with many summer residents
(Wikipedia 2019). Such an increase in population can lead
to a rise of power consumption resulting in power peaks,
especially during the summer season.

1.1 Previous work and motivation
With passing clouds on solar panels and its impact regard-
ing the voltage drop, there has been done previous work at
the field. From the paper “Passing-cloud Effects of Solar
Photovoltaic System on Distribution Network Voltages”
(Cheiw Yun Lau, Chin Kim Gan, Chin Ho Tie, Kyairul
Azmi Baharin, Mohamad Fani Sulaima 2015), the conclu-

sion were that a voltage drop may occur when clouds are
passing and reducing the generation from the solar panels
due to the cumulus sky. That paper was comparing pass-
ing clouds on a sunny day with a cloudy day. In this paper
however we investigate passing clouds on a sunny day on
a weak grid concerning the voltage drop.

In 2014 a Master’s Thesis in collaboration with Norges-
nett was conducted (Ellefsen 2014). One of the main ob-
jectives from that thesis was to study the risk of overvolt-
ages coming from solar panels potentially installed in the
distribution network at Hvaler. Also that research used
Søndre Sandøy as a test area for the simulations. The high-
est overvoltages occurred in June according to the conclu-
sion.

From this, the motivation for this paper is to present
how solar panels at the customers in Søndre Sandøy get
affected by the clouds which are reducing the production
on a specific day in June. Also, a goal with the paper is
to get a better understanding on how the clouds reduce the
power output from the solar panels leading to a voltage
drop at the customer.

1.2 Problem description

This paper is investigating a part of Norgesnett’s distribu-
tion network on Hvaler, where the voltage drop locally at
the customers is studied. This is caused by the reduction
in the solar panels from the passing clouds. Further, sim-
ilar remote areas like Hvaler with distributed generation
may benefit from this work.

The simulation is performed in collaboration with
Norgesnett, and the software NETBAS(POWEL 2018) is
used. The area simulated is in Hvaler (Norway), in a
collaboration with the local DSO. After discussions with
Norgesnett it was decided to simulate two areas of the dis-
tribution network, a robust and weak grid. NETBAS is
used to study the behaviour of the two areas after pass-
ing clouds reduce the production from the installed solar
panels at the customers. The customers will be referred to
as objects throughout the paper. The passing clouds can
lead to a voltage drop which can be problematic for the
DSO. The results from the simulations are compared with
the requirements given in FoL §3.4, regarding ∆Ustationary.
Since the Master’s Thesis revealed most challenges at the
weak grid at Søndre Sandøy this will be focus area in this
paper (Marius Salen 2019).
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1.3 Limitations
• From §3.4 in FoL ∆Ustationary is considered and

∆Umax is not.

• During the sun minutes, no changes from sun to
clouds are taken into consideration. Moreover, when
passing clouds occur, this change from sun to cloud
is set to each third minute. This is explained in more
detail at Section 3.1

• When clouds reduce the power generated locally
from the solar panels this occur at the same time for
all objects in the scenarios.

2 Background
2.1 Active distribution system
When a customer has a surplus of power an alternative
to storage is to feed the power back to the grid, which
is called prosumers (Wilson Rickerson 2014). Prosumers
which are feeding the power back into the grid makes an
impact due to a voltage rise in the grid. In Figure 1 the
voltage rise at the distribution network can be expressed
by Equation (1), where the voltage drop is increasing
when P and Q are increasing.

∆U =U2 −U1 =
P2 ·R+Q2 ·X

U2
(1)

In Equation (1), U2 represents the direction where the
power flow is reversed. Also, the voltage at the point of
connection of the generator will increase to a higher value
than the sending end voltage, visualised in Figure 1 (M.A.
Mahmud, M.J. Hossain, H.R. Pota 2011). When a pro-
sumer has surplus power this will contribute to a higher
voltage. Furthermore, I2 will have negative value and U2
will be greater than U1. When distributed generation (DG)
is connected as shown in Figure 1 the system is not a pas-
sive system, but rather an active system.

Figure 1. An active distribution system with DG at the cus-
tomer.

2.2 X/R - Ratio in the distribution network
Figure 2 is from (Christian Rendall Olsen 2018) and
shows how the reactance X gets smaller from the power
grid towards the object. On the other hand, the resistance
R increases from the power grid towards the object. In a
distribution network, the power factor (PF), cosθ is high
with typical values of 0.98 found from NETBAS. This

Figure 2. X-R ratio for a typical distribution network.
(Christian Rendall Olsen 2018).

gives R � X . From this, Equation (1) can be rewritten
into Equation (2) because the XQ term is neglected:

4U =
R ·P
U2

(2)

The cosθ indicates the ratio between active and appar-
ent power, visualised by the power triangle as seen in Fig-
ure 3. When simulated in NETBAS the PF at the objects
are between 0.975 and 0.985 which is a large PF, resulting
in a low contribution of reactive power. At the objects in
the test area there are almost purely resistive loads. Typi-
cal equipment which contributes to increasing the reactive
power are larger motors which include an inductor. Such
equipment is not present at Søndre Sandøy.

Figure 3. The power triangle.

3 Method
The test area is simulated to see if the requirement of
∆Ustationary from § 3.4 in FoL are held. These requirements
are according to Table 1 which is explained in detail at
Section 2.4.

An important topic in this paper is the voltage variations
where FoL has requirements that need to be met. These
requirements are found in FoL, § 3.4 and states: (Lovdata
2004)

"The Norwegian water resources and energy directorate
(NVE) may order those who are covered by this regula-
tions to implement measures to reduce the scope or con-
sequences of voltage dips and voltage swells.

DSOs shall ensure that voltage swells, voltage dips and
Rapid Voltage Changes (RVC) do not exceed the follow-
ing limit values in the point of connection with the respec-
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tive nominal voltage level, UN , for the respective time in-
terval."

The purpose of these regulations is to ensure that the
customer only experience a limited number of voltage
swells, voltage dips and RVC (Lovdata 2004).

In a network with 230 V the RVC are within the inter-
val of 207-253 V, which is a margin of ± 10 % from 230 V.
However, at any point if the voltage drops under 207 V it
is categorised as a voltage dip, or if it exceeds 253 V, as
a voltage swell. In low- and high voltage distribution net-
work with voltages between 230 V-35 kV then 24 voltage
variations within a 24 hours period are allowed (Lovdata
2004).

Table 1. ∆Ustationary can exceed the limit of 3 % from FoL at a
maximum of 24 times in a 24-hours period.

Voltage swells, voltage dips
and rapid voltage changes

Max number pr floating
24-hours period

0.23 kV ≤UN ≤35 kV
∆Ustationary ≥3% 24
∆Umax ≥5% 24

Table 2. Different scenarios presented.

Scenario Solar radiation Production in solar panels
Scenario I 0 % 0.00 p.u.
Scenario II 10 % 0.10 p.u.
Scenario III 25 % 0.25 p.u.

The three scenarios presented in Table 2 are used to il-
lustrate the problems regarding passing clouds on sum-
mertime, which reduce the power output from the solar
panels. Scenario I illustrates the worst case scenario with
0 % production from the solar panels. Further, Scenario II
and III illustrates a more realistic Scenario with 10 % and
25 % production from the solar panels when cloudy. Sce-
nario I is not a realistic scenario since there always will
be some solar radiation on the solar panels. However, it
can be useful for the DSO to take a worst case scenario in
consideration for future planning of the grid.

3.1 Solar data
Historical solar tracking data are collected from MET
Norway. Although they did not have data from Hvaler
and recommended Grimstad, which has a similar type of
climate as Hvaler. The interest is to study if the changes
from sun to clouds will influence the requirements accord-
ing to FoL § 3.4. If there are more than 24 changes a day
where ∆Ustationary ≥3 %, the requirements are not met.

Discussions with climate researcher Prof. Elin Lund-
stad at METs office, lead to the definition of a ratio that
represents the change between sun and clouds in minutes.
This ratio is set to a switch between sun and clouds each
third minute when cloudy. Further, Prof. Lundstad sug-
gested that a typical cloud for Hvaler is the type Conges-
tus, which gives problems for the solar panels due to the
thickness of the clouds regarding production.

Consequently, with 51 minutes of sun registered from
10:00 hours to 11:00 hours presented in Table 3. The shift
between sun to clouds occurs each third minute during
these minutes with passing clouds. These minutes with
the passing clouds is the remaining 9 minutes in the hour
from 10:00 hours to 11:00 hours.

From the solar tracking data given by MET Norway,
a suitable day was chosen to illustrate the problem with
more than 24 changes of sun to clouds during a day. Fur-
thermore, the total sun to cloud changes are also given
in Table 3, which shows that during 15th June 2018 the
change between sun and clouds reaches a number of 70.
That number indicates that if ∆Ustationary exceeds the limit
of 3 % in the simulations and hence the DSO does not meet
the requirements during that day.

Table 3. The changes from sun to clouds reached a number of
70, 15. June 2018.

Time: Sun minutes Passing clouds Changes
06:00 5 Dawn 3
07:00 60 0 0
08:00 60 0 0
09:00 60 0 0
10:00 51 9 3
11:00 29 31 10
12:00 38 22 7
13:00 44 16 5
14:00 56 4 1
15:00 57 3 1
16:00 60 0 0
17:00 49 11 4
18:00 7 53 18
19:00 17 43 14
20:00 52 8 3
21:00 1 Dusk 1
Sum 70

3.2 The difference between ∆Ustationary and
∆Umax

After discussions with Norgesnett, a decision was made
to only study ∆Ustationary. This is because NETBAS does
not have the complexity to study ∆Umax, and simulations
with ∆Umax also requires measurements collected from the
field. Additionally, the simulations with ∆Umax require
that a time constant must be taken into consideration. This
is not done in this paper due to the study of ∆Ustationary in
stationary conditions.

Figure 4. Visualisation of ∆Umax and ∆Ustationary (NVE
2018).

In Figure 4 ∆Umax and ∆Ustationary is presented. ∆Umax is
the maximum change in voltage during the situation, and
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is typically due to startups of larger motors in industrial
areas (Lovdata 2004). ∆Ustationary is the voltage after it has
stabilised on a higher, lower or the same level as before
the situation arose. In the simulations the voltage is stable
on a lower level because of the drop in production at the
solar panels due to the clouds.

Figure 5. Simplified figure with ∆Ustationary

Figure 5 is a simplified model which illustrates
∆Ustationary. It shows how a drop in production due to
clouds gives a new condition, Ustationary. Further, Udelivered
is the voltage when the solar panels have full production
at the objects. ∆Ustationary should not exceed the limit of
3 % more frequently than 24 times in a period of 24 hours.
Equation (3) is based on Figure 5.

%Ustationary =
∆Ustationary

Udelivered
·100% (3)

The cabins at Søndre Sandøy are referred to as objects.
Furthermore, after discussion with Norgesnett it was de-
cided that the simulations are conducted with regard to
normal operating condition with point-analyses in station-
ary condition. Also, a decision was taken to use the dif-
ferent objects short-circuit performance from NETBAS in
comparison with the voltage drop due to the drop in pro-
duction at the solar panels. Furthermore, to simulate the
solar panels at the objects in NETBAS the capacity of the
solar panels in kW are set to a negative value at the objects.
This makes the power flow back to the grid and gives a
scenario where the objects feed the distribution network,
also called prosumers.

The network is tested at cases where an increasing num-
ber of objects have solar panels installed. Scenario I, the
worst case, is simulated first. If this is not passed then con-
sequently Scenario II and III are simulated as presented in
Table 2.

4 Results
Here the results from Søndre Sandøy are presented. In
the Master’s Thesis solar panels from 1 kW to 3 kW was
studied. In this paper, only the size of 3 kW is presented
in detail since this was the size with most problems for the
DSO. Furthermore, all scenarios and cases from Søndre
Sandøy are presented in Table 10 and discussed briefly.

4.1 The test area at Søndre Sandøy
Søndre Sandøy is located far out in the distribution net-
work and is categorised as a rural area. Søndre Sandøy

has low short-circuit performance at the objects. Because
of the low short-circuit performance, Søndre Sandøy does
not have the prerequisites to deal with a large amount of
solar capacity at the objects. There are ten objects and six
cases at Søndre Sandøy. Figure 6 shows the ten objects
which are studied.

Figure 6. The different objects at Søndre Sandøy.

According to Figure 6, Case 1 is simulated where Ob-
ject 5 and 6 have installed solar panels. Further, Case 2
is when Object 7 av 8 have added their solar panels to
the network, those objects are also connected to the same
line. Further, Object 9 and 10 are added to the network
with Case 3 and 4, respectively. They have two cases be-
cause of the low short-circuit performance on those ob-
jects. Moreover, they are furthest out in the network,
which makes them vulnerable to solar panels. Further-
more, down the right at the network, Case 5 is when Ob-
ject 1 and 2 gets solar panels which are added to the net-
work. And Case 6 is when every object has solar panels
installed.

4.2 Explanation NETBAS simulation tables
Both, Table 4 and Table 5, are structured in a way that the
objects are numbered horizontally 1 - 10, and the cases
are numbered vertically 1 - 6. Table 4 has two colours
in the boxes, yellow and blue. Yellow indicates the in-
stalled solar capacity at the respective objects in kW. Fur-
thermore, yellow also indicates the object’s related volt-
age, Udelivered. The blue colour illustrates the impact of the
clouds, which reduces the production in the solar panels
to a new value given in kW. Moreover, blue is also the
object’s new related voltage, Ustationary. Furthermore, the
white boxes are objects without solar panels, called non-
solar objects. The S-C P is the object’s different short-
circuit performance.

Table 5 shows where ∆Ustationary exceeds the 3 % limit
with red boxes, and is calculated as shown in Equation (4).

%Ustationary =
∆Ustationary

Udelivered
·100% =

235.2−226.0
235.2

·100%

(4)

The calculation in Equation (4) illustrates Object 1 at
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Table 4. 3 kW installed at the objects with 25 % solar production
due to clouds.

1 2 3 4 5 6 7 8 9 10
S-C P [MVA] 0.346 0.301 0.215 0.271 0.336 0.266 0.287 0.287 0.205 0.162

[V] [V] [V] [V] [V] [V] [V] [V] [V] [V]
1: 3 kW 219.1 218.9 218.2 218.6 219.7 219.7 219.0 219.0 218.5 217.9
1: 0.75 kW 217.1 216.9 216.1 216.6 217.3 217.0 216.6 216.6 216.0 215.5
2: 3 kW 222.9 222.7 221.9 222.4 223.9 224.5 224.6 224.6 223.3 222.8
2: 0.75 kW 219.2 219.0 218.2 218.7 219.6 219.6 219.7 219.7 218.7 218.2
3: 3 kW 224.6 224.4 223.7 224.1 225.8 226.7 226.8 226.8 226.9 225.9
3: 0.75 kW 220.1 219.9 219.1 219.6 220.6 220.8 220.8 220.8 220.5 219.8
4: 3 kW 226.6 226.4 225.7 226.1 228.0 229.2 229.3 229.3 230.4 231.0
4: 0.75 kW 221.2 221.1 220.3 220.8 221.9 222.2 222.2 222.2 222.5 222.7
5: 3 kW 230.9 231.1 229.8 230.3 231.7 232.9 233.0 233.0 234.1 234.8
5: 0.75 kW 223.5 223.6 222.5 223.0 223.9 224.2 224.2 224.2 224.5 224.7
6: 3 kW 235.2 235.4 236.3 235.9 235.5 236.6 236.7 236.7 237.8 238.5
6: 0.75 kW 226.0 226.0 226.3 226.1 226.0 226.3 226.4 226.4 226.6 226.8

Case 6 from Table 4. Further, Table 5 represents the an-
swer of the calculation at Object 1 Case 6. As a result from
this, %Ustationary is larger than 3 %, and the requirements
states this should not occur more frequently than 24 times
a day.

Moreover, all calculations from the simulations in the
paper are compared to the sun to cloud changes from
15th June 2018. If the limit of 3 % is exceeded, the re-
quirements are not met during that day.

The different cases indicate which objects have in-
stalled solar panels, Case 1 has 1 Object with solar panels
and so on. The tables are related to each other, meaning
Object 1 in Table 4 is Object 1 in Table 5.

Table 5. %Ustationary for all the cases regarding Scenario III.

1 2 3 4 5 6 7 8 9 10
1: 0.91 % 0.91 % 0.96 % 0.91 % 1.09 % 1.23 % 1.09 % 1.09 % 1.14 % 1.10 %
2: 1.65 % 1.66 % 1.68 % 1.66 % 1.92 % 2.18 % 2.18 % 2.18 % 2.06 % 2.06 %
3: 2.00 % 2.00 % 2.05 % 2.00 % 2.30 % 2.60 % 2.64 % 2.64 % 2.82 % 2.70 %
4: 2.38 % 2.34 % 2.39 % 2.34 % 2.67 % 3.05 % 3.09 % 3.09 % 3.43 % 3.59 %
5: 3.20 % 3.25 % 3.18 % 3.17 % 3.36 % 3.73 % 3.78 % 3.78 % 4.10 % 4.30 %
6: 3.91 % 3.99 % 4.23 % 4.15 % 4.03 % 4.35 % 4.35 % 4.35 % 4.71 % 4.91 %

4.3 Study of 3 kW solar panels at the objects
In this section Scenario I and Scenario II at Søndre Sandøy
with 3 kW solar panels are presented. Since Scenario III
are given in Table 4 and Table 5 in Section 3.2 those ta-
bles are not presented again, but Scenario III are discussed
referring to Table 4 and Table 5.

4.3.1 Scenario I

The largest solar panels that are installed at the objects
are 3 kW. The interest is to see how the network responds
to this capacity at the different scenarios and cases. For
the worst case scenario the voltage drop is presented in
Table 6.

Furthermore, Table 7 illustrates how this solar capac-
ity affects ∆Ustationary where Object 10 at Case 6 reached
a percentage of 6.71 %. Accordingly, the limit of 3 % is
exceeded for Case 3, 4, 5 and 6. Despite this, Case 2 is
close to the limit at Object 6, 7 and 8. Moreover, in Case
3, 4, and 5 there are non-solar objects which are affected
by the objects with solar panels. Object 10 is a non-solar
object in Case 3. In Table 7 the percentage of this object
reached 3.71 %, which lead to this Object does not pass
the requirement. Furthermore, in Case 4 the non-solar ob-

ject 1 - 4 exceeds the limit, while in Case 5 the non-solar
object 3 and 4 also exceeds the limit. at Case 5 the per-
centage of non-solar object 3 and 4 increased because of
Object 1 and 2 has solar panels installed in Case 5. Ta-
ble 6 shows the voltage is the same at the objects which
have solar panels installed when the production drops to
0 kW. The reason for this could be that Scenario I with
0 % production locally is an unrealistic scenario. Because
some solar radiation will pass through the clouds, which
generates some production locally at the solar panels. Sce-
nario II and III considers this with production locally when
cloudy. However, the results indicate the worst case sce-
nario is not passed. Furthermore, Scenario II follows.

Table 6. 3 kW installed at the objects with 0 % production due
to clouds.

1 2 3 4 5 6 7 8 9 10
S-C P [MVA] 0.346 0.301 0.215 0.271 0.336 0.266 0.287 0.287 0.205 0.162

[V] [V] [V] [V] [V] [V] [V] [V] [V] [V]
1: 3 kW 219.1 218.9 218.2 218.6 219.7 219.7 219.0 219.0 218.5 217.9
1: 0 kW 216.4 216.2 215.4 215.9 216.5 216.0 215.8 215.8 215.2 214.7
2: 3 kW 222.9 222.7 221.9 222.4 223.9 224.5 224.6 224.6 223.3 222.8
2: 0 kW 217.8 217.7 216.9 217.4 218.1 217.9 217.9 217.9 217.0 216.5
3: 3 kW 224.6 224.4 223.7 224.1 225.8 226.7 226.8 226.8 226.9 225.9
3: 0 kW 218.4 218.2 217.4 217.9 218.7 218.6 218.6 218.6 218.2 217.5
4: 3 kW 226.6 226.4 225.7 226.1 228.0 229.2 229.3 229.3 230.4 231.0
4: 0 kW 219.2 219.0 218.3 218.8 219.6 219.6 219.6 219.6 219.6 219.6
5: 3 kW 230.9 231.1 229.8 230.3 231.7 232.9 233.0 233.0 234.1 234.8
5: 0 kW 220.8 220.8 219.8 220.3 221.0 221.0 221.0 221.0 221.0 221.0
6: 3 kW 235.2 235.4 236.3 235.9 235.5 236.6 236.7 236.7 237.8 238.5
6: 0 kW 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5

Table 7. %Ustationary for all the cases regarding Scenario I.

1 2 3 4 5 6 7 8 9 10
1: 1.23 % 1.23 % 1.28 % 1.23 % 1.45 % 1.68 % 1.46 % 1.46 % 1.51 % 1.47 %
2: 2.28 % 2.24 % 2.25 % 2.24 % 2.60 % 2.94 % 2.98 % 2.98 % 2.82 % 2.83 %
3: 2.76 % 2.76 % 2.81 % 2.76 % 3.14 % 3.57 % 3.61 % 3.61 % 3.83 % 3.71 %
4: 3.27 % 3.27 % 3.29 % 3.23 % 3.68 % 4.19 % 4.23 % 4.23 % 4.69 % 4.94 %
5: 4.37 % 4.46 % 4.35 % 4.34 % 4.61 % 5.11 % 5.15 % 5.15 % 5.60 % 5.88 %
6: 5.40 % 5.48 % 5.84 % 5.68 % 5.52 % 5.96 % 6.00 % 6.00 % 6.44 % 6.71 %

4.3.2 Scenario II
Table 8 shows that the voltage drop is lower which is
because of the 10 % local production at the customer
when cloudy. Table 9 indicates that for Scenario II the
∆Ustationary is still too high for Case 3, 4, 5 and 6, despite
the percentage being evenly a bit lower in all cases. As
seen in this scenario the problems start at Case 3, when 5
Objects have installed solar panels. The highest percent-
age at Object 10 in Case 6 has decreased to 5.95 %, but
also in this Scenario all objects at Case 5 and 6 have a
too high percentage. This scenario has fewer non-solar
objects which exceed the limit due to the lower voltage
drop because of the 10 % power production from the solar
panels.
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Table 8. 3 kW installed at the objects with 10 % solar production
due to clouds.

1 2 3 4 5 6 7 8 9 10
S-C P [MVA] 0.346 0.301 0.215 0.271 0.336 0.266 0.287 0.287 0.205 0.162

[V] [V] [V] [V] [V] [V] [V] [V] [V] [V]
1: 3 kW 219.1 218.9 218.2 218.6 219.7 219.7 219.0 219.0 218.5 217.9
1: 0.3 kW 216.6 216.5 215.7 216.2 216.8 216.4 216.1 216.1 215.5 215.0
2: 3 kW 222.9 222.7 221.9 222.4 223.9 224.5 224.6 224.6 223.3 222.8
2: 0.3 kW 218.4 218.2 217.4 217.9 218.7 218.6 218.6 218.6 217.7 217.2
3: 3 kW 224.6 224.4 223.7 224.1 225.8 226.7 226.8 226.8 226.9 225.9
3: 0.3 kW 219.1 218.9 218.1 218.6 219.5 219.5 219.5 219.5 219.1 218.4
4: 3 kW 226.6 226.4 225.7 226.1 228.0 229.2 229.3 229.3 230.4 231.0
4: 0.3 kW 220.0 219.9 219.1 219.6 220.5 220.7 220.7 220.8 220.8 220.9
5: 3 kW 230.9 231.1 229.8 230.3 231.7 232.9 233.0 233.0 234.1 234.8
5: 0.3 kW 221.9 221.9 220.9 221.4 221.1 222.3 222.3 222.3 222.4 222.5
6: 3 kW 235.2 235.4 236.3 235.9 235.5 236.6 236.7 236.7 237.8 238.5
6: 0.3 kW 223.9 223.9 224.0 224.0 223.9 224.1 224.1 224.1 224.2 224.3

Table 9. %Ustationary for all the cases regarding Scenario II.

1 2 3 4 5 6 7 8 9 10
1: 1.14 % 1.11 % 1.15 % 1.10 % 1.32 % 1.50 % 1.32 % 1.32 % 1.37 % 1.33 %
2: 2.01 % 2.02 % 2.02 % 2.02 % 2.32 % 2.69 % 2.67 % 2.67 % 2.50 % 2.51 %
3: 2.44 % 2.45 % 2.50 % 2.45 % 2.79 % 3.18 % 3.22 % 3.22 % 3.43 % 3.32 %
4: 2.91 % 2.87 % 2.92 % 2.87 % 3.28 % 3.70 % 3.75 % 3.70 % 4.16 % 4.37 %
5: 3.89 % 3.98 % 3.87 % 3.86 % 4.14 % 4.55 % 4.59 % 4.59 % 5.00 % 5.23 %
6: 4.80 % 4.89 % 5.20 % 5.04 % 4.92 % 5.28 % 5.32 % 5.32 % 5.72 % 5.95 %

4.3.3 Scenario III

The results from Scenario III are given from Table 4 and
Table 5. Also this scenario shows that ∆Ustationary is too
high for Case 4, 5 and 6 according to Table 5, despite the
percentage being lower in all cases due to the lower volt-
age drop. Also 5 of 10 objects pass Case 4. However, the
scenarios indicate that a capacity of 3 kW solar panels is
too much for the network. The ∆Ustationary is too high for
Case 4, 5 and 6 according to Table 5. Also 5 of 10 objects
pass Case 4. Further, the non-solar objects that exceed the
limit are only spotted in Case 5 at Object 3 and 4. The rea-
son for this is because of this is the easiest scenario to pass
due to the lower voltage drop at the solar panels. However,
the scenarios indicate that a capacity of 3 kW solar panels
are too much for the network.

5 Discussion
In Table 10 all the cases and scenarios at Søndre Sandøy
are presented with a different size of solar panels at the
objects.

Table 10. The different scenarios and cases at Søndre Sandøy.

1 kW 2 kW 3 kW
Scenario I 1 - 6 1 2 3 4 5 6 1 2 3 4 5 6
Scenario II 1 - 6 1 2 3 4 5 6 1 2 3 4 5 6
Scenario III 1 - 6 1 2 3 4 5 6 1 2 3 4 5 6

Søndre Sandøy had challenges with the installed solar
panels in the network. With 1 kW installed solar panels
at the objects the requirements were met for all scenarios
from Case 1 - 6 according to Table 10 and did not indi-
cate any problem for the DSO. Also shown in Table 10
the main challenges occur with 2 kW and 3 kW solar pan-
els.

With 2 kW solar panels in Scenario II and III the re-
quirements were held up to Case 3 and Case 4, respec-
tively, as shown in Table 10. In Scenario I two non-solar

objects exceeded the limit of 3 % at Case 5 (Marius Salen
2019). This clarifies the impact clouds have on solar pan-
els on a weak grid since the change in production caused
by the passing clouds also has an impact on the customers
without solar panels.

For the 3 kW solar panels only Case 1 and 2 passed
Scenario I and Scenario II. Besides this, the percentage
of ∆Ustationary is high for all objects at the different cases
in the two scenarios. Furthermore, Scenario III for 3 kW
exceed the limit for Case 4 - 6, and the ∆Ustationary is still
quite high with a maximum of 4.91 % at Case 6, Object
10 seen from Table 5. Also, there where non-solar objects
which got affected by the objects with solar panels in all
of the scenarios.

As a result of the previous simulations, the DSO should
be aware of an increase in solar capacity at this part of the
network in Søndre Sandøy. Especially with solar panels
of 2 kW and 3 kW, as this can lead to challenges regard-
ing the requirements at § 3.4 in FoL. The number of pro-
sumers has increased throughout the years (Dinside 2019).
Since Hvaler is an island with many prosumers compared
to the population, the cases in the different scenarios illus-
trated are likely to occur. From this, the DSO can take the
results from the simulations in consideration when plan-
ning for future grid development.

6 Conclusion
In the scenarios where Søndre Sandøy had solar panels
installed at the objects the related voltage Udelivered in-
creased. In the simulations no problems where found with
1 kW installed solar panels at the objects regarding FoL.
Also, the simulations revealed that Søndre Sandøy had
challenges when the objects had 2 kW and 3 kW solar pan-
els installed. This is due to a weak grid with low short-
circuit performance at the objects.

Furthermore, the simulations show that passing clouds
make a significant impact on the solar panels due to the
voltage drop at the customer. Especially when a lot of ob-
jects have installed solar panels. This will lead to the re-
quirements in FoL are not met in some cases. Also found
from the simulation at Søndre Sandøy was that the non-
solar objects were affected by the objects with solar panels
when the size of 2 kW and 3 kW was simulated.

7 Further work
In this paper only analysis for ∆Ustationary were conducted.
A recommendation for further work is to study scenarios
with ∆Umax and to see how this responds to the require-
ments from FoL § 3.4. Simulations with ∆Umax require
measurements from the field to compare with the simula-
tions. To simulate the ∆Umax the dynamic power system
simulation software like PowerFactory can be used. This
software has a higher complexity to simulations compared
to NETBAS, and that is required for the study of ∆Umax.

Also a recommendation for further study is to use 10 %
as a worst case scenario. The reason for this is to get a
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worst case which is more likely to occur, since 0 % pro-
duction is not a realistic scenario because there always
will be some solar radiation that passes through the clouds.
Also, to get even more realistic scenarios, measures on a
PV-panel regarding the voltage drop due to the clouds can
be taken.
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Abstract 
In smart building environments, both office and 

residential buildings, it is important to have some 

information about the use and occupation. Today this is 

normally solved by a fixed time schedule meaning the 

occupants must adapt to the system, not the other way 

around. This paper discuss the usage of a top hat 

probability models, based on a four weeks history from 

inexpensive sensor devices, for prediction of the 

occupation in the next week. The model was divided 

into seven groups, one group for each of day of the 

week. A software system, based on several modules, 

was developed. One module was used to record the 

information from the motion sensors and stored the data 

as historical data. One module was used to create the 

model, and another module was used to prediction of 

occupation for the next days, up to a week. The models 

are working satisfactory as long as the behavior patterns 

are similar for the training and prediction period. 

However, the models are sensitive to changes in the 

daily behavior pattern of the occupants, like holidays or 

taking a day off. 

Keywords:     probability model, building occupation, 

PIR sensor devices, motion sensor devices, building 
occupation prediction. 

1 Introduction 

1.1 Background 

Important aspects in SMART building environments are 

energy efficiency, energy savings, and welfare 

assistance. More than 50% of the energy used in 

buildings in norther countries is for space heating 

(Perera et al., 2014). The temperature should be at a 

comfort temperature only when the building is in use, 

any energy saving strategies should be in focus when the 

building is not in use or when the occupiers are sleeping. 

In most building energy management systems (BEMS) 

today this schedule is configured with fixed time 

intervals when to keep the comfort temperature, and 

when to save energy. Regarding many welfare 

assistance systems, these systems also need to know 

when the occupiers are using the building.  

Such smart building systems should adapt to the 
occupiers use of the building, and should not be based 

only on a fixed time schedule. A good solution can be to 

start with a fixed time schedule but allow for deviations

based on the real usage of the building. Any system

should adapt to how the buildings are used by the

occupiers, the occupiers should not need to adapt to a

fixed configuration.

Today many buildings already have an alarm system

based on motion sensor devices in many rooms. These

alarm systems are activated only when turned on by the

user, however the system, including the sensor devices,

are working also when the alarm system is deactivated.

Based on the information from these sensor devices it

should be possible to predict when the building is in use,

and also when the occupiers are sleeping. The prediction

of the building occupation can be used to optimize the

time when having the comfort temperature, when to

save energy, and when to activate any welfare assistance

systems. This prediction can even be used to turn on the

alarm system.

The aim of this paper is to show the development of

a set of models to predict a building occupation based

on information from low-cost motion sensor devices.

The models should be easy to implement in most

programming languages.

1.2 Previous work

Occupancy behavior in buildings are becoming an

important topic as building systems are becoming more

sophisticated and people are spending a lot of time in the

buildings. The occupancy behavior is one of the leading

influences of energy consumption in buildings but not

used that much as input in existing models (Yan et al.,

2015; Clevenger and Haymaker, 2006; 

Adamopoulou et al., 2016). Previous work is based

mostly upon occupant surveys and interviews affecting

the energy efficiency of buildings (Yan et al., 2015) not

that much work based on the occupier use of the

buildings. An extended work based on occupancy

behavior is described in (Adamopoulou et al., 2016)

which is dividing the building into zones and using a

Monte Carlo approach to model the usage of each zone,

including the number of occupants in each zone. Zones

are collected in zone groups based mainly on periods of

use. The models take into account also the seasons and

day of week, making separate models for each instance

of these zone groups. The historical data is based mainly
on image processing from several depth-image cameras,

but also on acoustic and infra-red (PIR) sensors. The

work described in (Ryu and Hyeun, 2016) is based on
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decision tree as machine learning technique and hidden 

Markov model as a probability technique. The historical 

data is based on carbon dioxide (CO2) concentration and 

electricity consumptions. The work described in (Wang 

et al., 2018) is based on the k-nearest neighbors (knn), 

support vector machine (svm) and artificial neural 

network (ann) machine learning algorithms. The 

historical data is based on the fusion of environmental 

data and information from the WiFi network. In this 

work the ann based model gave the best result. The work 

described in (Habib and Zucker, 2017) is based on the 

indoor air quality information from the ventilation 

system and a k-means clustering algorithm for 

occupancy prediction in a building. The k-means 

clustering is a machine learning technique. The work 

described in (Shi and Yao, 2016) is using a novel 

statistical model, based on a logistic regression model, 

for occupancy prediction at a specific time. The model 

is only simulating based on time of the day. The focus 

in this work is a model predictive model (MPC) for an 

efficient operation of a heating, ventilation and air 

condition (HVAC) system. The work described in the 

master thesis (Martinsen, 2019) is based on information 

from infra-red (PIR) sensors and a simple probabilistic 

model for each day of the week, and is discussed in this 

paper. The model can easily be implemented in most 

software languages. 

1.3 Outline of the paper 

Section 2 provides a discussion of the movement 

sensor device, data collection and the building used. 

Section 3 gives an overview of the model used. Section 

4 gives an overview of the model fitting and validation. 

The results are discussed in section 5, and some 

conclusions are drawn in Section 6. 

2 System description 

A building located in South Eastern of Norway has 

installed a set of movement sensors and the information 

from these movement sensors have been logged for at 

least one year. The data is logged on comma separated 

values (csv) based text files, one file for each month. 

The building has three floors, ground floor, first floor 

and second floor. The sensors are located in the living 

room and kitchen at the first floor, and top of the 

staircase and in an extra living room at second floor. 

Two movement sensors are installed in the living room 

at first floor. 

An overview of the first floor and second floor, with 

the sensor locations marked with green rectangles, 

shown in Figure 1. 

 

 

Figure 1. The first and second floor of the building with
the motion sensor devices as green rectangles. First floor,
at the top, with three sensor devices, one in the kitchen
and two in the living room. Second floor, at the bottom,
with two sensor devices, one at the staircase and one in
the living room.

 

These motion sensor devices are based on the passive 

infrared (PIR) type of sensors, detecting if an object with 

a higher temperature than the environment is moving 

into the measurement area of the sensor device. The 

measurement principle is based on heat radiation from 

an object with a higher temperature than the 

environment.  The sensor converts any resulting change 

in the incoming infrared radiation into triggering an 

event giving a digital output voltage pulse. A Fresnel 

lens is used to divide the measurement area of the sensor 

device into sectors, so any change in the infrared 

radiation within any of the sectors will trigger an event. 

The output signal from these sensor devices will be a 

digital pulse signal, an event, indicating that a moving 

object has been detected. The sensor devices are 

connected to the digital input ports on a data acquisition 

(DAQ) device. 
 Figure 2 shows the number events (triggers) from 

two of the sensor devices on the first floor, for a typical 

weekend day. The red indication for the sensor on the 

kitchen on the first floor, and the blue indication for the 

sensor in the living room, close to the window. The 

number of triggers is in the range of 200 to 800 for each 

hour, for the sensor device in the kitchen. 
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Figure 2. The number of events (triggers) from two of the
sensor devices on the first floor shown for a weekend day
for 24 hours. Starting at 00:00 and ending at 23:59, one
red and blue column for each hour.

The software consists of four main functions, shown

in Figure 3. The figure is a use case diagram (Fowler

and Scott, 1997) drawn using the Unified Modeling

Language (UML) diagram. A use case diagram shows

the main functionality of the software together with the

input/output device or external modules known as

actors. The functionality of software are 1) collect the

data from the motion sensor devices and save the time

stamped data on a comma separated values (csv) text

file. The motion sensor devices are connected to the

DAQ system. 2) create the models based on the data

from the csv file and configuration data. The operator or

a specific time event can start the create operation for

the model. 3) perform prediction based on a specific

time. 4) handle configuration of the system, by the

operator. The configuration data are saved on an xml

type text file loaded every time the software is starting.

 

 

Figure 3. A use case diagram of the main functionality
and the actors of the software.
   The “Perform prediction” function will use the model

to predict the occupation sometime in the future. This is

a manual operation in the current software version but

should have a type of application programming interface

(API) to let other software applications like the BEMS

communicating with this software. Based on the model

the prediction can be one week ahead.

 

3 Model development 

3.1 Model selection 

The basis is normally a fixed time configuration when 

installing systems like BEMS in buildings. This paper 

will propose an extension to such system by adding a 

model for predicting when the building is actually in 

use. There is a need to differentiate between an office 

building and a residential building where the main 

difference is the use during the night. An office building 

will typically be used during the working days and may 

be on Saturdays, while a residential building will be the 

opposite. The workers will normally be either at work or 

at home. The challenge with a residential building is the 

use at night without any measurements of use.  

The focus for this paper is residential buildings 

assuming that the buildings are in use in the morning, in 

the afternoon, and during night. As a starting point, it is 

assumed that the buildings will be empty during the 

daily working hours, and used all day during the week-

ends. 

A data driven approach is the basis for this model 

development, based on historical data from the building. 

Based on the historical data a mathematical model 

predicting how the building is going to be used for the 

next days is wanted. In this case more focus on the 

behavior of the occupations is wanted, and allow for 

variation of this behavior. Based on this assumption a 

probability function model is chosen over a model based 

on a machine learning approach (Bzdok et al., 2018). A 

machine learning approach, like the artificial neural 

network (ann) methods, requires a large amount of data. 

As the occupancy prediction will depend on the seasons, 

as shown in (Adamopoulou et al., 2016), giving less 

data, a probability approach is chosen. An autonomous 

approach for model update is also wanted for updating 

the occupancy model based on the seasons. 

The historical data is based on the information from 

the PIR sensor devices normally used in any alarm 

system. The nature of the PIR sensor device is an event, 

giving an electrical signal with duration of about one 

second when detecting a movement of a warm object in 

the area. The probability is one when detecting the 

movement and declining to zero after a period when not 

detecting any more movement of warm objects. A 

simple probability function is wanted and the triangle 

function, see Figure 4, is the first probability function to 

evaluate. 
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Figure 4. The triangle function.

 
The triangle function must be linked to every sensor 

event giving a more complex model because the 

parameters T1 and T2 must be adapted to each event. 

Figure 2 shows that there can be a lot of events for every 

hour when the building is occupied. Sensor devices 

events for a typical working day is shown in Figure 5, 
showing the events from the sensor devices at the first 

floor, with reference to Figure 1. 
 

 

Figure 5: The sensor device events from the three 

sensors devices at the main floor. 

Figure 5 shows that there is high probability that there 

will be a sequence of events when first detecting an 

event. The model should be able to predict these 

sequences of events. Based on a maximum time between 

these events, the events are grouped into one or several 

sequences. This maximum time is a parameter that can 

be configured in the software. The current value is 60 

minutes. Figure 6 shows the start and stop events (red 

dots) to indicate the start and stop of each sequence 

according to this maximum time, and how these events 

are converted to the sequences for the use of the building 

for each day of the week. A morning and evening 

section for the first five days (working days), and only 

one section for the last two days, the weekend days. 

 

 

Figure 6.  A week with the events (red dots) and the se-
quence of use of the residential building (black dots/lines).

 
 A probability function that can handle a sequence of 

events within a period can be a better solution, where the 

duration of P(t)=1 and the different slopes can be 

estimated based on the sensor information. A top hat 

probability function may be a better approach (Boyd, 

2006) and is evaluated. Figure 7 shows a simplified top 

hat probability function. 

 

 

Figure 7. A simplified top hat function, based on (Boyd,
2006).

 
The simplified top hat function (Boyd, 2006), shown 

in Figure 7, shows the parameter T for the center of the 

P(t)=1, the length (T2 to T3) of the P(t) = 1 area, and the 

length (T1 to T4) of the P(t) > 0 area. These parameters, 

estimated during the training sequence of the model, are 

listed in Table 1. 

 

Table 1. Estimated parameters for the simplified top hat
function.

Parameter Function

T Center of top hat

[T2,T3] The area for the function P(t)=1

[T1,T4] The area where 0 < P(t) <= 1

 

The equation for the top hat function is: 

 

 

(1) 

 

A top hat function can only handle one sequence of 

sensor device events and as shown in Figure 5 there can 

be several sequences during a day. Several top hat 

functions can be combined to handle these numbers of 

sequences, and make a more complex modelling of the 

building use. An example of a working day is shown in 

Figure 8, combining two functions, one in the morning 

and one in the evening. The regions for each top-hat 

function must be estimated, and each top-hat function 

will have its own sets of parameters, with reference to 

table 1. These regions will be estimated based on the 

sequence of events from the sensor devices, from the 

first detection to the last detection in a specific period. 
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Figure 8. The combined top hat functions for a 24 hours
period.

 
As the residents may have different schedules for 

every day in a week, but with a high probability that 

these schedules are repeated every week, giving specific 

occupancy for each day of the week. Based on this 

assumption it was decided to split the sensor data into 

groups, one group for each day of the week.  

There can also be deviations for each day of the week 

so it was decided that a number of events outside a time 

limit, based on the average, could be removed from the 

data set. These numbers are defined in the configuration 

part of the software, the time deviation and number to 

remove. These events can typically be an event like 

going to the kitchen for a glass of water or milk during 

the night, or taking a day off during the working week.  

The principles for selecting the candidates for the 

start and stop events for the model is shown in Figure 9. 

 

 

Figure 9. The principles for selecting the start stop events
for a sequence.

 
   The events for a specific day are grouped together 

within a period, configured as a maximum time in the 

software system. Each day will have a group for every 

week, as shown in orange lines in Figure 9. The green 

dotted lines are the group average start and stop 

positions and the start of week m is outside the 

maximum time limit, configured in the system, and 

removed from the data set. 

   For the building shown in Figure 1 a separate set of 

models are created for each floor. 

3.2 Model training 

Sensor data was collected for the last year and first all 

the data was used for training the daily sequences. Due 

to holidays and variations trough out the year, this was 

not a good approach. This is also mentioned in 

(Adamopoulou et al., 2016) as the occupancy behavior 

will depend on the seasons, and the data sets for model 

development should be smaller. The new approach is to 

use the data from the last eight and four weeks for 

training the model. It was also  configured that only one 

event can be removed from the data set if more than 60 

minutes outside the average for the start or end of an 

event sequence (as shown in Figure 9).  

Figure 5 shows two set of event sequences for each 

of the sensor devices, S1, S2 and S3. The Create/update 

model function of the software application, see Figure 

3, was used to create the model by finding the candidates 

for the desired periods. Figure 10 shows the top-hat 

parameter estimation for a specific day, using a data set 

of four weeks. 

 

 

Figure 10. Estimation of the model parameters for a data
set of four weeks. These group values, for day number 2,
are used to define the T parameters according to Table 1.

 
  The T parameters, according to Table 1, for the first 

top hat functions are selected as shown in Table 2. 

 

Table 2. The group values for the top hat function for
day number 2.

Parameter Value Description

T1 1.27 G1 minimum

T2 1.29 G1 maximum

T3 1.31 G2 minimum

T4 1.41 G2 maximum

 
  Figure 11 shows the data flow for training the models, 

estimating the T parameter for each of the top hat 

functions. The training starts with selecting a data set 

from the historical data sets, estimating the average start 

and stop times for each of the periods for the day groups 

and top hat functions for the day. Any events outside a 

configured maximum time will be removed and a new 

estimation will be performed. In Figure 11 a maximum 

time of 60 minutes is used, and this maximum time is 

shown in Figure 9. The number of events that can be 

removed can also be configured in the software, only 

one is used for this training. When any events outside 

the limits are removed, will the minimum and maximum 

times for each group be assigned the T1, T2, T3 and T4 

for each of the top hat functions.  
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Figure 11. The flow chart for training the models.

   A model was created based on a data set from the last

eight weeks, and the prediction output from the model is

shown in Figure 12. The model is created only for first

floor and only the sensor devices on first floor

 

 

Figure 12. Training the model with eight weeks of
data with prediction output for all days. The model
starts on Tuesday and ends on Monday.

 
   Another model was created based on the data set from 

the last four weeks, and the prediction output from that 

model is shown in Figure 13. The model was created on 

the same data set as the model shown in Figure 12. 

 

 

Figure 13. Training of the model with four weeks of data
and showing the prediction output for all days of the
week. The model starts on Tuesday and ends on Monday.

 
   Comparing the model output from Figure 12 and 

Figure 13 shows almost the same prediction. The 

prediction starts on Tuesday, first the morning, no 

occupation during the day, and occupation during the 

evening, night and Wednesday morning. The number of 

events are higher for the eight weeks data set, as shown 

in Figure 12. However, the same model also shows a 

higher number of events that must be removed during 

the training of the model. Figure 13 shows almost the 

same model prediction, but with fewer events removed. 

The model in Figure 13 was used for validation. Both 

figures show that the T1 to T4 parameters are different 

for each of the top hat functions, indicated by the slopes. 

4 Results  

The models are trained and validated for one floor only, 

as an option in software to make a separate model for 

each floor. The models were trained based on data from 

both four and eight weeks of data. The models based on 

eight weeks of data gives a more detailed model but any 

holidays, days off or deviations during this period 

introduces more model errors. The best approach seems 

to use four weeks of data for the training period, and 

have the option to remove one deviation in any of the 

weeks.  

The model validation is based on three test cases. One 

normal test case with high quality training data, data 

without any events that must be removed. The training 

data set is from 5-JAN to 4-FEB, and the prediction 

period is 5-FEB to 13-FEB. The next test case is the 

holiday test case with a training set with many events 

that must be removed. The training set is from 5-JUN to 

4-JUL, and the prediction period is 5-JUL to 13-JUL. 

The last test case has focus on a single day, the Friday 

test case with missing data. The training set is from 30-

OCT to 29-NOV, and the prediction period is 30-NOV 

to 7-DEC. 

The results for these three test cases are, using four 

weeks of training data: 

 Normal test case; models accuracy are 

between 94% and 98%, 

 Holiday test case; models accuracy are 

between 32% and 38%, 

 Friday test case; models accuracy are 

between 11% and 17%. 

Figure 14 shows the model prediction for the normal 

test case, the measured data as red indications and the 

candidates for creating the model as orange indications. 

The model shows a good match between the measured 

data and the prediction. 
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Figure 14. Validation of the normal test case, created the
model with a high quality data set. The data starts from
Monday and ends on Sunday.
   Figure 15 shows the model prediction for the holiday

test case where the training set is from the last working

weeks before the holiday while the prediction should be

for a holiday week. The measurements indicate that the

building was not used the first part of the week, and used

all the day the last part of the week. This shows that the

pattern in the training data must correspond with the

pattern for the prediction week.

 

 

Figure 15. Validation of the holiday test case, created a
model with a different behavior pattern then the expected
pattern for the prediction week. The data starts from
Thursday and end on Wednesday.

 

  The last test case, the day test case (Friday test) shows 

the same deviation as the holiday test case. The test case 

is shown in Figure 16. Only the Friday contains 

measured data while the candidate data has created a 

prediction model for the whole week, and the measured 

data is inconsistent with the model prediction. The 

behavoir seems that the occupants has left the building 

at Friday and been away the whole next week. 

 

 

Figure 16. Validation of a day test case where the cre-
ated model was created based on different behavior pat-
tern then the actual behavior pattern for the prediction
week. The data starts from Friday and ends on Thursday.

5 Discussion

The pattern consistency is important to be able to

create a good prediction model. This means that the

behavior pattern for occupants must be the same for 

training set as for the prediction period. The first test 

case, the normal test case, shows that if there is good 

connection between the behavior pattern for the training 

set and the behavior pattern for the prediction week, the 

model will predict with a good accuracy. 

The deviation of the occupancy behavior for the 

training and validation period is difficult to fulfill as 

human will make random decisions to take a day off, or 

going away for a holiday.  

This indicates that to have a good building occupation 

model the behavior pattern for the training set must be 

of the same type as for the prediction week. Some sort 

of building calendar can be a good extension to the 

system for defining any deviation from the normal 

behavior pattern. This way it is possible to extend the 

model with day models for both working days, holiday 

staying at building (same as weekends) and holiday 

staying away from the building. This approach should 

also be applicable for office buildings during special 

holidays like Christmas.  

In the normal test case the deviation is detection of 

movement during the night which should be a deviation 

as the energy system should not adjust the comfort 

temperature according to these short movements. An 

option can be to have a minimum period during the night 

for detection of movement events. 

The holiday test case is trained for a normal week. 

However, in the prediction week the occupants were 

away half of the week, and stayed at home, all day, the 

rest of the week. A calendar option could have made this 

prediction better by defining holiday away and at home 

states. 

The Friday test case is almost the same as the holiday 

test case. However, in the prediction week the occupants 

stayed home only on Friday. A calendar option could 

have made this prediction much better. 

The software is designed to create a new model at 

fixed times so this software will be an autonomous 

system updating the models every week. This is also a 

reason for using a probabilistic model that can be easily 

implemented in software.  

The software, as indicated in Figure 3, was 

implemented using the C# programming language. Most 

of the figures in this paper is based on screen dumps 

from the user interface from this C# application. 

The system will also work independent of the number 

of occupants in the building as the number of events 

does not matter, only the start and stop events of a 

sequences of events. 

A PIR sensor device at the main door can also make 

the system better in estimating the occupation pattern as 

events will be created when entering or leaving the 

building. Such a configuration may also be used for 

turning the alarm system automatically on.  

The software was configured to allow a period of up 

60 minutes for a continuous occupancy behavior while 
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the work in (Adamopoulou et al., 2016) used 30

minutes. A shorter period can be a better approach.

6 Conclusion

The paper has shown that the top hat functions can be

used for predict the occupancy behavior of a residential

building. A training period of four weeks, with the

option to remove one extreme event sequence from the

motion sensor devices can give a good prediction

horizon of one week. The solution depends on the

behavior patterns for the occupants, and this pattern has

to be the same type during both training period and the

prediction period.
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Abstract
Building Energy Management systems can reduce energy
consumption for space heating in existing buildings, by
utilising Model Predictive Control. In such applications,
good models of building thermal behaviour is important.
A popular method for creating such models is creating
Thermal networks, based cognitively on naive physical
information about the building thermal behaviour. Such
models have lumped parameters which must be calibrated
from measured temperatures and weather conditions.
Since the parameters are calibrated, it is important
to study the identifiability of the parameters, prior to
analysing them as physical constants derived from the
building structure. By utilising a statistically founded
parameter estimation method based on maximising
the likelihood function, identifiability analysis can be
performed using the Profile Likelihood method. In
this paper, the effect of different sensor locations with
respect to the buildings physical properties is studied by
utilising likelihood profiles for identifiability analysis.
The extended 2D profile likelihood method is used to
compute two-dimensional profiles which allows diagnos-
ing parameter inter-dependence, in addition to analysing
the identifiability. The 2D profiles are compared with
confidence regions computed based on the Hessian.

Keywords: building energy management systems, ther-
mal behavior, parameter estimation, parameter iden-
tifiability, Profile Likelihood

1 Introductions
1.1 Background
A significant portion of the worlds total energy produc-
tion is consumed by heating and cooling of buildings
(Perera et al., 2014). Building Energy Management Sys-
tems (BEMS) is therefore an important part of the ongo-
ing effort to reduce anthropogenic CO2 emissions. In par-
ticular, Model Predictive Control (MPC) has been shown
to reduce energy consumption in buildings by utilizing
models to predict the thermal behaviour of a building
(Fux et al., 2014; Killian and Kozek, 2016). Hence, the
development of models of building thermal behaviour
has received considerable interest by the scientific com-
munity in recent years.

1.2 Previous work
A common approach to the modelling of building thermal
behaviour is the use of thermal network models (Berthou
et al., 2014; Reynders et al., 2014). These models are of-
ten described using electric analogues Resistor-Capacitor
(RC) circuits. Based on a naive understanding of the ther-
modynamics involved, these RC circuits constitute sim-
plified lumped parameter models. Parameters are estim-
ated from measurements of temperature inside the build-
ing, weather conditions and input power consumed for
space heating. As simplified models based on both phys-
ical insight and measurement data, thermal network mod-
els constitute a compromise between fully physics based
white-box and purely data-driven black-box models. This
type of model, often called grey-box models, allows use
of prior knowledge of the system while also allowing cal-
ibration of parameters to adapt the model to a particular
building. This approach offers improved prediction accur-
acy while also allowing use of prior physical information
to be injected into the model (Madsen and Holst, 1995;
Bacher and Madsen, 2011; Kristensen et al., 2004).

Since the model structure is designed based on know-
ledge of a particular building, it is often assumed that the
parameters are determined by the physical properties of
that building. However, since the parameters are iden-
tified from data, this assumption needs to be verified in
the context of parameter identifiability (Reynders et al.,
2014; Deconinck and Roels, 2017; Ferrero et al., 2006).
In particular, testing of practical identifiability (Raue et al.,
2009), i.e., if sufficient dynamic information about the un-
derlying system is contained in the calibration data
(Ferrero et al., 2006), is of importance.

1.3 Overview of paper
Since weather is part of the experimental conditions, and,
typically, the acceptable range of indoor temperatures, as
well as input heater power, is limited, model calibration
must usually be performed on sub-optimal data. One ele-
ment which, to some degree, is open to experimentation is
the location of the sensors. As simplified models, thermal
networks reduce large indoor spaces and objects, such as
the building envelope, to point nodes in the RC circuit.
How these nodes correspond to the physical building is
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determined by the sensor location. In this work, we study
different sensor placements in an experimental building
to show how sensor location, with respect to the physical
properties of the building, affects the dynamic information
contained in the data and hence the practical identifiability
of model parameters. Parameter identifiability is analysed
using the Profile Likelihood method, both in the single
parameter dimension and in two parameter dimensions by
projecting the profile onto a plane in parameter space. The
latter method allows improved insight into the parameter
domain, including analysing parameter inter-dependence
and the effects of a constrained parameter space.

2 Theoretical basis
The framework presented in (Kristensen et al., 2004),
named Continuous Time Stochastic Modelling (CTSM),
is a statistically well founded approach to parameter es-
timation. The theoretical basis is briefly summarised be-
low. For a more detailed discussion see (Kristensen et al.,
2004). Consider the estimation problem:

θ̂ = argmin
θ

g(θ ;M ,K ,A ) (1)

s.t. θ ∈Θ

Here, M is a predetermined model structure paramet-
rised by θ ∈ Θ, where Θ ⊆ Rnθ is a set of feasible val-
ues for the model parameters that form inequality con-
straints for the optimisation problem in Eq. (1). Para-
meters in θ are varied over the feasible set Θ by a numer-
ical optimisation algorithm A . The experimental condi-
tions K include measurements for the continuous time
input ut ∈ Rnu and output yt ∈ Rny . The corresponding
ordered sequences of discrete time measurements uk and
yk taken from the system S are y[N] = [y0, y1, . . . , yN ]
and u[N] = [u0, u1, . . . , uN ], where the integer subscripts
k = 0, 1, . . . ,N denote the discrete time sampling instants,
and the subscript enclosed in [·] is used to indicate an
ordered sequence.

The likelihood function, i.e., the probability of ob-
serving the measurement sequence y[N] when θ and M are
given, is defined:

L
(
θ ;y[N],M

)
= p

(
y[N]|θ ,M

)
(2)

By assuming that the residuals are Normal distributed, and
applying the product rule to expand the probability in Eq.
(2), we obtain (Kristensen et al., 2004):

L
(
θ ;y[N]

)
=

 N

∏
k=1

exp
(
− 1

2 εT
k E −1

k|k−1εk

)
√

det
(
Ek|k−1

)(√
2π
)ny

 p(y0|θ)

(3)
The quantities ŷk|k−1, εk and Ek|k−1, which can be obtained
using a Kalman Filter (KF) (Kristensen et al., 2004), is
needed for evaluation of the multivariate Gaussian in Eq.
(3). By taking the negative logarithm, and eliminating the
factor 1

2 , the result `(θ) = −lnL(θ), where dependency
on y[N] and M is omitted for simplicity, can be used as the
objective g in Eq. (1).

2.1 Profile likelihood
Since the model structure M is a representation of a sys-
tem S , it is often assumed that S ∈M (Θ) and that
consequently there exists a true parameter vector θ ∗ such
that M (θ ∗) = S . However, this is rarely the case, es-
pecially for simplified grey-box models based on a naive
physical understanding of the system S . Typically, the es-
timate θ̂ depends on several factors, such as the amount of
dynamic information in K , the choice of objective func-
tion g, and to some extent on the optimisation algorithm
A . Hence, prior to interpretation of parameters as phys-
ical constants of S , it is necessary to perform an identi-
fiability analysis. Since the parameters are estimated us-
ing the Likelihood function, the Profile Likelihood (PL)
method (Raue et al., 2009; Deconinck and Roels, 2017) is
a natural choice. The likelihood profile `PL (θi) is defined
as the minimum log likelihood for θi when the remaining
parameters are freely optimised (Raue et al., 2009; Venzon
and Moolgavkar, 1988):

`PL (θi) = min
θ j 6=i

g
(
θ j 6=i;M ,K ,θi

)
(4)

Values of θi must be chosen prior to optimising the re-
maining θ j 6=i (Raue et al., 2009). The resulting likelihood
profile can be plotted as a function of θi and subsequently
analysed according to the definitions of structural and
practical identifiability for likelihood-based confidence in-
tervals (Deconinck and Roels, 2017). The likelihood-
based confidence interval obtains a confidence region by
applying a threshold to the likelihood function (Raue
et al., 2009; Venzon and Moolgavkar, 1988). Let{

θ : `(θ)− `
(
θ̂
)
< ∆α

}
, ∆α = χ

2 (α,ndf) (5)

where θ̂ is a freely estimated, presumed optimal, para-
meter vector, and the threshold ∆α is the α percentile of
the χ2-distribution with ndf degrees of freedom.

Profile likelihood in two parameter dimensions

By freely estimating all but one parameter, the PL method
essentially projects the nθ dimensional space Θ onto the
single parameter θi. This projection is known to overes-
timate the width of the likelihood-based confidence inter-
val if there are inter-dependent parameters. A step towards
remedying this issue is to modify the PL method to hold
out two parameters (PL2) rather than one, i.e.;

`PL2 (θi,θ j) = min
θk 6=i, j

g
(
θk 6=i, j;M ,K ,θi,θ j

)
(6)

This projects the parameter space Θ onto the plane Θi, j =
(θi,θ j) s.t. θi,θ j ∈ Θ. In addition identifiability is-
sues, these profiles can also diagnose parameter inter-
dependence by inspecting the shape of the confidence
regions. The resulting two-dimensional profiles can be
analysed similarly to the one-dimensional profiles (Raue
et al., 2009), using the definition in Eq. (5). These profiles
are computed for all possible combinations of parameters.
A confidence region in the Θi, j plane is obtained by ap-
plying the ∆α threshold. Observe that since θ̂ has nθ free
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Figure 1. PL2 improved warm start algorithm

parameters while the PL2 estimate has nθ − 2, this gives
ndf = 2 for the computation of ∆α from the χ2-distribution
in Eq. (5). The free estimate θ̂ may with advantage be
chosen as the minimum `PL2 (θi,θ j) obtained from all pro-
files. This search procedure approximates, since it is sub-
ject to the brute force discretisation performed in PL2, a
free optimisation of all parameters using the already com-
puted `PL2 results. Since the PL2 profiles covers the entire
parameter space Θ, this procedure is less affected by local
minima than a direct numerical optimisation. Parameter
identifiability is obtained if the region is bounded in all
directions and the size and shape of this region determ-
ines the accuracy of the parameter estimates. If the region
contains an unbounded equipotential valley in the log like-
lihood space, the parameter is considered structurally non-
identifiable. If the profile has a well defined minima, but
is unbounded in one direction, i.e., the log likelihood is
below the ∆α threshold, this indicates a practically non-
identifiable parameter (Raue et al., 2009).

Implementation and computation time

In (Brastein et al., 2019), a brute force method was used,
running individual optimisations for each predetermined
combination of θi,θ j, each iteration starting from the
nominal parameter vector θ0. Here, the profiles are con-
structed by a set of chained optimisations where each new
point uses a previously optimised θ̂ k 6=i, j from a near-by
point in Θi, j as a warm start, working from the centre of
the plane Θi, j towards the edges. This process is illustrated
in Fig. 1. This modification reduced the computation time
by approximately 4-10 times, since for each computation
of `PL2 (θi,θ j), the initial guess for the free parameters are
taken from a near-by, previously optimised, solution and
hence are already close to optimal.

2.2 Parameter estimation uncertainty
An estimate of the uncertainty of the estimated parameters
can be obtained by computing the covariance of the esti-
mated parameters Σ = 2H−1 where H = ∇T ∇`(θ)

∣∣
θ=θ̂

is
the Hessian of `(θ), whose elements are approximated as
(Kristensen et al., 2004; Raue et al., 2009):

hi, j ≈
(

∂ 2

∂θi∂θ j
`(θ)

)∣∣∣∣
θ=θ̂

(7)

The partial derivatives of `(θ) can be numerically ob-
tained using the central difference approximation. From
the covariance matrix, asymptotic point-wise confidence
limits on the estimated parameters can be computed (Raue
et al., 2009)

θ̂i±
√

χ2 (α,ndf)Σi,i (8)

where for point-wise intervals ndf = 1. Alternatively, con-
fidence ellipsoids of dimension nθ as a set of θ can be
defined from the inequality:{

θ :
(
θ − θ̂

)T
Σ
−1 (

θ − θ̂
)
0 ∆α

}
, ∆α = χ

2 (α,ndf)

(9)
where the scale of the ellipsoid is determined by the factor
∆α computed as in Section 2.1 (Johnson and Wichern,
2007). Given that the covariance matrix is symmetric and
positive definite, the boundary of an ellipsoid can be ob-
tained by the Cholesky decomposition Σ = LLT , hence
(Press et al., 1992):(

θ − θ̂
)T

Σ
−1 (

θ − θ̂
)
= ∆⇒

∣∣L−1 (
θ − θ̂

)∣∣2 = ∆α (10)

Next, suppose x is a point on a unit hypersphere, then the
ellipsoid boundary is obtained by the affine transformation

θ = θ̂ +
√

∆Lx (11)

Elliptic regions in the plane Θi, j can be computed by pro-
jecting the nθ dimensional ellipsoid onto Θi, j. With the
χ2 confidence bound given with ndf = 2, assuming all un-
certainty on the parameters in the plane Θi, j, these elliptic
confidence regions are comparable to the PL2 method
presented in Section 2.1. Observe that the confidence re-
gion based on applying a threshold on the likelihood func-
tion as in Eqs. (4) and (6) are often considered superior to
the Hessian method, since the Hessian assumes symmetric
distributions and therefore cannot be used to identify prac-
tical identifiability (Raue et al., 2009). However, the Hes-
sian approach is much faster to compute and gives a reas-
onable estimate of the estimated parameter uncertainty if
the parameters are approximately Normal distributed.

3 Experimental setup

3.1 Experimental building

The experimental building, which is located at Campus
Porsgrunn of the University of South-Eastern Norway
(USN), is shown in Fig. 2. The building is constructed
with three different types of walls. As shown in Fig. 2, the
North wall is constructed using materials with high insula-
tion quality, which is typically used in modern sustainable
buildings. The South wall is constructed using traditional
building materials, with lower thermal insulation capabil-
ities.
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Figure 2. The experimental building has walls constructed using different techniques for insulation. Sensors are located on all
walls at different height above floor, and in different insulation layers. The sensors used in this project, N3 and S1, are measuring
the wall temperature inside the building on the north and south wall, respectively.

Figure 3. RC circuit model of the building.

3.2 Model

Figure 3 shows a possible model structure, which was de-
veloped to approximate the thermal behaviour of the ex-
perimental building, partially based on the R4C2 model
presented in (Berthou et al., 2014). The RC circuit con-
sists of five components: the thermal resistance between
room air and wall Rb, the building envelope Rw, and the
thermal resistance of windows and doors Rg. The two ca-
pacitances Cb and Cw represent the thermal capacitance
of the building interior and envelope, respectively. The
model has two outputs: the room temperature Tb and the
wall surface temperature Tw, and two inputs: the con-
sumed power by an electric heating element Q̇ and the
outside temperature T∞. The parameter vector θ holds
the value of each of the five components. By applying
Kirchoff’s balance laws to the circuit, the model can be
expressed as a linear stochastic differential equation

dx
dt

= Axt +But +wt (12)

yt = xt + vt (13)

Table 1. Nominal parameter values and min/max limits for res-
istances [K/W] and capacitances [J/K].

Rg Rb Rw Cb Cw
θ0 0.15 0.20 0.30 1000k 200k

θmin 0.03 0.03 0.03 800k 1k
θmax 0.25 2.00 2.00 1800k 1000k

where

xt =

[
Tb
Tw

]
, ut =

[
Q̇
T∞

]
, B =

[
1

Cb

1
CbRg

0 1
CwRw

]

A =

[
− 1

CbRb
− 1

CbRg
1

CbRb
1

CwRb
− 1

CwRb
− 1

CwRw

]
and wt ∼ N (0,W ) is the process noise (model error), W is
the spectral density of wt . All states are measurable, hence
Eq. (13) with measurement noise vt ∼ N (0,V ). Observe
that the model equations are expressed in continuous time,
and discretised by the estimation software using a Runge-
Kutta 4th (Runge, 1895) order approximation. Observe
also that while the model is linear, the algorithm is not
restricted to linear models. The choice of Kalman Filter
implementation is determined by the type of model being
used (Brastein et al., 2019).

Table 1 lists a set of experimentally obtained nominal
parameters, which are used as initial guesses for model
calibration, and min/max limits which corresponds to the
bounds of the constrained parameter space Θ.

3.3 Calibration data
Figure 4 shows a set of calibration data, which consist of
four temperature measurements and one measurement of
supplied input power. The data was recorded in February
2018. Originally, the data was collected at 1 minute in-
tervals but has been downsampled to 30 min time-step, by
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Figure 4. Data recorded from sensor at different locations in the
building

Table 2. Estimated covariance matrices with corresponding KS
test result (critical value for 95% conf. is 0.062) .

# W
1
2

Tb
W

1
2

Tw
V

1
2

Tb
V

1
2

Tw
KSTb KSTw

S1 0.115 0.104 0.028 0.037 0.054 0.042
N3 0.117 0.077 0.019 0.145 0.046 0.035

extracting every 30th measurement. Two of the temperat-
ures correspond to model state Tb and the model input out-
door temperature T∞. The remaining two measurements
correspond to different alternative sensor locations for Tw,
one on the north wall (sensor N3) and one on the south
wall (sensor S1). Figure 4 shows that there is significant
differences between these two measurements in dynamic
content, due to the different construction materials used in
the North and South wall, which will lead to differences
in the identifiability analysis of the estimated parameters.
In the sequel, two different cases S1 and N3 are analysed,
distinguished by the choice of reference measurement for
the output Tw.

Optimisation algorithm

In (Brastein et al., 2019) COBYLA (Powell, 1994), based
on linear approximations, was used as the optimisation
algorithm A in Eq. (1). In this work, further experi-
mentation with other optimisation algorithms showed that
a quadratic approximation algorithm, such as BOBYQA
(Powell, 2009), gives significantly faster convergence, by
approximately a factor of 5, as well as more consistent res-
ults by improved ability to avoid local minima. BOBYQA
is therefore used in the sequel.

4 Results and discussion
A requirement for using Kalman Filters to obtain resid-
uals for subsequent evaluation of the likelihood function
in Eq. (3) is obtaining reasonable estimates for process
and noise covariance matrices, respectively W and V . In
(Brastein et al., 2019) V was obtained from data, while W
was found by manual experimentation. A better approach
is to estimate them from data, by including them in θ .

In order to reduce the number of free parameters, both
covariance matrices are assumed diagonal. Further, the

Figure 5. CP diagram of residuals for outputs Tb(red) and
Tw(green)

Figure 6. PL results for Cases S1 and N3. Green lines indicate
in increasing order 90%, 95% and 99% confidence limits.

square root of the diagonal elements are added to the para-
meter vector θ with some appropriate bounds in Θ and
subsequently estimated by numerical optimisation of Eq.
(1). The resulting covariances are shown in Table 2. Ob-
serve that the results corresponding to the state/measure-
ment Tb are similar for both cases, while the results for
Tw differ significantly. This is expected due to the dif-
ferences in noise characteristics and dynamic information
content in the data collected from the two sensors. For
Case S1 the estimates for W is similar for both states,
where as for Case N3 the differences between measure-
ments of Tb and Tw results in different estimates for the
corresponding elements in W .

The residuals obtained after optimising all parameters
must be analysed for normality, in order to justify the use
of the multivariate Gaussian in Eq. (3) for evaluation of
the likelihood function (Kristensen et al., 2004). Figure
5 shows a cumulative periodogram (CP), with 95% con-
fidence bounds obtained from the Kolmogorov-Smirnov
criterion (Madsen, 2007; Madsen and Holst, 1995; De-
coninck and Roels, 2017; Bacher and Madsen, 2011). The
CP plot shows that the residuals are well approximated
by a normal distribution. Additionally, the Kolmogorov-
Smirnov normality-test results are listed in Table 2. After
calibration of the parameters, including the noise covari-
ance matrices, residuals are found to pass the normality
tests.

4.1 Profile likelihood
Once the covariance parameters have been determined, the
remainder of this paper is focused on analysing the para-
meter space Θ by use of the Profile Likelihood (PL) (Raue
et al., 2009) method, first in a single parameter dimension,
and next in two parameter dimensions. The PL results
in Fig. 6 show, as expected, that some of the paramet-
ers have narrower profiles for the S1 Case compared with
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Figure 7. PL2 results for Case S1 (left) and Case N3 (right). Confidence limits, base on the χ2 distribution with 2 degrees of
freedom is indicate on the figure legend to the right.

the N3 Case. Since the excitation in Tw is much larger
for Case S1, it is expected that the identifiability analysis
reflects this by computing tighter confidence regions for
the parameters most affected by Tw. Observe in particu-
lar how the profiles for Cw and Rg indicates considerably
improved identifiability of these parameters for Case S1.
The profiles for parameter Cb is almost identical, which is
expected, since this parameter is not influenced by Tw.

A second observation from Fig. 6 is that Rw is dia-
gnosed as practically non-identifiable, since the profile ex-
tend towards infinity in the positive direction. Observe
also that Rb follows a similar trend, but with an abrupt
break in the profile, which leads to a bounded profile
for Rb. However, if parameters Rb and Rw are inter-
dependent, the projection of the likelihood function for
the parameter space Θ onto Rb will be affected by Rw,
and subsequently by the constraint imposed by Θ. This
type of constraints, in the presence of parameter inter-
dependence, is known to produce such breaks in the com-
puted profiles (Brastein et al., 2019), as discussed in Sec-
tion 2.1.

4.2 Profile likelihood in 2D
Next, the two-dimensional profile likelihood (PL2)
method is applied in order to investigate parameter inter-
dependency. The result is shown in Fig. 7. By projecting
the ML function in Eq. (3) onto a plane of two paramet-
ers, rather then a single parameter axis as in PL, it becomes
possible to diagnose parameter identifiability by observing
the shape of the confidence regions. First, observe that the
PL2 results show a similar improvement in identifiability
for Case S1 over Case N3 for the same parameters. The
confidence regions for Cw and Rg are significantly reduced
for Case S1, whereas the region for Cb is similar for both
cases. Hence, the results of the PL analysis is confirmed

by the PL2 results.
Further, the PL2 results also show that Rb and Rw are

highly inter-dependent, a fact which was not easily ob-
served in Fig. 6. The projected topology of these two
parameters shows a near linear relationship between them.
This explains why the PL profile for Rb contains an ab-
rupt break, caused by the constraint on Rw and their inter-
dependence. In this context, it is interesting to consider
whether this lack of identifiability for parameters Rb and
Rw are of practical, i.e. related to information content in
data, or structural nature. Parameter inter-dependency is
clearly caused by the model structure, not the data. How-
ever, the PL2 profile shows that while the parameters are
linearly dependant, e.g. Rb = cRw, neither parameter is
identifiable, since the profile is unbounded in one direction
in Θ. Hence, it is accurate to claim that these two paramet-
ers are practically non-identifiable, but also that there is
a structural problem of parameter inter-dependency. The
latter may be eliminated by re-parametrising the model,
say, by introducing the relationship Rb = cRw with the
constant c pre-determined based on Fig. 7. However, there
is no physical reason to assume that the thermal resistance
between the inside wall and the building interior should be
depending linearly on the thermal resistance of the wall it-
self, hence this modification of the model equations seems
somewhat ad hoc. A better alternative is to modify the
RC circuit model structure such that the parameter inter-
dependency is resolved.

4.3 Reduced order model for Case S1
From Fig. 6 and 7 for Case S1 it appears that the value of
Cw tends towards zero as Rb and Rw increases. This could
indicate that removing Cw, and replacing the state Tw by a
measurement Tw = T∞Rb+TbRw

Rb+Rw
, is an appropriate modifica-

tion. However, after calibrating the reduced model, the re-
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Figure 8. PL2 results after removing Rg from the model, for Case S1 (left) and Case N3 (right). Confidence limits, base on the
χ2 distribution with 2 degrees of freedom is indicate on the figure legend to the right. Likelihood threshold isolines and a 95%
confidence error ellipse boundary, based on the inverse Hessian, has been added to the plot for N3.

sidual analysis for output Tw, based on a CP diagram, does
not support the normality assumption, which in turn indic-
ates that the model order is to low. Hence, removing Cw is
not an acceptable modification to the model structure.

4.4 Parameter inter-dependence
Observe from Fig. 6 and 7 that for Case N3 there is a
significant flat region in the profiles of both Rb and Rw.
Table 3 contains a selection of values from within this re-
gion, which has been computed by keeping Rb constant
while optimising the remaining parameters. This experi-
ment shows that by varying the parameters within this op-
timal region, the total thermal resistance between building
interior and the outside temperature, Rtot =Rg||(Rb +Rw),
where || indicates a parallel connection of resistors, is
constant. Also, the time constant for the wall capacitor
τw = (CwRb||Rw) is approximately constant for the same
experiments. Since the total resistance Rtot < Rg it follows
that Rb and Rw can grow large, by compensating with Rg
and Cw, without affecting the models predictions. Com-
bined with the PL2 analysis results, this indicates an over-
parametrised model.

4.5 PL analysis of model without Rg
A natural next step is to reduce the number of parameters
by removing the presumed redundant parameter Rg from

Table 3. Optimised values of Rw, Rg and Cw with fixed values
of Rb from within the flat region observed in the PL results.

Rb Rw Rg Cw Rtot τw
0.700 0.993 0.093 163k 0.088 67.0k
0.900 1.277 0.092 126k 0.088 66.5k
1.300 1.844 0.091 88k 0.088 67.0k

the model circuit. Repeating the PL2 analysis of the model
with Rg removed gives the plots shown in Fig. 8. The pro-
files for all parameter combinations are now approxim-
ately elliptical, which indicates parameter independence.
Observe also from Fig. 8 that the min/max limits which
constitutes the bounds Θ has been changed to comply with
the reduced model structure. Further, all parameters now
have bounded profiles, which indicates identifiability. By
comparing Case S1 and Case N3, the effect of low excit-
ation in Tw for Case N3 is observed also for the reduced
model. In addition to obtaining a different optimal value
for Cw, as expected, since the sensor is mounted on a dif-
ferent wall, the profile is much wider for Case N3. This in-
dicates a wider confidence region for this parameter, hence
a more uncertain estimate.

Table 4. Optimal parameters with Rg removed.

Rb Rw Cb Cw
S1 0.040 0.048 1267k 419k
N3 0.035 0.051 1137k 2735k

With identifiable parameters, it is interesting to com-
pare the optimal parameter estimates, listed in Table 4, for
each case. Observe first that for both cases, the total ther-
mal resistance between building interior and outside tem-
perature Rb +Rw h 0.088, which was the value obtained
for the total resistance in Table 3. Observe also that both
resistances and the interior capacitance Cb is similar for
both cases, while the value obtained for Cw is much lar-
ger for the N3 case, as expected, due to the high grade
insulation used in the North wall.

SIMS 60

57DOI: 10.3384/ecp2017051  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



Hessian vs Profile Likelihood

Observe from Fig. 8 that the super-imposed Hessian based
error ellipse at α = 95% are similar to the 95% confidence
regions computed by thresholds on the likelihood profile.
Observe especially for the profile Rb vs Rw that the two
confidence region methods produce almost identical re-
gions, since the projected likelihood profile is almost sym-
metric. For e.g. Cb vs Cw the Hessian ellipse and likeli-
hood thresholds are of similar size, but the Hessian has an
offset due to the non-symmetric likelihood profile. This
shows the advantage of the profile likelihood based re-
gions, in that they can produce accurate results for asym-
metric parameter distributions.

5 Conclusion
In this paper, two different sensor locations, giving dif-
ferent dynamic information in the recorded calibration
data, was used to estimate and analyse parameters of a
thermal network grey-box model of building thermal be-
haviour. The sensor locations differ with respect to the
physical properties of the building, with one sensor fitted
to a high insulation sustainable wall, and the other to a
standard insulation wall. The profile likelihood method
was used, projecting the likelihood function in both one
and two parameter dimensions, to show the difference in
confidence regions produced by lack of excitation in the
calibration data. Confidence regions computed by apply-
ing a threshold to the 2D profiles were compared with er-
ror ellipses computed based on the Hessian, which shows
that while the two confidence region methods give similar
results, the PL method better represents the uncertainty
when the parameter distribution is asymmetric. The two-
dimensional likelihood profile results were used to dia-
gnose parameter non-identifiability, and the model struc-
ture was subsequently modified to resolve the problem,
thus obtaining identifiable parameters.
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Abstract
A large fraction of the world’s energy production is used
for HVAC in buildings. It is therefore important to develop
improved strategies for the efficient use of energy in
buildings. Storage of intermittent energy production is
important; storage as hot water in water tanks is the
most common way to store energy in private homes/
smaller apartment complexes. Finding good models for
building thermal behavior is an important part of devel-
oping building energy management systems (BEMS)
that are capable of reducing energy consumption for
space heating through model predictive control (MPC).
In this paper, previous models of temperature dynamics
in hot water tanks are considered, and a simple well
mixed tank model is compared with a model describing a
more realistic stratified temperature distribution. Two
models are fitted to experimental data from a hot water
tank. Description of temperature stratification requires
a distributed model, but a relatively low order
discretized model suffices to describe the important effect
while simultaneously being useful for BEMS. A suitable
hot water tank model in combination with weather fore-
cast enables temperature estimation and prediction in
MPC, and allows for finding a suitable water temperature
at minimal energy consumption.

Keywords: Energy in buildings, energy storage, hot wa-
ter tank model, well mixed tank model, stratified flow
model, experimental data, model fitting.

1 Introduction
1.1 Background
A large part of the world’s energy production is used for
heating/cooling, ventilation, and air conditioning of build-
ings (HVAC), (Pérez-Lombard et al., 2008), and this frac-
tion is increasing. Even though modern building tech-
niques make it possible to reduce the energy used for heat-
ing, the renewal rate of buildings is low. Berthou et al.
(Berthou et al., 2014) report renewal rates of 1% per year
in France, with similar rates for other European countries.
This illustrates the need for good building energy manage-
ment systems (BEMS) also in existing buildings.

Model predictive control (MPC) is an attractive ap-
proach for use in BEMS. Models of the building thermal
behavior can be used to predict the heating and cooling
time, and the usage of energy. In an MPC system, a model
is used to simulate the system ahead in time in order to

find a sequence of inputs that controls the system to the
desired state. In a BEMS, the use of MPC will allow for
improved control of the indoor climate as well as min-
imization the energy consumption (Berthou et al., 2014),
(Fux et al., 2012). Predictions of future system inputs such
as outdoor temperature, irradiation, precipitation, etc., are
readily available from internet services, which helps to fa-
cilitate the use of MPC.

An important problem in BEMS involves the possibility
to store surplus energy for later use. Energy storage as
sensible heat in a water tank is a widespread strategy. A
simple, yet reasonably accurate water tank model, which
can be integrated in a complete building model, is required
for successful MPC.

1.2 Previous work
In (de Oliveira et al., 2013), a house heating system is opti-
mized wrt. fluctuating energy prices. In (Lie et al., 2014),
a related heating system with irradiation prediction, so-
lar collector, and a simple water storage tank is consid-
ered. (Lie, 2015) discusses a more detailed model of the
water storage tank. (Xu et al., 2014) discuss a more re-
alistic water storage tank, using a simplified description
of water buoyancy presented in (Viskanta et al., 1977).
(Koch, 2012) discusses both a concentrated and a dis-
tributed water tank model, while (Vrettos, 2016) extends
on Koch’s work with a buoyancy description model. (Jo-
hansen, 2019) adjusted the model from (Xu et al., 2014),
and fitted the model to experimental data. The results of
(Johansen, 2019) are discussed in this paper.

1.3 Outline of paper
Section 2 provides a discussion of the system discussed,
Section 3 gives an overview of the dynamic model of the
water tank, Section 4 gives results from model simulation
and fitting of the model to experimental data, with vali-
dation. The results are discussed in Section 5, with some
conclusions and indications of future work.

2 Experimental Rig
2.1 System Description
The building under study is a two floor residential build-
ing located in the eastern part of Norway, built in 2017.
The building was build based on the Norwegian TEK17
regulation and contains a BEMS based on a web based
Programmable Logic Controller (PLC). The PLC uses an
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Table 1. Summary of instruments in Figure 1.

Label Description
P1 Pump driving water flow in external loop
F1 Volumetric flow rate sensor in external loop
V1 Three way shunt valve for directing water

through water tank
V2 Valve for directing external loop water

through room
T1 Temperature of mixture after valve V1
T2 Upper temperature sensor in hot water tank
T3 Lower temperature sensor in hot water tank
T4 External loop temperature at entrance to hot

water tank
T5 Ambient temperature, not shown in

Figure 1
H1 Heating element for hot water tank, 15kW

internet based weather service for prediction of outside
temperatures and solar radiation parameters. The heat-
ing system consists of floor pipes with hot water in each
room, and the temperature is adjusted individually by a
valve controlling the flow of how water in a specific sec-
tion. The valves are controlled by the PLC. The floor ma-
terial in both floors is concrete. A pump, common for all
the pipe sections, provides the circulation of hot water in
the pipes. An overview of the heating system is shown in
Figure 1.

Figure 1. Overview of heating system in building, with hot wa-
ter buffer tank for heating the water, and floor heating pipes for
each room in the building. Each pipe has a valve controlled by
the BEMS. The hot water tank is to the left in the figure.

Elements in Figure 1 are summarized in Table 1.

2.2 Experimental Data
The PLC system provides measurements of temperatures
in the hot water tank (T2, T3), the loop circulation hot
mixture temperature (T1), and loop return temperature
(T4) once per minute together with control signals for
the heating valve (H1) and the three-way valve actuator
(V1). Other data such as ambient temperature (T5) and
loop flow rate (F1) are sampled more rarely, but have been
re-sampled to once per minute. The data have been col-
lected in CSV files with one line for each sample with a

time stamp and the measured values. The data set con-
tains data for the period February 5, 2019 to February 21,
2019. Python was used as the software for preprocessing
the data, calibration of the models, and validation checks.

3 Model Description
3.1 Model overview
A model of the buffer tank that can be used in the PLC
system is wanted so a model that is adjusted to the com-
putational power of this control system. An overview of
the buffer tank is shown in Figure 2.

Figure 2. The buffer tank with the heating element, the temper-
ature sensors inside the buffer tank, the temperature sensors on
the outlet an inlet pipes and the three way shunt valve for mixing
the water from the buffer tank and the return water flow.

Two approaches are used, one model for the tank as a
mixed storage tank and a model of the tank as a stratified
storage tank where each layer is modeled. Both models
are developed based on the macroscopic thermal energy
balance, and assuming constant mass/constant mass den-
sity. Constant mass m in the system implies that

ṁ = ṁi = ṁe (1)

where ṁ is mass flow rate through the system, while ṁi
and ṁe are influent and effluent mass flow rates, respec-
tively. The thermal energy balance can be posed as

dU
dt

= Ḣi − Ḣe +Ẇf −Ẇv + Q̇, (2)

where U is internal energy, H is enthalpy, W is work, and
Q is heat. A dot decoration on a symbol indicates a flow
rate, thus Ḣ is enthalpy flow, Ẇ is mechanical power, and
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Q̇ is heat flow rate. Ḣi and Ḣe are influent and effluent en-
thalpy flow rates, respectively. Ẇf and Ẇv are friction work
rate (heating) and power due to volume change (p dV

dt ), re-
spectively; we will neglect friction work, and with con-
stant volume, there is no volume work. Heat flow might
be due to added electric heating Q̇el, heat diffusion Q̇d, and
heat loss to the ambient Q̇a.

Enthalpy is an extensive quantity, hence for a pure sub-
stance,

H = mĤ (3)

where Ĥ is specific enthalpy. Likewise, enthalpy flow for
a pure substance is related to mass flow as

Ḣ = ṁĤ. (4)

For an in-compressible liquid, Ĥ can be posed as

Ĥ = Ĥ (T ◦)+ ĉp,w (T −T ◦)+
1
ρ
(p− p◦) (5)

where T ◦ and p◦ are standard state temperature and pres-
sure, respectively, and ρ is the water density. Under nor-
mal conditions, we can neglect the pressure effect. Also,
for a pure substance (non-reacting) system, the standard
state specific enthalpy Ĥ (T ◦) can be neglected.1 We will
also utilize that for water in liquid form, dU ≈ dH.

3.2 Mixed tank model
The first model is a simplified model assuming that the
entire volume of the tank is well mixed. The assumptions
for the mixed tank model are (1) the top and bottom of the
tank are assumed to be horizontal, (2) water flows only
from the bottom to the top of the tank, (3) constant den-
sity of the water, (4) temperature independent heat capac-
ity, (5) a proportional relationship between the inflow and
outflow of the tank and the valve openings, (6) the temper-
ature is homogeneous along the height of the tank.

Based on the assumptions indicated in Section 3.1, we
have

dU
dt

≈ dH
dt

=
d
dt

(
mĤ

)
= m

dĤ
dt

= mĉp,w
dT
dt

(6)

Ḣi − Ḣe = ṁĉp,w (Ti −T ) (7)

where we have used that for a perfectly mixed tank, Te =
T . For a well mixed tank, there is no heat diffusion. Added
electric heating is

Q̇el = P◦uP (8)

where P◦ [kW] is the maximum electric heating power,
and uP ∈ [0,1] is a control signal. Heat added from the
surroundings is

Q̇a = U As (Ta −T ) (9)

1Ĥ (T ◦) is mainly needed for finding heat of formation in chemical
reactions.

where U is the overall heat transfer coefficient and As is
the total surface areas, while Ta is the ambient tempera-
ture. The mass flow rate ṁ through the hot water tank is
given by ṁ = ρV̇ where the volumetric flow rate, V̇ , is
given by a split-range control signal uv as V̇ = V̇ℓuv, with
V̇ℓ being the volumetric flow rate in the external loop. The
mass flow rate can thus be expressed as

ṁ = ρV̇ℓ ·uv (10)

where ρis water density, while uv ∈ [0,1] is the valve sig-
nal.

With m = ρV and V the tank volume, the model can
thus be summarized in state space form as

mĉp,w
dT
dt

= ṁĉp,w (Ti −T )+P◦uP +U As (Ta −T )

⇓
dT
dt

=
V̇ℓ ·uv

V
(Ti −T )+

P◦uP +U As (Ta −T )
ρV ĉp,w

.

(11)

3.3 Stratified tank model
3.3.1 Distributed parameter model
We consider a well mixed volume ∆V = A ·∆z in the wa-
ter tank, where A is the cross sectional area and ∆z is the
height of the volume, with z = 0 at the bottom of the tank
and z = h at the top of the tank. For this volume and with
dU ≈ dH, influent at position z, effluent at position z+∆z,
the energy balance is

dHz+∆z

dt
≈ Ḣz − Ḣz+∆z + Q̇el,∆z + Q̇d,z − Q̇d,z+∆z + Q̇a,∆z.

(12)
The following expressions are valid except at the bound-
aries, i.e., they are valid for z ∈ (0,h):

Hz+∆z = m∆zĤz+∆z = ρA∆z · ĉp,w (Tz+∆z −T ◦) (13)

Ḣz − Ḣz+∆z = ṁĉp,w (Tz −Tz+∆z) (14)

Q̇el,∆z = P◦ ·1P (z) ·uP (15)

Q̇d = AQ̇′′
d (16)

Q̇a,∆z = U A∆z (Ta −Tz+∆z) . (17)

In these expressions, we have assumed that the heating
element is located at a point position zP, and 1P (z) is the
indicator function defined as

1P∆z (z) =

{
1, z ∈ P∆z

0, z /∈ P∆z,
(18)

with heating element location set P∆z given as

P∆z = (zP,zP +∆z] . (19)

Furthermore, Q̇′′
d is the heat diffusion per unit cross sec-

tional area (the heat flux), while A∆z =℘∆z and ℘ is the
perimeter of the tank.
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By combining these terms into the thermal energy bal-
ance, dividing by ∆z and letting ∆z → 0, we find that for
z ∈ (0,h):

ρAĉp,w
∂T
∂ t

=−ṁĉp,w
∂T
∂ z

+P◦δ (z− zP) ·uP

−A
∂ Q̇′′

d
∂ z

+U ℘(Ta −T ) , (20)

where we have introduced Dirac’s delta function δ (z− zP)
by observing that

lim
∆z→0

1P∆z (z)
∆z

→ δ (z− zP) . (21)

The heat flux Q̇′′
d consists of two terms:

1. Thermal diffusion flux Q̇′′
d,d given by Fourier’s law,

Q̇′′
d,d =−kt

∂T
∂ z

(22)

where kt is thermal conductivity and is assumed con-
stant here, and

2. Buoyant turbulent mixing flux Q̇′′
d,b given as (Xu

et al., 2014)
∂ Q̇′′

d,b

∂ z
=−kb

∂ 2T
∂ z2 (23)

where kb is buoyant conductivity given as

kb =

cbκ2d2
√

gαp

∣∣∣ ∂T
∂ z

∣∣∣, ∂T
∂ z < 0

0, ∂T
∂ z ≥ 0

(24)

where κ is the von Karman constant (κ ≈ 0.4), d
is some characteristic length — the diameter in this
case, g is the acceleration of gravity, αp is the ther-
mal expansion coefficient at constant pressure, and
cb ∼ 1 is a tuning factor. Because hot water has lower
density than cold water, the normal steady situation
is that T is higher at larger z (with the given direc-
tion of z), hence with ∂T

∂ z > 0 this is the normal sit-
uation and there is no buoyancy. On the other hand,
with ∂T

∂ z < 0, the temperature profile is reversed, and
buoyancy kicks in. (Vrettos, 2016) gives an alterna-
tive expression for buoyancy mixing.

In summary, for z ∈ (0,h), the model can be simpli-
fied to

∂T
∂ t

=−V̇ℓ ·uv

A
∂T
∂ z

+
kt + kb

ρ ĉp,w

∂ 2T
∂ z2

+
P◦δ (z− zP) ·uP +U ℘(Ta −T )

ρAĉp,w
. (25)

Because of the second derivative in the z-direction,
we need two boundary conditions. These are

Tz=0− = Ti (26)
Tz=h+ = Tz=h. (27)

There is also an additional ambient heat loss surface
at the bottom and the top.

The water tank is encased by an insulator of unknown ther-
mal conductivity ki and unknown thickness di. Thermal
conductivity of insulator typically has a value in the range
ki ∈ [10,50] mW/mK with air at kair = 25mW/mK. The
overall heat transfer coefficient U typically is described
by

U =
1

1
hw

+ ki
di
+ 1

ha

(28)

where hw is the heat transfer coefficient between wa-
ter and the metal surface, while ha is the heat transfer
coefficient between ambient air and the metal surface.
The ambient side will exhibit free convection with typi-
cal values for ha being ha ∈ [2.8,23] W/m2 K. The wa-
ter side, will however vary between free convection with
stagnant water when uv ≡ 0 and typical values of hw ∈
[50,3000] W/m2 K, and forced convection when uv ̸= 0
with hw ∈ [280,17000] W/m2 K. Typically, if the insula-
tion is 5cm thick, ki

di
∈ [0.2,1] W/m2K.

3.3.2 Semi-discretized model
Because the flow of water is specified, it suffices with a
simple finite difference discretization of the spatial deriva-
tives. If the water tank height h is divided into n equal
height slices, ∆z = h

n with the bottom slice numbered
k = 1 and the upper slice numbered k = n, we have for
k ∈ {2, . . . ,n−1}:

dTk

dt
=−V̇ℓ ·uv

A
Tk −Tk−1

∆z
+

kt + kb

ρ ĉp,w

Tk+1 −2Tk +Tk−1

∆z2

+
P◦ 1P∆z

(k·∆z)
∆z ·uP +U ℘(Ta −Tk)

ρAĉp,w
. (29)

Here,

kb

ρ ĉp,w
=

cbκ2d2
√

gαp

∣∣∣Tk+1−Tk
∆z

∣∣∣, Tk > Tk+1

0, Tk ≤ Tk+1

(30)

where cb ∼ 1 is a tuning factor.
At the boundaries, the scheme of 29 is invalid, and is

modified to:

k = 1: For the advection term, T0 becomes Ti, while for
the diffusion term, T0 equals T1,

dT1

dt
=−V̇ℓ ·uv

A
T1 −Ti

∆z
+

kt + kb

ρ ĉp,w

T2 −T1

∆z2

+
P◦ 1P∆z

(∆z)
∆z ·uP +U

(
℘+ A

∆z

)
(Ta −T1)

ρAĉp,w
.

(31)

k = n: We assume that the temperature of the metal above
cell n has the same temperature as cell n because of
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Figure 3. Stratified model simulation. Model parameters are
taken from Table 2. Dotted lines indicate simulated temperatures
at temperature sensor locations; temperature at inlet layer (T1) is
indicated with ◦ markers, and temperature at exit layer (Te) is
indicated with × markers.

good thermal conduction in the metal and good insu-
lation, thus Tn+1 = Tn. We then have

dTn

dt
=−V̇ℓ ·uv

A
Tn −Tn−1

∆z
+

kt + kb

ρ ĉp,w

Tn−1 −Tn

∆z2

+
P◦ 1P∆z

(n·∆z)
∆z ·uP +U

(
℘+ A

∆z

)
(Ta −Tn)

ρAĉp,w
.

(32)

3.4 Model parameters
Table 2 lists nominal model parameters for the water tank.

In Table 2, it should be observed that ha and ki
di

dom-
inates total over hw, so that U ≈ 1/(1/ha +di/ki) with
both free and forced water convective heat transfer, and
U ≈ 0.43W/m2K.

3.5 Operating conditions
Typical operating conditions for the water tank are given
in Table 3.

3.6 Basic simulation of stratified tank model
Figure 3 shows the temperature response at n = 20 posi-
tions of the stratified model; T1:n (0) = [30 : 40]◦C, Ta =
25 ◦C, Ti = 28 ◦C, V̇ℓ = 10 ·H0 − 6 ·H1.2hL/min, uv =
0.75 ·H0 −0.75 ·H2h and uP =H0 −H3h where Ht is the
Heaviside function.

Observe that with default values, the buoyant conduc-
tivity is very large if the initial profile of Tk (0) is reversed;
in Figure 3, cb = 10−2 has been used. With the posi-
tive initial temperature gradient in Figure 3, there is no
buoyancy. With the geometry of the tank and uv = 0.75,
a “plug” of water entering the tank takes 40min to pass
through the tank with V̇ℓ = 10L/min, and 100min with
V̇ℓ = 4L/min.

Figure 4. Experimental values of temperatures.

Figure 5. Experimental values for control signals.

4 Model fitting
4.1 Sensor signals and experimental data
The available sensors for the water tank are listed in Ta-
ble 4.

Here, it should be observed that the lower temperature
sensor T s

2 gives rather uncertain results due to poor insu-
lation from the external metal of the water tank.

The heated loop temperature T ℓ
i (T1) in Table 4 is the

temperature of the mixture of the effluent water from the
water tank and the by-passed water. Thus, using steady
energy balance for the 3-way mixing valve, we have

T ℓ
i = (1−uv)Ti +uvTe (33)

where Te is the effluent temperature from the tank, i.e.,
Te = T for the well mixed tank model, and Te = Tn for the
stratified tank model.

Figures 4–6 display typical values for the sensor sig-
nals, with resolution in 1min. It should be observed that
with uv ≡ 0, according to 33, T ℓ

i should equal Ti. Instead,
Figure 4 indicates a bias of ca. 1.1 ◦C under that condition.

4.2 Measure of model fit
From a system theoretic point of view, Ta, Ti, uP, and uv
are inputs to the dynamic model, while T s

1 , T s
2 , and T ℓ

i
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Table 2. Nominal parameters for water tank.

Parameter Value Comment
g 9.81m/s2 Acceleration of gravity
κ 0.41− von Karman constant
ρ 103 kg/m3 Water density

ĉp,w 4.19kJ/kgK Specific heat capacity, water
αp 303 ·10−6 1/K Thermal expansion coefficient
kt 0.6W/mK Thermal conductivity, water
h 1.5m Height of water column
d 0.5m Internal diameter, tank
℘ πd Perimeter of water tank
A π d2

4 Cross sectional area, tank
As 2A+℘·h Surface area, tank
V Ah Water volume
ha 3W/m2K Heat transfer, air

hw,free 50W/m2K Heat transfer water, free convection
hw,forced 1000W/m2K Heat transfer water, forced convection

ki
di

0.5W/m2K Typical value for a 5 cm thick insulator

Ufree 1/
(

1
ha
+ ki

di
+ 1

hw,free

)
Overall heat transfer coefficient, free

Uforced 1/
(

1
ha
+ ki

di
+ 1

hw,forced

)
Overall heat transfer coefficient, forced

P◦ 15kW Maximum power of heating element
zP 1.15m Position of heating element

Table 3. Typical operating conditions for water tank.

Variable Value Comment
T [25,45] ◦C Water tank temperature
Ti [27,33] ◦C Tank influent

temperature
Ta [4,27] ◦C Ambient temperature
V̇ℓ [1,13] L/min Volumetric flow rate in

loop
uP [0,1]− Electric power control

signal
uv [0,1]− Water valve control

signal

Figure 6. Experimental values for volumetric loop flow rate.

represent measured responses (outputs). Here, T s
2 is the

lower temperature sensor in the tank, which is reported to
be unreliable. Conceptually, we will still include it in the
description. To this end, let

u =
(

Ti Ta uP uv
)

(34)

be the vector of known inputs to the system, while

y =
(

T ℓ
i T s

1 T s
2

)
(35)

is the vector of output (response) observations. Assume
that we have a state space model

dx
dt

= f (x,u;θ) (36)

y = g(x,u;θ) . (37)

In principle we can solve this model such that

yt = G(uτ ,x0,θ) (38)

where yt is the model output at time t, while uτ is the in-
put sequence in the interval [0, t]. Normally observations
are available at discrete time instances t; in that case yt is
found in discrete time instance t by using a numeric ODE
solver.

In general, measured signals have superscript m, i.e.,
um and ym. Introducing the extended parameter set
θ̃ =

(
θ x(0)

)
, we can measure the model fit by cost

function V
(
θ̃
)

given as

V
(
θ̃
)
=

N

∑
t=1

∥yt − ym
t ∥

2
Wy

+λ ·
∥∥θ̃ − θ̃ ◦∥∥2

Wθ
(39)
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Table 4. Available sensor signals for water tank. Sensor labels (T1–T4, F1) refer to Figure 1.

Variable Unit Comment
Ti

◦C Influent water temperature to tank (T4)
T ℓ

i
◦C Heated temperature influent to loop (T1)

Ta
◦C Ambient temperature

T s
1

◦C Water tank temperature at zs
1 = 1.3m (T2)

T s
2

◦C Water tank temperature at zs
2 = 0.23m (T3)

V̇ℓ L/min Volumetric flow rate in loop (F1)
uP

V
10V Electric power control signal

uv
V

10V Water valve control signal

where ∥·∥W denotes the weighted 2-norm. Here, Vλ=0
is the standard least squares cost function, while λ > 0
regularizes the problem by emphasizing a prior parame-
ter “guess” θ̃ ◦ which can be based on physical considera-
tions. It is also possible to add hard constraints in the form
θ̃ ⊆ Θ̃. Typically Wy and Wθ are chosen such that the in-
dividual elements of vectors have comparable values, e.g.,
normalized to [0,1] or [−1,1], or standardized to have unit
standard deviation.2

To assess how well the model with parameters ˆ̃θ gen-
eralizes from training data to validation, it is common to
compare the root mean squared error (RMSE) εRMS for
the parameter estimate ˆ̃θ applied to the training data, com-
pared to the RMSE for the parameter estimate applied to
independent validation data;

εRMS =

√
1
N

V
(

ˆ̃θ
)
. (40)

In 39, λ is a user selected hyper parameter, usually chosen
such that the model generalizes well.

4.3 Model fitting results
The parameters U , kt, and cb are used as fitting param-
eters together with the unknown initial conditions of un-
measured temperatures. Tuning kt is related to adding a
“heuristic circular mass flow term” in (Koch, 2012). It
should be added that numeric discretization in space in-
troduces artificial mixing, with the extreme case of a con-
centrated model having complete mixing. The parameter
θc for the concentrated (well mixed) tank model is

θc = U (41)

while for the distributed (stratified) model, the parameter
is θd given as

θ̃d = [U ,kt,cb,T1 (t = 0) , . . . ,Tn (t = 0)] . (42)

The cost function is V given by 39, with λ ≡ 0.
For the concentrated model, parameter U is estimated

to U ∈ [2.9,62], depending on the initial temperature dis-
tribution in the tank. This variation in U depending on

2If the measurements are pre-scaled, then W = I.

Table 5. Bounds Θ̃ and initial guess θ̃ (0) for parameters during
calibration of distributed model.

U kt cb Tk (t = 0)
Θ̃ [0.1,4] [0.1,4] [0.1,2] [17,47]

θ̃ (0) 1 0.6 1 17–47

Table 6. Estimated parameters for distributed (stratified) model.
Calibrated and validated RMSE data are taken for T s

1 .

n U kt cb RMSEcal RMSEval
3 3.72 0.1 2.0 1.47 1.5
10 4 .0 0.1 2.0 1.51 1.53
20 2.63 3.99 0.1 1.74 1.8
50 0.94 4.0 0.1 3.22 2.76

the initial state of the system indicates that the well mixed
model is not very good.

For the distributed model, the parameters have been
bounded as in Table 5.

The estimated parameters for the distributed model are
given in Table 6.

Figure 7 shows how the calibrated model fits the exper-
imental data.

Validated model fit is shown in Figure 8.

5 Discussion and Conclusions
Suitable models for hot water tanks are important for suc-
cessful advanced management and control of energy us-

Figure 7. Calibrated model fit for the distributed model. Sensor
signals (T s

1 , T s
2 ): dashed lines. Simulated result: solid lines.

Black color: T s
1 , blue color: T s

2 .
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Figure 8. Validated model fit for the distributed model. Sensor
signals (T s

1 , T s
2 ): dashed lines. Simulated result: solid lines.

Black color: T s
1 , blue color: T s

2 .

age in buildings. This paper discusses a well mixed tank
model, and a distributed model which includes the effect
of stratification. A buoyant conductivity term is included
to handle buoyancy, as in (Xu et al., 2014); this model is
hardly perfect, though.3 An alternative description would
be that of natural convection as in (Vrettos, 2016).

Experimental data from a well instrumented new build-
ing is used to tune model parameters and validate the mod-
els. Initial results indicate that the well mixed model is too
simple, in that model parameters depend considerably on
the initial temperature distribution in the tank. The dis-
tributed model is discretized in n slices (hyper parame-
ter4), where n ∈ {3,10,20,50}, and these are fitted to the
data. The estimated parameters for the various values of n
are somewhat strange, in that between n = 10 and n = 20,
parameters kt (water conductivity) and cb (buoyancy scal-
ing parameter) switch values. However, remembering that
coarse discretization in space gives an added mixing effect
(adds to kt) while a finer discretization gives less such mix-
ing, this may partially explain the variation in kt estimates.
Also, somewhat surprisingly, the root mean squared error
(RMSE) increases with the number of slices for the cali-
brated model, which is contrary to what is expected. This
could be due to numeric problems with solving and fitting
larger models. Similarly, the RMSE values for the vali-
dated models also vary somewhat unexpectedly. Still, for
n ∈ {3,10} the model fit is decent.

In future work, the buoyancy model should be reconsid-
ered, sensor signals should be checked/re-calibrated, with
a revisit of how to handle data at different sample frequen-
cies. Then, parameter estimation should be checked, pos-
sibly also introducing regularization in the model fitting.
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Abstract 
Density and viscosity data and relevant correlations are 
essentially needed to perform mathematical modelling 
and simulations for the design of process equipment. 
Correlations that are developed to cover a range of 
concentrations and temperatures help to use them in 
mathematical modelling and simulations of absorption - 

desorption processes. In this study, a density correlation 
was proposed for 3A1P (3-Amino-1-propanol) + H2O 
mixtures. The McAllister three body model was adopted 
to correlate kinematic viscosity data of MEA 
(monoethanol amine) + H2O mixtures and kinematic 
viscosity data for 3A1P + H2O mixtures. The Eyring’s 
viscosity model based on absolute rate theory was used 
to correlate dynamic viscosity data. A Redlich – Kister 

type polynomial was proposed to fit the excess free 
energy of activation for viscous flow for 3A1P + H2O 
mixtures. The developed correlations were able to 
represent density and viscosity data with accepted 
accuracy and can be used to perform engineering 
calculations.  

Keywords: density, viscosity, MEA, 3A1P, McAllister 
model 

1 Introduction 

Acid gas removal using aqueous alkanolamines through 
chemical absorption has been in practice for decades to 
remove CO2 from natural gas (Eimer, 2014; Rochelle, 
2009). The integration of this technology to a 
commercial level in Post-Combustion CO2 Capture is 

halted by economic feasibility due to the energy demand 
of the process. High reaction rate with CO2 and low 
regeneration energy in stripping are ideal characteristics 
for an absorbent to reduce the cost of operation. 

Physical properties like density, viscosity and surface 
tension are essential in various aspects such as 
designing/sizing of process equipment and process 
simulations. They appear in many mass and heat transfer 

correlations that are essential in the mathematical 
modelling transport process and design of the absorption 
column.  Empirical correlations of such properties can 
provide the required data within a considered 
concentration and temperature range. Abundant 
resources are available for the density and viscosity of 
aqueous MEA (monoethanol amine) in the literature 

with suggested correlations, while reported studies are 
limited for 3A1P (3-Amino-1-propanol) (Idris and 
Eimer, 2016; Idris et al., 2018). 

2 Density and Viscosity Correlations 

for Binary Mixtures  

Correlations based on excess volume 𝑉𝐸 are commonly 

adopted to fit density data of liquid mixtures and the 
Redlich-Kister (Redlich and Kister, 1948) type 
polynomial is suggested to correlate 𝑉𝐸. This approach 

requires a higher number of parameters to correlate 𝑉𝐸 
to acquire high accuracy of data fit (Aronu et al., 2012). 
Such studies are reported for densities of aqueous MEA 

and 3A1P solutions under different compositions and 
temperatures in the literature (Han et al., 2012; Idris and 
Eimer, 2016). 
  
                              𝑉𝐸 = 𝑉 − ∑ 𝑥𝑖𝑉𝑖

𝑜𝑛
𝑖=1                    (1) 

 

                  𝜌 =
∑ 𝑥𝑖 ⸳𝑀𝑖

𝑛
𝑖=1

𝑉𝐸+∑
𝑥𝑖 ⸳𝑀𝑖

𝜌𝑖

𝑛
𝑖=1

               (2) 

 

McAllister, (1960) viscosity model presents a 
theoretical approach based on molecular attractions 
arises from different molecular arrangements to predict 
kinematic viscosities in binary mixtures. McAllister 
derived model with two forms for the kinematic 
viscosity of binary liquid mixtures based on absolute 
rates theory approach of Eyring’s viscosity (Eyring, 
1936). The McAllister three-body model is shown in (3-

7). 
 

𝑙𝑛(𝑣) = 𝑥1
3 · 𝑙𝑛(𝑣1) + 3𝑥1

2𝑥2 · 𝑙𝑛(𝑣12) + 3𝑥1𝑥2
2

· 𝑙𝑛(𝑣21) + 𝑥2
3 · 𝑙𝑛(𝑣2)

− 𝑙𝑛(𝑥1 + 𝑥2 · [𝑀2 𝑀1⁄ ]) + 3𝑥1
2𝑥2

· 𝑙𝑛([2 + 𝑀2 𝑀1⁄ ] 3⁄ ) + 3𝑥1𝑥2
2

· 𝑙𝑛([1 + 2𝑀2 𝑀1⁄ ] 3⁄ ) + 𝑥2
3

· 𝑙𝑛(𝑀2 𝑀1⁄ ) 
               (3)  

          

𝜈1 =
ℎ𝑁

𝑀1
𝑒−Δ𝑠1

∗/𝑅𝑒Δ𝐻1
∗/𝑅𝑇 

(4) 

𝜈12 =
ℎ𝑁

𝑀12
𝑒−Δ𝑠12

∗ /𝑅𝑒Δ𝐻12
∗ /𝑅𝑇 

(5) 
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𝜈21 =
ℎ𝑁

𝑀21
𝑒−Δ𝑠21

∗ /𝑅𝑒Δ𝐻21
∗ /𝑅𝑇 

(6) 

𝜈2 =
ℎ𝑁

𝑀2
𝑒−Δ𝑠2

∗/𝑅𝑒Δ𝐻2
∗/𝑅𝑇 

 (7) 

 
Eyring’s viscosity model for Newtonian fluids is 

given in (8) (Eyring, 1936).  
                                              

𝜂 =
ℎ𝑁

𝑉
𝑒𝑥𝑝 (

Δ𝐹∗

𝑅𝑇
) 

(8) 

 
The following (9) and (10) represent the relationship 

between real and ideal solutions. The excess property 
Δ𝐹𝐸∗ is called the excess free energy of activation for 

viscous flow.  

𝑙𝑛(𝜂𝑉) = 𝑙𝑛(𝜂𝑉)𝑖𝑑𝑒𝑎𝑙 +
Δ𝐹𝐸∗

𝑅𝑇
 

   
    (9) 

 

𝑙𝑛(𝜂𝑉) = ∑ 𝑥𝑖𝑙𝑛(𝜂𝑖𝑉𝑖
𝑜)

𝑛

𝑖=1

+
Δ𝐹𝐸∗

𝑅𝑇
 

               
(10) 

 

𝑙𝑛(𝜂𝑉) = ∑ 𝑥𝑖𝑙𝑛(𝜂𝑖𝑉𝑖
𝑜)

𝑛

𝑖=1

+
𝑥1𝑥2𝑊

𝑅𝑇
 

       
(11) 

 
A positive Δ𝐹𝐸∗reveals that the real mixture has a 

greater viscosity than that of an ideal mixture (Heric and 
Brewer, 1967). Stronger interaction between unlike 
molecules gives positive values to Δ𝐹𝐸∗ and excess 

viscosity 𝜂𝐸. Further, Meyer et al., (1971) discussed that 

∆𝐹𝐸∗ < 0 for the solutions with solute-solute 
associations. According to Fort and Moore (1966), the  

𝐺12 from Grunberg and Nissan (1949) as shown in (13) 
provides a better measure for the strength of interactions 
between components. The interchange energy or the 
interaction parameter 𝑊 𝑅𝑇⁄  from the Eyring’s 

viscosity model is proportional to 𝐺12 and shows the 
same trend as that of 𝐺12 (Mukesh et al., 2015).  

The ideal viscosity of a liquid mixture is defined in 
several ways in the literature (Kendall and Monroe, 
1917; Bingham, 1922; Cronauer et al., 1965; Martins et 
al., 2000). Correlations based on Redlich-Kister 
polynomials to fit the data of 𝜂𝐸 were reported for 

aqueous MEA solutions (Islam et al., 2004). Nigam and 
Mahl, (1971) illustrated that the sign of 𝐺12 along with 

𝜂𝐸 from (12) reveals what type of interaction such as 

strong, weak or dispersion is dominant in the solution.   
  

𝜂𝐸 = 𝜂 − (𝑥1𝜂1 + 𝑥2𝜂2)   (12) 
 

𝑙𝑛(𝜂12) = 𝑥1𝑙𝑛(𝜂1) + 𝑥2𝑙𝑛(𝜂2) + 𝑥1𝑥2𝐺12   (13) 

3 Methodology  

This study focuses on density and viscosity correlations 
for aqueous MEA and 3A1P mixtures. The study is 

based on measured density and viscosity data of this and 

previous works performed in University of South-
Eastern Norway (USN) (Idris and Eimer, 2016; Idris et 
al., 2018). Idris and Eimer, (2016) and Idris et al., 

(2018) discussed the density and viscosity of aqueous 
3A1P solutions under the range of mass fractions 𝑤1 
(i=1 and 2 refer amine and water respectively) within 0-
1 and temperatures 293.15-353.15K and 298.15-
373.15K respectively. The correlation suggested by 

Aronu et al., (2012) as given in (14) was adopted to 
correlate aqueous 3A1P density data.  
 

𝜌 = (𝑘1 +
𝑘2𝑥2

𝑇
) 𝑒𝑥𝑝 (

𝑘3

(𝑇)2 +
𝑘4𝑥1

𝑇
+ 𝑘5 (

𝑥1

𝑇
)

2
)       (14) 

 
The McAllister three-body model is adopted to 

predict kinematic viscosities of MEA + H2O and 3A1P 

+ H2O mixtures. The parameters related to the enthalpy 
and the entropy for viscous flow shown in the (3) to (7) 
are estimated via regression.  The Δ𝐹𝐸∗ for 3A1P + H2O 

mixtures is calculated using Eying’s viscosity model 
and a Redlich-Kister type polynomial is fitted to 
represent the viscosity data.  

3.1 Density and Viscosity Measurements 

Densities of aqueous amine solutions were measured 
using a DMA 4500 density meter from Anton Paar. The 
measurements of dynamic viscosity performed using a 
Physica MCR 101 rheometer from Anton Paar. A 
detailed description of the density meter and rheometer 

is given in publications based on previous at USN (Han 
et al., 2012; Idris et al., 2017). 

4 Results and Discussion 

In this section, the accuracy of the data fit of the density 
and viscosity correlations are determined using Average 

Absolute Relative Deviation (AARD) and Absolute 
Maximum Deviation (AMD) as given in (15) and (16).  
   

𝐴𝐴𝑅𝐷(%) = 
100%

𝑁
∑ |

𝑌𝑖
𝐸 − 𝑌𝑖

𝐶

𝑌𝑖
𝐸 |

𝑁

𝑖=1

 

 

     (15) 

𝐴𝑀𝐷 = 𝑀𝐴𝑋|𝑌𝑖
𝐸 − 𝑌𝑖

𝐶 |      (16) 

 

4.1 Density Correlation of 3A1P + H2O 
Mixtures 

The density data of 3A1P + H2O mixtures were fitted to 
the correlation described in (14) with R2= 0.97. The 
comparison of measured data with the correlation 
reveals that the deviation of correlated properties from 
measured is high at lower temperatures for the different 

3A1P concentrations.  Nevertheless, the correlation was 
able to represent data at AARD of 0.2 % and AMD of 
6.7 kg⸳m-3. The estimated parameters are given in Table 
1. Idris and Eimer, (2016) reported several density 
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correlation studies based on a Redlich-Kister type 
polynomial on excess volume, Jouyban-Acree (Jouyban 
et al., 2005) and Gonzalez-Olmos and Iglesias 

(Gonzalex-Olmos and Iglesias, 2008). Table 2 
summarize absolute average deviations of different 
correlations fitted for the aqueous 3A1P solutions.  
 
Table 1. Parameters for the Density Correlation for 
3A1P + H2O Mixtures 

Parameter Value 

𝑘1 706 

𝑘2 1.155 x105 

𝑘3 -7633 

𝑘4 112.1 

𝑘5 3602 

 
Table 2. Absolute Average Deviation Measured and 
Correlated Densities for 3A1P + H2O Mixtures 

Correlation Absolute average 
deviation (kg⸳m-3) 

Aronu (this work) 1.9 

Redlich-Kister 0.5 

Jouyban-Acree 2 

Gonzalez-Olmos and 
Iglesias 

0.7 

 
The correlation for excess volume was based on a 

Redlich-Kister polynomial with 39 parameters for the 
considered temperature range. Three parameters were 

estimated at each temperature level by fitting the 
correlation into the calculated excess volume using 
measured densities. The Jouyban-Acree correlation 
used only three parameters and absolute average 
deviation is similar to this study. A semiempirical model 
proposed by Gonzalez-Olmos and Iglesias with 12 
parameters was used to correlate densities over the range 
of 3A1P mole fractions and temperatures.  

The considered correlations in this study and the 
literature for the density of 3A1P have acceptable 
accuracy. The advantage of correlations proposed by 
Aronu, Jouyban-Acree and Gonzalez-Olmos and 
Iglesias is that they can be easily used in the 
mathematical modelling and simulations of a pilot or 
large-scale absorption processes. The models including 
parameters can be implemented in simulation programs 

like Aspen Plus or in programming tool like MATLAB.  

4.2 Viscosity Correlation of MEA + H2O and 
3A1P + H2O Mixtures 

The calculated kinematic viscosity of MEA + H2O and 
3A1P + H2O mixtures from dynamic viscosity and 
density were correlated using McAllister three-body 
model. The estimated parameters that are related to the 
activation energies of the mixtures are given in Table 3. 
These parameters were assumed constant over the 
considered temperature range. 
 

Table 3. Parameter in McAllister Three-Body Model 

Mixture ∆𝐻∗/ kJ⸳mol-1 ∆𝑆∗/J⸳mol-1K-1 

MEA + H2O Δ𝐻1
∗ = 28.068 Δ𝑆1

∗= 28.39 

 Δ𝐻12
∗  = 31.668 Δ𝑆12

∗ = 15.32 

 Δ𝐻21
∗  = 30.271 Δ𝑆21

∗ = 42.45 

 Δ𝐻2
∗ = 13.677 Δ𝑆2

∗= 36.45 

   

3A1P + H2O Δ𝐻1
∗ = 33.073 Δ𝑆1

∗= 39.03 

 Δ𝐻12
∗  = 31.410 Δ𝑆12

∗ = 11.27 

 Δ𝐻21
∗  = 43.316 Δ𝑆21

∗ = 40.30 

 Δ𝐻2
∗ = 12.429 Δ𝑆2

∗= 67.08 

 

 
Figure 1. Kinematic viscosity of MEA + H2O mixtures at 
temperatures: 293.15 K, ‘x’; 303.15 K, ‘□’; 313.15 K, ‘◇’; 

323.15 K, ‘△’; 333.15 K, ‘ж’; 343.15 K, ‘○’; 353.15 K, 
‘■’; 363.15 K, ‘◆’.  The solid lines represent the 

McAllister model. 
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The McAllister three-body model was able to 

represent the kinematic viscosity of MEA + H2O and 

3A1P + H2O with acceptable accuracy. Table 2 provides 
an overview of the accuracy based on AARD and AMD 
of the mixtures. For MEA + H2O, model deviates from 
the data at high MEA concentrations and low 
temperatures as shown in Figure 1. The highest 
deviations were observed at XMEA = 0.726 (𝑤1 = 0.9) 

and XMEA = 1 (𝑤1 = 1) at 293.15 K. The average 
absolute deviation of the correlated data is 1.68 x10-7 
m2⸳s-1. For 3A1P + H2O mixtures, the deviation is high 
at higher temperatures for the mixtures up to X3A1P ≤ 

0.057 and it becomes high at lower temperatures for the 
mixtures with X3A1P > 0.057 as illustrated in Figure 2. 
The average absolute deviation of the correlated data is 
1.62 x10-7 m2⸳s-1. 

 
Table 4. Calculated AARD and AMD of the McAllister 
Three-Body Model for the MEA + H2O and 3A1P + 
H2O  

Mixture AARD % AMD m2⸳s-1 

MEA + H2O 3.17 1.42x10-6 

3A1P + H2O 3.66 1.71 x10-6 

 
The Δ𝐹𝐸∗ was determined using measured density 

and viscosity for aqueous 3A1P mixtures at different 
temperatures. A Redlich-Kister type polynomial was 
fitted for the  Δ𝐹𝐸∗ and viscosity of aqueous 3A1P 

mixtures were obtained accordingly. This correlation 
used molar volumes of mixtures to determine the 
viscosity. For this study, the calculated molar volumes 

from density data were used and it is possible to use the 
density correlation that was discussed in this study or 
correlations in the literature to acquire molar volumes 
for the situations when measured data are not available. 
The correlation was able to fit the viscosity data with 
AARD of 2.7% and AMD of 1.1 mPa⸳s at 𝑤1= 0.8 and 

temperature of 303.15 K. These deviations are 
acceptable for engineering calculations. 

Figure 3 shows the comparison between measured 
and correlated viscosities for 3A1P + H2O mixtures. The 
∆𝐹𝐸∗ is positive for the considered range of 3A1P 

concentrations and temperatures. According to Heric 
and Brewer, (1967), if ∆𝐹𝐸∗ > 0, the viscosity of a real 

mixture is greater than that of an ideal mixture. This 
emphasizes strong intermolecular attractions in the 
solution. As reported by Idris et al., (2018),  𝜂𝐸 < 0 for 

the water rich region indicates weak intermolecular 
attractions. The presence of strong intermolecular 
attractions is determined as 𝜂𝐸> 0 for amine rich region. 

The interaction parameter 𝐺12 proposed by Grunberg 
and Nissan, (1949) for binary mixtures behaves similar 

to ∆𝐹𝐸∗, that is positive for considered 3A1P 
concentrations. Nigam and Mahl, (1971) show that for 
the weak intermolecular attractions 𝐺12 > 0 and 𝜂𝐸 < 0.  

 

 

 

Figure 3. Dynamic viscosity of 3A1P + H2O mixtures at 
temperatures: 298.15 K, ‘□’; 303.15 K, ‘◇’; 308.15 K, 

‘△’; 313.15 K, ‘x’; 318.15 K, ‘○’; 323.15 K, ‘-’; 328.15 K, 

‘+’; 333.15 K, ‘■’; 338.15 K, ‘◆’; 343.15 K, ‘▲’; 348.15 
K, ‘●’; 353.15 K, ‘ж’. The solid lines represent the 
correlation. 

4.3 Recommended Correlations for 

Simulations 

Mathematical modelling of the absorption process is 

based on material and energy balance of the gas/liquid 
interface. The composition and the temperature of the 
solvent vary continuously through the column for both 
steady state and dynamic conditions. Physical property 
correlations as a continuous function of composition and 
temperature can be easily implemented in a 
programming tool like MATLAB for both steady state 
and dynamic simulations. 

In this study, the parameters of the Aronu’s density 
correlation were evaluated in such a way that 
concentration and temperatures can be considered as 
continuous independent variables. The other advantages 
of this correlation are it is simple and accuracy is 
acceptable. The McAllister three-body model for 
kinematic viscosity can be easily converted into code 
with all the parameters as discussed in this study.  The 
proposed Redlich-Kister polynomial for the Eyring’s 

viscosity model is a continuous function of 
concentration and temperature. Accordingly, viscosity 
variations related to the changes in compositions and 
temperatures in the column can be observed and 
correlation can be used in other mass and heat transfer 
correlations.  

5 Conclusion 

This study discusses the density and viscosity 
correlations for the mixtures of MEA + H2O and 3A1P 
+ H2O. The considered correlations can be used in 
mathematical models such as continuity, momentum 

0

0.01

0.02

0.03

0 0.2 0.4 0.6 0.8 1

η
/ 
P

a
⸳s

x3A1P

SIMS 60

70DOI: 10.3384/ecp2017067  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



and energy equations to perform simulations in e.g. 
amine based absorption and desorption processes.  

The correlations for measured density and viscosity 

data of aqueous mixtures of MEA and 3A1P were 
discussed. Density data of aqueous 3A1P was correlated 
by the empirical correlation proposed by Aronu and was 
able to represent density data with AARD of 0.2% that 
is satisfactory in engineering calculations.  

The McAllister three-body model was adopted to fit 
kinematic viscosity data for aqueous MEA and aqueous 
3A1P mixtures.  The energy parameters in the model 

were evaluated through a regression. The three-body 
model can correlate kinematic viscosities for considered 
mixtures with acceptable accuracy having AARD of 3% 
and 4% for aqueous MEA and aqueous 3A1P mixtures 
respectively.  

The viscosity correlation based on a Redlich – Kister 
type polynomial for the excess free energy of activation 
for viscous flow using the Eyring’s viscosity model was 

developed to correlate viscosity data of 3A1P + H2O 
mixtures. The viscosity data were in good agreement 
with correlated viscosities with AARD of 2.7%.  
 

Nomenclature  

 
∆𝐹∗ Free energy of activation for viscous flow 

(J⸳mol-1) 
∆𝐹𝐸∗ Excess free energy of activation for viscous 

flow (J⸳mol-1) 
𝐺12 Characteristic constant  

ℎ Planck’s constant (J⸳s) 

∆𝐻∗ Enthalpy of activation for viscous flow 
(J⸳mol-1) 

𝑘  Parameters of Eq (14) 
𝑀 Molecular weight (kg⸳mol-1) 

𝑁 Avogadro’s number  
R Gas constant (J⸳mol-1⸳K-1) 
∆𝑆∗ Entropy of activation for viscous flow  

(J⸳mol-1⸳K-1) 
𝑇 Temperature (K) 
𝑉 Molar volume of mixture (m3⸳mol-1) 

𝑉𝐸 Excess molar volume (m3⸳mol-1) 
𝑉𝑖

𝑜 Molar volume of pure liquids (m3⸳mol-1) 

𝑊  Interchange energy (J⸳mol-1) 

𝑥 Mole fraction 

𝑌𝑖
𝐸 Measured property 

𝑌𝑖
𝐶 Calculated property 

 

Greek letters  
𝜂 Dynamic viscosity (Pa⸳s) 
𝜈 Kinematic viscosity (m2⸳s-1) 

𝜌 Density (kg⸳m-3) 
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Abstract 
This study discusses the applicability of the non-random 
two-liquid (NRTL) model to represent viscosity for 
MEA (monoethanol amine)  + H2O and AMP (2-amino-
2-methyl-1-propanol)  + MEA (monoethanol amine) + 
H2O mixtures under different amine concentrations at 
temperature ranges of 293.15 K– 363.15 K and  293.15 
K – 343.15 K respectively. The NRTL model is adopted 
to determine excess Gibbs free energy of mixing ∆𝐺𝐸∗ 

and the Eyring’s viscosity model based on absolute rate 
theory is used to obtain excess free energy of activation 
for viscous flow ∆𝐹𝐸∗. The correlations are proposed for 

∆𝐹𝐸∗ as a function of concentration of the components, 

temperature and ∆𝐺𝐸∗. Correlations are capable of 

representing measured viscosities at 1.3 % and 0.3 % of 
absolute average relative deviation (AARD %) for MEA 
+ H2O and AMP + MEA + H2O mixtures respectively. 
These deviations are acceptable for engineering 
calculations and correlations can be used in process 
design and simulations like Aspen HYSYS and ASPEN 
Plus.   

 
Keywords:    NRTL model, Eyring’s viscosity model, 
MEA, AMP  

1 Introduction 

In the design of units involving liquid flow like 

gas/liquid separators and heat exchangers, it is 
important to predict reasonably accurate physical 
properties like viscosity. Correlations depending on 
parameters from experiments are available for some 
systems. Estimation methods without the need for fitted 
parameters is a possibility. A possibility to use 
parameters from e.g. vapor/liquid equilibrium models to 
predict viscosity. 

In post combustion CO2 capture, the physical 
properties of aqueous alkanolamine solutions is a key 
factor in various aspects such as equipment design, 
modeling and simulations of absorber and desorber 
columns. Physical properties are present in various mass 
and heat transfer correlations and interfacial area 
correlations that are necessary to evaluate in engineering 
applications.  Accordingly, the viscosity data of aqueous 

alkanolamine mixtures are highly relevant to build 
correlations to predict viscosities for unmeasured 
conditions. Further correlations developed for the 

viscosity of aqueous alkanolamines can be used to 
develop correlations for the viscosity of CO2 loaded 
alkanolamine mixtures.  

Correlations based on statistical regression for the 
viscosity data have high uncertainties beyond the 
experimental range. The approach of Redlich-Kister 
(Redlich and Kister, 1948) type polynomial to fit 

physical properties is widely used and Islam et al., 
(2004) and Hartono et al., (2014) have taken this 
approach for viscosity data of aqueous MEA solutions. 
The Grunberg and Nissan model was used by Mandal et 
al., (2003) to correlate different aqueous tertiary 
mixtures. The McAllister model (McAllister, 1960) 
based on Eyring’s absolute rate theory for dynamic 
viscosity (Eyring, 1936) is used by Amundsen et al., 

(2009) and Lee and Lin, (1995) for aqueous MEA 
solutions and found the parameters to fit measured 
viscosities.  These models are capable of predicting 
viscosities at acceptable accuracies within the 
experimental range and can be used in engineering 
designs.  

The thermodynamic information like vapor-liquid 
equilibrium (VLE) of liquid mixtures can be combined 

with a viscosity model and such models may be stated 
as thermodynamics-viscosity models (Cao et al., 1993).  
The VLE data delivers information about molecular 
interaction, which can be used in local composition 
models like nonrandom two-liquid (NRTL) and 
UNIQUAC.  This approach has been applied several 
times for various multicomponent liquid mixtures. 
Martins et al., (2000) discussed the applicability of the 

UNIQUAC model for the viscosity predictions of binary 
and ternary systems. Novak et al., (2004) discussed 
segment based Eyring-NRTL viscosity model, which 
was concerned about the similarities between 
intermolecular friction and viscosity with a local 
composition model like NRTL to model excess 
properties as both are affected by nearest neighbor 
molecules. The viscosity of electrolyte solutions using 

Eyrings’s absolute rate theory has been discussed to 
replace excess free energy of activation for viscous flow 
with Gibbs free energy of mixing (Hu, 2004). For 
electrolyte solutions of MEA (monoethanol amine)   + 
H2O + CO2, the excess free energy of activation for 
viscous flow was replaced by the Gibbs free energy of 
mixing that was calculated using the electrolyte-NRTL 
model (Matin et al., 2013).  
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This study investigates the possibility to relate excess 
Gibbs free energy of mixing with the excess free energy 
of activation for viscous flow from Eyring’s absolute 

rate theory to predict viscosities at different 
compositions and temperatures of MEA + H2O and 
AMP (2-amino-2-methyl-1-propanol) + MEA + H2O 
mixtures. Measured density and viscosity data were 
used to calculate the excess free energy of activation for 
viscous flow. The NRTL model was adopted for 
calculating excess Gibbs free energy of mixing and 
compared with the excess free energy of activation for 

viscous flow for the considered mixtures. Finally, 
viscosity predictions were compared with measured 
data and the accuracy was determined by calculating 
average absolute relative deviation (AARD %).   

2 Methodology  

2.1 Dynamic Viscosity Based on Eyring’s 
Absolute Rate Theory  

 
A universal model to predict the viscosity of any 
solution is challenging as solutions exhibit different 
characteristics that are difficult to discuss in one model. 
Most of the amine solutions and their blends that are 
discussed in amine-based CO2 capture shows 

Newtonian behavior as the molecular weights are less 
than 5000 g⸳mol-1 (Bird et al., 2002). Introducing a 
qualitative picture of the mechanism of momentum 
transport of liquids, Eyring and coworkers developed a 
model to predict the viscosity of liquids from other 
physical properties (Eyring, 1936; Bird et al., 2002).  
Eyring’s viscosity model for Newtonian fluids is given 
in (1) and is valid for both pure liquids and liquid 

mixtures (Martins et al., 2000).  
    

𝜂 =
ℎ𝑁

𝑉
𝑒𝑥𝑝 (

Δ𝐹∗

𝑅𝑇
)   (1) 

 
Where, 𝜂, 𝑉, Δ𝐹∗, 𝑇, ℎ, 𝑁   and 𝑅 are dynamic viscosity, 

molar volume, free energy of activation for viscous 
flow, temperature, Planck’s constant, Avogadro’s 
number and the gas constant respectively.  

In order to compare with ideal solutions and to 
calculate the excess free energy of activation properties 

∆𝐹𝐸∗, following (2) and (3) are obtained by using (1). 
  

 

𝑙𝑛(𝜂𝑉) = 𝑙𝑛(𝜂𝑉)𝑖𝑑𝑒𝑎𝑙 +
Δ𝐹𝐸∗

𝑅𝑇
  

 

  (2) 

𝑙𝑛(𝜂𝑉) = ∑ 𝑥𝑖𝑙𝑛(𝜂𝑖𝑉𝑖
𝑜)𝑖 +

Δ𝐹𝐸∗

𝑅𝑇
  (3) 

 
Where, 𝑥𝑖, 𝜂𝑖 , 𝑉𝑖

𝑜 and Δ𝐹𝐸∗ are mole fraction, viscosity 

of pure liquids, molar volume of pure liquids and excess 
free energy of activation for viscous flow respectively. 
 

In this approach, the combination of terms of an ideal 
mixture and excess energy leads to an expression of 
viscosity in a real mixture. The ideal term of the (2) is 

calculated using the properties of pure liquids as given 
in the (3). The term ∆𝐹𝐸∗ 𝑅𝑇⁄  describes the non-ideality 
of the solution viscosity (Matin et al., 2013) and an 

appropriate model can enhance the prediction of the 
viscosity. Here, the possibility of using Gibbs free 
energy of mixing is discussed as it has been related in 
various ways to ∆𝐹𝐸∗ in the literature. Generally, it is 

related as Gibbs free energy, excess Gibbs energy 
through proportionality factor, Gibbs free energy of 
mixing and Gibbs free energy of mixing multiplied by a 
general constant (Matin et al., 2013). This study 
investigates the excess Gibbs free energy of mixing for  
MEA + H2O and AMP + MEA + H2O mixtures and 
compares it with ∆𝐹𝐸∗ calculated from the measured 

density and viscosity data. The NRTL model was 
adopted to calculate Gibbs free energy of mixing for 
different compositions and temperatures of the 

mixtures.  

2.2 NRTL Model 

The local composition theory explains the deviation of 
local compositions from the bulk composition due to 
different strength of attractions among the molecules in 
the mixture.  The non-random two liquid model (NRTL) 
is based on the local composition theory as Wilson’s 
model (Wilson, 1964), which explains the composition 
variations. For a solution of m components, the excess 

Gibbs free energy of mixing is given as (Prausnitz et al., 
1999)   
      

Δ𝐺𝐸∗

𝑅𝑇
= ∑ 𝑥𝑖

∑ 𝜏𝑗𝑖𝐺𝑗𝑖 𝑥𝑗
𝑚
𝑗=1

∑ 𝐺𝑙𝑖 𝑥𝑙
𝑚
𝑙=1

𝑚
𝑖=1   

 

(4) 

𝜏𝑗𝑖 =
𝑔𝑗𝑖−𝑔𝑖𝑖

𝑅𝑇
  (5) 

 

𝐺𝑗𝑖 = 𝑒𝑥𝑝(−𝛼𝑗𝑖𝜏𝑗𝑖)       (𝛼𝑗𝑖 = 𝛼𝑖𝑗) (6) 

 
Where, 𝑔𝑗𝑖  and 𝑔𝑖𝑖 are energy parameters to characterize 

i-j and i-i interactions respectively. 𝛼𝑗𝑖 is a non-

randomness parameter.  
Then the ∆𝐺𝑚𝑖𝑥

∗  is calculated as a sum of both ideal 

mixing and an excess term due to the non-ideal behavior 

of the solutions.  
A study performed by Schmidt et al., (2007)  on VLE 

and NRTL model for various aqueous amine solutions 
provide binary interaction parameters for MEA + H2O 
mixtures. A similar work done by Hartono et al., (2013) 
found relevant parameters for AMP + H2O mixtures. 
There is a lack of information about interaction 
parameters between AMP and MEA. Hence, for the 

tertiary AMP + MEA + H2O system, parameters from 
two binary solutions were used for the calculations.  It 
is also possible to use the commercial process 
simulation program Aspen Plus to perform all the 
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Table 1. Summary of the Compositions and Temperatures Considered for the Density and Viscosity Measurements 
of Aqueous Amine Mixtures. 

Solution Composition / wt % (by weight) Temperature / K 

MEA + H2O 0 – 100  (MEA) 293.15 – 363.15 

AMP + MEA + H2O 21/9/70  
(AMP/MEA/H2O) 

 
293.15 – 343.15 24/6/70 

27/3/70 

 
excess free energy of mixing calculations as it has 
binary interaction parameters for many components in 

the data banks. For the missing binary interactions 
parameters of NRTL model, the UNIFAC model can be 
used to make estimations. 

The density and viscosity of mixtures were measured 
using a DMA 4500 vibrational density meter and 
Physica MCR 101 rheometer with a double-gap pressure 
cell XL from Anton Paar. The properties were measured 
at different compositions and temperatures as given in 

Table 1.  

3 Results and Discussion 

The spontaneous mixing of MEA and H2O gives 
negative values for Gibbs free energy of mixing. The 
excess Gibbs free energy ∆𝐺𝐸∗ of mixing was analyzed 

for the compositions of 𝑥𝑀𝐸𝐴 from 0 to 1 of MEA + H2O 

mixtures. Figure 1 illustrates the calculated ∆𝐺𝐸∗ from 
the NRTL model under different MEA concentrations 

and temperatures. The calculated ∆𝐹𝐸∗ from measured 
density and viscosity is positive while the excess 
viscosity 𝜂𝐸calculated from (7)  gives negative values 

for the low MEA concentration region indicating weak 
intermolecular attractions and gives positive values for 
high MEA concentration region signifying strong 

interactions.  
   

𝜂𝐸 = 𝜂 − ∑ 𝑥𝑖𝜂𝑖
𝑛
𝑖=1   (7) 

 
(n=2 for MEA + H2O mixtures and n=3 for AMP + 
MEA + H2O mixtures) 
 

The ratio of ∆𝐺𝐸∗ ∆𝐹𝐸∗⁄ was determined and following 
correlations is proposed with 𝑅2= 0.99.  

  
− ∆𝐺𝐸∗ ∆𝐹𝐸∗⁄ = 𝑓(𝑥𝑀𝐸𝐴,𝑇)  
 

(8) 

𝑓(𝑥𝑀𝐸𝐴 ,𝑇) = 𝑎 + 𝑏𝑥𝑀𝐸𝐴𝑇 + 𝑐𝑇2  (9) 

 
The suggested correlation was used to replace ∆𝐹𝐸∗ 

in (3) and the viscosities were obtained accordingly. 
Figure 2 illustrates the comparison between measured 
viscosity and the correlation fit for aqueous MEA. The 
fit was in good agreement with measured data with 

AARD of 1.3% and AMD (maximum deviation) of 1.0 
mPa⸳s as given in Table 4. This deviation is acceptable 
for engineering calculations and can be used to develop 

correlations for the CO2 loaded solutions. The estimated 
parameters for the correlation shown in (9) are given in 

Table 2.   
 

 
Figure 1. The variation of excess Gibbs free energy vs 
MEA mole fraction and temperatures: 293.15 K, ‘○’; 
303.15 K, ‘+’; 313.15 K, ‘●’; 323.15 K, ‘ж’; 333.15 K, ‘x’; 

343.15 K, ‘▲’; 353.15 K, ‘◆’; 363.15 K, ‘■’.   

 

 
Figure 2. Comparison of measured viscosity of MEA + 

H2O mixtures with correlation at temperatures: 293.15 K, 
‘■’; 303.15 K, ‘◆’; 313.15 K, ‘▲’; 323.15 K, ‘x’; 333.15 
K, ‘ж’; 343.15 K, ‘●’; 353.15 K, ‘+’; 363.15 K, ‘○’.  The 

dash ─ dotted lines represent the correlation. 
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Table 2. Estimated Parameters for Correlation of Viscosity of Aqueous MEA. 

MEA 
(wt%) 

Temperature  
(K) 

No.  
points 

Parameters 

0 – 100 293.15 – 363.15 72 a = 0.2801  ± 0.008 
b = (5.557±0.0.164) x10-04  

c= (-1.623 ± 0.0735) x10-06   

 
Table 3. The Estimated Binary Parameters for the Correlation Shown in (10-13). 

Parameter AMP + MEA MEA + H2O AMP + H2O 

𝐴0 𝑎00 -1.724 x104 141.854 -117.059 

𝑎01 -9.370 0.562 0.296 

𝑎02 -2.516 0.598 0.623 

𝐴1 𝑎10 -1.870 x105 -143.070 141.824 

𝑎11 -97.727 -0.992 -0.040 

𝑎12 101.381 0.540 0.609 

𝐴2 𝑎20 5.812 x106 111.435 -119.768 

𝑎21 5.348 x103 0.473 0.558 

𝑎22 -2.233 x103 -0.168 -0.067 

The ∆𝐺𝐸∗ for AMP + MEA + H2O mixtures were 
examined using the NRTL model. Figure 3 shows the 

calculated ∆𝐺𝐸∗ for the mixtures considered in this 
work. The ∆𝐺𝐸∗ is negative for the considered AMP 

concentrations and temperatures. Further, negative 𝜂𝐸 

implies weak intermolecular interactions for the range 
of AMP concentrations and temperatures. As discussed 
in the MEA + H2O mixtures, the ratio (r) of 
− ∆𝐺𝐸∗ ∆𝐹𝐸∗⁄  was determined and a correlation was 

proposed as given in  (10-13) to find the best fit for AMP 
+ MEA + H2O mixtures.  
     

− ∆𝐺𝐸∗ ∆𝐹𝐸∗⁄ = 𝑓(𝑥𝐴𝑀𝑃,𝑥𝑀𝐸𝐴 ,𝑥𝐻2𝑂, 𝑇)    

 

(10) 

The ratio − ∆𝐺𝐸∗ ∆𝐹𝐸∗⁄ = 𝑟12 + 𝑟23 + 𝑟13 
 

  (11) 

𝑟𝑗𝑘 = 𝑥𝑗𝑥𝑘 ∑ 𝐴𝑖(𝑥𝑗 − 𝑥𝑘)
𝑖𝑛

𝑖=0   (12) 

 
𝐴𝑖 = 𝑎𝑖𝑜 + 𝑎𝑖1(𝑇) + 𝑎𝑖2(𝑇)2  

 
(13) 

 
The proposed correlation was able to represent 

measured viscosities with acceptable accuracy as 

illustrated by AARD and AMD in Table 4. Figure 4 
shows the comparison of the correlation with measured 
data in which maximum deviations were observed at 
low temperatures. These deviations are smaller 
compared to the MEA + H2O mixtures since only three 
different compositions were considered for the study.  
 
Table 4. Calculated  AARD% and AMD (mPa⸳s) for 

Comparison of Correlation with Measured Data.  
Mixture AARD (%) AMD 

(mPa⸳s) 

MEA + H2O 1.3 1.0 

AMP + MEA + H2O 0.3 0.02 

 

 
Figure 3. The variation of excess Gibbs free energy vs 
AMP mole fractions and temperatures: 293.15 K, ‘○’; 
303.15 K, ‘ж’; 313.15 K, ‘x’; 323.15 K, ‘▲’; 333.15 K, 
‘◆’; 343.15 K, ‘■’.  

 
The viscosity of CO2 loaded AMP + MEA + H2O 

mixtures are highly important in the design and 
mathematical modelling and simulations of CO2 capture 
process based on absorption. The correlation discussed 

in this study for AMP + MEA + H2O mixtures can be 
adopted to developed viscosity correlations for CO2 
loaded solutions using measured data. For use in e.g. a 
process simulation program like Aspen HYSYS or 
Aspen Plus, It is shown that the viscosities can be 
estimated by Hartono’s correlation (Hartono et al., 
2014) with fitted parameters for MEA + H2O mixtures 
with AARD 4.2 % and the semiempirical model 

discussed in this work can estimate viscosity with 1.3% 
AARD. Mandal et al., (2003) used the Grunberg and 
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Nissan correlation (Li and Lie, 1994) to fit the viscosity 
data with 3.08% AARD and it is higher than that from 
this study for AMP + MEA + H2O mixtures. 

 

 
Figure 4. Comparison of measured viscosity of AMP +
MEA + H2O mixtures with correlation at temperatures:
293.15 K, ‘○’; 303.15 K, ‘□’; 313.15 K, ‘◇’; 323.15 K, ‘x’;

333.15 K, ‘△’; 343.15 K, ‘+’. The dash ─ dotted lines

represent the correlation.

4 Conclusion

This work presents the applicability of the NRTL model
to represent viscosities of MEA + H2O and AMP +
MEA + H2O mixtures. The Eyring’s viscosity model

was adopted to determine excess free energy of
activation for viscous flow.  Correlations based on the
regression for the ratio between excess Gibbs free
energy of mixing from NRTL model and excess free
energy of activation for viscous flow was proposed to
represent measured viscosities. The accuracy of the
correlation predictions are acceptable as the AARD (%)
is 1.3 and 0.3 for MEA + H2O and AMP + MEA + H2O

mixtures respectively. The NRTL model is available in
the Aspen Plus commercial software to determine vapor
– liquid equilibrium.  In this paper, it is shown that these
types of correlations can be integrated to determine
viscosity in aqueous alkanolamines.
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Abstract
This paper presents the results of a study where the
feasibility of a non-invasive acoustic measurement
method was tested for monitoring of erosion in a
pneumatic conveying system during the dilute-
phase conveying of sand. Measurements were collected 
by the acoustic method from a pipe bend in a test 
area of a pneumatic conveying system which were 
found in previous studies to be especially afflicted 
with erosion. Reference measurements of the loss of 
mass caused by erosion were obtained by removing a 
detachable piece from the test area and weighing it 
before reattaching it to the pipeline. Partial least 
squares regression was used to calibrate models relat-
ing the acoustic measurements to the response vari-
able. Cross-validation techniques were used to evalu-
ate the feasibility of the method for monitoring of ero-
sion in the pipe bend and to investigate whether the 
method would be affected by noise and vibrations 
generated by the pneumatic conveying system.

 
Keywords:     erosion, pneumatic conveying, monitoring,
acoustic sensors

1 Introduction
Pneumatic conveying, the transportation of dry material
through a pipeline in a gas stream, is a common method
of transportation of particulate and granulate material in
many industries. Advantages of the technology include
flexibility in the conveying system with multiple pick-
up and discharge points, clean and dust-free
transportation of solids and easy automation of the
conveying systems. Pipe erosion has been identified as
one of the main challenges of the pneumatic conveying
technology. Erosive wear is particularly significant in
dilute phase pneumatic conveying due to the higher
velocities used in such systems. Pipe bends are often
exposed to severe erosion.

Erosion is defined as the removal of material from a
surface due to impinging particles. Erosive wear can be
influenced by multiple factors, including properties of
the conveyed material such as particle size and hardness
as well as flow properties like particle velocity and

impact angle. The characteristics of the surface material 
can also have an effect on erosive wear (G. E. Klinzing 
et al. 1997). Material which is removed from the pipe 
walls can mix with the conveyed material and cause 
quality and safety issues. Contamination of the 
conveyed material can be highly problematic for 
example in food and feed production. In some processes, 
mixing metal particles with the transported powder 
materials can cause dust explosions. Also, equipment 
failure due to erosion can lead to system downtime and 
higher maintenance costs (Ratnayake et al. 2007).  

  In a study by (Vieira et al. 2017), a system of 16 
non-intrusive ultrasonic devices attached to the outer 
wall of a pipe bend was used to measure erosion in a test 
rig during multiphase flow. The pipe wall thickness was 
monitored in 16 points under various conditions, and the 
measurements were used to investigate the resulting 
erosion rates and patterns. The ultrasonic method was 
found to be a useful tool for investigating erosion 
mechanisms and getting a better understanding of the 
erosive wear phenomenon. However, for monitoring of 
erosion in an industrial setting, a simpler and more 
practical monitoring system which require less 
equipment to be installed in the test area would be 
preferable.  

Developed at the University College of South-
Eastern Norway, acoustic chemometrics is an indirect 
monitoring method in which chemometric techniques 
are applied to relate acoustic measurements to a 
response variable. A recent, active version of the 
acoustic method was presented in (Haugland et al. 
2019), where the method was used to monitor scaling in 
a pneumatic conveying system. Acoustic chemometrics 
is a non-intrusive technique utilizing easy to install 
"clamp-on" sensors.   

This paper presents the results of a study conducted 
to test the feasibility of the active acoustic method to 
monitor erosion in a pneumatic conveying system 
transporting material in dilute phase. Measurements 
were obtained during powder transportation as well as 
during system shutdown periods to evaluate whether the 
performance of the method would be disturbed by noise 
and vibrations from the conveying system during 
powder transportation.   
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2 Materials and Methods 
2.1 Pneumatic conveying test rig  
Tests were conducted in a pilot-scale pneumatic 
conveying rig located in the powder research hall of 
SINTEF Tel-Tek (Porsgrunn, Norway). A schematic 
sketch of the rig, which makes up a closed system, can 
be seen in Figure 1. When the pneumatic conveying rig 
is operated, bulk material is dispatched from the storage 
tank and fed into the pipeline by a rotary feeder at a pre-
set feeding rate. The pipeline (3.5-inch) consist of both 
horizontal and vertical sections as well as several bends. 
At the end of the line, the material is collected in the 
receiving tank, from which it can be transported back 
into the storage silo. The receiving tank is installed on 
top of three load cells. Readings from the load cells can 
be used to estimate the material flow of the conveying 
system. Transportation air is supplied by a screw-type 
air compressor (Ingersoll Rand R110i) combined with 
an air dryer (Ingersoll Rand D1300IN-A). The air flow 
rate is controlled manually by a ball valve and 
monitored by two air flow meters (Yokogawa, YF 108) 
situated at the start and end of the conveying pipeline, 
respectively. The pressure drops are monitored by nine 
pressure transducers (General Electric, UNIK 500 
series) distributed along the pipeline.  

In previous tests conducted in the pneumatic 
conveying rig, several areas where severe erosion occur 
were identified. One of these areas, the exit of a 90° 
bend, was selected as the test area for this study. The 
position of the test area is marked in Figure 1. In the test 
area, the pipe was fitted with a customized flange such 
that the outer wall of the pipe bend could be detached 
from the pipeline. The detachable part of the pipe bend 
will hereafter be referred to as the test piece. By 
removing and weighing the test piece, reference 
measurements of the erosion of this part of the pipe 
could be obtained. An image of the test piece can be seen 
in Figure 2.   
 

2.2 Active acoustic monitoring method 
A newly developed version of acoustic chemometrics, 
the active method involves exciting a system by an 
acoustic input signal. The acoustic signal will be 
changed by the system in a way that is affected by some 
of the systems physical properties. Thus, such altered 
acoustic signals contain latent information about system 
characteristics. Altered acoustic signals are measured as 
output signals from selected locations in the system. The 
measured and processed output signals are referred to as 
acoustic spectra. In order to extract information from the 
acoustic spectra, models which relates the 
measurements to the properties of interest must be 
calibrated.   

Piezo elements (Murata, 7BB-20-6L0) were used 
both to send the input signal and to measure output 
signals in the study. The piezo elements (one transducer 
and two sensors) were attached to the test piece and their 
cables were taped to the same surface to avoid vibrations 
which could disturbe the measurements. The set-up of 
the transducer and sensors can be seen in Figure 2.  

A function generator (Escort ECG-3230) was used to 
create the input signals, which consists of a square 
waveform sweep function of linearly increasing 
frequency (0-200 kHz) and constant amplitude. 
Simultaneously, the frequency response of the sweep 
function was monitored as output signals by the two 
sensors. The output signals were amplified by a signal 
adapter (SAM, Applied Chemometrics Research Group, 
University of South-Eastern Norway) and then sent 
through a bandpass filter to avoid aliasing. 
Subsequently, A/D conversion was conducted by a 
DAQ-unit (National Instruments). The signals were 
filtered by a Blackman-Harris window to avoid spectral 
leakage and transformed from the time domain to the 
frequency domain by a Fast Fourier Transformation 
(FFT). A PC with specialized LabVIEW software 
(National Instruments) was applied for the data 
acquisition.  
 

Figure 1. Schematic overview of the pneumatic conveying system. 
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2.3 Test procedure 
Due to its abrasive nature, sand was selected as the 
material to convey. A 50:50 mixture (approx. 550 kg) of 
two different sand qualities A and B (Sibelco Nordic 
AS) was added to the storage tank. The two qualities 
were mixed in order to get a steady flow through the 
pneumatic conveying system. The size ranges of the 
sand qualities are given in Table 1.  

 

Table 1. Size ranges of sand qualities.  

Sand quality Size range (mm) 
A 0.4-1.0 
B 1.0-2.5 
 

To operate the pneumatic conveying rig, the air inlet 
valve was opened to start air flow before sand was 
introduced from the storage tank to the pipeline through 
the rotary feeder. When the desired test conditions had 
been achieved and the dilute phase transportation of 
sand had reached steady state, three replicate 
measurements were obtained by the acoustic sensors. 
After all the sand had been conveyed from the storage 
tank to the receiving tank, the pipeline was flushed to 
remove any remaining material from the pipeline. 
Subsequently, the pneumatic conveying system was 
shut down and three additional replicate measurements 
were obtained by the acoustic method during the system 
downtime. Finally, the material was transferred back to 
the storage tank. The procedure was repeated multiple 
times. An overview of the test conditions is listed in 
Table 2. 
 
 

 

Table 2. Overview of test conditions.  

Inlet air flow rate [Nm3/h] 300-320 
Air temperature [°C] 15-20 
Solid mass flow rate [kg/s] 0.2-0.3 
Solid loading ratio 0.9-1.5 
Reynolds number 1.1*104-1.2*104 

 
Reference measurements of the erosion as the loss of 

mass from the test piece was obtained approx. for every 
2 tons of sand transported past the test area. To get a 
reference measurement, the test piece was detached 
from the pipe bend and weighed. Then the test piece was 
reattached to the pipeline and pneumatic conveying of 
sand was resumed. 

2.4 Data analysis  
Two datasets were prepared from the measurements, 
one containing the acoustic spectra obtained during 
operation of the pneumatic conveying system and the 
other consisting of the measurements collected during 
system downtime. In each of the datasets, the acoustic 
spectra were arranged in a matrix X. In X, every row 
contains a measurement and every column represents a 
frequency of the acoustic spectra. The reference values 
associated with each spectrum were placed in the 
corresponding rows of a response vector y. The 
variables in the datasets were mean centered and scaled 
to unit variance prior to the data analysis.  

2.4.1 Latent variable matrix decomposition 
In many cases, multivariate data is colinear. That is, 
many of the variables the matrix X are related to and 
influenced by some common factors. Thus, the data in 
X can be expressed by a smaller set of components, 
sometimes referred to as latent variables. Each latent 
variable is represented by a score vector t and a loading 
vector p and can be constructed by linear combinations 

Figure 2. Photography of the test piece with transducer and acoustic sensors. 
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of the original variables in X. There are several different 
strategies which can be applied to decompose a matrix 
into latent variables, of which the NIPALS algorithm is 
the standard choice. This approach is based on an 
iteration process of successive orthogonal projections as 
described in Equations 1-3 (Kvalheim 1987).  

First, a weight vector wa is defined and a score vector 
ta is calculated by projecting the rows of Xa onto the 
weight vector as described in Equation 1. 

 
𝒕𝒕𝑎𝑎 = 𝑿𝑿𝑎𝑎𝒘𝒘𝑎𝑎 (1) 

  
Next, the columns in Xa are projected onto the score 

vector to calculate the loading vector pa as stated in 
Equation 2. 

𝒑𝒑𝑎𝑎 =
𝒕𝒕𝑎𝑎𝑇𝑇𝑿𝑿𝑎𝑎
‖𝒕𝒕𝑎𝑎𝑇𝑇𝑿𝑿𝑎𝑎‖

 (2) 

 
Finally, the part of the Xa matrix which is described 

by the component represented by ta and pa is subtracted 
from Xa as described in Equation 3, for which X1 = X.   

 
𝑿𝑿𝑎𝑎+1 = 𝑿𝑿𝑎𝑎 − 𝒕𝒕𝑎𝑎𝒑𝒑𝑎𝑎𝑇𝑇 (3) 

 
The steps expressed in Equation 1-3 are repeated for 

a = 1,2, …, A, where A ≤ rank(X). Typically, X can be 
closely approximated by a model constructed from only 
a few components, that is A << rank(X). Thus, the 
matrix decompositions can lead to a significant 
reduction of dimensionality and simplify interpretation 
of the data. Accordingly, the X matrix is decomposed 
into an information part (represented by the A 
components) and a noise part (the E matrix) as 
expressed in Equation 4.  

 

𝑿𝑿 = 𝒕𝒕1𝒑𝒑1𝑇𝑇 + 𝒕𝒕2𝒑𝒑2𝑇𝑇 +⋯+ 𝒕𝒕𝐴𝐴𝒑𝒑𝐴𝐴𝑇𝑇 + 𝑬𝑬 (4) 
 

2.4.2 Partial Least Squares Regression (PLS-R) 
Partial Least Squares Regression (PLS-R) is a 
multivariate calibration method based on latent variable 
matrix decomposition. In PLS-R, the target is to find a 
matrix β which relates the predictor variables in X to the 
response variable y and minimizes the error ϵ in 
Equation 4.  

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝝐𝝐 (5) 
 

In PLS-R, the weights w are defined as stated in 
Equation 6.  

𝒘𝒘𝑎𝑎 =
𝒚𝒚𝑎𝑎𝑇𝑇𝑿𝑿𝑎𝑎
‖𝒚𝒚𝑎𝑎𝑇𝑇𝑿𝑿𝑎𝑎‖

 (6) 

 
As a consequence of the definition of the weights w, 

the matrix decomposition in PLS-R is guided by a 

criterion maximizing the covariance between the 
predictor variables in X and the response y. Thus, the 
PLS components will contain relevant information to 
describe the relationship between X and y (Martens and 
Næs 1989).  
 

2.4.3 Cross-validation 
In cross-validation, the n measurements in a calibration 
dataset is split into s segments of similar or equal size, 
where s = 2, 3, …, n. The distribution of measurements 
into segments can be done randomly or by some 
dedicated method. One by one, each of the segments are 
held out while a sub-model is calibrated based on the 
remaining measurements. The measurements in every 
left-out segment are used to test the corresponding sub-
model. For the left-out measurements, ŷ-values are 
predicted by the calibrated sub-model (Filzmoser 2009). 
The root mean squared error of cross validation 
(RMSECV) is calculated by comparing every ŷ-value to 
the corresponding reference y-value as stated in 
Equation 7.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎 = �∑ �𝒚𝒚�𝑎𝑎,𝑖𝑖 − 𝒚𝒚𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

 (7) 

 
A RMSECV value is calculated for every component 

a and can be used to evaluate how many components 
should be included in a model. There are several 
versions of cross validation, differing by the selected 
number s of segments applied.  

The case where s = 2 is considered to be the ideal 
version of cross-validation and should only be used 
when the calibration set contains a high quantity of 
measurements. This method is somewhat similar to test 
set validation, the latter a validation method where an 
independently collected test set is used to validate a 
model (Esbensen et al. 2001). There are multiple ways 
of combining the n measurements into two segments. 
Thus, the model statistics resulting from using the 2-
segmented version of cross-validation will vary to some 
extent depending on how the measurements in the 
calibration set are distributed into the two sections.  

Leave-one-out (LOO) is another version of cross 
validation, for which s = n, meaning that every 
measurement in the calibration set is left out once while 
a sub-model is calibrated based on all other 
measurements. Although much used in the literature, 
this method is considered the weakest form of cross 
validation (Esbensen et al. 2001). However, since there 
is only one possible way of distributing the n 
measurements into segments for LOO, the model 
statistics resulting from using LOO will not vary based 
on sample selection as was the case with the 2-
segmented version of cross validation. Consequently, 
the LOO cross-validation method is well suited for 
conducting relative comparisons of the performance of 
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models calibrated from similar data obtained under 
different process conditions.  

3 Results 
In Figure 3, the measured values of loss of mass from 
the test piece are plotted against the mass of sand 
transported through the pneumatic conveying system.  

 
Figure 3. Erosion as loss of mass from test piece. 
 

As can be seen from Figure 3, erosion of the test 
piece occurred by a steady rate throughout the study. 
Based on the data in Figure 3, reference values for every 
obtained acoustic measurement were calculated.  

To evaluate the feasibility of the acoustic method 
for monitoring of erosion in a pipeline, the 2-segmented 
version of cross-validation was used when calibrating 
models from the measured data. Several plots describing 
one of these models, which was calibrated from the 
measurements obtained during powder transportation, 
are shown in Figure 4 to Figure 7.  

 

 
Figure 4. X-y Relation Outliers plot. 

Figure 4 shows a X-y Relation Outliers plot which 
can be used for outlier detection. The measurement 
points should form a relatively straight line in a X-y 
Relation Outliers plot, and any points deviating 
significantly from the line can be considered as outlier 
candidates. In Figure 4, it can be seen that most of the 
points falls close to a straight line. A few points in the 
lower left corner of Figure 4 deviates from the rest to 
some extent. The deviating points correspond to some 
of the first measurements obtained in the study, when 
very little erosion had occurred. Thus, it is not so 
surprising that the points are somewhat different from 
the rest. Since it was assumed that the outlier candidates 
were correctly obtained measurements representing 
special conditions in the test area, they were not 
removed from the dataset.  

 

 
Figure 5. Residual Validation Variance plot. 

 
In Figure 5, a Residual Validation Variance plot 

showing the variance in the response vector y which is 
explained by adding components to the model is shown. 
Such plots can be used to decide the number of 
components which should be included in a model to be 
able to describe the relevant variations in a dataset 
without overfitting the model. Based on the plot in 
Figure 5, it was decided to include two components in 
the model. 
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Figure 6. Predicted vs. Reference plot. 

 
The measured reference values are compared with 

the corresponding values predicted by the calibrated 
model in Figure 6, which also include some model 
statistics describing the model. The RMSECV error has 
the same unit as the y-values. The relatively low 
RMSECV-value together with the r2-value, slope and 
offset of the line fitted to the points in Figure 6 shows 
that the two sub-models calibrated as part of the cross 
validation could predict the held-out values with good 
precision.  

 

 
Figure 7. Predicted and Reference plot. 

 
From Figure 7, in which the reference values are 

plotted together with the values predicted by the model, 
it can also be seen that there is generally a good 
correspondence between the predicted values and the 
reference values. After considering the plots in Figure 4 
to Figure 7 together with the model statistics given in 
Figure 6, it can be concluded that the acoustic method 
holds good promise as a monitoring method for erosion 

in a pipeline. There is a clear structure in the measured 
acoustic data which can be related to erosion through 
calibrated PLS-R models. To estimate the magnitude of 
the prediction error which should be expected when the 
acoustic method is used to predict new values y based 
on new measurements X, test set validation against a 
new and independently measured dataset should be 
performed in future work.     

In order to compare how well the acoustic method 
performed for monitoring of erosion while sand was 
transported through the pipeline with the case where the 
pneumatic conveying system was shut down, two 
additional models were calibrated. One model was 
based on data obtained during powder transportation 
and the other on measurements conducted during system 
shutdown. The leave-one-out version of cross validation 
was used in the model calibrations to facilitate objective 
comparison of the two situations. Model statistics 
describing the resulting models are listed in Table 3.  

 

Table 3. Model statistics for LOO cross validated models.  

Model Powder transport System downtime 
r2 0.991 0.996 
RMSECV 0.485 0.439 
Slope 0.979 0.981 
Offset 0.180 0.162 

 
From Table 3, it can be seen that the model based 

on the measurements which were obtained when the 
pneumatic conveying system was shut down gave 
slightly better model statistics and lower error than the 
model calibrated from data measured during powder 
transportation. However, the differences are minimal, 
showing that the acoustic method is not significantly 
affected by noise from the system during powder 
transportation.  

Further work is needed to test the effect of factors 
like temperature changes, variating flow conditions, on 
the performance of the method. Model should be made 
from measurements obtained for conditions 
spanning/representing the range of conditions in a 
specific industrial site. Scaling, heat expansion 
 

4 Conclusions 
In this study, the feasibility of an acoustic measurement 
technique for monitoring of erosion in dilute phase 
pneumatic conveying was evaluated. Results indicated 
that the method holds good promise for monitoring of 
erosion in pneumatic conveying pipelines. A clear 
structure in the data which could be related to erosion 
through PLS-R models was found. Also, it was found 
that the acoustic method was not significantly affected 
by noise and vibration generated by the pneumatic 
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conveying system during transportation of material 
through the pipeline.  
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Abstract

Sensors play a key role today and have been developed
to be used in many applications that can be life critical as
with e.g. fire alarms. When mines now start investing
in information systems and information technology
infrastructure, they have taken one step closer to digitiza-
tion. This in turn creates opportunities for the mines to
become completely autonomous in the future.
Controlling, monitoring and planning such production
requires new digitized solutions. Part of such a solution
could for example be to mount different types of sensors in
the mining process. Data gathering from sensors with
diagnostics supported by predefined set-points enables early
alarms allowing production personnel to react before a fire
is a fact. This paper describes the conducted experimental
study aiming at identifying risk for fire caused by mining
vehicles in underground mines. The test result shows that
some types of sensors have potential to early detect fire
hazards.

Keywords: fire, underground mines, early diagnose,
gas sensors, overheating, ventilation

Introduction

The Energy Revolution, Industry 4.0 and Electricity
Mobility are focus areas that will affect the mining industry
and how they will operate it in the future. Furthermore, it
will transform and replace today's dirty and dangerous work-
activities when for example. mining trucks is being powered
by batteries.

In addition, it will support the development towards a
fully autonomous mining solution. Such operation will
require faster approaches to be able to detect changes in
production and prevent something serious from occurring.

A challenging goal which the Swedish government has
decided, is to become a fossil-free country in year 2045. The
energy used for only ventilation in some mines represent
49% of their total energy consumption (Natural Resources,
2005). One percent of the total energy consumption in
Sweden relates to ventilating the Swedish mines. This has
led to that the mining industry now starts to explore how they
can contribute to this goal.

One part of the solution that can support this goal is the
replacement of the mining truck fleet from being diesel-
powered to be powered by batteries. An example is the
project that took place September 18th, 2018 in the world's
most effective open-pit mine Aitik (Boliden) in Sweden. The
goal of the project is to investigate whether it is possible to
replace parts of Aitik’s transport system with electrified
trucks. Aiming at that the majority tons of rock that are being
transported annually in the open-pit can be moved
completely without fossil fuels.
    The tested traveling distance (Figure 1) is
approximately 700 m and is expected to save around 830 m³
of diesel per year. This gives Boliden the possibility to
reduce greenhouse gas emissions by up to 80% on the routes
where the technology can be implemented. Other positive
results from the test in proved that the electrified truck was
faster than the diesel driven in the uphill race, meaning that
there is a future potential to influence the productivity
positively.

Figure 1. Boliden, Aitik electrified truck versus diesel truck
race.
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Many advantages can be observed with this transition
from diesel to battery-powered trucks, related to cost as for
carbon dioxide reduction, resulting in cleaner and healthier
working environment. However, the mining industry faces
also challenges to ensure that productivity is maintained or
improved further while preventing it from compromising
safety at the workplace when introducing new mining
vehicle fleets. New risks, issues and challenges with 
batterypowered trucks are:

· Fire and smoke development (Bøe and Reitan,
2018)

· Mitigation and fire suppression (Bøe and Reitan,
2018)

· Ventilation and evacuation (Ingasson et al., 2015)

· Released gases which are not only flammable but
also toxic (Ingasson et al., 2015)

   Commercial Li-ion cells contain substances that can
release toxic fluorine gases such as hydrogen fluoride (HF)
and other harmful gases if undergoing failures (Ahlberg
Tidblad, 2018; Larsson et al., 2018). Additional challenges,
firefighter´s have indicated that they lack to some extent
knowledge, proper clothing, training and extinguishing
technique to handle fires involving Li-ion cells.

Safety issues relating to fully autonomous mines are
topics being discussed when the Global Mining Group,
GMG, invites the mining industry to seminars and
workshops around the world today. Taken all the above into
account, it is understandable that there is a great interest to
early diagnose as for detection of these problems that can
occur in mines to minimize production stop.

1 Background
Common risks that may occur in both an open pit mine and
an underground mine (Reddy et al., 2016) are for example:

· Sink Holes
· Slope Failure
· Roof Collapses
· Floods
· Rock Bursts
· Fires
· Toxic Gases

   For fully autonomous mining a robust early warning
safety system ought to be able and monitor as for determine
possible threats caused by the listed risks. In addition, the
entities like personnel and assets (machinery & vehicle) need
to be safe-guarded. Further key parameter to monitor is the
mine area to provide insight on landscape changes and
presence of danger zones that need to be demarcated.
According to ((Reddy et al., 2016), sensor network is

recommended for early detection of hazards and their
advantages have proven to be:

· Automated Measurement ability
· Ultra-low Power Consumption
· Versatility
· Cost-effectiveness
· Ease of manufacture
· Ease of deployment

   Underground mining is hazardous and from a
manufacturing system perspective challenging and
unconventional. Developing an autonomous underground
mining manufacturing system proves difficult due to
inadequate connectivity and non-uniform manufacturing
environment. Some mining businesses have or are investing
in information systems (IS) and information technology (IT)
to provide connectivity while others are somewhat reluctant
and can be considered conservative when it comes to
installing IS / IT solutions. Regarding the complexity of the
manufacturing environment. It is a great challenge to
automate the excavation using autonomous vehicles because
the vehicles require many and advance sensors to discern the
complex environment which further encumbers the network.
   One of the most dangerous situations in an underground
mining is fires. Especially those that are caused by mining
vehicles. An overturned mining vehicle can produce a heat
release rate (HRR) up to 200 MW and a temperature above
1000 degrees C (Ingasson et al., 2015; Hansen, 2015). Such
fires can cause rock movements so that part of the mine
becomes unusable, and cause long production stops, until the
rock wall has been secured again. Furthermore, it entails
extensive remediation work and, in the worst case, fatal
outcome.
   Since year 2010 roughly one fire occurs per week in the
Swedish mines. A great deal of the fires is caused by mining
vehicles (GRAMKO annual report, 2013) (Figure 2). The
number of reported fires due to mining vehicles per year has
not changed significantly, since then. Just as many fires
occur today as then and it is a topic being discussed at

 Figure 2. Fire objects in Swedish mines year 2008 – 2012.
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Swemin´s (the Swedish mining industry's industry
organization) yearly meetings. A recurring comment from
discussions with mine workers in Sweden, it´s not a question
whether it will start to burn or not but more about when and
where.
   Sweden has about 20 active mines, ore and metal
production such as e.g. iron ore, copper, gold and silver,
though no coal mines. Fires seem to occur evenly distributed
in all active mines in Sweden. Fires in mines around the
world are also dominantly caused by vehicles and mobile
equipment, resulting in dangerous situations (Hansen, 2011;
Hansen, 2018; Willstrand. 2018). This allows a strain on
mining production with increased costs as a result, but not
least the risk which miners are exposed to.
Most vehicle related fires in mines are caused by:

· Cables and hydraulic hoses (Ingasson et al., 2015)
· Fault and overheating of equipment, e.g. engines

(Ingasson et al., 2015)
· Worn tires (Ingasson et al., 2015)
· Cable reel (Ingasson et al., 2015)
· Leakage of flammable liquids, that are sprayed onto

hot surfaces (Hansen, 2015)
    Today miners are trained to act as firefighters and start
the extinguishing activity until the fire department arrives at
the site. A complete autonomous mine will have none or
fewer miners underground that will be able to support this
activity. This in turn requires solutions that support smart
inspections that will detect early changes in production
before the situation develops into a dangerous state.

2  Methodology

2.1 Introduction

The basis for the study presented in this paper is a series of
sensor experiments. The purpose of these experiments has
been to evaluate the range of sensors, existing on the market
today. The purpose of mounting sensors on mining vehicles
is to detect the gases that arise before a fire is a fact on a
mining vehicle. Gases can arise for example, from,
overheated equipment that lead to plastic materials
beginning to emit thermal decomposition products.
   From early mining days, canary birds have been known
for their ability to early detect toxic air and the purpose of
this study is to verify the possibility of replacing them with
IoT and sensor solutions. The requirements of the sensors
must correspond to the sensitivity of the ability of a canary.
When toxic air was detected in a mine shaft, the canary-bird
stopped twittering. Which was the sign for the miners to start
evacuating. Even worse if they saw the bird lying dead on

the bottom of the bird cage, they knew that very little time
was left to save themselves from meeting the same fate.
   This describes the requirements on the sensors'
requirements to be able and detect changes on the vehicle
objects in an early phase and communicate that to an overall
operation system (Beard and Carvel, 2005; Hansen, 2013).
However, detecting emitting gases that develops a
temperature around 100 degrees C and barely noticeable
HRR demands sensors to be highly sensitive.

2.2 Sensors
The sensors used in the different test series measured the
following parameters:

· Temperature

· Hydro carbons

· Carbon monoxide (CO)

· Carbon dioxide (CO₂)

· Methane (CH4)

· Nitrogen dioxide (NO₂) concentrations

· and other NOx gases

· Relative humidity

· Air flow

   The sensors were mounted on a frame construc-
tion (Figure 3 and 4) with wheels. In this way it was pos-
sible to change positions of the sensors relative to 
the emitting source (toxic gas). This allowed that it 
was possible to observe the distance when the sensors re-
acted as for the time it took for it to react. The setup of the 
lab equipment allowed the angle of the tested sensors to be 
varied and thereby it was possible to simulate inclines of 
e.g. a mine road. In addition, a fan was mounted to 
test how the sensors reacted to ventilation.

Figure 3. Test Equipment arrangement
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2.3 Test sites
Some tests were conducted at RISE Fire lab facilities 
(SP Brandteknik) in Borås, Sweden. The first tests were to 
verify if any sensors were able to detect the gases emitting 
from the cables and to observe at what distance. While 
second test, ventilation from the fan was included to dis-
turb the sensors in the test cases. In addition, the fan 
was also used for sucking the gases to the sensors. Fi-
nally, disturbance from humidity was simulated with wa-
ter boilers. Concluding test was conducted at Epiroc 
in Örebro, Sweden, in their machine hall.
   In addition to those tests follow up tests were per-
formed at Mälardalens University, Västerås in Sweden, 
chemistry lab. A couple of follow up tests were performed 
to verify the tests results as for further analyses.
   The tests were divided into the following categories:

· Stress tests, detection capability. The initial test 
was to observe the sensors’ capability reacting 
on the emitting gases.

· Sensitivity, distance to emitting source. Sensitiv-
ity test was to determine on what distances the 
sensors reacted on the emissions from the heated 
cables and the oil mist, respectively.

· Disturbance influenced by other sources. 
The sensors in mining environment need to be 
able to distinguish between normal mining air or 
if fire is about to evolve due to e.g. soot, oil 
mist (hole in hoses).

· Logging capability of the sensors, as 
in communication protocols. Logging of data 
from sensors will be essential as for communicat-
ing it to an on-line control system.

· Gas concentration, balloon tests. To determine 
and understand the amount of gases needed 
for the sensors to react.

2.4 Test objects - Cables
Emitting sources, more than ten different cable 
types, normally used on Epiroc mining vehicles were 
tested. The cables on a mining vehicle can be everything 
from 0.5 m up to 15 m long. The material of the cables 
varies and in the tests the following could be observed:

· Polyvinyl chloride (PVC)

· Polyethylene (PE)

· Polyurethane (PUR)

· Halogen free

These can emit e.g. hydrocarbons, cyanides, hydrochlo-
ric acid, etc., which have effects of quite different kinds. 
PVC provides hydrochloric acid, which can be harmful 
mainly for equipment. Cyanides are acute toxic 
to humans. Hydrocarbons can cause long-term in-
juries, type of respiratory problems and, in the worst 
case, cancer.

3  Results from the experiments
From the tests it can be determined that it is possible to detect
the risk of emerging fire at an early stage with some of the
sensors. However, it was observed that the sensors need to
be close to the flue gas evolution between 0,5m or less. Some
sensors proved to be too insensitive to use directly, however
some sensors could be used if gas could in some way could
be sucked in to the detector. The conducted tests showed that
a combination of sensors will be required to be able and
detect the different gases, sources or heat development on
mine vehicles in an early and efficient way.

The experiments were made by heating different cables
by imposing a voltage and current to the cables (shown in
Figure 3 and 4). The temperature of the actual cables was
measured, the temperature from remote using Flir-camera
and with two Photo ionization (PID)- instruments measuring
VOC (volatile organic carbons).  One VOC instrument is
RAE MultiRae 3000. The other FotoVac (an older
instrument).

During tests 2 at RISE in Borås, there were six
experiments and peaks could be noted at 30, 50, 70, 100,
130- and 155-time units. The first cable that was tested was
halogen free thermoplastic polyester. The second PVC with
PUR coating. The third had two layers PVC. The fourth PE
with PUR surrounding. The fifth only PVC and the sixth also
only PVC. The first cable is 1.5 mm2 and voltage 2.2 V and
current 50 A from start. At 58 A and 2.5 V we get first visible
fume, but clearer fume at 4.1 V and 70 A, when also the

Figure 4. The test equipment at RISE Fire lab facility.
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VOC sensors give clear signals, 2.4 respectively 38 mg/l 
for FotoVac respectively RAE MultiRae 3000.

It was noted that the peaks follow each other, and 
that Flir-camera gives a very good response in relation 
to the cable temperature. The PID meter from RAE 
gives a reasonably high response, while the older 
FotoVac has a smaller response, but still a clear re-
sponse.

The clear response for VOC starts when the cables 
are fuming (see Figure 5, 6, 7 and 8). When the distance 
was 2 meters, no response was noted however at a dis-
tance from 0.2 m and less a clear response was observed. 
This is when there is a fan moving the smoke towards 
the sensors, but at the same time there is the normal ven-
tilation sucking the air to the right, parallel to the cable 
away from the sensors. This showed that we need to 
have fans sucking air into the sensors, and this was 
later tested on Epiroc´s vehicles in their machine test hall 
in Örebro.

Figure 5 Peak results, sensor: Flir 3420, IR, Temperature

Figure 6. Peak results, sensor; RAE MultiRae 3000, VOC

Figure 7. Peak results, sensor: FotoVac, VOC

Figure 8. Peak results, cable, Temperature & Time units

4  Discussion
With fully autonomous mines, meaning no miners being
present, the need for detecting changes in production that
may cause a stop needs to be faster than today. This requires
solutions which support smart inspections and early
discovery of changes before the situation develops into a
dangerous state.

To resolve these issues, this paper explored the
possibility with sensors for detecting in an early state,
possible fire situation on mining vehicles
A compilation of the results from the sensor tests have been
presented including possible influence of the investigated
parameters. Furthermore, a discussion of possible diagnostic
as for detection of fires risk will now follow. The focus is to
determine suitable sensors to be monitored for minimizing
the number of fires caused by vehicles in the Swedish mines.

4.1 Future tests and research plans
Concluding, the authors realize that one of the essential parts
for succeeding will require a system where the data from the
sensors can be gathered and analyzed. With diagnostic of
only one sensor a simple setpoint with predefined minimum
and maximum values could be used. Warning and alarm
could be triggered as for shown in an operation system
available at the mining site. In the near future, the plan is to
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make a proof of concept test where sensors will be installed
on an Epiroc vehicle that is running in one of the
underground mines in Sweden. The goal is to connect the
sensor to the vehicle´s communication system which in turn
communicates via the mines IS/IT solution to the safety
system, Mobilaris. This system can today show where
miners, machines and vehicle are located on a 3D picture of
the underground mine shafts. Adding to this view
information of e.g. gas levels from the vehicle a dangerous
state might be able to be detected in due time.
    The final aim is to study the possibility with artificial
intelligence, machine and deep learning. Continuously
gathering signals from a mix of gas sensors on a mining
vehicle and correlate these with all other data being gathered,
we believe root cause analyzes will give answers to why e.g. a 
fire started.
    Further, we propose that future studies focus on the
possibility of utilizing smart sensors combined with edge
and fog computing. Investigating the possibility to move
some critical analytics to smart sensors on the machine
rather than having the signals to go through a cloud and
thereby improving the communication speed. We believe
this would e.g. detect fire hazards much faster and contribute
to a safer mining vehicle.

5  Conclusions
Some of the future mining production is predicted to develop
into fully autonomous mining processes. In such operation,
safety and security will be important aspects. To be able and
catch early changes in production on a mining vehicle, the
tests shows that a mix of sensors is recommended to be
installed (Figure 9). From those, signals can be gathered 24/7
as for monitoring of different values e.g. like:

· volatile organic carbons, VOC
· temperature
· other gases like methane
· oil mist
· tire pressure
· motor temperature

Figure 9. Underground Mining Vehicle
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Abstract
Drilling for oil and gas is a complex process, involv-
ing pumping of fluid through kilometers of pipes. Even
though the drilling fluid has a high speed of sound (≈1000
m/s), the large lengths involved make pressure wave prop-
agation significant in timescales where such phenom-
ena can usually be neglected in other processes.
Managed pressure drilling, a technological extension
of conventional drilling, adds a choke on the return
flow from the drilling process. Significant work has
been done in recent years on creating a simplified
model of the process, often by neglecting distributed
dynamics, and using this for controller design. This pa-
per compares the simplified model most often used, with
a distributed partial differential equation (PDE) model
and compare the performance with measured data for
wave propagation while doing managed pressure
drilling. Fluid structure interaction and theoretical vs
recorded speed of sound are discussed.
Keywords: managed pressure drilling, PDE, wave propa-
gation, FSI

1 Introduction
Managed pressure drilling (MPD), today considered an
”unconventional” drilling technology, is a natural tech-
nological advancement of conventional drilling. MPD is
forecasted to grow significantly in the future, with key in-
dustry players indicating that it might be the new ”conven-
tional” in the near future. Drilling for oil and gas is a
complex process with complex dynamic behaviour. The
dynamics of the entire system has to be understood for
controller and estimator design if the prognosed future
growth and adoption is to be achieved.

For MPD, significant work has been done in recent
years by control engineers/researchers on simplifying the
mathematical model for the process to aid in controller
and estimator design. A schematic view of the process is
given in Figure 1. The most often used of these simpli-
fied models is the one by (Kaasa et al., 2012). Multiple
estimation and control strategies based on this simplified
model has been published (Stakvik et al., 2016; Stakvik
et al., 2017; Zhou et al., 2011; Stamnes et al., 2008;

Figure 1. Managed pressure drilling. Drilling fluid is circulated
from the rig mud pumps and down the drill string. At the bottom
of the well bore the drilling fluid flows out through the drill bit
via nozzles, and is then circulated up to the surface in the annular
space between the drill string and annulus.

Hauge et al., 2012). There is also ongoing research on
designing estimators and controllers based on a linearised
PDE distributed model (Aarsnes et al., 2014; Aarsnes
et al., 2012; Anfinsen and Aamo, 2018). To verify de-
sign, controllers and estimators should in general always
be tested on a system model that is higher fidelity than
the model the design is based on to ensure that something
critically important was not forgotten in the simplification.
This paper compares the response of the simplified model
by (Kaasa et al., 2012) with a PDE based model for the
process, and compare this to real drilling data from MPD
operations.

2 Model
Considering the process shown in Figure 1 and conserva-
tion of mass and momentum, dynamic models for the pro-
cess can be derived. The model by (Kaasa et al., 2012)

SIMS 60

91DOI: 10.3384/ecp2017091  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



disregards distributed effects in the drill string and an-
nulus, and consider these as two volumes where mass
should be conserved. To capture wave propagation, dis-
tributed effects should be considered, making the drill-
string and annulus take the form of partial differential
equations (Di Meglio and Aarsnes, 2015).

2.1 Simplified model
The ODE model presented in (Kaasa et al., 2012) and
given in (1-5) can be derived with the following assump-
tions: The drill string and annulus are treated as two vol-
umes where mass is conserved, the drill string pressure
loss as quadratic with flow (turbulent), the drill bit pres-
sure loss as quadratic with flow, and the annulus pressure
loss as linear with flow (laminar). Note that here, the an-
nulus and drill string volumes are considered constant, and
in and out flow of the drilled formation is not considered.

Vd

βd

dpp

dt
= qp −qbit (1)

Va

βa

dpc

dt
= qbit +qbpp −qc (2)

M
dqbit

dt
= pp − pc −Fdq2

bit −Faqbit (3)

M =
∫ Ld

0

ρd

Ad(x)
dx+

∫ 0

La

ρa

Aa(x)
dx (4)

qc = gc(zc)Kc

√
2
ρ
(pc − pco) (5)

In (1-5) Vd and Va are drill string and annulus volumes, βd

and βa are fluid modulus of compressibility β = 1
ρ

dρ

dp , qp

is the pump flow, qbit is a state representing flow from the
drill string to the annulus, Fd and Fa are friction factors for
the drill string and annulus, gc is choke area as a function
of choke position zc, ρa, ρd are fluid densities in drill string
and annulus, and Ad , Aa are flow cross sectional areas.

2.2 PDE model
If distributed effects are considered, the drill string and
annulus can be modelled using the PDE system given in
(6-7) representing conservation of mass and momentum,
respectively.

∂ρ

∂ t
+

∂ρu
∂x

= 0 (6)

∂ρu
∂ t

+
∂ (ρu2 + p)

∂x
=− f (ρ,u)−g(ρ) (7)

where ρ is density and u is velocity.
Putting (6-7) in vector form as in (8) and introducing

temporary variables u1,u2.

∂U
∂ t

+
∂

∂x
(F(U)) = S(U) (8)

U =

[
ρ

ρu

]
=

[
u1
u2

]
F(U) =

[
ρu

ρu2 + p

]
=

[
u2

u2
2

u1
+ ∂ p

∂ρ
u1

]

S(U) =

[
0

− f (ρ,u)−G(ρ,θ)

]
=

[
0

− f (u1,
u2
u1
)−G(u1,θ)

]
(9)

Where ∂ p = ∂ p
∂ρ

∂ρ is used for removing p in (9). Then in
pseudo linear form as

∂U
∂ t

+A(U)
∂U
∂x

= S(U) (10)

A(U) =
∂F(U)

∂U
=

[
0 1

− u2
2

u2
1
+ ∂ p

∂ρ
2 u2

u1

]
(11)

it can be found that the eigenvalues of A(U) are

λ1,2 = u±
√

∂ p
∂ρ

where
√

∂ p
∂ρ

is the speed of sound in the
fluid.

The source terms f (ρ,u) and G(ρ,θ) represent friction
and hydrostatic pressure due to gravity, respectively. Fric-
tion is modeled as (12)

f (ρ,u) =
1
2

K f ric f ρu2

f = max

(
64
Re

,
0.25

(log( ε

3.7D + 5.74
Re0.9 ))

2

)

Re =
ρuD

µ

(12)

where f is the Darcy friction factor, Re is the Reynolds
number, ε is the surface roughness of the pipe, and D is
the hydraulic diameter. f = 64

Re represents laminar flow,
f = 0.25

(log( ε
3.7D+ 5.74

Re0.9 ))
2 is an approximation (Swamee and

K. Jain, 1976) to the Colebrook equation, and the maxi-
mum of these two is taken to cover both laminar and tur-
bulent regimes. K f ric is a tuning factor to fit measured field
data, ideally set to 1.

Hydrostatic pressure is modelled as (13) where θ is the
local angle between the well bore and the horizontal.

G(ρ,θ) = ρgsin(θ) (13)

There are numerous numerical approaches to solving
the PDE system in (6-7), (Vytvytsky and Lie, 2017),
(Palacios G and Da Silva, 2013) both with and without
considering fluid structure interaction. The details of dif-
ferent methods for solving (6-7) with strengths and weak-
nesses is not elaborated in detail in this paper. Here a stag-
gered grid approach is used.

For simulation, (6) is transformed into an equation for
pressure. Assuming the density can be given as a linear
function of pressure as in (14), (6-7) can be rewritten as
(15-16).
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ρ = ρ0 +
ρ0

β
(p− p0)

dρ

d p
=

ρ0

β

(14)

ρ0

β

∂ p
∂ t

+
∂ρu
∂x

= 0 (15)

∂ρu
∂ t

+
∂ρu2

∂x
=−∂ p

∂x
− f (ρ,u)−g(ρ) (16)

The system in (15-16) is integrated over a closed vol-
ume as given in (17-20) along the lines described in (Ver-
steeg and Malalasekera, 2019).∮

CV

(
ρ0

β

∂ p
∂ t

+
∂ρu
∂x

)dV = 0 (17)

∮
CV

(
∂ρu
∂ t

+u
∂ρu
∂x

)dV =
∮

CV

(−∂ p
∂x

+Sx)dV (18)

Applying the Gauss divergence theorem;∮
CV

div(φu)dV =
∮
S

n · (φu)dS

∮
CV

(
ρ0

β

∂ p
∂ t

)dV +
∫
A

n · (ρu)dA = 0 (19)

∮
CV

(
∂ρu
∂ t

)dV +
∫
A

n · (ρu2)dA =
∮

CV

(−∂ p
∂x

+Sx)dV (20)

Solving the integrals and discretizing in space yield
(21-22).

V
ρ0

β

∂ p
∂ t

+(uAρ)out − (uAρ)in = 0 (21)

V
∂ρu
∂ t

+(u2Aρ)out − (u2Aρ)in =−V
pout − pin

L
+SxV

(22)
Doing the variable change q = uA, applying the chain

rule to
∂ρu
∂ t

, and using that q
∂ρ

∂ t
= q

ρ0

β

∂ p
∂ t

yield (23-24).

V
ρ0

β

∂ p
∂ t

+(qρ)out − (qρ)in = 0 (23)

V
A
(ρ

∂q
∂ t

+q
ρ0

β

∂ p
∂ t

)+(
q2ρ

A
)out − (

q2ρ

A
)in...

...=−A(pout − pin)+SxV
(24)

With boundary conditions

qds(x = 0) = qp (25)

pds(x = L) = pan(x = L)+
1

Knozzle
(

qds(x = L)
Anozzle

)2 (26)

ρuAan(x = L) = ρuAds(x = L) (27)

pan(x = 0) = pc (28)

The system solved is given in (29-30) where the pressure
equation is solved in the grid cell centre and the flow equa-
tion is solved on a grid that has the cell centre on the pres-
sure grid face.

∂ p
∂ t

=− β

V ρ0
((qρ)out − (qρ)in) (29)

∂q
∂ t

=−q
ρ0

ρβ

∂ p
∂ t

− 1
ρL

((
q2ρ

A
)out − (

q2ρ

A
)in)...

− A
ρL

(pout − pin)+Sx
A
ρ

(30)

The spatial arrangement of states can be seen for an ex-
ample case with n = 3 grid elements for flow and n+ 1
grid elements for pressure in Figure 2. The subscript g in
p0,g and pn+1,g is to represent that this is a ”ghost node”.
Ghost nodes are grid elements outside of the physical do-
main used to implement boundary conditions.

q1 q2 q3 q4p1 p2 p3p0,g pn+1,g

Figure 2. Staggered grid showing the spatial staggering of the
system solved. If i represent grid number on the flow grid for q,
and k represent grid number for the pressure grid for variables p
and ρ , note that i+ 1

2 = k,k+ 1
2 = i+1

From Figure 2 it can be seen that qout ,qin (being q2 and
q1 respectively for p1) and pout , pin, (being p1 and p0,g
for q1) is known directly due to the spatial staggering of
states.

Variables that are not directly available on grid faces

from the staggered arrangement (ρ in (29); q and q
ρ0

β

∂ p
∂ t

in (30)) are found by using a first order up-winding in flow,
as in (31)

θi+ 1
2
=


θi q > 0
θi+1 q < 0
θi+θi+1

2 q = 0
(31)

Equations (29-30) are solved in time by using a 4th or-
der Runge Kutta method.

2.2.1 A brief discussion on equation of state

Using (14) as an Equation of State for the liquid will yield
a speed of sound from the eigenvalue analysis in (10) as a
function of ρ0 and β given in (32)

c =

√
β

ρ0
(32)
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Drilling fluids are in most cases a mixture of water and
weighting material (water based mud, WBM), oil, water
and weighting material (oil based mud, OBM) or synthetic
oil, water, and weighting material (Synthetic based mud,
SBM). Drilling fluids usually also contain a small frac-
tion of additives (emulsifiers, gelling agents, etc.), at a
low volume fraction. The equivalent mixture bulk modu-
lus should be found for use in (14) (Carcione and Poletto,
2000). Although all fluid components are only slightly
compressible, the weighting material can be treated as in-
compressible compared to the water and oil. The volume
fraction of additives are neglected here.

The mixture bulk modulus βm can be found as in (33)
where subscripts w,o,s denote water, oil and solids respec-
tively.

1
βm

=
αw

βw
+

αo

βo
+

αs

βs
(33)

Here αi is the volume fraction of that mixture component.
Note that αw +αo +αs = 1. Assuming the solids com-
ponent to be incompressible as βs >> βo,βw, analogous
to saying βs = ∞ makes the last term on the RHS of (33)
disappear.

The mixture density ρm0 can be found as (34)

ρm0 = αwρw0 +αoρo0 +αsρs0 (34)

In practice, a pre-defined ratio of oil/water is used when
mixing the drilling fluid, and then weighting solids is
added to reach the desired liquid density. For WBM flu-
ids there is no oil fraction, and solids are added to reach
the desired density. This can be used to further simplify
(33-34). By using oil-water ratio, Row = αo

αw
, and the fact

that the sum of all the component volume fractions is
1, (33-34) can be rewritten in forms that are simple for
straight forward use, as given in (35-36) where the inputs
are the mixture and component densities ρm,ρi, compo-
nent compressibility βi, and oil-water ratio Row.

αs =
ρm −ρw +Row(ρm −ρo)

ρs −ρw +Row(ρs −ρo)
(35)

βm =
βwβo(1+Row)

βo(1−αs)+Rowβw(1−αs)
(36)

For water based mud, Row = 0 and (35-36) are still
valid. Equations (35-36) are only valid at a given pressure
as the volume fractions change with pressure. In practice
the effect of this is minor.

2.2.2 Fluid structure interactions (FSI)
If fluid structure interactions are considered, i.e., the flow
cross sectional area changes with pressure, an equivalent
bulk modulus βe can be calculated and used in (23, 24).
Note that the mixture bulk modulus βm should still be used
in the liquid Equation of State in (14).

Taking pipe expansion into account, equivalent bulk
modulus can be calculated as (37). Here the possible com-
pression of the drill string inside the annulus is neglected.

For the full derivation of (37) in the context of the applied
PDE, the reader is referred to (Carlsson, 2016).

βe =
βm

(1+ βmD
dE φ)

(37)

In (37), βm is mixture bulk modulus from (36), E is
Young’s modulus of the pipe, D is the pipe diameter, d
is the pipe wall thickness, and φ is the pipe support factor.
Here axial stresses are neglected, setting φ = 1.

2.2.3 Gridding
In a real well geometry there are numerous changes in
cross sectional area with axial position, mainly caused
by the drill string consisting of different pipe sections
screwed together. Spatial discretization (gridding) at the
resolution required to capture all the changes exactly will
require a large number of grid elements. Here, a gridding
routine that ensures the grid volume and volume of the
real geometry are exactly equal, is used. The real vs dis-
cretized geometry for the test well studied near the bottom
hole assembly (BHA) is shown in Figure 3.
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Figure 3. Volume conserving grid of bottom hole assembly
(BHA). Solid black: Original geometry. Dashed green: Gridded
well bore diameter (annulus). Dashed blue: Gridded drill string
outer diameter (annulus). Dashed red: Gridded drill string inner
diameter (drill string).

2.2.4 Boundary conditions
For comparison with field data, the algebraic relation be-
tween choke flow and choke pressure for the simplified
model is skipped, and measured choke pressure is used
directly as a boundary condition. This yields a simplified
model with two ODE’s, (as opposed to the three ODE’s
in the original model by (Kaasa et al., 2012)) specified in
(1, 3, 4). To compare the model’s dynamic response to the
measured data, the boundary values that are not specified
are compared to measured data. That is, measured pump
flow and choke pressure are used as boundary conditions.
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Then, simulated and measured pump pressure and choke
flow are compared. The simplified model has no choke
flow when the choke pressure is specified, so only pump
pressure is compared to measured pump pressure.

For the PDE model the boundary conditions for n grid
elements are set as follows.

• Inlet

– p0 = p1. That is, the inlet ghost node for pres-
sure is set to the same value as the next grid
element

– q1 = qbc, the flow into the domain is specified

• Outlet

– pn+1, the outlet ghost node for pressure is set to
2pbc − pn where pbc is the specified boundary
pressure

2.3 Initial conditions
For the PDE model the initial conditions is set to the hy-
drostatic pressure for p, that is pi = ρ0ghi where hi is the
grid vertical depth. The initial condition for flow q is set
to zero. Flow is then ramped up to the flow rate in the start
of case considered and simulation run for 150 seconds to
reach steady state.

3 Comparison with field data
In MPD operations, if the choke controller is active, wave
propagation phenomena are rarely visible. This is due to
the choke pressure controller being used in the data the au-
thor has available is specifically designed to keep within
the limits of the simplified model. During system com-
missioning, direct choke position control is used to verify
calibration of the controller model, and pressure wave dy-
namics gets excited. When doing choke position control,
the rate of change of the position is limited in the con-
troller to about ≈ 5%/s to avoid severe water hammer ef-
fects caused by the operator, but still fast enough that wave
dynamics is excited. The controller in closed loop has
access to the full choke actuator performance ≈ 25%/s,
making the testing of the mentioned controller on a PDE
model very important as it is easily able to excite wave
dynamics in cases with improper tuning. For validation of
the models with data, a time period from commissioning
on a 1647m deep offshore well is used, as seen in Figure
4. The commissioning is performed in "cased hole", that
is, the annulus has a steel casing going all the way to the
bottom of the well and there is no "open hole" (exposed
reservoir) .

In Figure 4, the pump flow rate is near constant, and the
choke is closed and then opened again 3 times at various
speeds, giving an increase in choke pressure (boundary
condition), and then an increase in pump pressure (mod-
elled), governed by the pressure dynamics of the well. The
choke flow changes when the choke position is changed.
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Figure 4. Steps in choke position during cased hole commis-
sioning for 1647m deep offshore well. Top: Pressure simulated
vs measured. Top right axis: Measured choke pressure (bound-
ary condition). Bottom: Simulated vs measured choke flow.

This is caused by the compression/expansion of liquid and
possible expansion of well geometry due to pressure.

3.1 Field data comparison, no fluid structure
interactions

Here the response to the choke position steps are studied
for all steps individually. Fluid structure interactions are
not considered. Parameters used in the PDE and simpli-
fied model are given in Table 1. A ”fudge factor” K f ric for
friction in the PDE model was required to make the sim-
ulated pump pressure fit with the measured data. At the
flow rates in the cases studied, the frictional pressure loss
will be laminar in both the drill string and annulus. The
assumption of Newtonian fluid in (12) is not really true for
drilling fluids as they exhibit gelling behavior, something
that will lead to a higher friction loss than for Newtonian
fluids at low flow rates.

The noise on the pump pressure and choke flow in
the PDE model is caused by noise on the choke pressure
boundary condition. Filtering the noise on the signal is
avoided as the phenomena studied are fast compared to
the sampling rate. Figure 5 shows a close-up of the first
step from Figure 4.

It is seen from Figure 5 that, qualitatively, the results
of the PDE model fits reasonably well with the measured
data. The PDE model under-predicts the changes of choke
flow due to choke pressure. The response on pump pres-
sure happens faster in the PDE model than in the measured
data. This indicates that the wave propagation time in the
PDE model is faster than in reality. The simplified model
is able to predict pump pressure well when the pressure is
increasing, but ends up giving a "smoothed" response on
the more rapid opening of the choke.

Figure 6 shows the response in the second step, where
both the increase and decrease of choke pressure is slower
than that in the first step. It is clearly seen that as changes
happen more slowly, the difference between the simplified
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Table 1. Model parameters.

Parameter Value Unit
Vd 15.27 [m3]
Va 104.94 [m3]
Row 4 [−]
ρm0 = ρd = ρa 1210 [kg/m3]
ρw0 1000 [kg/m3]
ρo0 850 [kg/m3]
ρs0 4200 [kg/m3]
βw 2.2e9 [Pa]
βo 1.5e9 [Pa]
βa (eq.36) 1.78e9 [Pa]
βd (eq.36) 1.78e9 [Pa]
Ld 1651 [m]
La 1651 [m]
Ad 0.0092 [m2]
Aa 0.0636 [m2]
M (eq.4) 2.47e8 [kg/m4]
µ 45e-3 [Pa · s]
ε 4.5e-5 [m]
K f ric 2.4 [−]
Anozzle 6.25e-04 [m2]
Knozzle 0.8 [−]

model, PDE model, and measured data becomes smaller.
This is reasonable as that the main difference between the
simplified and PDE model is whether distributed pressure
effects are neglected. The effect of choke pressure on
choke flow in the PDE model is still under-predicted, as
in the first pressure step.

Figure 7 shows the response of the simplified and PDE
model compared to field data for the third pressure step.
In this step, the opening of the choke is even faster than
that of the case in Figure 5. Note the ”wave” in measured
choke pressure. As for the two first cases, the results of the
PDE and simplified model compared to field data is very
similar at the increase of pressure with different response
on opening the choke quickly. The previous observation
of choke flow being under-predicted in the PDE model is
visible when the pressure is increased, but not that clearly
visible when the choke is opened.

3.2 Field data comparison, fluid structure in-
teractions

Here the steps in the previous section is revisited, with
fluid structure interactions (FSI) considered. Parameters
used when FSI is considered are given in Table 2.

Figure 8 shows the PDE model with and without FSI in
the first step. Considering FSI through (37), yields a lower
β for the drill string and annulus, something that will in-
crease the wave propagation time (decrease velocity) in
the PDE model, as well as make the effect of choke pres-
sure on choke flow be more significant. The assumption of
no axial stresses used is not strictly true. For the annulus,
the casing will mainly be under compression loads axially.
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Figure 5. First step in choke position; slow closing and rapid
opening of choke. Top: Pressure simulated vs measured. Top
right axis: Measured choke pressure (boundary condition). Bot-
tom: Simulated vs measured choke flow.
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Figure 6. Second step in choke position; slow closing and open-
ing of choke. Top: Pressure simulated vs measured. Top right
axis: Measured choke pressure (boundary condition). Bottom:
Simulated vs measured choke flow.

The neglected effect of compression of the drill string in
the annulus together with the axial forces in the casing
would likely lead to slightly lower effective bulk modulus.
The drill string experiences both stretch and compression
along the length.

As seen in Figure 8, the effect of choke pressure on flow
becomes more significant when considering FSI, making
the PDE model fit the measured flow data better compared
to the model neglecting FSI. Wave propagation time re-
duces slightly when considering FSI, but there is still a
mismatch between the PDE model and recorded data.

Figure 9 shows the PDE model compared to measured
data for the second step in pressure, with and without FSI.
Overall the results for the second pressure step are similar
to the no FSI case, with the transient being slow enough
that wave propagation effects are minor. The effect of
choke pressure on choke flow compared to measured data
is better when considering FSI than not considering FSI,
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Figure 7. Third step in choke position; slow closing and very
rapid opening of choke. Top: Pressure simulated vs measured.
Top right axis: Measured choke pressure (boundary condition).
Bottom: Simulated vs measured choke flow.

Table 2. Model parameters with FSI considered.

Parameter Value Unit
βm (eq.36) 1.78e9 [Pa]
E 200e9 [Pa]
Dd 0.1086 [m]
dd 0.0076 [m]
Da 0.3153 [m]
da 0.0122 [m]
βe,d (eq.37) 1.57e9 [Pa]
βe,a (eq.37) 1.45e9 [Pa]

but the results of the PDE model still suggest that the used
βe is slightly too big, illustrated by compression and ex-
pansion (flow change due to pressure) being smaller in the
PDE model considering FSI than recorded flow data.

Figure 10 shows the PDE model compared to measured
data for the third step in pressure, with and without FSI.
For the third pressure step, the effect of considering FSI is
smaller than in the case of the first two steps. The simula-
tion with FSI show a slightly larger change in choke flow
from changing choke pressure, as is the case for the first
two steps as well as a slightly increased wave propaga-
tion time. The deviation between simulated flow and mea-
sured flow when the pressure is reduced might be caused
by sensor inaccuracies. The dynamic performance of the
Coriolis flow meter at transients as fast as in Figure 10, is
uncertain.

4 Conclusions
The response of the commonly used simplified model by
(Kaasa et al., 2012) and a distributed PDE based model
has been compared to data from cased hole commission-
ing from an MPD system on an offshore well. It is
shown that when changes are slow, the simplified and PDE
based models show very similar response, matching quite
closely that of the measured data. When the transient
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Figure 8. First step in choke position, comparison of original
PDE-simulation and PDE-simulation considering fluid structure
interactions. Top right axis: Measured choke pressure (boundary
condition). Bottom: Simulated vs measured choke flow.
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Figure 9. Second step in choke position. Slow closing and open-
ing of choke, comparison of original PDE simulation and PDE
simulation considering fluid structure interactions. Top right
axis: Measured choke pressure (boundary condition). Bottom:
Simulated vs measured choke flow.

changes are more rapid, a discrepancy between the sim-
plified model and PDE model and measured data is seen.
It is found that the PDE model under-predicts the effect
of choke pressure on choke flow if only fluid properties
are considered. When considering simple fluid structure
interactions, the PDE model more closely fits the mea-
sured data. A discrepancy between the wave propagation
time in the PDE model and measured data is observed.
By manually ”fudging” the system bulk modulus βe, it
is still not possible to make the PDE model fit with both
choke flow and pump pressure (wave propagation time).
To make the PDE model more closely fit the measured
data, the well length or well volume and bulk modulus
has to be changed. Well length and volume are consid-
ered quite well known, such that this result is indicative
of something more fundamental missing from the PDE
based model. The PDE model disregards 2-D effects on
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Figure 10. Third step in choke position. Very rapid opening
of choke, comparison of original PDE simulation and PDE sim-
ulation considering fluid structure interactions. Top right axis:
Measured choke pressure (boundary condition). Bottom: Simu-
lated vs measured choke flow.

wave propagation, something that can increase the wave
communication time. Further study of the discrepancy be-
tween the wave communication time in the 1D PDE model
and recorded data, something that has been found in data
from multiple wells, will require further work.
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Abstract

One of the goals of the Paris Agreement is to reduce the

CO2 emission to the atmosphere. This paper deals with

CO2-EOR, which is a good option for utilizing and

storing CO2. Four cases were simulated using the

commercial software OLGA in combination with

ROCX. To avoid the reproduction of CO2 to the  pro-

duction well, two of the cases were run with autono-
mous inflow control valves and packers installed in 

the pipeline. These help to close off parts of the well 

when CO2 and water breakthrough occur. The cases 

were run for 1500 days of production, and the accumu-

lated oil production was in the range 1.1·106 to 

1.3·106 m3. The water production varied signifi-

cantly for the different cases, and the water cut was 

reduced from 70% to 38% when inflow control valves 

were used. CO2 injection increases the oil production 

but also the water production, and when combining 

CO2-EOR and inflow control valves, the water cut 

was 56%. However, the accumulated oil production 

increased by 14% compared with a similar case with-

out CO2 injection.   This underlines that CO2-EOR is 

a good alternative for increasing the oil produc-

tion, but it will also increase water production. Instal-

lation of autonomous inflow control valves in the pro-

duction well are a good solution for reducing the

water production and reproduction of CO2.

Keywords: oil production, CO2-EOR, OLGA/ROCX
simulations, inflow control

1 Introduction

The oil production on the Norwegian Continental Shelf

started in June 1971, and the oil laid the foundation for

the economic growth in Norway. Some of the fields in

the North Sea are now getting old, and new production

technologies have to be considered to increase the oil

recovery. Enhanced Oil Recovery  (EOR) by injection

of CO2 is one of the tertiary oil recovery methods that

can be used in mature fields.

     The Paris Agreement was signed by 195 UNFCCC

(United Nations Framework Convention on Climate

Change) members by March 2019, and 185 states have

committed to it. One of the three overall goals is to limit

the global warming to less than 2˚C (Kallbekken and

Jacobsen, 2018). In order to achieve the 2 degree target,

55 giga tonnes of CO2 must be captured and stored by

2030 (United Nations Climate Change, 2015). Carbon
capture and storage (CCS) is expensive due to energy

intensive operation and high investment costs for the

capture plants (Aabø, 2017). When using CO2-EOR, the 

CO2 will be utilized to get out more oil from the 

reservoirs and at the same time be stored. It will thus be 

profitable to capture and sell CO2 to oil companies 

(International Energy Agency, 2019).  

     The objective of this study is a) to study how to 

increase the oil recovery from mature oil fields and b) to 

study how to avoid reproduction of high amounts CO2 

to the well. The paper deals with simulation of CO2-

EOR using the well simulation software OLGA in 

combination with the near well reservoir simulator 

ROCX. A homogeneous oil reservoir in the North Sea 

is simulated with and without injection of CO2 to study 

the effect of CO2-EOR on the oil recovery. To avoid 

reproduction of CO2, the well is equipped with packers 

and autonomous inflow control valves (AICVs). The 

autonomous valves are capable of shutting off the parts 

of the well where breakthrough of CO2 and water 

occurs. 

2 Theory 

Many of the oil reservoirs on the Norwegian Continental 

Shelf have a thin oil layer, and vertical wells will 

therefore have very little contact surface with the oil 

phase. If instead a horizontal well is drilled along the oil 

layer, this gives a much larger contact surface 

throughout the reservoir.  

2.1 Horizontal wells and inflow control 

The length of the horizontal wells are often in the range 

1-3 km, and the pressure drop in the wells may be 

significant. Figure 1 shows a horizontal well indicating 

the inflow positions and the heel and toe locations. The 

reservoir pressure along the well is constant, whereas 

the pressure in the well decreases from the toe to the heel 

due to frictional pressure drop. This phenomenon is 

called the heel to toe effect, and results in increasing 

pressure difference between the reservoir and the 

production pipe from the toe towards the heel, and 

consequently the driving forces and the production rates 

are significantly higher in the heel compared to the toe 

(Birchenko et al., 2010). 

To reduce the heel to toe effect and ensure production 

from all parts of the well, inflow control devices can be 

installed along the pipeline. In this study, autonomous 

inflow control valves (AICVs) are used. Figure 2 shows 

an AICV mounted in the base pipe with a sand screen. 

There are no restrictions on the number of zones in the 
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production pipe. This means that the placement of 

AICVs can be done based on geological adaptations and 

 

Figure 1. Horizontal well indicating the location of heel, 

toe and inflow zones. 

the requirements of the field in question (Andersen, 

2014). The valves are autonomous and do not require 

any external power or regulation connected to the 

surface. The valves can be installed in new and mature 

fields (Well Screen, 2017). The advantage of the AICVs 

is that they can autonomously close for low viscous 

fluids such as water and gas and stay open for high 

viscous fluids like oil. This means that when unwanted 

fluids reach the zones with high production rates, the 

AICVs make it possible to close off those zones. At the 

same time, the production will continue without any 

restrictions from the other zones. The principle of the 

AICVs is based on the difference in viscosity and 

density for different fluids (InflowControl, 2019; Aakre, 

2017; Kais et al., 2016).  Figure 3 illustrates the AICV 

in open and closed position.  

 

 

Figure 2: AICV mounted in the base pipe with sand 

screen. 

 

  

Figure 3. AICV in open (left) and closed (right) position 

(Aakre 2017). 

2.2 CO2-EOR 

The AICV technology can be used for CO2-EOR and 

storage. Previous studies have shown that AICV can be 

used to shut off carbonated water and supercritical CO2. 

Installation of AICV for CO2-EOR can have an 

efficiency of up to 99%. AICVs were tested for CO2- 

EOR in a vertical pilot well in Canada in 2015. This was 

the first EOR installation that used autonomous inflow 

control in combination with CO2 injection (Kais et al., 

2016; Aakre et al., 2018). 

CO2 injection has become more and more common in 

enhanced oil recovery, especially in North America 

where natural sources of CO2 exist.  Injected CO2 will 

flow into the pores in the rock and expand, and thus 

more oil is forced to move out of the reservoir. CO2 can 

also mix with the oil and reduce the oil viscosity. In 

addition to these oil production benefits related to CO2, 

CO2 storage in the reservoir after production has stopped 

is of great importance and can contribute to decrease the 

emission of CO2 to the atmosphere significantly 

(Norwegian Petroleum, 2019; Rostron and Whittaker, 

2011). 

A big challenge related to CO2-EOR is reproduction of 

CO2 to the production well. Reproduction results in 

larger costs related to separation and reduced CO2 

storage. When installing AICVs on the pipeline, CO2 as 

gas, supercritical fluid or as CO2 dissolved in water, will 

be prevented from flowing into the production pipes and 

the injected CO2 will be well distributed and remain in 

the reservoir. This leads to increased oil recovery and 

contribute to the environmental aspect by CO2 storage 

(InflowControl, 2019). 

3 Material and methods 

In this study, Olga in combination with ROCX is used 

as the simulation tool. 

3.1 Simulation set-up 

OLGA is a software developed to simulate multiphase 

flow in pipelines, and covers modelling and simulation 

of wells, flowlines, pipelines and equipment from the 

well to the processing systems (Aakre 2017).  ROCX is 

a three-dimensional near-well model coupled to the 

OLGA simulator to perform integrated wellbore-

reservoir transient simulations. ROCX can simulate 

three-phase flow in porous media, and is developed to 

design reservoir models by defining properties of the 

reservoir including the fluid properties, and specifying 

the geometry of the reservoir. Parameters describing the 

reservoir properties are permeability, porosity, fluid 

viscosities and densities, relative permeability, pressure 

and temperatures, saturation of the different fluids and 

initial and boundary conditions. The mathematical 

models used in ROCX are described in detail in 

(Schlumberger, 2007). An overview of inputs needed 

for simulations using ROCX in combination with 

OLGA is presented in Figure 4. The overview is based 

on (Aakre, 2017). 

 

 

AICV 

Flow from 

annulus 

 
Heel 

 
Toe 
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Figure 4. Overview of inputs needed for OLGA/ROCX simulations (Aakre, 2017). 

     Permeability is a measure for the capacity and 

capability for a porous rock to transfer fluids. Absolute 

permeability is a rock property, and describe the transfer 

of a fluid if the rock is 100% saturated with the actual 

fluid. The absolute permeability is defined by Darcy’s 

law as: 

𝑄̇ =
𝑘∙𝐴

𝜇
∙

𝑑𝑃

𝑑𝐿
     (1) 

where 𝑄̇ is the fluid volume flow, 𝑘 is the 

permeability, 𝜇 is the viscosity of the flowing fluid, 𝐴 is 

the cross section flow area and 𝑑𝑃 𝑑𝐿⁄  is the pressure 

drop per unit length.  Effective permeability is a measure 

for the transfer of fluid through a rock when there is 

more than one fluid present in the pores. The effective 

permeability is influenced by the wetting of the rock, 

meaning whether the rock is attracted to water or to oil.  

Relative permeability is the ratio of the effective 

permeability of the fluid and the absolute permeability, 

and is dependent on the saturation of the fluids in the 

rock.  

     The coupling between ROCX and OLGA accounts 

for the dynamic reservoir/wellbore interactions. OLGA 

is a one-dimensional transient dynamic multi-phase tool 

used to simulate flow in pipelines and connected 

equipment. The OLGA simulator is governed by the 

conservation of mass, momentum and energy equations 
for each phase (Thu, 2013; Schlumberger, 2007). The 

set-up in OLGA includes annulus, pipeline, packers and 

inflow control devices. Figure 5 illustrates the location 

of the annulus and the pipeline in the reservoir. Figure 6 

shows the location of the packers between the rock and 

the production pipe. 

 

Figure 5: A sketch of the pipe and the annulus 

(Schlumberger, 2007).  

To be able to simulate the flow from the reservoir via 

the annulus to the pipeline, the set-up shown in Figure 7 

was used. The set-up involves two pipelines, the lower 

one to simulate the annulus and the pipe wall, and 

 

 

Figure 6. Horizontal well with inflow control devices and 

packers. 

Inflow control device 

Packer Annulus 
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the upper one to simulate the flow and pressure drop in 

the well. The source (SOURCE 1) simulate the flow 

from the reservoir to the annulus, the valve (VALVE-1) 

illustrates an AICV, the leak (LEAK-1) simulate the 

flow through the AICV to the well, and the valve 

(PACKER-1) simulate a packer as a closed valve. 

Packers are used for zone insulation to avoid fluids to 

flow from one zone in the reservoir via annulus to 

another zone. This ensures that after breakthrough in 

one zone, AICV closes and this zone becomes insulated 

from the other zones. AICV is not an option in OLGA, 

and therefore it was necessary to build up valves with 

the same functionality as the AICVs. For that purpose, 

valves with transmitter and PID controller were used, 

and the closing and opening function was related to a 

water cut set point.   

 

Figure 7. A well section including annulus, well, packers 

and AICV. 

In this study, oil production with CO2-EOR is compared 

to oil production without CO2-EOR. The relative 

permeability curves for both the cases are plotted in 

Figure 8. As can be seen from the figure, the relative 

permeability curves change significantly when CO2 is 

injected into a reservoir. Details about the influence of 

CO2 injection on the oil properties are described in 

(Vesjolaja et al., 2016; Badalge et al., 2015). The Corey 

model is used to calculate the relative permeability for 

water, and Stoke II is used for the oil phase. The models 

are described by Schlumberger (Schlumberger, 2007). 

     The boundary conditions used for the simulations are 

pressure outlet set in OLGA, and the pressure and 

location of the water drive specified in ROCX.  The 

location and the conditions for the sources (connection 

between reservoir and well) are also specified in ROCX. 

The initial conditions for reservoir saturation and 

reservoir pressure are specified in ROCX. A sketch of 

the initial reservoir with 100% oil saturation is presented 

in Figure 9. The arrow shows the location of the well. 

 

 

Figure 8. Relative permeability curves for oil and water. 

 

   

Figure 9. The initial oil reservoir (length 1000 m, width 

318 m, height 31 m) as illustrated in Tecplot. The arrow 

shows the location of the well.  

The set-up for the simulations is presented in Table 1. 

The blackoil model was selected in ROCX and it was 

assumed that the reservoir was initially saturated with 

oil. When using the black oil model, injection of CO2 

directly to the reservoir was not possible. In the 

simulations with CO2-EOR, this was solved by 

assuming that CO2 was already injected in the reservoir 

before the oil production started. The water in the 

simulations can therefore be considered as carbonated 

water. The Lasater model was used for the gas-oil ratio 

(GOR) calculations. 

     The well specifications was set in OLGA and are 

presented in Table 2. The outlet pressure from the well 

(spesified in the heel) is set to 166 bar. This means that 

the driving forces in the heel section is 10 bar, and lower 

in the toe. The cases are either run with passive inflow 

control devices (ICDs) or autonomous inflow control 

valves (AICVs). The ICD has a constant opening of 

diameter 0.028 m, whereas the AICVs has an initial 

opening of 0.028 m but the opening will decrease and 

go to about zero as the water production increases. The 

number of inflow control units in both cases is 10.  
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Table 1. Characteristics of the reservoir. 

Reservoir Homogeneous, sand stone 

Oil viscosity 12 cP  

Oil specific gravity 0.895  

Porosity 0.33 

Permeability 
x- and y-directions: 8000 mD 

z-direction: 800 mD  

Area 31.8 km2 

Thickness 31 m 

Location of well 
Grid 3 from the top in z-

direction  

Gas Oil Ratio 15 Sm3/Sm3 

Reservoir pressure 176 bar 

Reservoir 

temperature 
76 °C 

Table 2. Specification of the well. 

Well length 1000 m 

Number of sections 20  

Diameter well 0.1 m  

Pipe roughness 0.1 mm 

Number of inflow devices 10 

Valve diameter 0.028 m  

Outlet pressure 166 bar 

Initial frictional pressure drop 7 bar 

4 Results and discussion 

Table 3 gives an overview of the different cases that are 

simulated in this study. Case 1 is run without CO2-EOR 

and without AICVs. Case 2 is run under the same 

conditions as Case 1, but with a choke mounted at the 

outlet of the production pipe. The choke is regulated by 

a PID which limits the total flow to maximum 1200 

m3/day. In Case 3,  AICVs are installed on the pipe wall, 

and in Case 4 CO2-EOR is used in addition to AICVs. 

Table 3. Overview of the simulation cases. 

Case 
CO2- 

EOR 
AICV Choke 

Case1 No No Yes 

Case2 No No No 

    

Case3 No Yes No 

Case4 Yes Yes No 

 

Figure 10 shows a comparison of the accumulated 

production from Case 1 and Case 2. In Case 1, with no 

choking of the production rate, the carbonated water 

production is very high, close to 3·106 m3 and 2.4 times 

the oil production. This involves that a large separation 

system is needed to handle the production flow. Most 

probably, the separation system on a platform in the 

North Sea is not design to handle these large amounts of 

liquids. It is therefore important to keep the total flow 

rate low to avoid overloading of the separation system 

and to reduce the costs related to separation. By choking 

(Case 2), the total flow can be adjusted to fit the capacity 

of the separators on the platform.  When the total flow 

is adjusted to maximum 1200 m3/day, the water break 

through is delayed, and the accumulated water 

production per 1500 days is reduced from 3·106 m3 to 

about 1.8·106 m3. The accumulated oil production is 

decreased from 1.25·106 m3 to 1.13·106 m3. This means 

that the accumulated water production has decreased 

with about 38% whereas the accumulated oil production 

has only decreased with about 10% during the 1500 days 

of production.  

     When using a choke, the flow from all the zones in 

the field will be reduced independent on whether they 

are producing oil or water. This results in less 

production from the toe where the oil saturation is still 

high. It is therefore important to utilize technology that 

can close off or choke the zones with high water 

production, and at the same time produce unhindered 

from the zones with high oil saturation. Suitable 

technology for this purpose is an autonomous inflow 

control valve.    

In Figure 11, the accumulated production from Case 

2 (choke) and Case 3 (AICVs) are compared. By using 

AICVs, the oil production after 1500 days is about the 

same as in Case 2 (choking of the total flow). However, 

the water production is further reduced to 1.11·106 m3. 

The reason is that the AICVs choke or close a zone when 

it is producing more than 65% water. The closing 

frequency is illustrated in Figure 12. The closing of the 

AICVs starts in the heel and the AICVs close one by one 

towards the toe. After about 1000 days, all the AICVs 

are nearly closed, and the increase in accumulated oil 

and water production is low. Compared to Case 2, the 

oil production rate is about the same after 1000 days, but 

in Case 2, the water production rate is still high. The 

high water production in Case 2 after 1000 days, is 

because when choking the total flow, the production will 

mainly occur from the zones in the heel section which 

have the highest water cut the highest driving forces 

(difference between the reservoir pressure and the well 

pressure). 

     To increase the oil production, CO2-EOR is used in 

Case 4. CO2 changes the residual oil and also influence 

the oil viscosity. This is taken into account in the relative 

permeability curves. In Figure 13, the oil and water/CO2 

production from Case 3 and Case 4 are compared. Case 

3 and Case 4 are both run with AICVs. When injecting 

CO2, both the oil and the carbonated water production 

increase. However, due to the AICVs, the production 

rates are limited. CO2-EOR results in an increase in oil 

production of 16.5% and an increase in water production 

of 44% relative to the similar case without CO2. 
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Although the water production increased more than the 

oil production, the water cut is still well below 50%, and 

the water production is low compared to the other cases. 

Since the CO2 is assumed to be dissolved in water in this 

study, a reduction in water production also indicates a 

significant reduction in the reproduction of CO2 to the 

production well. 

 

 

Figure 10. Comparison of oil and water production, Case 

1 and Case 2. 

 

 

Figure 11. Comparison of oil and water production, Case 

2 and Case 3. 

 

Figure 12. Closing order of the AICVs. Closes at WC 

65%. 

The results from the four simulated cases are 
summarized in Table 4. The water breakthrough occurs 

after about 120 days in Case 1, Case 3 and Case 4 and 

about 60 days later in Case 2. The reason for the later 

water breakthrough in the case with choking of the total 

flow, is that the total flow rate for this case is 

significantly lower than in the other cases in the early 

phase of the production. After the water breakthrough, 

the AICVs start to close, and the total flow rate for these 

cases will also decrease. Regarding Case 1, without any 

restrictions on the flow, the flow rate is increasing as the 

water cut increases. Initially (before water break-

through) the total production rates from Case 1, Case 3 

and Case 4 were equal due to equal diameter of ICDs 

and AICVs. 

     

 

Figure 13. Comparison of oil and water production, Case 

3 and Case 4. 

Table 4. Summary of simulation results. 

 Water 

break-

through 

Accumu-

lated 

water 

[m3] 

Accumu-

lated 

Oil 

[m3] 

% of oil 

produced 

Case 1 176 2.98·106 1.25·106  29.6 

Case 2 120 1.83·106 1.13·106  38.1 

Case 3 118 0.69·106 1.11·106  61.5 

Case 4 122 1.0·106 1.29·106  56.4 

 
Based on the results, Case 1 is not a relevant case for oil 

recovery due to the very high water production. Case 1 

is also not a realistic case, because the total production 

rates have to be controlled by a choke to avoid 

overloading to the downstream separation and 

processing systems.  In future work all the cases should 

be run with a choke on the total flow in addition to the 

inflow control devices. The simulation results shows 

that CO2-EOR increases the oil production significantly. 

In addition to CO2 injection, the results shows that 

autonomous inflow control devices are necessary to 

avoid high water production and recirculation of CO2 to 

the well.   

5 Conclusions 

The main objective of this study was to look at the effect 

of CO2-EOR on increased oil production and in addition 

to find a method to avoid reproduction of CO2 to the 

0                                     Time  [days]                                          1500  
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production well. The properties of the oil reservoir are

based on information from the Grane field in the North

Sea. Four cases were run under different conditions.

Simulations were performed using the OLGA and

ROCX simulation tools. The production from a

homogeneous reservoir was simulated for 1500 days.

CO2-EOR is a good alternative for increasing the oil

production from oil fields, but CO2-EOR also leads to

increased water production. When using autonomous

valves the oil production was reduced by 11% and the

water production was reduced by 77%. This is a

significant reduction in the water production and

thereby also reproduction of CO2, which results in a

more energy efficient and environmentally friendly oil

production. The simulations also showed that it is

crucial to install choke with PID regulator to control the

total flow rate.
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Abstract
In waste water treatment using biological treatment
processes normally phosphorous, nitrous compounds as
well as organic matter are removed. It is also important
to remove or kill pathogens that otherwise could cause
diseases. The surplus of bio-sludge is used to produce
biogas. In the paper four different alternatives for
system design and operations of systems was discussed.
The alternatives integrate the waste water treatment
and irrigation of farmland using the water taken out
from different positions in the waste water treatment
plant.

Keywords:    waste water treatment, farming, irrigation,
control.

1 Introduction
Irrigation is becoming more important globally as water
has become a scarce resource. By using waste water
(WW) the nutrients in the wastewater (phosphorous and
nitrogen-compounds) can be used as fertilizers. At the
same time it is necessary to manage pathogens as well
as toxic substance to avoid spreading diseases and
harmful substances through the crops. The water can be
taken out at different positions in the Waste water
treatment plant (WWTP). Depending on the demand of
water respectively nutrients different outtakes can be
feasible during different situations over the yea.

In Figure 1, several different layouts have been made
for different options for waste water treatment. The first
step is pre-sedimentation treatment where solid material
is settled. A precipitating agent, such as FeCl3, could
added to be able to separate smaller particles.

Addition of a precipation agent may lead to a
deficiency of carbon for the later activated sludge
process. Extra carbon source can be from either reject
water or addition of e.g. methanol or glycol. This will
enhance the denitrification in the activated sludge (AS)
step. Most of the PO4 will be removed in the form of
FePO4. This will be digested in the anaerobic digester,
but still most of the phosphorous (P) will be removed as
FePO4 in the residues after the digestion.

If no metal salt is added, only large particles will be
removed, there is still several alternatives for the
following process steps. There could be either an anoxic
or anaerobic steps followed by aeration. This will be
good both for biological removal of P and N compounds

as well as denitrification in the aerobic step. To build as 
much PO4 as possible into biomaterial, microalgae 
could be included, as algae are good at incorporating the 
PO4 (Anbalagan et al., 2017). The microalgae also 
produce O2, which would reduce the demand for 
aeration. The drawback is that microalgae need sunlight 
or artificial lighting and the reaction rate might also be 
lower. Microalgae was not included in this, although it 
might be interesting in the future.  

The sludge is normally separated after the biological 
processes and part of it recirculated, while the rest is 
anaerobically digested to produce biogas (which consist 
mostly of methane). The sludge can either be 
concentration before or after the digestion. The resulting 
liquid, can either be recirculated to before the biological 
processes, or first be treated with e.g. nano- or reverse 
osmosis filtration. Filtration can be organic acids (NF) 
or even ammoniac (RO). The permeate water will be 
quite lean and not add burden to the biological 
processes. Levlin and Hultman (2010) have described 
how PO4 could be recovered by precipitating it with 
CaO to form CaPO4. This could be an alternative for 
storing PO4 in a compact way. Toomiste et al (2010) 
have followed TP (total P) respectively DP (Dissolved 
P) through the different processes in the WWTP. Of the 
TP in the reject water from the digester 90% is 
dissolved, and thus in the liquid phase. Morse et al 
(1998) shows that anaerobic conditions can release the 
biologically bound PO4. 

Concerning nitrogen balance Kanders (2019) has 
studied both normal activated sludge processes and 
those with anammox-bacteria. It is assumed that 
approximately 40 % of the incoming NH4 is built in to 
the sludge microorganisms, while 40% is removed to air 
as N2. If anammox is used half of the electricity demand 
of the aeration could be, however a solid matrix where 
the bacteria can grow and form a film is needed. 
Kanders (2019) has primarily investigated how the 
anammox can be utilized for the reject water where the 
concentrations of ammonium is high and the volume 
flow much lower (only approximately 1% of the in-
flow). To combine WWT with irrigation water and 
sludge can be taken out from different positions in the 
WWT process. Most heavy metals should be in the 
solute. It would be interesting to wash the filter cake to 
wash out the metal ions. These then can be removed by 
absorption in e.g. an ion-exchanger.  

SIMS 60

106DOI: 10.3384/ecp20170106  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



In the denitrification, also N2O may be formed. By 
controlling the pH to above 7.6 almost no N2O was 
formed while a lot was formed at pH6 according to 

Desloover et al (2012) and Kanders (2019). The solid 
residues after the fermentation also should be 
recirculated to the farmland.   

 

 

Figure 1. A general layout of four different cases for a WWTP. 
 

2 Modelling 
From a modeling perspective primarily material and 
energy blanaces has developed. They are in reality semi 
steady state as steady state balances are calculated for a 
given inflow of water and TOC (Total Organic Carbon), 
TP and TN (Total Nitrogen). For different situations a 
new balance is calculated. In this paper four different 
cases have been studied.  

This includes continuity equations for massflow (m) 
times concentration (x) for each stream in (n) and stream 
out (k):  

  (1) 

The energy used in activated sludge processes are 
mainly electricity for aeration. In (Mizuta and Shimada, 
2010) a benchmark has been made for different 
wastewater treatment plants (WWTP) and found that in 
Japan 0.30-1.89 kWh/m3 was used for aeration. The 
main difference was depending on the size of the plant, 
and thereby the efficiency. Soares et al. (2017) present 
the figure 0.3-0.6 kWh/m3 in conventional activated 
sludge processes, which is in the lower range of what 
Mizuta and Shimada presented, for WWTPs in Brazil. 

Enerwater (2015) reports that 1% of electric power in 
Germany is for WWT in some 10 000 WWTPs. The 
study included 369 WWTPs in EU, representing the 
treatment of about 15,742,816 PE and a total energy 
consumption of 1,736,735 kWh/day, was performed. 
Assumption was 120 gCOD/(PE*d) in EU and 160 
gCOD/PE in the US. A specific energy use of 0.13 
kWh/m3 was found for larger plants, while for smaller 
plants values up to 5.5 kWh/m3 could be seen. 2000 
kWh/(PE*y) could be for smaller plants, while larger 
plants have in the range 20 to 60 kWh/(PE*y). This can 
be summarized in some key values for big WWTPs: 
0.28-0.61 kWh/m3 , 27.4-47.9 kWh/PE*y and 0.55-1.10 
kWh/kgCODrem. 

A value of value 0.55 kWh/kg COD was used, which 
means approximately 1,8 kWh/kg TOC if the following 
conversion formula is used   

COD= 49.2+3*TOC     (2)  

from Dubber and Gray (2010). They have developed 
this from a number of different influent water. The 
electric demand is then  

kWel = kg biomass TOC/s * 1.8 kWh/kg TOC.   (3)  

For biogas production it was assumed that the 
biomass to have the formula C5H7O2N + PO4 and the 
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energy content in the biomass is 21.2 MJ/kg. Sludge is 
taken to a digester where anaerobic fermentation 
convert approximately 50% (ηbiogas = 0.5) of the organic 
material to biogas, which was assumed to consist of  
65% CH4 and 35% CO2.  

kWCH4 = kg biomass TOC to digester/s*ηbiogas*0.65.   (4)  

The water flow has just been given for the in-flow, as 
the concentrations can vary a lot. As there will always 
be cleaned effluent water that can be used, this is not a 
limiting resource and thus is neglected in the mass 
balances. 

The mass balance has been evaluated for the four 
different cases based on assumption of 3600 m3/h (3600 
ton/h) inflow water and the following values have been 
used for separation or reactivity  efficiencies: ηpre,TOC, 
ηPre,PO4 and ηpre,NH4 = 20% case 1, 3 and 4, while 35% for 
case 2 with  ηpre,PO4 >95%; ηAS,TOC = 90%; ηAS,PO4 = 95%, 
ηAS,NH4,sep = 40%, ηAS,NH4,denit = 40%, sludge 
recirculation 65%. In Figure 1, we also see the flows that 
differentiate the four cases. 

3 Studied cases 
Four different cases were studied, with wastewater 

from different positions in the WWTP. An inflow of 1 
m3/s was used (corresponding to 500 000 PE) with 224 
mgTOC/l or 720 mgCOD/l in the inflow. The four cases 
are described below:  

Case 1: This is the reference case without addition of 
FeCl3 to the pre-treatment step, but with polishing with 
FeCl3 after the activated sludge. All reject water is 
recycled back before the AS.  

Case 2: In this case, FeCl3 is added before the pre-
sedimentation to precipitate most of the PO4 and 
significant amount of TOC and NH4 as well.  This is sent 
to fermentation. Reject water from the separation after 
the digester is filtered in a nano membrane filter and 
organics is recycled to the AS while permeate with PO4, 
K and NH4is sent to the farmland. Totally treated water 
is used for irrigation as much as needed with low risk 
for polluting crops, but also we do not add any burden 
from reject water with respect to NH4 and PO4 to the AS 
in the WWTP.   

Case 3: No pre-precipitation with FeCl3 before pre-
sedimenation, but addition after the AS for polishing. 
Use of reject water from the fermentation directly to the 
farmland. Here it should also be possible to remove 
heavy metals if needed from the liquid phase before 
distribution to the farmland.   

Case 4: Take out a significant part of influent water 
(50%) after the pre-sedimentation, after addition of 
FeCl3.  Infectious microorganisms might be a problem 
if spread to growing plants if infectious species survive.  
Though low temperature or sun light at the field should 
kill most. Reject water is filtered in a membrane filter. 
Hydrocarbons are recycled from reject water (reject), 

while the permeate with NH4, PO4 and K is distributed 
to the farmland.  

For cases 1 and 3, a pre-separation of coarse material 
without any chemical addition was assumed, but with 
addition of FeCl3 in case 2 and 4. Pre-separation was 
followed by an activated sludge (AS) process with 
anoxic and aerated vessels and after that sedimentation. 
65% of the sludge is recirculated while 35% goes to 
biogas production in an anaerobic digestion process. 
The sludge after the digestion goes to farmland after 
dewatering. The reject water after separation (press or 
centrifuge) goes back to the AS process in case 1, but is 
separated in a NF (+ RO) -filter in cases 2 and 3. The 
filtrate from the NF filter goes to farmland.  If there is a 
RO filter after the NF, the reject from the NF goes to the 
AS as a carbon source in case 2 (where there otherwise 
will be a deficiency of organics), while the permeate 
goes back to the process or is used as irrigation water 
(this will be pathogen free, and can be used also for 
vegetables). In case 3 the reject water goes back directly 
to the farmland without any NF/RO. The efficiency η in 
the different process steps are seen also in Figure 1. The 
following values has been used for the efficiencies: 
ηpre,TOC , ηPre,PO4 and ηpre,NH4 = 20% for cases 1, 3 and 4, 
while 35% for case 2 with  ηpre,PO4 >95%; ηAS,TOC = 90%; 
ηAS,PO4 = 95%, ηAS,NH4,sep = 40%, ηAS,NH4,denit = 40%, 
sludge recirculation 65%. Figure 1 illustrates the 
different flows for the four cases.  

There is also one other issue to consider. Aside of N2 
also N2O may be formed in the biological process? By 
controlling the pH to above 7.6 almost no N2O was 
formed while a lot was formed at pH = 6 (Desloover et 
al., 2012; Kanders, 2019).   

 

4 Results and discussion 
The mass balance for the four cases 1-4 can be seen in 
Table 1. In Figure 2, data from Table 1 are presented for 
the four cases with one variable at a time, sorting from 
highest to lowest value. The hydrocarbons sent to the 
farmland will be much higher (516 kgTOC/h) for case 4 
than the other three cases (310-336 kgTOC/h), but less 
methane will be produced.  

From Figure 2, it can can seen that there is more TOC 
in the organic effluent from case 4 but much more P in 
cases 1 and 3, and more N-NH4 in case 1. Case 2 and 4 
will have significantly lower emissions of PO4 while 
case 2 is best for N-removal and case 4 best with respect 
to TOC in the effluent. On the other hand, the phosphate 
will be more biologically active in the soil at the 
farmland in cases 1 and 3, as most is taken up in the 
biomass, and then released in the anaerobic 
fermentation. The FePO4 can be too stabile for efficient 
use in farming as a fertilizer, while the Phosphor bound 
in the cells is much easier to release.  
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Table 1. Material balance for the four operational/configurational cases from simulation. 

For electricity, the dfference is relatively small 
although higher for cases 1 and 3, while methane 
production is lowest in case 4, where a lot of the 
organics is sent to farmland directly, as seen as TOC/h 
to farmland. Concerning P to farmland as well as N-NH4 
case 1 has the lowest distribution while in case 4, the 
highest on especially NH4.   

All four cases can be implemented in the same 
WWTP with only small modifications, and in reality it 
is possible to switch between the different operational 
modes. It is mostly the addition of the nano membrane 
filter that differ this plant from “normal ones”. This can 
be useful when it comes to optimization related to the 
use of water for irrigation and addition of “natural” 
fertilizers as especially dissolved NH4 and PO4. Cases 1, 
2 and 3 can absolutely be implemented while case 4 may 
be sensitive from a hygienic perspective. This water 
should not be distributed in crops close to harvest, to 
avoid risks for spreading infectious diseases. It is not 
only possible to switch between the different 
alternatives, but also variants in between can be used. 

The optimization should be made to fulfill the crop 
demand as far as possible. In Figure 3, an example  of 
demand and supply of water respectively supply of 
water and nutrients can be seen. The water can be 
cleaned effluent to meet the water demand, while the 

nutrient supply is covered by operating the plant as 
suitable with the different operational modes in the four 
cases. You first cover the nutrient demand, and then fill 
up with cleaned water to fulfil the water demand. When 
the crops are very small irrigation is important. Later on 
nutrient will be more important to stimulate the growth 
rate. By switching between the different alternatives 
water with different amount of nutrients can be taken 
out, depending on these different demands over the 
growth season. If the NH4 and PO4 should be used far 
away from the WWTP, it might be interesting to 
precipitate these with MgO or CaO. The product then 
could be transported and stored in a relatively compact 
way Levlin and Hultman (2003) indicate an efficiency 
of at least 60% for Magnesiumammoniumphosphate can 
be achieved fromreject water. The electricity demand 
and the production of biogas are two other variables to 
include in an optimization to govern what alternative to 
use at different times depending on the value of 
electricity respectively methane during different 
situations.  

The control can be based on mass balance simulation 
of the process that can be made on-line continuously. By 
combining this with prediction of demands from the 
farmland production and distribution, plans can be made 
for how to optimize both plant operation and irrigation. 
By combining with cost calculations for chemicals, 
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electricity and value of biogas and nutrients produced 
economic optimization could also be made. 

  

Figure 2. Comparison between the four cases with respect to effluent levels respectively distribution to farmland of 
TOC, PO4 and NH4 as kg/h. Also kW electricity demanded and biogas produced as kg CH4/h. 

 

Figure 1. Three different causal loops identified by the conceptualized simulation model. 

 

5 Conclusions 
In this paper it was discussed how the WWTP can be 
controlled for irregation with respect to different ways 
of operations by simulating different ways of 
operations. These varying operations mode can be 
determined from the demand for water respectively 
nutrients like NH4 and PO4 over the growth season. The 
simulation can be made on-line for continuously follow 
the balances. By combining this with prediction of 
demands from the farmland production and distribution, 
plans can be made for how to optimize both plant 
operation and irrigation. By combining with cost 

calculations for chemicals, electricity and value of 
biogas and nutrients produced economic optimization 
can also be made. 
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Abstract 
 

Biogas contains mainly methane, but raw biogas can

contain large amounts of CO2 and is normally saturated

with water. Condensation, especially during

compression, may lead to operational problems. The

aim of this work is to calculate the dew point

(condensation limit) under different conditions with

different models in the simulation programs Aspen

HYSYS and Aspen Plus. Binary coefficients for water

and CO2 in these models will be fitted to experimental

data from the literature. Traditionally, gas mixtures of

methane, CO2 and water are calculated with standard

models like Peng-Robinson (PR) and Soave-Redlich-

Kwong (SRK).  For dry biogas (mixtures with only

methane and CO2) all the models give similar results.

For a biogas mixture with 60 mol-% methane and 40

mol-% CO2 with 0.1 mol-% added water, the models

using binary coefficients fitted for binary mixtures

(especially for CO2 and water), gave reasonable results

up to about 70 bar, with deviations in the calculated 
dew point up to 8 K.  The binary coefficient for wa-

ter and CO2 was fitted to experimental data from the 

literature for a mixture with a CH4 to CO2 molar ratio 

of 30/70, 50/50 and 70/30.  The fitted kij values for the 

PR model were 0.65, 0.21 and 0.17, respectively.  
For the SRK model, the kij values were slightly 

higher. At pressures below 70 bar and temperatures 

below 40 °C, the uncertainty for calculated dew-

points in mixtures with 30 to 100 % CH4 was reduced 

to less than 4 K. 

Keywords: CO2, methane, water, biogas, phase

envelope, Aspen HYSYS, Aspen Plus

 

1 Introduction 

 

Bio-methane (purified biogas) contains typically 97 

mole-% methane.  Raw biogas typically contains 60 % 

methane, 40 % CO2, small amounts of other components 

and water.  The temperature where the water starts to 

condense from a gas is called the dew point. It is 

important to be able to estimate this temperature because 

CO2 and water in the liquid phase is very corrosive, and 

may lead to operating problems.  (Hovland, 2017) and 

(Øi and Hovland, 2018) have discussed under which 

conditions water containing biogas will condense under 

compression. 

In their simulations all the models gave similar results 

up to about 70 bar, and some deviations above 70 bar.  

However, these simulations were not compared with 

experimental data.  

Gas mixtures of methane, CO2 and water are 

calculated in a process simulation program with 

standard models like PR (Peng and Robinson, 1976) and 

SRK (Soave, 1972).  When using fitted binary 

parameters (e.g., kij parameters) these models simulate 

the gas phase and the condensation point reasonably 

accurately (within a few degrees) at least below the 

critical point (46 bar for methane and 74 bar for CO2). 

Equilibrium models like HV (Huron and Vidal, 

1979), TST (Twu et al., 2005) have been shown to give 

more accurate results, however they have more 

parameters which are normally not available in 

simulation programs like Aspen HYSYS or Aspen Plus. 

Other models with several parameters like SAFT-VR 

(Al Ghafri et al., 2014) and CPA (Austegard et al., 
2006) have also been used to describe this system. 

There is a limited number of articles available 

studying the calculations and models for vapour/liquid 

equilibrium in the methane/CO2/water-system 

(Austegard et al., 2006; Privat and Jaubert, 2014; Al 

Ghafri et al., 2014; Legoix et al., 2017).  Austegard et 

al. conclude that a simple equation of state like SRK is 

satisfactory to describe the vapour phase, but more 

complex models, e.g., SRK combined with a HV model 

is necessary to describe the liquid phase (Austegard et 

al., 2006).  

Several authors have studied models for the system 

CO2/water (Spycher et al., 2003; Longhi, 2005; Aasen 

et al., 2017).  For high concentrations of CO2, it is 

possible to obtain two liquid phases (water rich and 

CO2-rich) in addition to a vapour phase.  This will not 

occur when the CH4 content is higher than 0.225 in the 

vapour phase (Bi et al., 2013; Legoix et al., 2017). 

Water solubility in CO2 gas or a mixture of CO2 and 

methane shows a minimum for a constant temperature 

between 50 and 100 °C at a pressure in the range of the 
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critical pressures (Austegard et al., 2006; Aasen et al., 

2017; Privat and Jaubert, 2014).  For this system, a 

minimum solubility is equivalent to a maximum dew 

point temperature.  The water solubility in pure CH4 is 

close to constant over a large pressure range close to the 

critical pressure (Privat and Jaubert, 2014). 

Below 0 ºC, liquid water will turn into solid ice, and 

hydrates may also be formed.  Hydrates in equilibrium 

in this system have been observed up to 13 °C (Al Ghafri 

et al., 2014) but will probably not be a problem above 0 

°C.  There are several sources for experimental data for 

solubility of CH4 and CO2 in water (Dhima, 1999; Qin, 

2008), but this is of minor interest when the main 

interest is in the dew point calculations. 
Little experimental data has been published for the 

dew point (condensation limit) in the ternary system 

methane/CO2/water.  (Song et al., 1990) have published 

experimental data for water solubility in a mixture with 

5.7 mol-% CH4 in CO2.  (Jarne et al., 2004) have 

published data for mixtures with a molar ratio 30/70 and 

80/20 for CH4/CO2.  

(Al Ghafri et al., 2014) present dew point data for a 

water containing mixture of a 50/50 mixture of CH4 and 

CO2 at temperatures above 50 ºC. 

The first aim of this work is to calculate the dew point 

for raw biogas under different temperature, pressure and 

gas composition (main emphasis in the region of 30 to 

100 % CH4 and in the temperature range 0-50 ºC) using 

different equilibrium models.  It is of particular interest 

to evaluate whether fitting data to the ternary mixture 

would increase the accuracy compared to using binary 

coefficients from only binary systems. 

 
 

2 Simulation Programs and Models  

 

(Øi and Hovland, 2018) used the commercial 

simulation program Aspen HYSYS for dry biogas (CH4 

and CO2) and for mixtures also containing water.  The 

equilibrium models SRK (Soave, 1972), PR (Peng and 

Robinson, 1976) and TST (Twu et al., 2005) were used.    

In this work also the program Aspen Plus is used mainly 

with PR, SRK, but also some other models were tried. 

The advantage with PR and SRK is that both the 

models and fitted binary parameters are usually 

available in the program. 

The PR and SRK models have only one adjustable 

parameter for each binary component pair, but this 

parameter may be temperature dependent. 

The equations for the SRK equation of state are 

shown in (1) to (8) from Aspen HYSYS Version 10.  

Aspen HYSYS and Aspen Plus Version 10 were used in 

the simulations. 

Other process simulation programs like ProVision, 

ChemCad and ProMax also have PR and SRK and often 

other thermodynamic models available. 

 

𝑝 =
𝑅𝑇

𝑣−𝑏
− 𝑎

𝑣(𝑣+𝑏)
                             (1) 

𝑏 = ∑ 𝑥𝑖𝑏𝑖                                                  
𝑁
𝑖=1 (2) 

 𝑏𝑖 =
0,08664𝑅𝑇𝐶

𝑝𝑐
                                               (3) 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗(𝑎𝑖𝑎𝑗)
0,5

(1 − 𝑘𝑖𝑗)   𝑁
𝑗=1   𝑁

𝑖=1 (4) 

                𝑎𝑖 = 𝑎𝑐𝑖𝛼𝑖                                                        (5) 

     𝑎𝑐𝑖 =
0,42748𝑅2𝑇𝑐

2

𝑝𝑐
                                            (6) 

𝛼𝑖 = [1 + 𝑚𝑖 (1 − 𝑇𝑟

1
2⁄

)]
2

                         (7) 

𝑚𝑖 = 0,48 + 1,574𝜔𝑖 − 0,176𝜔𝑖
2            (8) 

P, T, v and R are the pressure, temperature, molar 

volume and universal gas constant, respectively. 

Tc is the critical temperature, ω is the acentric factor and 

Tr is the reduced temperature defined as the ratio 

between T and Tc.  The binary interaction parameter kij 

(equal to kji) is a constant that may be fitted for a binary 

component pair and xi is the mole fraction for 

component i.  In the PR equation, equation 1, 3, 6 and 8 

are replaced by equation 9, 10, 11 and 12.  

  

𝑝 =
𝑅𝑇

𝑣−𝑏
− 𝑎

𝑣(𝑣+𝑏)+𝑏(𝑣−𝑏)
                           (9) 

  𝑏𝑖 =
0,077796𝑅𝑇𝐶

𝑝𝑐
                                                        (10) 

                𝑎𝑐𝑖 =
0,457235𝑅2𝑇𝑐

2

𝑝𝑐
                                                    (11) 

 

𝑚𝑖 = 0,37464 + 1,54226𝜔𝑖 − 0,26992𝜔𝑖
2    (12) 

 

 

In the standard version of SRK and PR, kij is a 

constant for each binary pair.  When utilizing the default 

kij values in Aspen HYSYS and Aspen Plus, the kij 

values are constant for all component pairs except for 

water/CO2 where it is a temperature dependent function.  

In the literature, different optimized values for the kij 

values can be found because the parameters may be 

optimized for different conditions, e.g., for accurate 

prediction of either the gas phase or the condensate 

phase.  For the calculation of dew points, it is reasonable 

to use binary interaction coefficients optimized for the 

gas phase.  

The PR and SRK versions used in Aspen Plus are 

equal to the Aspen HYSYS versions shown in (1) to 

(12), except that some of the numerical values are 

slightly different. Especially the coefficients in the mi 

expressions (8) and (12) are slightly different. 

The kij values fitted to PR and SRK models are 

traditionally very similar.  This can be seen, e.g., for the 

kij parameters in (Aasen et al., 2017). 
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3 Process Description and Simulation 

Specifications 

3.1 Process description of raw biogas 

compression  

 

Figure 1. A traditional raw biogas compression process 

 

The principle for a traditional raw biogas compression 

process is shown in Figure 1. 

When the raw biogas production is high (above 100 

m3/h at atmospheric pressure and ambient temperature), 

it can be reasonable to upgrade it on-site. For low 

volumes, (Hovland, 2017) suggests to compress the gas 

to a high pressure, typically above 100 bar, and transport 

it to a facility for upgrading to biomethane (almost pure 

methane).   

As mentioned in (Øi and Hovland, 2018), 

condensation during compression is regarded to be a 

problem, and should be avoided.   

 

 

3.2 Simulation specifications 

 

Process simulations are performed for different 

conditions relevant for biogas production as in (Øi and 

Hovland, 2018).  In earlier work the models PR, SRK, 

TST, PR-Twu and SRK-Twu were used.  For all the 

conditions, calculations with the default parameters 

(especially the kij for water) are used.  For some 

conditions other kij values are also used.  It is possible 

to calculate phase envelopes showing the dew and 

bubble point curve for a temperature and pressure range.  

In the dry gas cases, the HYSYS 2-phase option was 

selected for phase envelope calculations.  In the cases 

including water, the ComThermo 3-phase option was 

selected. 

Verification of earlier calculations is also including 

calculations with Aspen Plus and with the (Stryjek-

Vera, 1986) model.  In Aspen Plus the Peng-Robinson 

and RKSoave models were selected.  The B and D cases 

are referring to (Øi and Hovland, 2018). 

Case B: Dry biogas with 40 mol-% methane and 60 mol-

% CO2 starts at 37 °C and 1 bar, is cooled to 10 °C and 

is compressed to 64 bar. 

Case D: 59.9 kmol/h methane, 40 kmol/h CO2 and 0.1 
kmol/h water is mixed at 37 ºC and 1 bar, cooled to 10 

°C, and then compressed to 64 bar. 

A mixture of 30 mol-% methane and 70 mol-% CO2 

mixed with a specified amount of water at a specified 

pressure was simulated.  Calculated dew point 

temperatures were compared to experimental dew 

points from (Jarne, 2004) which were approximately 15 

°C.  Binary coefficients (especially the kCO2/H2O) were 

varied (and fitted) to obtain the experimental dew point.   

Mixtures of 50/50 and 70/30 methane to CO2 molar 

ratios were simulated based on experimental data from 

(Chapoy, 2017) with temperatures at 20 and 40 ºC and 

pressures of 30 and 60 bar. The kCO2/H2O values were 

fitted also for these conditions. 

 

4 Process Simulation, Results and 

Discussion 

 

4.1 Verification of earlier simulations for 

compression of dry methane/CO2 

mixture (Case B) 

 

The Aspen HYSYS flow-sheet model for the base case 

simulation is presented in Figure 2. 

 
Figure 2. Aspen HYSYS flow-sheet for compression and 

cooling 

 

Case B is of interest because a 40 % methane and 60 

% CO2 has a dew point close to 0 °C.  Earlier evaluations 

from (Hovland, 2017) and (Øi and Hovland, 2018) have 

shown that below 58 mol-% CO2, no condensation 

should appear if the temperature is kept above -3 °C. 

 

Table 1.  Dew point at 64 bar, cricondenterm and 

cricondenbar for a mixture of 40 mol-% methane and 60 

mol-% CO2  (Case B)  

Model TDEW TCRIC (ºC) PCRIC (bar) 

PR Hysys -5.4 -1.7 89.5 

SRK Hysys -5.2 -1.3 88.4 

TST Hysys -3,9 -0.5 82.6 

PR-Twu Hysys -6,3 -2.7 90.0 

SRK-Twu Hysys -5,8 -1.8 90.5 

PR Aspen Plus -5.4 -1.8 88.2 

SRK Aspen Plus -5.3 -1.6 87.9 
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The results in Table 1 confirms the results from 

Aspen HYSYS simulation in (Øi and Hovland, 2018).  

In addition, similar results are obtained when PR and 

SRK in Aspen Plus is used.  The reason why the results 

in Aspen HYSYS and Aspen Plus are not identical, is 

that the model equations are slightly different. 

The calculated cricondenterms with different models 

have a maximum deviation of 2 °C.  From this it is 

concluded that the results can be expected to be fairly 

accurate for all the models evaluated.  No condensation 

will appear above 0 °C in a dry biogas with more than 

40 mole-% CH4.  This was also the conclusion from 

(Hovland, 2017) and (Øi and Hovland, 2018). 

A phase envelope from Aspen HYSYS is shown in 

Figure 3.  The most important part for the evaluation of 

condensation is the dew point curve to the right.  The 

point with the highest temperature is the cricondenterm.  

The point with the highest pressure is the cricondenbar.  

In the critical point for the mixture, slightly to the left of 

the cricondenbar, the compositions in both phases are 

equal. 

It was found that the results in Table 1 were only 

slightly influenced by varying the kij parameter. The 

deviations are largest in the calculated envelopes above 

70 bar. 

It is expected that the calculations for dry biogas is 

reasonably accurate because all models give the same 

results, the parameters are fitted for this binary system 

and CH4/CO2 is a rather simple physical system. 

 
 

 

Figure 3. Phase envelope, Peng-Robinson, CH4=0.4, 

CO2=0.6, default kij. 

 

 

4.2 Simulation of compression of a raw 

biogas including water, Case D 

In Case D, the process was simulated with water 

included.  First the TST, PRTwu, SRKTwu default 

models were calculated without kij-values. When the 

option including kij’s for water binaries was used, the 

dew point temperatures were much closer to the PR and 

SRK models. 

In Case D, the water mole fraction was specified to 

0.001.  This water concentration is possible to obtain if 

condensate is removed from the biogas stream after 

intercooling steps in the compressor.  Results are shown 

in Table 2. 

 

 

Table 2.  Dew point at 64 bar, cricondenterm and 

pressure at cricondenterm for a mixture of 59.9 mol-% 

methane and 40 mol-% CO2  with 0.1 % water (Case D) 

Model TDEW (ºC) TCRIC (°C) PCRICT(bar) 

PR 26.5 27.6 89.7 

SRK 26.9 28.0 89.2 

PR(kij=0.19) 30.0 34.0 141 

PR(kij=0.65) 34.3 none none 

PRSV 27.1 29.2 101 

TST+kij 28.8 32.1 122 

PRTwu+kij 28.5 32.1 121 

SRKTwu+kij 28.8 32.2 122 

 

 

The dew point temperatures in Table 5 were also 

calculated in Aspen Plus. For PR and SRK the results 

were 26.3 ºC and 27.3 ºC, which are very close to the 

Aspen Hysys values. When using HYSPR and 

HYSSRK in Aspen Plus the results were identical in the 

two programs. The model RKSMHV2 (a modified 

HuronVidal model) gave 29.7 ºC and the model 

GERG2008 (from European Gas Research Group)   

gave 27.7 ºC.  There are deviations of 8 K between the 

dew point temperature dependent on kij values.  It is 

necessary to compare with experimental data to find out 

which models and parameters which are most accurate. 
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4.3. Fitting of binary parameters based on 

experimental data. 

 
It is reasonable to fit the binary coefficients to mixture 

data if we are not interested in the composition range 

below 30 % CO2. 

It is reasonable to vary the CO2/water and not to 

change the binary coefficients for the CH4/CO2 or the 

CH4/water system.  The water content is probably too 

low to influence on the CH4/CO2 interaction.  The 

default value in PR is 0.1.  The CH4/water is a much 

studied system.  In the literature, kij for the binary is 

normally specified to about 0.5, e.g., 0.52 in (Austegard, 

2006).  In Aspen HYSYS, 0.5 is the default value.) 

Experimental data were taken for a mixture of 30 

mole-% methane, 70 mol-% CO2 and four specified 

amounts of water (Jarne, 2004).  The experimental data 

for approximately 15 ºC (the highest temperature) were 

selected. 

The binary parameter for CO2 and water was varied 

until the measured dew point temperature was achieved.  

The results (fitted kij values and calculated dew points) 

are given in Table 3. 

For a mixture with a CH4 to CO2 molar ratio of 30/70, 

50/50 and 70/30, the fitted kij values were 0.65, 0.21 and 

0.17, respectively.  These values are high compared to 

literature values typically between -0.1 and 0.2 (Aasen 

et al, 2017).  The (temperature dependent) kij values in 

the default PR model used in Table 3 varied between -

0.12 and 0.04.     

The kij values for the SRK model in Aspen HYSYS 

was fitted to the data from (Jarne et al., 2004) by the 

same procedure.  The fitted kij values were then 0.63, 

0.17 and 0.11.  The difference between the kij values 

fitted to the PR and SRK models are as expected very 

small. 

This shows that the kij values are clearly dependent 

on the CO2 concentration.  This supports the idea of 

fitting the kij values for the concentration area of 

interest.  For biogas this is with more than 30 mole-% 

methane. 

In Table 3, the dew point temperatures calculated 

with default PR gave mostly small deviations, but two 

deviations of 6.9 and 4.2 K.  The dew point temperatures 

were also calculated with a kij value of 0.19 (average 

value for the 50/50 and 70/30 mixtures).  In that case the 

deviations were reduced to 0.7 and 4.1 K.  This shows 

that uncertainty in dew point temperatures can be 

reduced from 7 K (8 K in Table 2) to 4 K by using a 

constant kij for the whole range from 30 -100 mol-% 

CH4. 

It was also tried to fit binary coefficients in PR and 

SRK to experimental data from (Al Ghafri et al., 2014) 

at temperatures 50 and 100 °C.  However, all reasonable 

kij values gave deviations from the experimental dew 

point temperatures up to about 10 K.  This indicates that 

the uncertainty increases with temperature. 

 

 
Table 3.  Comparison of Dew points compared to 

experimental data from (Jarne, 2004) and PR kij values for 

CO2/water fitted to the experimental data. 

TEXP 

(oC) 

PEXP   

(bar) 

CH4/CO2 
(mole ratio) 

Water 

(mol%) 

TPR,(
oC) 

kij- 

default 

PR 

kij-

fitted 

 

14.7 31.6 30/70 0.0547 7.8 0.65 

14.8 20.7 30/70 0.0844 10.9 0.60 

14.8 11.9 30/70 0.1400 12.3 0.70 

20 30 50/50 0.0989 18.6 0.15 

20 60 50/50 0.0636 15.9 0.20 

40 30 50/50 0.2961 38.3 0.24 

40 60 50/50 0.1791 35.8 0.25 

20 30 70/30 0.0959 19.5 0.10 

20 60 70/30 0.0584 18.1 0.15 

40 30 70/30 0.2873 39.1 0.20 

40 60 70/30 0.1693 37.9 0.21 

 

 

4.4. Phase envelope calculations 

 
The phase envelope for PR with kij=0.19 from Table 2 

is shown in Figure 4. 

 

 
 

Figure 4. Phase envelope for PR model, 59,9 mol% CH4, 

40 mol% CO2, 0.1 mol% water: kij =0.19 for water/CO2 

 

 
The envelopes in Case D are similar for the different 

models up to about 70 bar. Above 70 bar there is 

however a difference up to 4 K between the models. The 

differences are due to the model and the model 

parameters, especially the kij for water and CO2.  The 

difference between the models above 70 bar is 

significant. 
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As mentioned by (Øi and Hovland, 2018), it is 

reasonable that the non-ideality and uncertainty 

increases when the pressure increases, and also when the 

mixture is close to condensation and close to the critical 

point which is order of magnitude 70 bar.  The range 

with an uncertainty less than 4 K in calculated dew point 

with PR or SRK with one constant kij value (0.19) is for 

the range of temperatures 0-40 ºC, pressures up to 70 bar 

and CH4 concentration above 30 mol-%. 

 

 

 

5  Conclusion 

 

Dew points for dry and raw biogas under different 

conditions with varied temperature, pressure and gas 

composition using different equilibrium models have 

been calculated. 

For dry biogas, all the models Peng-Robinson (PR), 

Soave-Redlich-Kwong (SRK), PRSV, both in Aspen 

HYSYS and Aspen Plus gave similar results.  As in the 

literature, above 0 °C a biogas mixture with more than 

40 % methane will not result in any condensation.   

A process is simulated where raw biogas is 

compressed and cooled. From the results with biogas 

containing water at low pressure, the different models 

gave similar results within a few K up to about 70 bar.  

The deviation compared to experimental values were 

however up to 8 K. The results were dependent on the 

chosen value of the water/CO2 binary interaction 

coefficient. 

The binary coefficient for water and CO2 was fitted 

to experimental data from the literature for a mixture 

with a CH4 to CO2 molar ratio of 30/70, 50/50 and 

70/30.  The fitted kij values for the PR model were 0.65, 

0.21 and 0.17, respectively.  For the SRK model, the kij 

values were slightly higher. At pressures below 70 bar 

and temperatures below 40 °C, the uncertainty for 

calculated dew-points in mixtures with 30 to 100 % CH4 

was reduced to less than 4 K. 
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Abstract
Implementations of conversion systems for segregated
food waste into larval biomass are reliant on stability of
production environment and predictable outcomes.
However, the knowledge is currently lacking for large
scale implementation modelling allowing to adjust the
process for reaching a stable production quality and
predicting the treatment capacity and output product
quantity. This study contributed to the development of 
such knowledge and investigated models for predic-
tion of larvae mass gain in the conversion process, 
food waste degradation due to larval and microbial 
activity, heat production based on metabolic activity in 
the conversion process. These models were used to 
evaluate the amount of heat produced and compared to 
the demand for water removal for achieving a mini-
mal total solids content (50%) in the treatment residue 
for easy larvae separation by sieving. Based on these 
models’ predictions and measurements of the con-
version efficiency it was established that, assuming 
no heat loss from the system, the heat generated by 
the process was sufficient to achieve a desirable to-
tal solids content in the residue after 14 days of 
treatment. An exponential heat production from 
waste degradation can be expected, and thus, for wetter 
food waste, the treatment period can be expanded to 
achieve the desired residue total solids content.
Keywords: Black soldier fly, degradation, conversion,
sieving, food waste, high water content.

1 Introduction
Insect rearing for feed production is becoming more
enticing in strive to find sustainable and locally
produced feed proteins (Kim et al., 2019). Still, the trend
globally is that consumption of insects used as feed and
food is decreasing, although a recent estimation
suggests that some 2.5 billion people occasionally eat
insects, mostly in Asia, Africa and Central –South
America (Van Huis et al., 2013). Historically, in Europe,
the use has been quite low. However, the search for
sustainable protein is driving the development of larger
facilities producing insects (Makkar, 2017). A great deal
of attention has been given to the black soldier fly

(Hermetia illucens) in particular due to its potential for 
use in organic waste treatment (Čičková et al., 2015). A 
step-by-step guide for such implementation was 
recently presented by Dortmans et al. (2017). However, 
the majority of scientific investigations have so far 
focused on treatment efficiency in treating different 
organic waste fractions, and very few studies focus on 
large-scale production optimization (Mertenat et al., 
2019). Other studies by Leong et al. (2016) and Li et al. 
(2011) investigated bio diesel production potential, 
while Pastor et al. (2015) and (Spranghers et al., 2017) 
have studied bottlenecks in conversion processes. 

The success of large-scale insect biomass production 
system implementation is reliant on stability of 
production environment with predictable output 
quantities and quality of larvae and residue (Čičková et 
al., 2015). Such a system can be easily scaled to the 
expected amount of substrate and appropriate 
adjustments can be made with known effects on 
outcomes depending on the amounts of products needed 
or substrate to be treated. Such stability has to be 
achieved by insect farmers at European and global level 
in order to meet future demands for protein (IPIFF, 
2018). The use of organic waste as a source for 
production of larvae with intent for animal feed or 
biodiesel production has been evaluated in several 
studies (Leong et al., 2016; Li et al., 2011; Pastor et al., 
2015; Spranghers et al., 2017). The grown black soldier 
fly (BSF) larvae are high in fat, containing 20-50% of 
fat on a dry matter basis. Protein content is typically in 
the range of 35-42% on a dry matter basis (Ewald, 2019; 
Lalander et al., 2019). Such composition of larval 
biomass represents a great source of protein and fat for 
production of animal feed.  

For large scale implementation, several parameters 
are important to establish a stable production. Such 
parameters include the dimensioning of the number of 
fly larvae per amount of treated substrate, process 
temperature and retention time in treatment (Diener et 
al., 2011; Liu et al., 2017; Paz et al., 2015; Tomberlin et 
al., 2009). Another important parameter often discussed 
is achieving a moisture content in the treatment residue 
that allows dry separation of larvae after the treatment. 
Cheng et al. (2017) has investigated how larvae 
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separation is affected by moisture content in the residue. 
The initial tests performed at the pilot plant at Eskilstuna 
Strängnäs Energi och Miljö collaborating in the current 
project have shown that total solids content of the 
residue above 40-45% allows an easy larvae separation 
through sieving.  

The aim of this study was to evaluate the technical 
aspects of larvae growth, ventilation and drying in a 
pilot sized BSF treatment system treating segregated 
household food waste and to develop mathematical 
models to describe the treatment process and its energy 
efficiency. 

2 Material and methods 
This section contains details about the study set up, 
materials and methods used, measurement techniques 
and assumptions. 

2.1 Description of the larvae production 
facility in Eskilstuna 

The measurements were performed at the fly larvae 
conversion pilot facility at Eskilstuna Strängnäs Energi 
och Miljö, while process efficiency evaluations were 
performed both at the pilot facility and at the Swedish 
University of Agricultural Sciences (SLU). 

2.1.1 Treatment set-up 
The treatment process began when approximately 
15 000 seven-day-old larvae were added to a treatment 
box containing the first feeding portion of 5 kg waste 
(Figure 1A). The treatment boxes had a surface area of 
2400 cm2 (Figure 1). Treatment boxes were stacked by 
8, and four such stacks were started approximately once 
per week. The boxes were stacked in order to increase 
treatment volume. The stacks were placed in a treatment 
room which was heated using residual heat at the 
Eskilstuna waste management facility. Three sets of 
stacks (4 in each) were evaluated. The sets were named 
T20, T11 and T5 indicating how many days they were 
in the treatment on the day when temperature and 
relative humidity (RH) were measured. Four boxes were 
sampled in each set. The boxes were fed with two 
additional 5 kg portions of food waste with an interval 
of 3-6 d (Table 1). After the last feeding the material was 
left for 5-14 d to be processed by the larvae. On day 14-
21 from treatment start, the larvae were separated from 
the residue using a rotating drum sieve. 

2.1.2 Materials 
The young larvae were produced at SLU from a 
continuously run BSF colony since 2015. The seven-
day-old larvae were pre-weighed to contain 
approximately 15 000 based on a smaller sample that 
was determined by enumeration and a gravimetric 
estimation of a single larvae weight.  

The segregated household food waste, which was 
collected in plastic bags and went through optical 
sorting process, subsequently was minced in an 
extruder-grinder that also separated out plastic and other 
fractions not passing through the mesh.  

 

  
Figure 1. Depiction of larval growth and visual material 
changes during treatment process a) at start of treatment, 
b) after 5 days of treatment, c) after 11 days of treatment 
and d) after 20 days of treatment. 

2.1.3 Temperature and moisture sampling 
Temperature was sampled using a Fluke pyrometer to 
measure surface temperature. For the temperature in the 
material (below the surface), approximately 10 mm of 
material top layer was removed and the temperature 
measured directly. The temperature and relative 
humidity (RH) were sampled using a Testo 400 
thermohygrometer probe to measure temperature and 
RH values in the material and right at the surface of 
material. The measurements were performed in boxes 
kept at different heights in the stacks and different 
locations at the facility. For each box, 5-7 sub-samples 
were collected in random positions and an average value 
was used as a reading, but multiple replicate boxes were 

A B

C D

Table 1. Treatment schedule showing the age of stacks with treatment boxes in days from start (ST) to sampling day 
(highlighted in green). First feeding was provided at start (highlighted orange) and additional feedings were given within 
3-6 days (highlighted blue). 

Stack set Treatment days 
T20 ST 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
T11 

         
ST 1 2 3 4 5 6 7 8 9 10 1 1 

T5 
         

 
     

ST 1 2 3 4 5 
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compared to ensure reliability of measurements (n=9 for 
temperature and n=4 for surface humidity). 

2.2 Modelling 
Microbial waste degradation was modeled according to 
a first order rate expression for microbial oxidation of 
degradable volatile solids highlighted by Hamelers 
(2004) and developed by Keener et al. (1992) (1). 
Similar models based on rate constants, amount of 
degradable material and environmental factors such as 
process temperature have been discussed by others e.g. 
Haug (1993). 

𝑑𝑑𝑚𝑚
𝑑𝑑𝑡𝑡 = −𝑘𝑘(𝑥𝑥1,𝑥𝑥2,⋯𝑥𝑥𝑛𝑛) ∙ [𝑚𝑚−𝑚𝑚𝑒𝑒] (1) 

Where m is the compost mass, t is time, k is the 
composting process rate constant, xi are the 
environmental factors e.g. process moisture and 
temperature and me is the non-degradable mass of 
compost at the end of the process. 

Larval waste reduction was modelled based on 
several variables, including bioconversion ratio (BCR) 
representing the amount of volatile solids (VS) in 
substrate that has been converted to larval biomass (2).  

𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 =
𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒

 (2) 

The mass of substrate lost in the process is expressed 
through a reduction (RED) variable which can be 
calculated on volatile solids basis, total solids (TS) basis 
and wet weight (WW) basis. The latter accounts for all 
the losses in the process including evaporation and 
respiration (3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤𝑤𝑤 = 1−
𝑊𝑊𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (3) 

The larval metabolic activity, along with that 
performed by microbes, results in respiration, energy 
release and volatile solids reduction in the substrate. 
Typically such activity can be associated to the body 
mass and thus the substrate VS reduction by larvae can 
be expressed through an adapted model proposed by 
Wotton (1978) where respiration rate (measured as C 
loss from substrate through CO2 emission) is assumed 
to be proportional to VS loss (4). 

log
𝑑𝑑𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑𝑑𝑑 = 𝑎𝑎 + 𝑏𝑏 ∙ log𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (4) 

Where VSlost represents the amount of substrate VS 
being lost due to larval metabolic activity over time t, 
Mlarva is the individual larvae body mass at time [t] in the 
process, while parameters a and b represent the initial 
VS loss rate and the influence degree of the body mass 
on VS loss rate, respectively. An additional pathway for 
VS loss is associated to substrate assimilation by the 
larvae and can be calculated based on BCRVS. 

2.3 Assumptions 
Several parameters used in modelling and evaluations of 
system productivity were estimated based on previous 
analyses, studies and published sources. Eskilstuna food 
waste moisture content has been evaluated in several 
studies including a study by Johannesdottir (2017) and 
Lindberg (2018) and the TS range reported was 15% – 
23%. Based on these results, communication with 
Eskilstuna facility operators and measurements 
performed in the lab (data not shown), it was assumed 
that the typical TS content of the slurry was 16% ± 2%. 
Food waste from Eskilstuna have been demonstrated to 
have a very good BCRTS the values reported range 
between 24 and 32% (Johannesdottir, 2017; Lindberg, 
2018) and in the current system investigation a value of 
BCRTS of 30% was assumed. Reduction of substrate VS 
depends on multiple parameters and system 
dimensioning; however, an assumption is necessary in 
order to estimate the amount of water needed to be 
removed in the treatment process. Although a reduction 
in the range of 56 - 65% (Johannesdottir, 2017) have 
been reported for Eskilstuna food waste, a lower REDTS 
of 50% was assumed here in order to not overestimate 
the amount of energy released from the process typically 
associated with reduction of substrate.  

Based on these values the mass balance of the process 
can be presented. Per ton of food waste processed, the 
substrate TS represent 140-180 kg, which assuming a 
BCRTS of 30% and a REDTS of 50%, results in 
production of 43-55 kg TS of larval biomass and 72-93 
kg TS of treatment residue. Based on these assumptions, 
the demand to obtain the residue with 50% TS to allow 
sieving, the assumption that larvae have TS of 35% 
(Johannesdottir, 2017) and the overall mass balance, 
709-625 kg of initial substrate water has to be removed 
and 25-32 kg of initial TS are respired. 

The amount of energy released in the degradation 
process was estimated based on heat of combustion of 
biodegradable VS. Mason (2009) calculated that for 
food waste 5.4 kWh of energy can be released per kg VS 
degraded. Based on this assumption the amount of heat 
released was calculated taking into account the VS 
content of the food waste slurry (He et al., 2013). 

The incoming air to the facility was warmed up to 
approximately 30 °C and it was assumed it had 15 RH% 
at that temperature based on measurements performed 
earlier (data not shown). The outgoing air was assumed 
to be 30 °C and have an RH of 95%. Such high 
saturation level was not achieved in a previous study 
permed in controlled lab conditions (Johannesdottir, 
2017) when a saturation of 61 RH% was observed in 
outgoing air. Nevertheless, by adjusting the ventilation 
rates, nearly full saturation of air can be achieved (Bach 
et al., 1987), and thus this assumption was used in the 
current evaluation (Kubilay and Kucska, 2018). Based 
on these assumptions a water carrying capacity of air 
was calculated using steam tables (Mörtstedt and 
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Hellsten, 1976). It was estimated that 0.022 kg water can 
be removed per kg air supplied by the ventilation. 

3 Results and discussion 
3.1 Treatment process 
The treatment process has been running for 5, 11 and 
20 d on the day of moisture sampling. The treatment 
running for 5 d (T5 in Table 1, Figure 1B) had larvae 
that were approximately 10 mm long (visual estimation) 
but very thin. In the treatment T11, running for 11 days 
(Figure 1C) the larvae were larger, visually estimated to 
be approximately 15 mm long, but smaller in diameter 
(by ca 2.5-3 mm) than the ones in treatment for 20 days 
(Figure 1D), which were estimated to have a diameter 
around 3.5 - 4 mm and were approximately 20 mm long. 
The moisture content in the material was relatively high 
after 11 days of treatment, and as seen in the picture in 
Figure 1B, the treatment surface appeared wet. Figure 
1D shows the larvae that had treated the material for 20 
days. The waste was dried to a TS content of 
approximately or lower than 50% due to biological 
activity generating heat that was driving evaporation 
together with ventilation.  

The facility had a treatment capacity for 1440 kg of 
material at any given time, however as the material was 
added in portions, on the sampling day there was 960 kg 
of material being treated. Only stacks in the treatment 
T20 reached the full capacity as they were fed 3 times 
(Table 1). The average capacity for the facility 
considering the feeding frequency and treatment 
duration of 21 days was 69 kg waste/d, however the 
capacity could be increased to 103 kg waste/d if a 
shorter treatment time was used. The available space 
was not fully utilized, and the design goal was to reach 
a treatment capacity of 1000 kg/d, which would be 
possible if the process was run during 14 days per batch 
and all potential treatment volume was used.  

During this evaluation, the pilot fly larvae treatment 
facility in Eskilstuna used stacked treatment units 
(boxes) each treating 15 kg of food waste. Each unit 
after 14 d of treatment produced approximately 2.4 kg 
of larvae and 2.5 kg residue (based on initial TS and VS 
evaluations performed in the lab and assuming a BCRTS 
of 30% and REDTS of 50%, data not shown). The 
estimation of the process performed in the lab (based on 
TS and VS measurements of substrate and treatment 
products, data not shown) on dry solids basis gave 1.0 ± 
0.2 kg larvae and 1.0 ± 0.1 kg residue and a mass loss 
due to metabolism of 0.5 ± 0.1 kg TS (variations 
assumed based on expected variation in moisture 
content in the incoming material). On the measurement 
day a total of 11 treatment units were sampled with 
respect to temperature and relative humidity (T5, T11 
and T20) from the three treatments sets (Figure 2).  

The difference in temperature below the surface (in 
material) and at the material surface was approximately 

0.5 °C for T5, while it was 2 °C for T11 and 2.7 °C for 
T 20 (c.f. standard deviations Figure 2). This shows that 
the longer treatment process was, the higher heat 
generation was observed, increasing the temperature 
inside the material and causing larger difference in 
surface temperature.  

3.2 Modelling 
Several processes can be modeled in this system 
implementation that should follow standard models, 
including larval and microbial growth, energy 
generation in the process and water loss from material 
due to evaporation and ventilation. The general 
microbial and larval waste degradation models are 
presented in the methods section (1 and 4). The larval 
degradation model uses larval mass as a parameter for 
estimation of degradation (4). It is thus important to 
evaluate the larvae growth and develop a model for its 
characterization.  

 
Figure 2. Graphical representation of a) %RH and b) 
temperature (T) on the measurement day in different 
treatments, whiskers (where available) show standard 
deviation and numbers inside bars show n. Measurement 
of T b) and %RH a) in boxes using pyrometer (T1) from 
Fluke and T (T2) and RH% using Testo 400. 

3.2.1 Larvae growth and material reduction 
The BSF larvae growth have been evaluated in multiple 
studies (Diener et al., 2011; Lalander et al., 2019) 
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showing that larvae grow nearly linearly, but there is a 
slightly slower growth rate at the beginning of the 
process. This suggests that an exponential growth model 
could fit well to describe the first period of larvae 
growth during the first 10-14 days (5).  

𝑥𝑥𝑑𝑑+1 =  𝑥𝑥𝑑𝑑 + 𝑎𝑎 ∗ 𝑡𝑡𝑏𝑏 (5) 

Were xd+1 is the weight of larvae at next time step 
(next day, d+1), xd the weight at current time step 
(current day, d), a is a constant expressing the larvae 
mass gain rate, t is the accumulated time, in hours since 
the growth started and b is another constant expressing 
the larvae mass gain rate change with time. Constants a 
and b include environmental impacts of the system on 
larval growth. When the equation was fitted to achieve 
the expected larvae size in treatment over 10-14 days 
based on assumptions described in section 1.1.3, the 
constants a and b had values of 0.12 and 0.8, 
respectively, while a value became 0.15 when the 
treatment duration was set to 21 days. In this case 
assuming the treatment started with 160 kg TS in waste 
and after 14 days produced 49 kg larvae TS. The 
conversion efficiency (BCRTS) in this case became 
(49*100%)/160 = 30,6 %. Such a BCRTS value 
represents a very good conversion ratio since the normal 
range is between 25 – 36 % for different types of 
substrates (Lalander et al., 2019). Such a BCR range for 
food waste would result in 41- 59 kg larvae from the 
original 0.25 TS kg young larvae and 160 kg TS waste.  

It was observed by Lalander et al. (2019) that the BSF 
larvae grow mostly during the first two weeks of 
treatment, but then the additional weight gain is small 
during the third week, or even a weight reduction was 
observed. Such a development is associated with BSF 
life cycle: if the larvae have reached their target larval 
stage and become pre-pupae, they no longer feed and 
thus only consume stored fat and protein necessary for 
their metabolism, movement and metamorphosis. A 
further investigation of larvae growth based on a study 
by Lalander et al. (2019), showed that the growth rate is 
slow in the beginning of treatment of food waste, but 
then accelerates and peaks during days 4 to 9. After this, 
the growth rate decreases, and after day 12 (for most 
substrates) the larvae mass increase stops (Figure 3). 
When further increase in larvae mass stopped, but larvae 
have not yet reached the pre-pupae stage (days 12-14) 
the waste was degraded due to metabolism, but it did not 
give increased growth resulting in unchanged BCR and 
increased RED. After 3 weeks in treatment, the larvae 
start pupating, which causes an additional weight loss as 
they have stopped eating already in the pre-pupae stage. 
The peak weight gain and the duration of weight gain 
period was observed to differ between the substrates, but 
for food waste, the peak could be expected around day 
7 (based on model projection and data from Lalander et 
al., 2019) under optimal conditions (Figure 3). This 
means the exponential model (5) well describes the 

beginning of the process, but to cover the whole 
treatment time a cumulative distribution function fits 
better and matches with the data points presented in 
Lalander (2019). 

 
Figure 3. Graphical (dimensionless) representation of 
larvae weight change as a function of time for 1 ton food 
waste with 16% TS fed during 14 days and an associated 
CO2 emission rate based on VS loss due to larval 
metabolism (4). 

When comparing the actual weight curve to an 
exponential curve it was found that it fitted fairly well 
the first 10 days, but after that the larval growth stopped 
as the larvae reached their maximum weight (Figure 3). 
From a production perspective thus, a shorter harvest 
after approximately 10 days should be evaluated to 
maximize the output of larval biomass. Such shorter 
treatment can result in insufficient water removal from 
material (treatment residue) which needs to be 
sufficiently dry to enable separation of larvae (Cheng et 
al., 2017). In this pilot set-up, the mixture was still quite 
wet after 10 d and it would not have been possible to 
efficiently separate the larvae from the treatment 
residue. If the larvae are left in the material for longer, 
their and microbial metabolisms further reduce the 
substrate, which can result in additional water 
evaporation due to associated heat generation. Such 
reduction can be modeled using equations 1 and 4 
described earlier. According to these models and the 
model for larvae growth (5), the larvae and microbial 
metabolic rates increase exponentially and thus the 
energy release from metabolism also increases 
exponentially during exponential larval growth.  

In the beginning of treatment, the bioconversion rate 
is low which means that heat generation is low, and the 
food waste slurry is still very high in water content. In 
parallel with larval digestion of food waste a microbial 
process also takes place. A first order exponential or 
linear model for aerobic food waste degradation can 
describe such a microbial process well (Hamelers, 
2004). Thus, in the beginning of the treatment due to lag 
in larvae growth the decrease in moisture content was 
marginal, and likely mainly due to microbial activity. As 
the larval mass increased, the larval activity also 
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increased, resulting in a substantial heat release and 
evaporation of water. If the treatment is allowed to 
continue beyond the typical 14 d until 21 d, the larva 
first become prepupae and then turn into pupae, 
meaning they no longer degrade the substrate. However 
the microbial waste degradation continues and provides 
additional heat necessary for water evaporation from the 
residue. 

The amount of waste that was converted into heat can 
be calculated based on oxidation reaction of the average 
food waste formula, resulting in production of energy 
and of CO2 + H2O. The amount of food waste oxidized 
was estimated based on degradation rate, 𝑑𝑑𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑑𝑑𝑑𝑑
 and 

was calculated from multiplying the mass of larvae, 𝑚𝑚𝑙𝑙, 
by the degradation per kg larvae for each day, Al, and 
the same for microorganisms (𝑚𝑚𝑚𝑚𝑚𝑚, Amo). As the 
accumulated larval and microbial biomass increases, the 
absolute degradation per day also increases (6). 

𝑑𝑑𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒

𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ (𝑚𝑚𝑙𝑙 ∗ 𝐴𝐴𝑙𝑙 + 𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝐴𝐴𝑚𝑚𝑚𝑚) (6) 

The accumulated heat release from TS degradation 
can also be presented as a function of time. Assuming 
0.25 kg TS of young larvae was originally added to 160 
kg TS waste and using an assumption that 5.4 kWh is 
released per kg TS respired (Mason, 2009), the total 
energy release can be estimated. Based on the 
assumptions made earlier in methods section 1.1.3, an 
evolution of 449 kWh can be assumed after 10 days or 
accumulated 807 kWh after 14 days.  

3.2.2 Evaporation of water to dry the waste 
The waste slurry used in the process in this pilot set-up 
was relatively high in water content (~16% DM), 
assuming that the facility would process 1 ton waste per 
day, 160 kg TS/d would also bring 840 kg water/d. To 
separate larvae from the residue, the treatment residue 
should reach around 50% TS (Cheng et al., 2017). 
Taking into account the material reduction of 50%, 72 - 
93 kg water would be remaining in the residue after 14 
days of treatment, equivalent to 625 - 709 kg water 
needed to be evaporated per day. The heat released by 
the larvae estimated above was 449 kWh during the first 
10 days but 807 kWh after 14 days. For removal of one 
kg water it is required 0.628 kWh of heat for 
evaporation. Assuming that only the heat evolved from 
the degradation of the waste would be used for 
evaporation and there was no other heat loss, the total 
amount of water evaporated could be 449/0.628 = 715 
kg water. This roughly corresponds to an original 
moisture content of 16 % TS. If more water needs to be 
evaporated, additional heat has to be supplied (from the 
ventilation air), or the process should be allowed to 
continue for longer. Two extra days would yield 
additional 179 kWh, which would be enough to achieve 
desired residue TS if the original TS of the waste slurry 
was 13.8%. 

The BSF larvae generally move quite actively, the 
amount of heat generated due to this motion is also 
expected to be proportional to the larvae size up until the 
pre-pupae stage, when larvae start behaving differently. 
This makes the selection of optimal time for harvest 
relevant for optimizing the protein production and total 
yield, while avoiding the unnecessary losses due to 
metabolic activity not resulting in further larvae mass 
gain. The harvest period should be extended by 
approximately one more week (beyond the usual 14 
days), if pupae are required for e.g. fly production to 
maintain a BSF colony and produce eggs. This was the 
case for the pilot set-up evaluated in this study. 

In case the generated metabolic heat is insufficient for 
evaporation, the heat energy from heated ventilation air 
could be used to remove excess water from the substrate. 
Assuming the incoming ventilation air had a 
temperature of 30 °C with a RH of 15% and the outgoing 
air was saturated to a RH of 95% at 30 °C, 0.022 kg H2O 
could be removed per kg air. To remove a total of 715 
kg water the demand at such conditions would be 32 500 
kg air which would be equivalent to ventilation rate of 
85 m3/h. The ventilation fan at Eskilstuna pilot facility 
was estimated to provide airflow over 700 m3/h 
suggesting a quicker than observed water removal 
would be expected. However, the ventilation air was not 
directed in a way to maximize its saturation and thus 
likely contributed to evaporation to a smaller degree.  

Previous studies on a similar system also highlighted 
that a better air saturation would improve water removal 
rate from such fly larvae conversion system that was 
mostly relying on heat release associated with 
degradation process for water evaporation 
(Johannesdottir, 2017; Kubilay and Kucska, 2018). 

4 Conclusions 
Based on the results obtained from the pilot scale 
treatment facility and the experiments performed in 
laboratory environment it was possible to model the 
black soldier fly larvae development and the associated 
waste degradation rate attributed to both larval and 
microbial metabolism. Based on these models’ 
predictions and measurements of the conversion 
efficiency it was established that, assuming no heat loss 
from the system, the heat generated by the process was 
sufficient to achieve a desirable total solids content in 
the residue after 14 days of treatment. An exponential 
heat production from waste degradation can be 
expected, and thus, for wetter food waste, the treatment 
period can be expanded to achieve the desired residue 
total solids content.  

Using the models presented in this study and based 
on environmental properties of the treatment and waste 
type and moisture content, it is possible to project if the 
amount of heat generated by the waste reduction during 
the treatment is going to be sufficient to remove the 
amount of water to achieve a sievable residue (reaching 
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total solids content of 50%). After the necessary
calibration of the models for each particular system,
they can be used as tools for deciding the duration of
treatment and the amount of heat supplied by the
ventilation.
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Abstract 
Lignocellulosic biomass is abundant and can become a 

major feed for anaerobic digestion methane production 

if its natural recalcitrance is overcome by pretreatment. 

Bio-degradable organic molecules were extracted by hot 

water (to produce “hydrolysate”) from wood (Norway 

spruce). A high rate anaerobic sludge bed reactor fed the 

hydrolysate was modeled by the IWA Anaerobic 

Digestion Model No.1 (ADM1). Biodegradability 

kinetics for the hydrolysate material was obtained from 

batch tests at thermophilic condition, and the hydrolysis 

kinetic coefficient of carbohydrate (𝑘ℎ𝑦𝑑_𝑐ℎ ) found. 

Thus obtained 𝑘ℎ𝑦𝑑_𝑐ℎ = 0.44 d-1 was used to simulate 

UASB reactor performance at 55°C and comparing 

results to measured parameters from an experimental 

reactor at five different organic loading rates. The 

simulation results correlated well with the experimental 

results for biogas production rate, biogas composition 

and chemical oxygen demand. This shows that ADM1 

is a powerful tool to predict the behavior of thermophilic 

anaerobic digestion (AD) of pretreated lignocellulosic 

feed using standard ADM1 parameters except for 

hydrolysis kinetics. Hydrolysis was identified as the 

overall rate limiting step in AD of such feed in UASB.  

 

Keywords: thermophilic anaerobic digestion, OLR,
lignocellulosic hydrolysate, hydrolysis kinetic, ADM1

 

List of symbols 

Symbol Description [Unit] 
COD Chemical Oxygen Demand [g COD] 

CSTR Continuous flow Stirred Tank Reactor  

HRT Hydraulic Retention Time [day] 

HWE Hot Water Extraction  
OLR Organic Loading Rate [g COD/L . day] 

IN Inorganic Nitrogen [kmol/ m3] 

𝑘ℎ𝑦𝑑  Hydrolysis kinetic coefficient 

𝑘𝑑𝑖𝑠  Disintegration kinetic coefficient 

S_ac Soluble acetate [kg COD/m3] 
S_I Soluble inert [kg COD/m3] 

S_su Soluble Monosaccharides [kg COD/m3] 

s_COD Soluble Chemical Oxygen Demand [g COD] 
SRT Solid Retention Time [day] 

t_COD Total Chemical Oxygen Demand [g COD] 

UASB Upflow Anaerobic Sludge Blanket  
VFA Volatile Fatty Acids 

X_ch Particulate carbohydrates [kmol/ m3] 

X_I Particulate inert [kmol/ m3] 

1 Introduction 

Serious environmental pollution due to exhaustive use 

of fossil fuel has demanded an environment-friendly 

technology to convert woody biomass or its waste 

residue to biofuel. Woody biomass, especially Norway 

spruce, is found abundantly in Norway and requires 

efficient methods to break its recalcitrance for faster 

conversion. Biodegradation of lignocellulosic material 

is difficult because of the complex structures of lignin 
and other cell wall polysaccharides. As a result, 

anaerobic microorganisms are not able to easily use this 

lignocellulosic material and  biogas production is 

hampered (David et al., 2018).Various pre-treatment 

methods have been tested to overcome this problem 

(Karuppiah and Azariah, 2019; Taherzadeh and Karimi, 

2008). The main purpose of pre-treatment is to break the 

lignin which is the protective layer for cellulose and 

hemicellulose (Patinvoh et al., 2017). Also decreasing 

the crystallinity of cellulose and solubilizing the 

hemicellulose enhances the digestion (Karuppiah and 

Azariah, 2019). Hot Water Extraction (HWE) as a 

proposed pre-treatment process for lignocellulosic 

material cooks woody biomass in the water at high 

temperature and pressure (Amidon and Liu, 2009; 

Therasme et al., 2018) in order to produce liquid 

hydrolysate. The liquid product, after hot-water 

extraction, includes monosaccharides, polysaccharides, 

acetic acid, degraded lignin, and other low molecular 

weight extractable substances (Amidon and Liu, 2009). 

Anaerobic digestion (AD)  is a favorable technique 

due to its low environmental footprint (Kamali et al., 

2016) and high energy recovery by methane production. 

Thermophilic AD (50-57°C) is known as a faster 

method compared to mesophilic AD (30-40°C) since the 

choice of temperature affects the growth of 

microorganism via influencing the kinetic parameters of 

the main anaerobic reactions. The temperature can play 

a key role regarding system stability, with poorer yield 

and process stability for thermophilic AD, but better 

biogas and digestate quality have also been reported 

(Gebreeyessus and Jenicek, 2016). The higher 

temperature can also prevent AD culture contamination 
(Xia et al., 2013) but may have higher thermal energy 

requirement (Eddy et al., 2013).  Therefore, it is 
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interesting to test thermophilic AD of lignocellulosic 

hydrolysate. 

Empirical methods based on pilot plant results are 

usually used to scale up thermophilic AD for various 

feed stocks. Mathematical modeling and simulation of 

AD can speed up such design work and provide the 

opportunity to test a wider range of AD process 

conditions at lower cost than piloting. 

The Anaerobic Digestion Model No.1 (ADM1) 

(Batstone et al., 2002) has been applied for different AD 

systems and its performances studied for various 

substrates and reactor configurations (Gehring et al., 
2013).  

ADM1 is structured in several main steps including 

disintegration and hydrolysis, acidogenesis, 

acetogenesis and methanogenesis. The first order 

kinetics describe the extracellular solubilization 

processes such as disintegration and hydrolysis (1), 

while the intracellular biochemical reactions are 

described by Monod-type kinetics (Batstone et al., 
2002b; Kaparaju et al., 2009). 

 

𝜌 = 𝑘ℎ𝑦𝑑_𝑐ℎ ∙ 𝑋ℎ𝑦𝑑_𝑐ℎ   (1) 

 

 ρ = hydrolysis rate of solid substrate (kg COD solid 

substrate m-3 d-1 where COD = chemical oxygen 

demand), Xhyd_ch = solid carbohydrate concentration (kg 

COD solid substrate m-3), khyd_ch = temperature 

dependent kinetic parameter for hydrolysis (d-1).  

Recommended relevant model parameters for most 

ADM1 reactions are published (Batstone et al., 2002a) 

but not key kinetic parameters for thermophilic high rate 

hydrolysate digestion.  Therefore, the aim of this study 

was to determine kinetic parameters for thermophilic 

AD of thermally hydrolyzed Norwegian spruce. This 

involved parameter estimation based on batch 

experiments and model evaluation based on continuous 

flow tests with increasing organic loading rates of this 

new substrate.  

2 Materials and Methods 

AD of hydrolysate from hot water extraction of 

lignocellulosic Norwegian spruce (Picea abies) is tested 

in batch and continuously fed UASB lab scale reactors 

with increasing load and modeled by ADM1. 

2.1 Material Characterization 

2.1.1  Substrate  

Hydrolysate from 300 minutes hot water extraction at 

140°C was used as substrates for both batch and 

continuously fed UASB reactors. Macronutrients (Table 

1) and micronutrients (Table 2) were added in to provide  

required nutrients, COD:N:P ratio of 350:5:1 (Baeta et 
al.,2013). Initial pH was adjusted by NaOH to around 7. 

Substrate organics and ammonium are given in Table 3. 

Table 1: Composition and concentration of 

macronutrients in substrate.        

Macronutrients 

Type of chemical Concentration (mg L-1) 

NH4Cl 1245.4 

(NH4)H2PO4 148.4 

(NH4)2HPO4 49.8 

MgCl2
.6H2O 599.2 

CaCl2
.2H2O 211.7 

NaHCO3 2800 

 

Table 2: Composition and concentration of 

micronutrients in substrate. 

Micronutrients 

Type of chemical 
Concentration 

(mg L-1) 

Yeast Extract 10 

FeCl3
.6H2O 0.8 

ZnCl2 20.8 

MnCl2
.4H2O 0.19 

(NH4)6Mo7O24
.4H2O 0.26 

AlKO8S2
.12H2O 0.04 

CoCl2
.6H2O 0.8 

NiCl2
.6H2O 2.08 

H3BO3 0.48 

CuCl2
.2H2O 1.28 

HCl 80 

 

Table 3: Substrate organics and ammonium. 

Parameter Measured 

value (g L-1) 

t-COD 22± 2 

s-COD     20 ± 2 

𝑁𝐻4
+ 0.30 ± 0.02 

Acetate  0.59 ± 0.09 

VFA  0.59 ± 0.09 

Arabinose  1.63 ± 0.02 

Galactose 1.67 ± 0.05 

Glucose 1.55 ± 0.05 

Xylose 1.95 ± 0.04 

Mannose  5.1 ± 0.1 

Total sugars 11.9 ± 0.3 

 

2.1.2  Inoculum 

Granular sludge inoculum (Table 4) used was from a 

mesophilic industrial internal recirculation reactor 

treating paper mill effluent. The sludge was adapted for 

thermophilic condition for 53 d before being used in the 

batch test and 20 d adaptation till stable operation in the 

UASB test.  

SIMS 60

126DOI: 10.3384/ecp20170125  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



Table 4: Properties of granular sludge. 

Parameters Values 

Density (kg m-3) 1.00 – 1.09 

Diameter (mm) 0.6 – 2.7 

Settling velocity (m h-1) 68 – 71 

Total Solids (g L-1) 181.0 

Volatile Solids (g L-1) 119.4 

pH 7.46 

 

2.2 Batch Reactors Set up 

100 mL syringes were used as batch reactors in 

accordance with (Østgaard et al., 2017) with 15 mL 

inoculum. They were fed 4, 6.7, 13.4 and 20 mL of 

hydrolysates (Table 3) with three parallels for each COD 

loadings including control blank reactors to correct for 

biogas generated from the inoculum, all operated for 38 

d at 55°C.  

2.3 UASB Reactors Set up and Operation  

Two parallel glass vessel reactors (Bergland et al., 2015) 

with 345 mL liquid volume were used as UASB 

reactors. Half the reactor volumes were filled with 

granular sludge (Table 4). The substrate was kept cool 

(4 °C). Culture adaptation started at 35°C and organic 

loading rate, OLR = 0.65 [gCOD L−1d−1] followed by 

2°C daily increases to 55°C. Then, followed the 52 d test 

period with step load increases (Table 5). 

 

Table 5: The UASB operation conditions as hydraulic 

(HRT) and organic (OLR) loading rates.  

Time interval 
HRT 

[d] 

OLR 

[gCOD

𝑳−𝟏𝒅−𝟏] 

From d 1 to d 16 34.5 0.65 

From d 17 to d 27 17.25 1.29 

From d 28 to d 37 11.5 1.94 

From d 38 to d 48 8.62 2.59 

From d 49 to d 53 5.75 3.88 

 

2.4 Analytical Methods  

UASB biogas production was monitored continuously 

and gas composition measured twice a week by gas 

chromatography (SRI 8610-C) as described in 

(Bergland et al., 2015). Liquid phase COD (total and 

soluble), volatile fatty acids (VFAs), including acetate, 

propionate, butyrate, iso-butyrate, valerate, iso-valerate, 

iso-caprionate, caprionate and heptanoic acid, pH and 

ammonium content (𝑁𝐻4
+) were sampled and measured 

as described in (Bergland et al., 2015). Batch reactor 
biogas production was measured manually in 

accordance with Østgaard et al. (2017).  

 

2.5 Modelling and Simulation Methods 

The Anaerobic Digestion Model No. 1 (ADM1) was 

applied to model the processes with stoichiometric 

coefficients, equilibrium coefficients and dynamic 

states and algebraic variables as proposed by (Batstone 

et al., 2002b), for all biochemical and physio-chemical 

processes, with the following exception: lignocellulosic 

hydrolysate as feed is introduced here. The only model 

modification assumed necessary is the hydrolysis of this 

new substrate and, considering the characteristics of the 

substrate and inoculum (Table 3 and 4), input values for 

simulation (Table 6) are based on some assumptions: 

 10 percent of the total feed COD is inert (based on 

batch tests). 

 One-third of total inert is particulate inert (𝑖𝑛𝑝𝑢𝑡𝑋𝐼𝑖𝑛
) 

and two-thirds is soluble inert (𝑖𝑛𝑝𝑢𝑡𝑆𝐼𝑖𝑛
). 

 The feed amount of biodegradable particulate 

carbohydrates (𝑖𝑛𝑝𝑢𝑡𝑋𝐶ℎ𝑖𝑛
) used is assumed to be 

total particulates minus the inert fraction (2).  

 The input of biodegradable soluble sugars 

(𝑖𝑛𝑝𝑢𝑡𝑆𝑠𝑢𝑖𝑛
) used as all soluble organics (𝑠𝐶𝑂𝐷) minus 

soluble inert and acids (dominated by acetic acid so 

used measured ( 𝑖𝑛𝑝𝑢𝑡𝑆𝑎𝑐𝑖𝑛
 ) (3). 

 

𝑖𝑛𝑝𝑢𝑡𝑋𝐶ℎ𝑖𝑛
= (𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑡𝑒)– (𝑖𝑛𝑝𝑢𝑡𝑋𝐼𝑖𝑛

)                  (2) 

 

𝑖𝑛𝑝𝑢𝑡𝑆𝑠𝑢𝑖𝑛
=  (𝑠_𝐶𝑂𝐷) − (𝑖𝑛𝑝𝑢𝑡𝑆𝐼𝑖𝑛

)  − (𝑖𝑛𝑝𝑢𝑡𝑆𝑎𝑐𝑖𝑛
)        (3)  

Table 6: Parameters used for simulation in the ADM1 

model 

Type of 

parameter 

Formula for 

calculation 
Amount Unit 

t_COD    22.31 kgCOD m-3 

s_COD    20.04 kgCOD m-3 

Total 

particulate 

 = (t_COD - 

s_COD) 

2.27 kgCOD m-3 

Inert (10% t-

COD) 

 = (0.1 * t_COD) 2.23 kgCOD m-3 

Input_X_I_in   = (1/3 * inert) 0.74 kgCOD m-3 

Input_S_I_in   = (2/3 * inert) 1.49 kgCOD m-3 

Input_X_C_in    0.00 kgCOD m-3 

Input_X_Ch_i

n 

= [(total particulate) 

- (input_X_I_in)]  

1.53 kgCOD m-3 

Input_S_ac_in   0.63 kgCOD m-3 

Input_S_su_in  =[(s_COD) -

(input_S_I_in) - 

(input_S_ac_in)] 

17.92 kgCOD m-3 

Input_S_IN_in   0.016 mol L-1 

Volume   0.00035 m3 

Temperature   328 K 
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 The feed ammonium concentration, 

“Input_S_IN_in” is set to 0.016 𝑚𝑜𝑙  𝐿−1 based on 

the added nutrients (Tables 1 and 2).  

 Disintegration and hydrolyze kinetic parameters for 

thermophilic high rate was not specified by 

(Batstone et al., 2002b). The values for mesophilic 

high rate (Table 7) are therefore used for the 

hydrolysis of protein and lipids while the hydrolysis 

kinetic factor of carbohydrate khyd_ch was assumed 

representative for the substrate and obtained from 

the batch test using equation 4. Disintegration high 

rate is assumed the same as disintegration solid. 

 

B = B0 (1-e-kt)    (4) 

 

 B0 is the total biogas production and B is the biogas 

production at the given time t and k= khyd_ch. 

 

Table 7: Kinetic parameters used for disintegration and 

hydrolysis as recommended by (Batstone et al., 2002b) 

and as used for the unique conditions tested here. 

Parameter Proposed by (Batstone et al. 

2002b) 
Used in 
this 
project 

Meso-

philic 

high-rate 
(35°C) 

Mesophilic 

solids 

(35°C) 

Thermo-

philic 

solids 
(55°C) 

Thermo-

philic high-

rate (55°C) 

𝑘𝑑𝑖𝑠 (𝑑−1) 0.4 0.5 1.0 1.0 

𝑘ℎ𝑦𝑑_𝑐ℎ
 

(𝑑−1) 0.25 10 10 0.44 

𝑘ℎ𝑦𝑑_𝑝𝑟
 

(𝑑−1) 0.2 10 10 0.2 

𝑘ℎ𝑦𝑑_𝑙𝑖
 

(𝑑−1) 0.1 10 10 0.1 

    

High rate reactors (e.g. UASB) are characterized by 

long solids retention time compared to hydraulic 

retention time (SRT >> HRT), modeled by a t_res_x 

(difference between sludge and hydraulic retention 

time) factor. Its value is however unknown, so it was 

assessed by simulating different t_res_x values. 

3 Results and Discussion 

The 𝑘ℎ𝑦𝑑_𝑐ℎ  parameter is first estimated by the batch 

experiment and then the model evaluated by comparison 

to the UASB test. 

3.1 Hydrolysis Kinetic Coefficient 

Hydrolysis kinetic coefficient (𝑘ℎ𝑦𝑑_𝑐ℎ ) for the 

carbohydrate was calculated based on Eq. 4 and batch 

data (Figure 1) to be 0.44 d-1 with low standard 

deviations between the parallels. 

 

 

Figure 1. Batch test data and fitted line to calculate khyd_ch               

3.2 Sludge Retention Time 

The t_res_x value (difference between sludge and 

hydraulic retention time in the UASB) cannot be 

measured so it was assessed by simulations using 

different t_res_x values equal to 5, 15, 25 and 40 d. The 

experimental and simulated results correlated quite well 

for all measured parameters for t_res_x = 40 d, as seen 

for COD in Figure 2. Total COD was lower than 

simulated while simulated soluble COD was close to 

measured value after the first 17 d with the lowest load. 

t_res_x > 40 d was also tested (not shown) but without 

significant effects on concentrations so t_res_x = 40 d 

was used for the following simulations.  

 

 

Figure 2. Total and soluble UASB effluent COD values. 
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3.3 Biogas Production 

The measured and simulated biogas production rate 

(Figure 3) deviated initially until day 12, perhaps due to 

incomplete adaptation to thermophilic conditions. 

Thereafter the biogas production was close to the 

simulated values for the lowest OLRs indicating adapted 

culture. The model predicted somewhat higher yields 

than measured at the higher ORLs. The increases in 

biogas production following each step increase in OLR 

were predicted well but not the subsequent drops in 

production. These deviations show that some adaptation 

to higher loads are needed and that such is not accounted 

for in ADM1.  

 

   

Figure 3. Simulated and experimental values for UASB 

biogas production rate (L d-1).  

 

The model was also used to simulate much higher 

loads than tested (not shown) by continuing the step 

increases used in the test and it predicts that much higher 

loads than tested can be applied while maintaining stable 

operation and biogas yield. This is important for the 

economy of such fuel production plants since capital 

cost depends on reactor size. This exercise also 

demonstrates how the model can be used to evaluate 

conditions that would be very time-consuming and 

costly to test experimentally.  
 

3.4 Limiting Step 

The increase in OLRs showed no VFAs accumulation 

during the experiments while the model predicts 

temporary VFA accumulations after each step increases 

(Figure 4). Both measured and simulated values are, 

however, low and far enough the tolerable level for 

smooth reactor performance: < 2 % of acetic, butyric 

and  propionic acid  concentrations of 2.4, 1.8 and 0.9 

(k𝑔 𝑚−3), respectively, reported to be of threshold 

value (Kim et al., 2002). This implies that the reactors 

had stable conditions with no signs of limitations of the 

methanogenesis at the tested loads.  

 

Figure 4. VFAs concentration experimental and 

simulated values for 52 days by increasing organic 

loading rate (OLR). 

 

   This is also seen by the stable methane content in the 

biogas, simulated and measured (Figure 5). These 

results also confirm that it was a correct modeling 

assumption to only adapt hydrolysis of ADM1 to the 

given conditions while the latter stages (methanogenesis 

etc.) were kept according to (Batstone et al., 2002), 

since these were not limiting steps for the overall 

process performance. This implies that hydrolysis is the 

rate limiting step of lignocellulosic hydrolysate AD in 

UASB. This seems reasonable given that 90 % of feed 

organics is soluble (Table 3). 

 

             

Figure 5. Simulated and experimental UASB biogas 

methane content.  

 

3.5 Biomass 

The active biomass cannot be accurately measured by 

existing methods so mass development of the main 

groups of microorganism in AD is studied by 

simulations (Figure 6). The figure shows that sugar 

consuming bacteria will be most abundant on such feed. 

The time allowed for each OLR tested, except the first, 

was too short to reach true steady state (even if biogas 

production stabilized) since biomass was still increasing 

for all seven microbial groups at the end of each OLR 

test. This supports the above suggestion that some 

deviations between simulated and measured value can 

be due to too short time for the slow growing AD 
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microorganism to adapt to the higher loads. AD cultures 

have been reported to require months to adapt to new 

conditions (Nordgård et al., 2017). 

  

 

Figure 6. Simulated UASB biomass concentration 

development for the seven microbial groups in ADM1 

during the 52 d test with increasing OLR.  

 

3.6 Inhibition 

The simulated inhibition (Figure 7) was low with slight 

hydrogen concentration inhibition of the propionate 

degradation (reducing the rate to around 80 % of 

maximum) and butyrate degradation (reduced to 90 %). 

The NH3 concentration reduced the acetate degradation 

rate to 90% of not inhibited rate. There may however 

occur inhibition not accounted for due to unknown 

inhibitors in the feed. Lignocellulosic hydrolysate may 

contain furfural and HMF (5-hydroxymethylfurfural) 

that can inhibit microorganisms. This should be further 

studied and included in the model if relevant. If so, it 

could narrow the gaps between simulated and measured 

methane production (Figure 3).   

 

 

Figure 7. Simulated inhibitors coefficients (value 1 

implies no inhibition and 0 implies complete inhibition). 

 
Inorganic nitrogen may also cause AD inhibition both 

if in excess or in shortage, the latter typical for such 

feeds, compensated by ammonium supplement (Table 

1). Measured and simulated ammonia levels and the 

inhibition simulations (Figure 7) show appropriate 

ammonia levels implying the amount of inorganic 

nitrogen added to this lignocellulosic substrate was 

appropriate.  

Despite previous reports about the sensitivity of 

thermophilic AD and its poor stability, the efficient 

UASB reactor treatment of lignocellulosic hydrolysate 

suggests it is a good option for such feeds. The quite 

good predictability by the standard ADM1 with 

previously recommended process parameters support 

this claim and implies that ADM1 can be used in process 

design and to test process limitations.  

4 Conclusion 

 The study shows that the thermophilic AD of 

lignocellulosic hydrolysate in a UASB can be 

simulated well by the ADM1 model.  

 The hydrolysis kinetic rate constant of 

carbohydrate, khyd_ch, was found to be 0.44 d-1 for 

thermophilic degradation of hydrolysate of 

Norwegian spruce. 

 The low concentrations of effluent VFAs and 

CODs, simulated and measured, implies good 

digestion for the organic loading rates between 0.65 

and 3.88 𝑔 𝐶𝑂𝐷 𝐿−1𝑑−1 tested and implies that the 

last AD steps were not limiting the overall process 

performance. 

 Hydrolysis appeared to be the overall rate limiting 

step in AD of such feed in UASB.  

 The microbial granular sludge from mesophilic 

paper-mill effluent treatment adapted both to 

change from the mesophilic (35°C) to thermophilic 

(55°C) and to increased load.  

 The largest simulated inhibition was from H2 

reducing the propionate degradation but there may 

have been some un-accounted for inhibitor(s) 

causing slightly less methane production than 

simulated at the higher loads. 

 Thermophilic AD in UASB appears to be a good 

treatment option for lignocellulosic hydrolysate.  

 The standard ADM1 can be used in process design 

for thermophilic UASB AD of lignocellulosic 

hydrolysate. 
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Abstract
Batch bioprocesses are difficult to model due to strong
nonlinearities, dynamic behaviour, lack of complete un-
derstanding and unpredictable disturbances. A cell pro-
duces more cells, chemical products and heat from chem-
ical substrates. Typical growth characteristics include
several phases whose appearances and lengths depend
on the type of organisms and the environmental condi-
tions. Large differences exist between different fermen-
tation runs. The simulator developed for fed-batch fer-
mentation processes consists of three interacting dynamic
models, each with three phase specific versions. The mod-
els predict dissolved oxygen concentration, oxygen trans-
fer rate and concentration of carbon dioxide in the exhaust
gas through the whole process, by using only the control
variables as inputs. A decision system based on fuzzy
logic to provide smooth gradual changes between phases.
The detection of the changes between process phases is
improved by using the intelligent trend analysis. The dy-
namic simulator is suitable for an online forecasting tool
in connection with the real process. The operation is based
on the ideas of model predictive control (MPC): the pre-
vious online measurements on a chosen horizon are used
for constructing a starting point and the simulator predicts
the operation on a chosen prediction horizon by using the
planned control actions. The simulation is started on fairly
long time intervals.
Keywords: intelligent systems, dynamic simulation, fed-
batch fermentation, temporal analysis, prediction

1 Introduction
Batch bioprocesses are difficult to model due to strong
nonlinearity, dynamic behaviour, lack of complete under-
standing and unpredictable disturbances from their exter-
nal environment (Gregersen and Jorgensen, 1999). As ev-
ery cell in nature has a finite lifetime (Figure 1), a con-
tinuous growth of the organisms is needed to maintain
the species. The generation time depends on both nutri-
tional and genetic factors. To be able to live, reproduce
and make products, a cell must obtain nutrients from its
surroundings. The first phase at the beginning of the fer-
mentation is called the lag phase. The second phase is
the exponential growth phase. The last phase is called
the steady state phase. The secondary metabolic products,
such as enzymes, are produced mainly during the steady
state phase.

Figure 1. Growth phases in a batch bioprocess (Blanch and
Clark, 1997).

In the lag phase, the growth is almost constant caused
by many reasons. Since the cells are placed in fresh
medium, they might have to adapt to it or adjust the
medium before they can begin to use it for growth. An-
other reason might be that the inoculum is composed
partly of dead or inactive cells (Enfors and Häggström,
2000). If a medium consists of several carbon sources,
several lag phases might appear. This phenomenon is
called diauxic growth. Microorganisms usually use just
one substrate at a time and a new lag phase really results
when the cells adapt to use the new substrate. (Blanch and
Clark, 1997)

The declining of the growth rate begins when a sub-
strate begins to limit. The growth rate slows down until it
reaches zero and the stationary phase begins. In the sta-
tionary phase, the number of the cells remains practically
constant, but the phase is important because many prod-
ucts are only produced during it. The last phase is called
the death phase. During the death phase, the cells begin
to lyse and the growth rate decreases. (Blanch and Clark,
1997)

In batch reactors, all components, except gaseous sub-
strates such as oxygen, pH-controlling substances and an-
tifoaming agents, are placed in the reactor at the beginning
of the fermentation. There is no input nor output flows
during the process. In fed-batch processes, nothing is re-
moved from the reactor during the process but one sub-
strate component is added in order to control the reaction
rate by its concentration. The process is started as a batch
process, and the substrate feed is started when the initial
glucose is consumed. The fermentation continues at a cer-
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tain growth rate until some practical limitation inhibits the
cell growth (Enfors and Häggström, 2000).

The data sets obtained from the process are in prac-
tice distinct sets obtained through different process perfor-
mances because usually one or more substantial physical
parameters, such as dissolved oxygen (DO), temperature
or pH are maintained on distinct level (Georgieva et al.,
2001). The optimal values of parameters might not be
the same for the growth phase and metabolite production
phase in secondary metabolite production (Yegneswaran
et al., 1991). Large differences exist between different
fermentation runs because of the variations in the feeding
strategy, the metabolic states of the cells and the amount
of oxygen available. Even if the process conditions were
kept the same in each fermentation, the micro-organisms
would behave differently every time. Detection of fluctu-
ations in operating conditions is essential for making cor-
rect actions in time.

The concentration of carbon dioxide (CO2) in the ex-
haust gas is an important variable in a fermentation pro-
cess since the production of CO2 is correlated to the
amount of consumed sugar (Martínez et al., 1999). The
variations in the agitation speed can cause changes in the
oxygen transfer rate (OT R) and an increase in it can cause
an increase in production and yield (Elibol and Ozer,
2000). The DO tension is an important variable in sec-
ondary metabolite production and remarkable impacts on
production yields can be achieved by affecting this param-
eter by changes in aeration, agitation system and stirrer
speed (Pfefferle et al., 2000). The volumetric mass trans-
fer coefficient, kLa, is also an important process variable
because it can be used to find the relationship between the
OT R and enzyme production (Elibol and Ozer, 2000) and
it can be used in the control of the DO tension (Simon and
Karim, 2001).

The oxygen requirements of the bacteria differ at dif-
ferent fermentation stages (Yao et al., 2001). By choosing
a proper DO tension a product formation can be achieved
without wasting the energy source. As the changes are
slow, an early forecasting of the process operation is
needed. A smoothly operated process is likely to be more
productive than one that is subjected to significant distur-
bances. The aeration supplies oxygen to the process and,
at the same time, removes carbon dioxide from microbial
cells suspended in the culture broth. The rate of aeration
often controls the rates of cell growth and product forma-
tion. (Yoshida, 1982)

In fed-batch fermentation, the dynamic simulator has
been used online for predicting the process operation in
a time window (Saarela et al., 2003a; Juuso, 2005). The
results of these tests are used in this research.

This paper analyzes the dynamic simulation model de-
veloped for the prediction of the operation in a fed-batch
fermentation process. The detection of the phases focuses
on the temporal analysis with intelligent trend analysis.
The parameters of the prediction models are not changed.

2 Bioprocess modelling
A fuzzy predictor presented in (Whitnell et al., 1993)
combines three kinds of information: quantitative pro-
cess inputs, linguistic information and heuristic knowl-
edge from an expert in a beer making process. Takagi-
Sugeno type fuzzy model was used in (Georgieva et al.,
2001) on the modelling of a batch biotechnical process,
which is strongly influenced by DO concentration as a ma-
nipulated input variable. Also black-box and hybrid mod-
els have been experimented in the modelling of batch beer
production. The research concluded that the extrapolation
capability of the model was improved by including me-
chanical knowledge in the hybrid model. The knowledge
based models are useful when only insufficient data from
the process can be obtained and they should be thought
only as an extension of the ways in which process data
can be represented. (Lübbert and Simutis, 1994) Biopro-
cess parameters have been estimated with neural network
models (Simon and Karim, 2001; Thibault et al., 1990;
Warne et al., 2004).

Model uncertainties need to be captured for the bio-
process optimization (Liu and Gunawan, 2017). Nonlin-
ear model predictive control (NMPC) and observation of
non-measurable states based on an unscented Kalman fil-
ter (UKF) were used in (Dewasme et al., 2015).

Temporal reasoning is a very valuable tool for diagnos-
ing and controlling slow processes. Manual process su-
pervision relies heavily on visual monitoring of charac-
teristic shapes of changes in process variables, especially
their trends. The fundamental elements are modelled geo-
metrically as triangles to describe local temporal patterns.
The elements are defined by the signs of the first and sec-
ond derivative, respectively (Cheung and Stephanopoulos,
1990).

Linguistic equations introduced in (Juuso and Leiviskä,
1992) have been used in various applications (Juuso, 1999,
2004). Data-driven steady state modelling has been used
in the development of linguistic equation (LE) model to
represent interactions between measurements:

xout = fout

(
−

∑
m
j=1, j 6=out Ai j f−1

j (x j)+Bi

Ai out

)
(1)

where the functions f j and fout are scaling functions of
input variables x j and output xout , respectively. These
monotonously increasing, nonlinear functions are gener-
ated with generalised norms and moments (Juuso and
Lahdelma, 2010). The monotonous increase is ensured
with constraint handling. Dynamic structures extend the
models to dynamic simulation.

Intelligent trend indices can be calculated from scaled
measurements. Triangular episodes are classified with the
trend index IT

j (k) and the derivative of it, ∆IT
j (k) (Figure

2. Severity of the situations is evaluated by a deviation
index which takes into account the scaled values of the
measurements (Juuso, 2011).
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Figure 2. Triangular episodic representations defined by the in-
dex IT

j (k) and the derivative ∆IT
j (k) (Juuso, 2011).

Linguistic equation method, linear neural network,
feedforward neural networks and Takagi-Sugeno fuzzy
models created by subtractive clustering appeared to be
the best in comparison presented in (Saarela et al., 2003b).
The correlations and the relative errors of these models
were within acceptable limits and the fuzziness of the
models was small. The model surfaces of the models cre-
ated by these four methods were almost a plane.

3 Development of dynamic models
The dynamic models were based on the process data ob-
tained from an industrial fed-batch fermenter. The models
were tested using a number of different testing data, which
were not included in the training data set. When necessary,
the noise in the data was filtered by taking moving aver-
ages of the measured values. The variables for each model
were chosen mainly based on correlation analysis. Vari-
ables that could be used for control were preferred when
choosing the input variables of the model. These variables
include the mixing rate, aeration, the substrate feed rate
etc.

The models have a NARX (Nonlinear AutoRegressive
with eXogenous input) structure. A multimodel approach
was applied as different growth phases need different
models (Figure 3(a)). As the prediction of the future val-
ues required three interacting models (Figure 3(b)): each
produces the prediction of a different variable, the over-
all system consists of nine models. Various modelling
methodologies have been compared. The compact imple-
mentation of the LE models made such a complex struc-
ture possible to use. Smooth transitions between the phase
models are based on fuzzy decision system (Figure 3(a)).

The controllable variables were preferred as inputs and
these include mixing, aeration, feed rate, pressure, temper-
ature and cooling power. The variables used in the models
include the concentration of carbon dioxide in the exhaust
gas, mixing power, feed rate, oxygen transfer rate, dis-
solved oxygen concentration, volumetric oxygen transfer
coefficient, position of the pressure valve and VV M (vol-

(a) The dynamic model structure of one predicted variable.

(b) The interactive models.

Figure 3. The overall structure of the model (Saarela et al.,
2003a).

umes of air per volume of liquid per minute). The choice
of the variables was quite similar to the normal choice in
the literature.

Three modelling techniques with several variants were
compared including the methods of linguistic equations,
neural networks and fuzzy modelling. The steady state
modelling of the fermentation variables was not difficult
for these intelligent modelling methods: LE models, linear
neural network, feedforward neural networks and Takagi-
Sugeno fuzzy models created by subtractive clustering ap-
peared to be the best (Saarela et al., 2003b). However, dy-
namic simulation turned out to be too demanding for most
of these methodologies.

The overall dynamic model shown in Figure 4 contains
an additional model for calculating the volumetric mass
transfer coefficient, kLa.

In the LE models, the definitions of the scaling func-
tions and coefficients Ai j from (1) are transferred into the
dynamic model. The new prediction is calculated using
previous values of the predicted value and the previous
values of control variables. Different growth phases can
be distinguished from the fermentation process and dur-
ing these phases different variables affect the output vari-
ables. Because of this, three submodels for each predicted
variable were created corresponding to each phase in the
fermentation process (Figure 3(a)).

The overall model consists of three models and a de-
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Figure 4. The overall simulation model (Saarela et al., 2003a).

cision system (Figure 3(a). The same structure is used
for all the predicted variables. Inputs of the models in-
clude measurements from the process, such as mixing
power, aeration rate, pressure, and substance concentra-
tions. The inputs to the models of oxygen transfer rate
prediction and dissolved oxygen concentration prediction
include also predicted values from other models (Figure
3(b)).

Altogether, the overall model contains nine different
submodels: three for each predicted variable. The three
submodels (lag phase, exponential phase, and steady state)
shown in Figure 3(a) form subsystems of the predic-
tion models. The same fuzzy decision system weights
the outputs of each of these submodels. In dissolved
oxygen model, the coefficients of linguistic equation are
{0.2,−0.5,0.1,0.1,−0.8}.

New predictions are obtained by integrating the cal-
culated changes to the previous value with an ordinary
differential equation solver based on an explicit Runge-
Kutta (4,5) formula, the Dormand-Prince pair, with vari-
able step.

The fuzzy decision system chooses the right submodel
phase of the process by using the measurements of time,
oxygen transfer rate and substrate feed rate. The inference
system presented in Figure 5(a) has membership functions
for three inputs and one output and a set of eight fuzzy
rules for deduction. The system gives a weighting factor
from 0 to 1 for each submodel according to which level
its results are used. The system was constructed using the
Matlab Fuzzy Logic Toolbox. At the beginning of the fer-
mentation for example, the first submodel, the lag phase,
is given a weight of one, and the other two submodels have
the weight of zero. This means that only the output of the

(a) The fuzzy decision system.

(b) The weights from the decision system.

Figure 5. The decision system for selecting the active phase: x-
axis represents time and the y-axis weighting factors [0 1], input
variables are time, OT R and the glucose feed rate (Saarela et al.,
2003a).
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first submodel is used in calculating the prediction. The
transition from one phase to another happens smoothly,
thus during the transition phase two outputs of the sub-
models can be used simultaneously (Figure 5(b)).

In the dynamic models, each submodel has been devel-
oped separately on the basis of selected training data. The
combined model (Figure 4) has been tested with data col-
lected from various fermentation runs. In the simulation
tests, the input values were taken from the previously col-
lected data. During the online tests, the prediction system
collects the data from the automation system and starts
the simulation on chosen time intervals. The prediction
results were written back to the data collection system.

4 Results and discussion
The models were tested with a set of test data. The fitness
of a model can be estimated by examining the correlation,
R, relative error, fuzziness and the model surfaces. The
FuzzEqu program also draws the results of the predictions
in the same chart with the test data where they can be com-
pared visually. The fuzziness of the equations should be
close to zero. It shows how well the equation represents
the data (Juuso, 1999).

4.1 Steady-state simulation
First, steady-state models for all three variables were made
by the linguistic equations approach. Correlations of the
dissolved oxygen models for different testing data were
between [0.88-0.98] and the relative errors between [0.03-
0.18]. For models of oxygen transfer rate the correlations
were between [0.72-0.99] and the relative errors between
[0.02-0.33]. Similar results were obtained with all the
static models used in the simulation model. The first part
of the process was the most difficult to model, largely due
to differences between fermentations. However, at the be-
ginning of the process the concentration of the dissolved
oxygen is usually quite high and its predicted value is not
so critical.

An example of data-driven modelling results for the
prediction of the dissolved oxygen is presented in Figure
6. The new measure, fuzziness, is used for detecting areas
where the models should be considerably different. Fuzzi-
ness can also be considered as an additional unknown vari-
able. In this case, the fuzziness is very low.

4.2 Dynamic simulation
Dynamic modelling and simulation was performed in
Matlab Simulink. Figure 5(b) presents the weights of the
submodels obtained from the fuzzy decision system. The
change from one phase to another is quite fast. The esti-
mation of the dissolved oxygen concentration is presented
in Figure 7(a). In this model, the estimations of the oxy-
gen transfer rate and the concentration of carbon dioxide
are used as inputs. The estimation of the oxygen trans-
fer rate can be seen in the Figure 7(b). The estimate for
the carbon dioxide concentration is used as an input of the

Figure 6. Results from the testing of steady-state fermentation
models. Time from 0 to 100 is shown on the x-axis and the
values of dissolved oxygen concentration, error and fuzziness
on the y-axis (Saarela et al., 2003a).

model. The correlations and relative errors of these re-
sults are shown in the figures. With the exception of a few
fermentations that largely differed from the others, the re-
sults were similar for other test data. The estimation was
easier for the oxygen transfer rate and the carbon dioxide
concentration than for dissolved oxygen concentration.

A multimodel approach was applied as different growth
phases need different models. As the prediction of the fu-
ture values required three interacting models, which each
produces the prediction for a different variable, the overall
system consists of nine models. The compact implementa-
tion of the LE models made such a complex structure pos-
sible to use. Smooth transitions between the phase models
are based on fuzzy logic.

The important factors in the success of the modelling
were the choice of the input variables, the choice of the
model type and structure, and the choice of training data.
The training data should be sufficiently large so that it can
represent different fermentations. The results of the mod-
elling can improve with the number of data runs employed
for training (de Azevedo et al., 1997). Large differences
exist between different fermentation runs because of the
variations in the feeding strategy, the metabolic state of
the cells and the amount of oxygen available. Even if the
process conditions were the kept same in each fermenta-
tion, the micro-organisms would behave differently every
time.

The choice of the input variables was difficult. Differ-
ent variables affect the output variables in the different
phases of the process. All the influence of the variables
could not be examined because the data was obtained from
an industrial fermenter and a part of the variables were
controlled to remain constant. The data based modelling
methods require changes in the data to be able to model it.

The dynamic simulator operates accurately throughout
the fermentation even for more than 40 hours as a real
simulation, i.e. the simulator uses in each time step only
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the previous simulated value and the values of the vari-
ables which control the process, according to the dynamic
model. Differences between the calculated and measured
are reasonable and provide a good basis for detecting fluc-
tuations in operating conditions.

(a) Prediction of dissolved oxygen (DO) concentration: time is on the
x-axis and the dissolved oxygen concentrations on the y-axis.

(b) Prediction of oxygen transfer rate (OT R): time is on the x-axis
and the oxygen transfer rates on the y-axis.

(c) Prediction of carbon dioxide (CO2): time is on the x-axis and the
oxygen transfer rates on the y-axis.

Figure 7. Simulation results of a fermentation run (Saarela et al.,
2003a).

The simulator is aimed primarily on the detection of
changes and fluctuations for the process control. In the
estimation, the starting time of the growth phase was pre-
defined. However, the test results reveal a diauxic growth:
the first growth starts earlier as can be seen in all predic-
tions which is seen in decreasing DO (Figure 7(a) and in-
creasing OT R and CO2 (Figures 7(b) and 7(c)). Updating

the parameter of the scaling functions with newer method-
ologies (Juuso and Lahdelma, 2010) would be beneficial.

The drop of DO during the first phase introduces a new
lag phase of the second growth phase, which starts later,
proceeds slower than the first growth phase and finally
slows down gradually to the stationary phase. Two mod-
els with different parameter tuning are are required for the
growth phase. The stationary phase has two stages: the
first part fairly constant OT R but then the death phase is
partly activated. Aeration stabilizes the OT R on a new
constant level. The estimation errors seen in Figure 7 are
at least partly caused by the errors in the fuzzy decision
system. Clearly time, OT R and the glucose feed rate are
not sufficient for defining the start of the growth phase and
the diauxic growth needs to be taken into account.

4.3 Detection of operating conditions
The simulator can be used as an online forecasting tool in
connection with the real process. The simulator is started
on chosen time intervals: the previous online measure-
ments on a chosen horizon are used for constructing a
starting point and the simulator predicts the operation on
a chosen prediction horizon by using the planned control
actions. In the online tests, the prediction horizon has
been one hour and the time interval between predictions
six minutes. The model predictive control can be consid-
ered as a new option since the simulator is very compact.
Actually, generating a good starting point for simulation
calculations was more demanding than the prediction part.
This operates well in the stationary phase. The simulator
is started on chosen time intervals and it operates accu-
rately throughout the fermentation even for more than 40
hours (Juuso, 2005).

The intelligent trend analysis improves the detection
of phase changes (Figure 1) by using triangular episodes
shown in Figure 2: the start of the growth phase is seen as
a concave upward monotonic increase (Episode D) which
continues as a linear increase (Episode E). The slowdown
is detected as Episode A. The activation of the dead phase
is seen with Episodes B, F and C. The analysis, which
proceeds with time, is adapted by short and long time win-
dows to the speed of the process. Differencies of the fer-
mentation runs are essential in the analysis.

5 Conclusions
The simulator can be used as an online forecasting tool in
connection with the real process in the stationary phase.
The operation is based on the ideas of model predictive
control (MPC). In this case, the simulation is started on
fairly long time intervals. The previous online measure-
ments on a chosen horizon are used for constructing a
starting point and the simulator predicts the operation on
a chosen prediction horizon by using the planned control
actions. Intelligent trend analysis provides efficient tools
for the early detection of the changes in operation phases
and situations. The solution adapts to differences in fer-
mentation runs.
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Abstract 
Moving bed biofilm reactor (MBBR) is a robust, 
flexible and compact technology for treatment of 
medium to high strength wastewater. However, while 
treating wastewater with high concentration of 
ammonium, phosphorus and metal ions, scaling on the 
biofilm carriers can occur, causing biofilm carriers to 
sink the bottom of reactors. That leads to less carrier 
motion, higher energy consumption and deteriorated 
mass transfer, causing lower process efficiency and 
increased operational cost. This can be a major MBBR 
operational challenge for certain types of wastewater. In 
this study, scaling on biofilm carriers in an MBBR 
reactor treating reject water from anaerobically digested 
wastewater sludge was investigated. The 67 L reactor 
was operated at 16 h hydraulic retention time (HRT) for 
over 250 days. The metal ion concentrations in the reject 
wastewater in and out of the MBBR were analyzed 
using microwave plasma-atomic emission spectroscopy 
(MP-AES). The chemical equilibrium simulation tool --
Visual MINTEQ 3.1 was applied to determine the 
possible mineral precipitates. The measured 
concentrations of Mg2+, Ca2+, Fe3+, NH4-N, PO43-, SO42- 
and alkalinity from the inlet and outlet of the reactor 
were used as inputs to the model. Dry biomass and 
precipitates from biofilm carriers were digested by a 
DigiPREP digestion system and element analysis 
performed using MP-AES for simulated data validation. 
The results show that Fe3+ and Ca2+ had the highest 
potential to form mineral precipitates and scaling on the 
biofilm carriers. Hematite, Maghemite, Hydroxyapatite, 
Geothite and Magnesioferrite were the first five 
predominant forms of mineral precipitates, in the pH 
range from 6.0 to 9.0. The saturation indices (SI) of 
these five minerals increased with pH, implying that 
measures to lower pH may reduce the problem. Digested 
biomass composition and inorganic solid analysis 
confirmed that calcium is the major cause for scale 
formation on the biofilm carriers. Crystal formations in 
the biofilms were confirmed by optical microscopy 
images. 
Keywords: Visual MINTEQ, scaling, moving bed 
biofilm reactor, reject water 
 

1 Introduction 
Scaling on biofilm carriers is a major problem in moving 
bed biofilm reactors (MBBR) treating wastewater with 
high concentration of ammonium, phosphorus and metal 
ions. Scale formation occurs, e.g., in treatment of reject 
water from sludge digestion. When sludge is digested 
anaerobically, ammonia and soluble orthophosphate 
will be released from the sludge and end up in the reject 
water when such sludge is dewatered, and, in the 
presence of magnesium, calcium or ferric ions, could 
result in crystallization of inorganic salts. The amount 
of active biomass is an important factor in assessment 
the performance of MBBR, and the biomass growth 
chiefly depends on the designed carrier’s effective 
surface area (ESA). During the MBBR operation, ESA 
can decrease because of excess biofilm biomass 
accumulation so that the area of biofilm exposed to the 
liquid (EBA) decreases. Surplus biofilm thickness may 
thereby have negative effect on the reactor’s efficiency 
by reducing EBA and mass transfer and also by 
increasing carrier weight (Ødegaard, 2006; Piculell, 
2016). 

Crystallization can happen when a solution is 
supersaturated. This occurs when the solute 
concentration surpasses the equilibrium and nucleation 
occurs due to high free energy. Saturation index (SI) is 
an important parameter for determination of the 
probability for mineral precipitation. SI is a logarithmic 
ratio between ion activity product (IAP) and equilibrium 
constant (Ksp) in the wastewater treatment process 
(Sharp et al.,  2013)  

SI = log  IAP
Ksp

         (1)                                   

   IAP (ion activity product) is quantified as a product 
of all comprised ion concentrations which should be 
measured as soluble ions. Ionic strength (I) depends on 
dissolved solids concentrations and can be calculated 
from (2).  

𝐼𝐼 = 1
2

 ∑𝑍𝑍𝑖𝑖2 𝐶𝐶𝑖𝑖                      (2) 
Where, 𝑍𝑍𝑖𝑖 is the valency of the ion and 𝐶𝐶𝑖𝑖 is the 
concentration. Ionic strength for wastewater is in the 
range of 0 to 0.2. If the composition of wastewater is 
unknown, it can be approximated as the dissolved solids 
[g/L] x 2.5 x 10-5 × 2.5 × 10−5 .Debye-Huckel method 

SIMS 60

139DOI: 10.3384/ecp20170139  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



uses mean ionic activity (γ) for activity correction as 
follows (Cellen, 2010): 

log 𝛾𝛾 = −0.5𝑍𝑍2 √𝐼𝐼
1+√𝐼𝐼

              (3)                                                                
Visual MINTEQ 1.3 is based on Equations 1-3 and is 

one of the most used chemical equilibrium simulation 
tool to determine possible mineral speciation and 
estimate its solubility at chemical equilibrium. Visual 
MINTEQ is a simulation tool which can be used to 
compute the equilibrium composition of dilute aqueous 
solutions. It is a Windows version of MINTEQA2 
equipped with inclusive thermodynamic data to estimate 
speciation, solubility and equilibrium of minerals in the 
solutions. It was found to be a good simulation tool in 
several studies which have been implemented in 
different versions of Visual MINTEQ to predict and 
control of possible mineral precipitations in wastewater. 
Jia (2014), applied Visual MINTEQ 3.0 to analyze  the 
formation of struvite from sludge dewatering effluent 
from Bolivar wastewater treatment plant in south 
Australia. Visual MINTEQ 2.23 was used of struvite 
formation in a wastewater treatment by (Çelen et al., 
2007; Çelen and Türker, 2010) to estimate  the required 
modifications for phosphates precipitation in liquid 
swine manure.  Chand (2018), investigated the struvite 
formation possibility from anaerobically digested 
sludge by calculating the values of saturation indices 
with help of Visual MINTEQ 1.3.  

In our study, the model is applied with the objective 
to investigate the possible precipitates in moving bed 
biofilm reactors (MBBR) treating reject water. The 
model calculations were done mainly based on chemical 
element’s concentrations of magnesium, phosphorous, 
ammonium, iron and calcium. The Debye-Huckel 
method was use for activity corrections during model 
setup for precipitation prediction (Jia, 2014). Specified 
temperature, alkalinity and pH values were used for 
determination of saturation index (SI).  

2 Materials and methods 
A moving bed biofilm reactor (MBBR) was installed on 
the lines of reject water directed to main wastewater 
inlet as shown in Figure 1. The MBBR has a dimension 
of LxBxH=0.35x0.35x0.55m (effluent level) with a 
working volume of 67 L. It was filled with bio carriers 
to a filling degree of approximately 70 % of the reactor 
volume. The bio carriers, BWT S® (Biowater 
Technology AS), made of high-density polyethylene 
(HDPE) with dimensions of 14.5x18.5x7.3 mm and 
protected surface area of 650 m2/m3, were used as 
biofilm attaching substratum. The reactor was fed by 
centrifuged effluent from anaerobic sludge digestion. 
Since the centrifuge works intermittently (i.e., 6-9 hours 
during week days) the reject wastewater is stored in an 
intermediate bulk container (IBC) onsite to ensure that 
there is constant supply of feed into the reactor. The 

reactor was continuously aerated with air flow 26 ± 2 
L/min. 
 

 
Figure 1. Flow diagram of Knarrdalstrand municipal 
wastewater treatment plant, Porsgrunn showing the MBBR 
position. 
  At the beginning, carriers moved freely in the MBBR 
reactor as intended but gradually carriers started to sink 
after strong biofilm growth and eventually settled 
permanently with heavy scaling on the bottom of the 
reactor after ~200 d of operation (Figure 2) 
 

2.1 Sampling and wet chemical analysis 
Samples of influent and effluent were collected two 
times per week and various chemical analyses such as 
ammonium, total chemical oxygen demand (CODt), 
soluble COD (CODs), total suspended solids (TSS), 
volatile suspended solids (VSS), PO4-P and Alkalinity 
were carried out. The analyses were performed based on 
the standard methods according to APHA (1995). 
 

2.2 Element analysis by Microwave plasma 
atomic emission spectroscopy 

Microwave plasma atomic emission spectroscopy (MP-
AES 4210) was used to estimate the total ion 
concentrations for elements, Ca, Fe, Mg, P and Al in the 
reject water. MP-AES provides analytical techniques to 
determine the elemental composition of samples by 
surveying their electromagnetic spectrum or mass 
spectrum. MP-AES uses nitrogen extracted from air by 
nitrogen generator to form plasma. Axial magnetic and 
radial electrical fields strengthen the nitrogen plasma. 
The sample aerosol was injected into plasma and the 
axial emission was directed into scanning 
monochromator. The different elements have a different 
wavelength. The emissions of selected wavelength 
range are reflected on high efficiency charge coupled 
device (CCD) detector. 
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2.2.1 Liquid sample preparation for element analysis 
Samples from influent and effluent of the reactors were 
centrifuged, filtered and then diluted with 2% nitric acid 
(HNO3) to 100 and 1000 dilution factors. Subsequently, 
the samples were measured by the MP-AES instrument 
for the elements Ca, Fe, Mg and P. Agilent Technologies 
ICP-OES Calibration Solution was used for wavelength 
calibration and Sigma-Alorich Periodic table mix 1 was 
used for wastewater standard calibration. 

2.2.2 Quantification of biomass on carriers 
Five carriers (N) were taken from the MBBR reactor, 
placed on an aluminum plate and dried at 105°C for 24 
h and cooled down for 10 min in the desiccator. Then 
dried carriers were weighted (m1). After that, carriers 
were soaked into hypochlorous acid (HOCl) for 2 hours, 
biomass was brushed and washed out by tap water. 
Again, the cleaned carriers were dried at 105°C for 24 h 
and weighted (m2). Eventually, biomass per carrier 𝑚𝑚 
was calculated as mentioned in (4).  

 
𝑚𝑚 = 𝑚𝑚1−𝑚𝑚2

𝑁𝑁
                                                        (4) 

 
Biomass per unit protected surface area was calculated 
according to (5). 
 

𝑊𝑊 = 𝑚𝑚. 𝑉𝑉𝐶𝐶
𝐴𝐴

                                              (5) 
Here: 
𝑊𝑊: Biomass per unit surface area (g/m2) 
𝑚𝑚 : Biomass per carrier (g/piece) 
𝑉𝑉𝐶𝐶: Number of carrier pieces per volume (piece/m3) 
𝐴𝐴: Protected surface area (m2/m3)  

2.2.3 Solid sample preparation for element analysis  
A DigiPREP Digestion System was used to digest 
organic materials included in dried sample of sludge and 
carrier’s biomass. The DigiPREP Digestion System 
involves a microwave – assisted acid digester (MAAD) 
equipped with a touch-screen controller, Digi- tubes and 

filters. Samples from sludge and carriers were dried for 
at least 10 hours in an oven at 105℃, then the carriers 
were rubbed off. Dried samples of mass 0.5 g were 
digested with 10 mL concentrated HNO3 (69% v/v) in 
special digested tubes placed in a MAAD. Digested 
samples were cooled and then filtered with 1.2-1.5µm 
pore size glass filter. Thereafter, samples were diluted 
up to 50 mL with distilled water. Again, the diluted 
samples were diluted with 2 % HNO3 up to 100 and 
1000 dilution factor. Subsequently, the samples were 
measured by MP-AES. 

2.3 Model inputs 
Metal ion concentration, temperature and pH were the 
main inputs for Visual MINTEQ simulations. These 
parameters were varying over the time, therefore 
average values were used as input for the model. The 
average temperature was set to 16.5oC and pH was 
attempted to be kept constant at value8.2. The ion 
concentration inputs are given in Table 1. Ionic strength 
was let it to be calculated by model itself based on 
Debye-Huckel activity model. 

Table 1. Input ion concentrations for Visual MINTEQ 
simulations. 

Elements Concentration (mg/L) 
Mg2+ 35 
Ca2+ 700 
Fe3+ 15 
NH4+ 440 
P(PO4) 40 
SO42- 4 

2.4 Crystal observation in solid samples 
The presence of crystals in biomass and sludge samples 
was investigated by stereo microscope Nikon SMZ745 
and fluorescence microscope Olympus IX70. Both 
microscopes are equipped with cameras to capture the 
pictures of biomass at 20x and 40x magnification.  

Figure 1. MBBR reactor setup with BWTS® carriers (a-MBBR with newly filled carriers, b- MBBR in good condition 
with freely moving carriers, c- MBBR with settled carriers. 
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3 Results and Discussion 
The effective biofilm thickness is crucial to maintain 
efficient mass transfer between biofilm and bulk liquid 
phase. Excessive biofilm accumulation and scaling on 
the bio-carriers was observed over the study period. For 
instance, the average values of biomass on carrier per 
unit surface area exceeded 135 g/m2 temporarily and 
stabilized in the range of 90-120 g/m2 as shown in 
Figure 3.  

    Due to the increasing biofilm density it was observed 
that freely moving carriers started to settle and the 
effectiveness of the process in removing organics 
deteriorated (data not shown). 

Table 2. Saturation indices for possible mineral 
precipitates in MBBR reactor, found in simulation result. 

 
The chemical equilibrium model has shown several 

possible precipitates on the biofilm carriers that may 

have caused the high biofilm density and carrier settling 
(Table 2). The results show that Fe3+ and Ca2+ ions had 
the highest potential to form mineral precipitates and 
scaling on the biofilm carriers. Among other diverse 
forms of precipitates, Hematite, Hydroxyapatite, 
Magnesioferrite, Maghemite, and Goethite were the 
most predominant forms of mineral precipitates, with 
saturation indices (SI) of 21.6, 18.1, 15.8, 14.5, and 9.6, 
respectively. Digested dried sample of sludge and 
carrier’s biomass had 37 % and 28 % mass percentage 
of calcium, respectively. pH had effects on the 
precipitates’ SI in the pH range from 6.0 to 9.0 are 
shown in Figure 4. 

Struvite was not one of the major precipitates in this 
study because it has low saturation index 0.4 (Table 2 

and Figure 4). Struvite is magnesium ammonium 
phosphate and it normally precipitates when the ion 
concentration of magnesium, ammonium and phosphate 
are over saturated and the molar ratio is 1:1:1 (Tansel et 
al., 2018). 

The simulations have shown that pH has significant 
effect on the amount and type of precipitants on the 
biofilm carriers. Hematite, Maghemite, Hydroxyapatite 
and Magnesioferrite precipitation increased most with 
increase in pH. Goethite and Struvite were not much 
influenced by pH with a slight increase in struvite when 
the pH was above 8 (Figure 4). pH in the range of 7 to 
11 is generally known to be conducive for the formation 
of struvite, calcium phosphate and calcium carbonate  
and the crystallization rate decreases when the pH drops 
below this 7 to 11 range (Daneshgar et al., 2018). The 
aeration process in the MBBR reactor may have 
increased pH by CO2 stripping and by biological 
reactions (Organics consumption, NH4 increase etc.). 
The measured inlet pH in this study was ~ 7.5 and the 
reactor pH was ~ 8.2, respectively. 

Several studies have shown that crystallization occurs 
in biofilms when the bulk liquid solution contains more 
dissolved solute than the equilibrium saturation values. 
The ions involved in scale formation have intricate 
interaction and different crystals could be formed 

Mineral Saturation Index 
Hematite 21.6 
Hydroxyapatite 18.1 
Magnesioferrite 15.8 
Maghemite 14.5 
Goethite 9.6 
Lepidocrocite 9.1 
Ferrihydrite (aged) 7.2 
Ca3(PO4)2 (beta) 6.9 
Ca4H(PO4) 3:3H2O(s) 6.9 
Ferrihydrite 6.7 
Ca3(PO4)2 (am2) 5.5 
Strengite 4.2 
Ca3(PO4)2 (am1) 2.8 
CaHPO4(s) 1.1 
CaHPO4:2H2O(s) 0.8 
Struvite 0.4 
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Figure 3. Biomass accumulation on carrier in MBBR 
reactor over the time (01.03.2018 – 01.05.2019). 
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predominant mineral precipitates predicted by the model. 
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depending on the system condition such as ionic 
concentrations, temperature and pH (Harker et al., 
2013). 

A microscopic image of the observed crystalsformed 
in the biofilm carriers is shown in Figure 5.  

The simulation result has showed that, the major 
proportion of the crystal is a combination of either iron 
or calcium precipitates. Comparing the microscopic 
image with other studies of scanning electron 
microscope the struvite crystallization was significantly 
low. Since the reject wastewater contains large amount 
of calcium, it might inhibit the struvite crystallization. 
Similar studies have indicated that calcium has effect on 
struvite crystallization at different magnesium to 
calcium molar ratios (Hao et al., 2008). When the molar 
ratio of calcium is high, the formed crystal shows 
transformation in morphology different from struvite. 

4 Conclusions 
Scaling on biofilm carriers of moving bed biofilm 
reactor (MBBR) is a major problem during treatment of 
reject wastewater, as it makes biofilm carriers heavy so 
that they sink to the reactor bottom. The study has 
confirmed that high concentration of ammonium, 
phosphorus and metal ions creates scaling on the biofilm 
carriers.  

The chemical equilibrium simulation tool Visual 
MINTEQ 3.1 is a useful tool to predict which mineral 
precipitates can occur in wastewater treatment process, 
to what extent they may form and factors influencing 
their formation.  

The pH and ionic concentration of metal ions play 
significant roles in the formation of different crystals. In 
this study, Fe3+ and Ca2+ had the highest potential to 
form mineral precipitates and scaling on the biofilm 
carriers. Among possible forms of precipitates 
Hematite, Hydroxyapatite, Magnesioferrite, 

Maghemite, and Goethite were the most predominant in
order of their saturation indices (SI). pH control,
generally by lowering pH, appears to be the most
realistic way to limit scaling.
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Abstract

Biomass is a renewable energy source. Biomass

gasification process produces producer gas, which can

be further used for power generation or as raw materials

for the production of secondary fuels. Experiment on 

the air gasification of biomass in a bubbling flu-

idized bed reactor was performed in a pilot-scale reac-

tor located at the University of South-Eastern Nor-

way (USN). A kinetics-based simulation model was 

developed based on MultiPhase Particle-In-Cell MP-

PIC approach, using commercial software Barracuda®, 

and the results were compared with the experimental 

data. The average volume percentage of carbon 

monoxide, hydrogen, methane and nitrogen were 

found to be around 20%, 10%, 7% and 38% respec-

tively in the experiment. The simulation results agree 

well for carbon monoxide, hydrogen and methane, 

but there is a difference in nitrogen volume per-

centage compared to the experimental results. 

The oxygen concentration during the experiment was 

around 1% suggesting a good performance of the 

gasifier. The char partial oxidation is less significant 

compared to the homogenous phase reactions. This 

shows that devolatilization reaction and the homoge-

nous phase reactions dominate the char gasification 

reaction.

Keywords: air-biomass gasification, bubbling fluidized 
bed, CPFD

1 Introduction

Due to the rapid increase in the consumption of

conventional fossil fuels, the global temperature is

rising quite fast. One of the alternatives to counteract the

increase in temperature is the use of renewable energy

sources. Biomass gasification is one of the renewable

energy production technologies and includes

thermochemical conversion of carbonaceous fuels

mainly into syngas (a mixture of CO and H2) with the

application of gasifying medium such as air, steam, and

oxygen. Among the different biomass gasification

technologies, fluidized bed reactors are commonly used.

The fluidized bed technology uses bed material such as

sand, or olivine to heat up the biomass particles at a

temperature range of 700-900°C (Franco et al., 2003).

The gasification temperature is comparatively low, and

this inhibits the agglomeration and sintering of the ash, 

which prevents causing serious problems during the 

operation of the gasifier. In addition, even distribution 

of heat and mass transfer, and excellent solid mixing 

make the fluidized bed reactor one of the attractive 

technologies for biomass gasification. 

The product of gasification can be used for power 

generation in a gas engine, methanol synthesis or as the 

raw materials for production of secondary fuels, such as 

biodiesel, bio-ethanol and methanol (Bandara et al., 

2018). The operation of the fluidized bed gasification 

involves multiphase flow, various chemical reactions 

and heat transfer. It is a big challenge to investigate the 

effects of different parameters from the experimental 

study only, because of the requirements to build 

different setup configurations and procedures. Instead, 

modeling and simulations give better ideas for a wide 

range of design and operational parameters. 

Modelling and simulation of such complex systems 

are needed for a good understanding of the process, 

designing and optimization. Computational fluid 

dynamics (CFD) are used to model the systems handling 

the fluid flow. Conventional CFD is a well-accepted 

technique for single-phase systems. Multiphase CFD 

models use either a Eulerian-Eulerian, or Eulerian-

Lagrangian approach. The Eulerian-Eulerian approach 

models the solid and gas phase separately with the 

Navier-Stokes equation. The discrete particle phase is 

not considered in Eulerian modelling and is solved with 

the kinetic theory of granular flow. In the Eulerian-

Lagrangian approach, fluid is treated as a continuous 

phase and the particles as a discrete phase. The solid 

particles are approximated with Newton’s law of 

motion. This gives high loading to CPU during 

simulations and is often limited to 2D or quasi-3D and 

in the order of 104 number of particles (Ku et al., 2015). 

The MP PIC modelling is based on the Eulerian 

approach for fluid particles and Lagrangian approach for 

the solid particles. Barracuda® is a software package 

based on the MP PIC modelling, which is known as the 

Computational Particle Fluid Dynamics (CPFD) 

approach. 

Air is commonly used as the gasifying agent, which 

gives product gases with a Higher Heating Value (HHV) 

of 4-7 MJ/Nm3. The low HHV is due to the dilution of 
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the produced gas by nitrogen. Oxygen/steam blown 

biomass gasification produces gas with HHV of 10-18 

MJ/Nm3 (Schuster et al., 2001; Li et al., 2004). 

However, there will be an additional cost to produce 

oxygen/steam. There are many CFD models reported in 

the literature on steam gasification of biomass. CPFD 

modelling was chosen in this study because of its 

reliability and shorter simulation time. However, no 

previous work was found for the modelling of air 

gasification of biomass in a bubbling fluidized reactor 

using CPFD approach. 

1.1 Previous works 

Schuster et al. and Li et al. have studied the gasification 

of biomass based on the thermodynamic equilibrium 

model. Such models deviate significantly from the 

experimental results compared to the kinetics-based 

models (Schuster et al., 2001, Li et al., 2004).  

Xie et al. have developed a model based on the MP-

PIC approach for coal gasification in a fluidized bed 

reactor. Flow patterns, particle species profile, gas 

compositions, distributions of reaction rates were 

studied during their study (Xie et al., 2013). The 

obtained results from the simulation model agree well 

with the experimental data. 

Most of the biomass gasification simulations based 

on the MP-PIC approach have been applied with steam 

as the gasifying agent. Loha et al. have studied the flow 

pattern, gas composition and pressure distribution for 

different temperature and steam to biomass ratio in a 

laboratory scale bubbling fluidized bed gasifier. The 

gasification of rice husk during the experiment agreed 

well with the simulation based on the reaction kinetics 

of the gasification process (Loha et al., 2014).  

Further, the MP-PIC modelling has been applied to 

simulate the dual circulating bubbling fluidized bed 

(DCBFG) gasifier. Liu et al. studied the gasification of 

almond prunings in a dual fluidized bed gasifier. The 

model showed that the H2 production, as well as CO 

production, was increased with increase in gasifier 

temperature and steam to biomass ratio (Liu et al., 
2016).  Thapa et al. have developed a model for biomass 

gasification in DCBFG based on the MP-PIC approach. 

The published result agrees well with the experimental 

data obtained from the biomass gasification plant in 

Güssing, Austria (Thapa et al., 2014).  

In the present works, a simulation model for a 

bubbling fluidized bed gasifier has been developed in 

barracuda, and the results have been compared with the 

experimental data. The objective of this paper is to 

develop a model for air-gasification of biomass and 

validate the model against the experimental results.  

2 Methods 

2.1 Experimental Setup 

The gasification rig installed at the University of South-

Eastern Norway (USN) is a bubbling fluidized bed 

reactor with a fuel capacity of 20kW. Figure 1 and 

Figure 2 show the block diagram and the picture of the 

gasification rig at USN. 

 

Figure 1. Block diagram of biomass gasification reactor at 

USN 

 
  The gasifier consists of a preheater (A), which heats up 

the fluidizing agents (air or steam) to about 450°C. The 

screw conveyors (B1 and B2), transfer the biomass from 

the fuel silo (C) to the reactor (D). Biomass is added into 

the silo before starting the experiments.  The system is 

purged with nitrogen during the idle conditions of the 

reactor. The reactor is installed with pressure and 

temperature sensors at different locations to monitor the 

pressure and the temperature of the reactor. The product 

gas leaves from the top of the reactor for the gas analysis 

(F) and the flaring (E). The different parameters were 

controlled/changed/monitored during the experiment 

with the help of a computer program available at the 

experimental facility. 

 

 

Figure 2. Picture of the bubbling bed reactor at USN 
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There are two screw conveyors as shown in Figure 3. 

The cold screw conveyor supplies the biomass from fuel 

silo to hot conveyor and the hot conveyor introduces the 

biomass into the reactor bed. The conveyors are 

perpendicular to each other. 

 

 

Figure 3. Cold and hot conveyor  

 
The reason for separating the two-screw conveyer is 

to avoid the combustion of wood chips during the 

transportation process. The reactor is insulated to reduce 

heat loss during the experiments. The reactor is 100 mm 

in diameter and 1000 mm in height. 

Sand with an average particle diameter of 285µm was 

used as bed materials during the experiments. Wood 

chips with approximately 0.5 cm average diameter was 

used for the experiments. The reactor was heated 

initially to about 700°C before the introduction of the 

biomass into the reactor for gasification experiments. 

Gas collected on syringe were analyzed on SRI 8610C 

gas chromatograph. 

2.2 CPFD Simulation setup 

A simulation model was developed by using Barracuda 

VR17 software. Wen-Yu drag model was used with 

60% momentum loss after the particle collision. The 

reactor was designed as an open cylinder with a 

diameter of 100 mm and a height of 1000mm.  

 

 

Figure 4. (a) Boundary conditions (b) Initial bed material 

 
Figure 4 shows the boundary conditions and the 

initial height of bed material used for the simulation. 

The developed geometry was divided into 7128 

computational cells.  

Table 3 shows the properties of the bed material, and 

the gasifying agent used for the simulation process.  The 

exit of particles from the reactor was set to zero by 

default, and the pressure boundary at the top of the 

reactor ensures the out flow of the product gas from the 

Table 1. Reaction kinetics for air gasification 

Reaction Rate Kinetics 

Char partial combustion (Xie et al., 2013) 

2C + O2 ↔ 2CO 
r = 4.34×107 msθf exp(

−13590

𝑇
)[O2] 

CO oxidation (Xie et al., 2013) 

CO + 0.5O2 ↔ CO2 
r = 5.62×1012 exp(

−16000

𝑇
)[CO][O2]0.5 

H2 oxidation (Bates et al., 2017) 

H2 + 0.5O2 ↔ H2O 
r = 5.69×1011 exp(

−17610

𝑇
)[H2][O2]0.5 

CH4 oxidation (Xie et al., 2013) 

CH4 + 2O2 ↔ CO2 + 2H2O 
r = 3.552×1011 T-1 exp(

−15700

𝑇
)[CH4][O2] 

Water gas shift reaction (Xie et al., 2013) 

CO + H2O ↔ CO2 + H2 
r = 7.68×1010 T exp(

−36640

𝑇
)[CO]0.5[H2O] 

Methane reforming (Solli et al., 2018) 

CH4 + H2O ↔ CO + 3H2 
r = 3.00×105 exp(

−15042

𝑇
)[CH4][H2O] 
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reactor. The air supply into the bed was kept constant 

during the experiments and the simulation process. Air 

at 1000K was supplied during the simulation to reduce 

the simulation time. During the experiments, preheating 

of air was done before introducing into the reactor bed. 

The reaction rate kinetics are presented in Table 1 based 

on the Arrhenius reaction rate model. The properties of 

the wood chips used in the simulation model are 

presented in Table 2 (Doherty et al., 2013) 

 

Table 2. Properties of wood chips 

Proximate analysis (dry basis, wt. %)  

Volatile matter 80 

Fixed carbon 18.84 

Ash 1.16 

Moisture 20 

 

Table 3. Initial conditions 

Items Parameters 

Bed material 

285 µm average diameter, 0.54 

volume fraction, density 2650 

kg/m3, 200 mm initial bed height 

Gasifying fluid Air, 0.2 m/s, 1000K, 101325Pa 

 

3 Results and discussions 

Experiments were done with wood chips and air in the 

bubbling fluidized reactor. The gas composition from 

the simulation is presented in Figure 5. The gas 

composition is irregular because of different physical 

and chemical transformation occurring inside the 

reactor, whereas the average gas compositions seems to 

be stable throughout the simulation. 

 

 

Figure 5. Gas composition for the simulation model  

In the beginning, the hydrogen concentration in the 

product gas is due to the devolatilization of the biomass 

in the hot bed. Water vapor that is produced during 

methane oxidation favors the water gas shift reaction 

which slightly increases the hydrogen production with 

time. Further, the average gas composition from the 

simulation results are compared with the experimental 

results and is presented in Figure 6. 

The simulation model predicts well the fraction of the 

different gas components and there is a good agreement 

between experimental and computational results 

regarding the hydrogen, carbon monoxide and methane 

concentration.  

 

 

Figure 6. Comparison of average gas species 

 
There are several reactions occurring during the 

gasification process. The major chemical reactions are 

modelled using the six major reactions presented in 

Table 1. The other minor chemical reactions are not 

included in the barracuda simulations, as they require a 

lot of computer capacity and time. The average oxygen 

concentration during the simulation was found to be 

zero whereas oxygen concentration during the 

experiment was around 1% of the total volume 

composition. This may be due to the sampling 

procedure, as the samples were taken in a syringe for the 

gas analysis. This shows that the CPFD model gives a 

comprehensive result.  

The product gas compositions during the simulation 

were monitored at the different heights along the 

reactor. Figure 7 shows the mole fractions of carbon 

monoxide, hydrogen and the methane along the height 

of the reactor. There are not any distinct variations up to 

the biomass feeding position. The char partial oxidation 

is less significant compared to the homogenous phase 

reactions. Devolatilization as well as chemical 

transformations of biomass inside the bed give different 

gas compositions. The increasing hydrogen 

concentration along the reactor indicates the dominance 

of the water gas shift reaction and the methane 

reforming reaction. 
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Figure 7. Gas composition along the reactor (Mole 

fraction) 

 
This shows that the chemical transformations as well 

as the bed hydrodynamics is quite complex in a bubbling 

fluidized bed reactor. The operation of the optimized 

reactor would give uniform particle distribution and 

ensure operation in the bubbling fluidization regime. 

Figure 8 shows the particle volume fraction and the 

particle temperature distribution along the reactor 

height.  

 

 

Figure 8. Simulation bed hydrodynamics at 200 s (a). 

Particle volume fraction (b). Particle temperature  

 
Figure 8 (a) shows that the reactor operates at the 

bubbling fluidization regime with entrainment of few 

particles in the freeboard region. The solid volume 

fraction after the onset of the bubbling regime in the bed 

is reduced from the solid volume fraction of the static 

bed. Although the system was set to a temperature of 

1000K, due to the exothermic nature of the reactions, the 

temperature rises up to around 1200K inside the reactor. 

 

4 Conclusions 

Air gasification of biomass in bubbling fluidized bed 

reactor was performed in a pilot-scale reactor at USN. A 

kinetic-based CPFD simulation model was used to 

simulate the gasification of biomass using Barracuda. 

The experimental setup as well as the simulation model 

were operated in the bubbling fluidizing regime. The 

results from the simulation were compared with the 

experimental data. The average volume percentage of 

carbon monoxide, hydrogen and methane were found to 

be around 20%, 10%, and 7% respectively during the 

experiment. There is a good agreement between 

experimental and computational results regarding the 

hydrogen, carbon monoxide and methane concentration. 

Oxygen concentration during the experiment was 

around 1%. The small amount of oxygen during the 

experiment may be due to manual sampling process 

used for gas sampling. The char partial oxidation is less 

significant compared to the homogenous phase 

reactions during the gasification process. 
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Abstract
A steady-state Aspen Plus model was developed for

biomass gasification in a fluidized bed reactor. A

combination of different Aspen Plus unit operations

was used to model the gasification process. The model

was used to predict the gasifier performance for

different operating conditions like temperature, Steam

to Biomass Ratio (STBR) and biomass loadings.

Further, the gas compositions were compared for

different types of biomass feed. The gasification reactor

is based on Gibbs minimization with restricted

equilibrium approach. Hydrogen production was around

50% for all the biomasses while CO production varies

from 8% (Pig manure) to 24.5% (Olive residue) at

700°C. H2/CO ratio increases with an increase in STBR

for all the biomass and the ratio was the highest for 
the pig manure and lowest for the olive residue. 

Olive residue, wood residue and miscanthus gave the 

H2/CO ratio of 1.5-2.1, which are more suitable as 

a feedstock in Fischer-Tropsch synthesis depend-

ing upon the operating temperature, a catalyst 

used and other operating conditions. For the wood 

residue, an increase in temperature increases the 

H2 and CO production whereas CO2 and CH4 

concentration decreases and becomes stable after 
700°C. H2 concentration increased from 46 % to 54 

% and CO concentration decreases from 30% to 20% 

with an increase in STBR from 0.6 to 1 for the wood 

residue.

Keywords:     Aspen plus, biomass, biomass gasification,

H2/CO ratio

1. Introduction

Due to the increasing energy demand, and the rising

global temperature, research is focused towards the

alternative energy sources such as wind energy, solar

energy and the energy from biomass. Biomass sources

such as Municipal Solid Waste (MSW), food wastes,

wood wastes, rice husks, sugarcane bagasse and poultry

wastes can be utilized to produce product gases (a

mixture of CO, H2 and CH4) through biomass

gasification. Biomass gasification is a thermochemical

conversion of carbonaceous materials, mainly into

syngas (a mixture of CO and H2), with the application

of gasifying medium such as air, steam, and oxygen.

 Among the different types of biomass gasification 

technologies, fluidized bed gasification is an attractive 

technology because of the even distribution of heat and 

mass transfer and excellent solid mixing. The fluidized 

bed gasification technology uses bed material to heat up 

the biomass particles in the temperature range of 700-

900°C (Franco et al., 2003). The syngas can be 

converted into liquid fuels by Fischer-Tropsch (FT) 

synthesis, which is also known as Gas-To-Liquid (GTL) 

process (Riedel et al., 1999). Biomass gasification also 

enables energy recovery from the waste. The main 

challenge for the successful operation of the biomass-

based energy production technologies is low carbon 

concentration in the biomass and the low efficiency of 

the biomass gasification technology.  

The conversion of biomass into syngas gases through 

gasification especially depends upon the biomass 

characteristics. The amounts of the fixed carbon, 

volatiles, moisture, ash and the calorific value 

determines the output product gas composition 

(McKendry, 2002). 

The biomass is dried and devolatilized during the 

gasification process. Devolatilization is an endothermic 

process where the hot bed material supplies the required 

amount of heat. For simplicity, the process of 

devolatilization can be modelled using 1.  

 

𝐶𝑥𝐻𝑦𝑂𝑧 = 𝑎𝐶𝐻4 + 𝑏𝐶𝑂 + 𝑑𝐶𝑂2 + 𝑒𝐻2
+ 𝑓𝐶𝑥𝐻𝑦 + 𝑔𝐶 + ℎ𝐻2𝑂 

(1) 

 

The amount of ash and the other minor components 

produced during the gasification process can be 

neglected. The conversion of biomass depends upon the 

pressure, temperature and heat and mass transfer. The 

next step is the char gasification. Char reacts with 

fluidizing agents, as well as CO2 and H2 produced 

during the devolatilization of the biomass. Char 

reactivity and its amounts affect the product gas 

compositions (Thapa and Halvorsen, 2014).  

Figure 1 shows the potential reaction pathways for 

the biomass gasification process. Biomass undergoes 

pyrolysis to produces gases (such as CO, H2, CH4, and 

H2O), liquids (tar, oil), phenols, acids and the solid char. 
The char reacts with the gasifying medium, which 
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further reacts with the gases produced during the 

pyrolysis process to give the product gas.  

 

 

Figure 1. Potential reaction pathways for gasification 

 

1.1 1.1 Previous works 

Gagliano et al. have developed an equilibrium-based 

model in Aspen Plus for predicting the chemical 

composition of product gas for different types of 

biomass with different moisture contents. There is a 

good agreement of the gas compositions between 

simulation results and the experimental results for 

pellets and rubber wood (Gagliano et al., 2017). 

Doherty et al. have developed a model which 

represents an industrial scale plant in Gussing Austria. 

The model is based on restricted equilibrium in RGibbs 

reactor and simulations were performed for various 

gasification temperature, moisture content of biomass, 

STBR, air-fuel ratio, air temperature and steam 

temperature. The simulation results for syngas 

compositions, cold gas efficiency and heating values 

agree well with the experimental data (Doherty et al., 

2013). 

Nikoo and Mahinpey simulated biomass gasification 

in a fluidized bed reactor. The model was validated with 

the experimental results from the lab-scale fluidized bed 

reactor. Effects of the different parameters such as 

temperature, equivalence ratio, STBR and biomass 

particle size were studied during their simulations 

(Nikoo and Mahinpey, 2008).  

Liu et al. studied the simulation of biomass 

gasification based on the Gibbs equilibrium. The 

validated model was used to study the effects of 

gasification temperature, pressure and equivalence ratio. 

The optimal equivalence ratio was approximately 0.3 

with optimal gasification efficiency of 85.92% (Liu et 
al., 2016).  

Suwatthikul et al. have carried out the sensitivity 

analysis for gasification temperature, equivalence ratio 

and the STBR. A validated Aspen plus model gave an 

optimal operating temperature of 911°C, equivalence 

ratio of 0.18 and STBR of 1.78 to achieve energy self-

sufficient conditions for steam gasification in a fluidized 

bed reactor. Suwatthikul et al. achieved a maximum 

carbon conversion efficiency of 91.03% (Suwatthikul et 

al., 2017). 

Product gases from the gasification process have to 

be cleaned further and adjusted accordingly for suitable 

application to the GTL process. Fuels from GTL process 

have low emissions of CO, nitrogen oxides, 

hydrocarbons and particulate matters. The Fischer 

Tropsch synthesis can be considered as hydrogenation 

of CO to produce higher hydrocarbons compounds 

known as synthetic fuels (Kim et al., 2009). For the 

industrial application of syngas in Fischer-Tropsch 

synthesis, it is desired to have hydrogen to carbon 

monoxide ratio (H2/CO) of 1.5 - 2.1 (Tristantini et al., 
2007). 

Modelling and simulation of biomass gasification 

give a good understanding of the process, designing and 

optimization for a wide range of design configuration 

and operational parameters. The developed models can 

be used to study the biomass gasification process. Aspen 

Plus® is a commercial software package to simulate an 

industrial process.  Although there is not included 

inbuilt library model to simulate fluidized bed biomass 

gasification in Aspen Plus, different unit operations 

Table 1. Ultimate and Proximate analysis of different biomass feedstock 

Feedstocks Moisture 

Proximate analysis (wt. %, 

dry) 
Ultimate analysis (wt. %, dry) 

FC VM Ash C H O N S Cl 

Wood chips (Doherty et 

al., 2013) 
20 18.84 80 1.16 51.19 6.08 41.3 0.2 0.02 0.05 

Wood residue (Fremaux et 

al., 2015) 
5.01 17.83 81.81 0.36 50.26 6.72 42.66 0.16 0.2 0 

Pig manure (Xiao et al., 
2010) 

21.61 16.07 65.78 18.15 36.45 4.89 37.89 4.52 0.88 0 

Miscanthus (Kok and 

Özgür 2013) 
2 16.33 82.14 1.53 45.52 5.93 48.32 0.13 0.1 0 

Olive residue (Masiá et al., 

2007) 
10.63 25.48 67.35 7.17 54.18 5.37 31.7 1.28 0.21 0.13 

Food waste(Begum et al., 
2013) 

29.3 20.69 72.4 6.91 56.65 8.76 23.54 3.95 0.19 0 
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were combined to represent the biomass gasification as 

close as possible. This paper presents the simulation for 

different types of biomass presented in Table 1. 

2. Modeling of biomass gasification 

A model for bubbling fluidized bed biomass gasification 

with steam as a fluidizing agent is developed in Aspen 

Plus®. The model predicts the performance of a 

fluidized bed gasifier for the different types of biomass. 

The gasification process is dissociated into different 

representative units modelled by the different blocks in 

Aspen Plus. These models offer a convenient way to 

give information about the gasifier in a short time. These 

models are either based on kinetics rates or the state of 

thermodynamic equilibrium in a Gibbs reactor. The 

developed model is based on the restricted equilibrium 

in a Gibbs reactor model. Aspen plus flowsheet of the 

reactor is presented in Figure 2. 

The flowsheet was developed from the available unit  

 

operation blocks, material streams and the energy 

stream. Different conventional components were chosen 

from the database along with two non-conventional 

components for the biomass and the ash modeling. Non-

conventional components were defined according to the 

ultimate and proximate analysis for the biomass. Table 

1 gives the ultimate and proximate analysis of the 

different biomass feedstocks. 

The process consists of different stages such as 

biomass decomposition (DECOMP), pyrolysis (PYRO), 

gasification (GASIFIER), combustion (COMB) and 

different separation units (cyclone and separator). 

MIXNCPSD stream class was used as both conventional 

and non-conventional solids were present in the model 

with particle size distribution. Peng-Robinson equation 

of state with Boston-Mathias (PR-BM) alpha function 

was used to calculate the thermodynamic properties. 

Applications of PR-BM includes refineries, gas-

processing, and petrochemical applications like crude 

oil conversion and gas plants. All the inputs to the feed 

(flow rate, composition, thermodynamic state) and the 

unit operation block (thermodynamic conditions, 

chemical reaction etc) were taken from the experimental 

study performed by Fremaux et. al. (Fremaux et al., 
2015). The assumptions made during the modelling of 

the gasification process in Aspen Plus are as follows: 

• Isothermal and Steady state process. 

• The pressure drop across the block is zero. 

• Tar formation is not considered. 

• The system is in steady state and isothermal. 

• Char contains only carbon. 

• Modelling of ash is not considered 

 

Figure 2 shows the flow sheet in Aspen Plus. Biomass 

was decomposed into its constituting elements such as 

H2O, ASH, C, H, N, Cl, S, O based on the ultimate 

analysis. A calculator module was used to calculate the 

yield components of the biomass feed in the DECOMP 

reactor. The decomposed biomass product enters a yield 

reactor, simulated as a pyrolysis step in gasification. The 

PYRO reactor was set to operate at 500°C and the inert 

gas (N2) was used to assist the pyrolysis step (Visconti 

et al., 2015). The products from the pyrolysis were 

separated by using a cyclone. The char produced after 

the pyrolysis was taken into another yield reactor 

(GASIFIER), simulated as a gasification reactor. 

Figure 2. Aspen plus flowsheet for biomass gasification 
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Around 5% of the char was combusted in RStoic reactor. 

The generated energy can be used as a supplement heat 

for the gasifier. In addition to char, gaseous product 

(nitrogen-free) from the pyrolysis process and the steam 

is added into the gasifier.  

The calculation in the RGibbs gasifier was based on 

the restricted equilibrium with zero temperature 

approach for each of the reaction. The zero-approach 

option in RGibbs calculates the chemical equilibrium 

constant for the specified reaction at the reactor 

operating temperature. The equilibrium state of the 

reactor is also dependent upon the load per area of the 

reactor. Low load gives the state close to the equilibrium 

whereas higher load gives the non-equilibrium state 

within the reactor. High load is preferred to achieve a 

high conversion rate and low equipment costs. The 

overview of the temperature and the pressure in the 

different reactors is presented in Table 2. 

Table 2. Thermodynamic state of different reactor 

Reactor 
Thermodynamic state 

Temperature (°C) Pressure (bar) 

DECOMP 500 1 

PYRO 500 1 

COMB 800 1 

GASIFIER 700 1 

 

Table 3 shows the lists of chemical reactions specified 

during this simulation study with their change in Gibbs 

energies respectively.  

Table 3. Reactions involved in gasification (Suwatthikul 

et al., 2017) 

Reactions 
ΔH 

(kJ/mol) 

C + O2 → CO2 (2) -394 

C + 0.5O2 → CO (3) -111 

CO + 0.5O2 → CO2 (4) -283 

C + CO2 → 2CO (5) +172 

C + H2O → CO + H2 (6) +131 

C + 2H2 → CH4 (7) -74.8 

CO + H2O → H2 + CO2 (8) -41.2 

CO + 3H2 → CH4 + H2O (9) -206 

H2 + S → H2S (10) -20.2 

N2 + 2H2 → NH3 (11) -92.2 

H2 + Cl2 → 2HCl (12) -184.6 

 

The product from the gasifier undergoes water 

separation to give the output product composition on a 
dry volume basis. 

3. Results and Discussions 

Simulation results of the wood residue feedstock were 

compared with the experimental results published by 

Fremaux et al. Figure 3 shows the composition of the 

different gases. Hydrogen and carbon dioxide 

production increases with an increase in Steam to 

Biomass Ratio (STBR) while the carbon monoxide 

production decreases with increase in STBR. Methane 

concentration is almost constant for the given range of 

STBR. 

 

 

Figure 3. Gas composition for wood residue 

 
The model predicts well the fraction of the different 

gas components, and there is a good agreement between 

experimental and computational results regarding 

carbon monoxide and carbon dioxide concentration. 

There is little difference in the hydrogen concentration, 

as the model doesn’t represent the true 

phenomenological behavior of biomass gasification 

during the experiments.  

Figure 4 shows the composition of hydrogen, carbon 

monoxide, carbon dioxide and methane from the 

simulation for different biomass. Hydrogen composition 

is quite similar for all the biomass feed.  

Carbon monoxide concentration for wood residue, 

miscanthus and olive residue is similar, whereas the 

lowest for the pig manure. Carbon dioxide concentration 

for pig manure feed is 30% whereas other feed has CO2 

concentration below 25%. The carbon and hydrogen 

concentration are lowest for the pig manure. The C/O 

ratio is approximately 1:1 for pig manure and 1.2:1 for 

the other biomass. 
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Figure 4. Gas compositions for different biomass feed 

(700°C) 

The higher proportion of oxygen per carbon atom 

could be the reason for high CO2 and low CO in pig 

manure. The main reason for high CO2 and low CO is 

due to the high concentration of ash (18.15%) in pig 

manure compared to the other biomass. Methane 

concentration is around 8% for all the biomass except 

the food waste, which is around 12%. 

The end use of the product gas depends upon the 

quality of the gas produced during gasification. One of 

the qualities of the product gas required for feedstock 

for GTL synthesis is the H2/CO ratio. H2/CO was 

calculated for all the biomass feed for different STBR. 

Figure 5 shows the H2/CO ratio for STBR in the range 

of 0.5-1.  

 

 

Figure 5. H2/CO ratio for different biomass feed (700°C) 

H2/CO ratio is highest for the pig manure because of 

the high amounts of moisture and higher C/O ratio 

compared to other biomasses. Food waste also has a 

higher H2/CO ratio because of its high moisture content. 

According to Tristantini et al., the optimal H2/CO ratio 

is 1.5-2.1. This is achievable from the olive residue, 

wood residue, miscanthus in the STBR range of 0.5 to 

around 0.75. Syngas from wood chips is more suitable 

in FT synthesis at lower STBR. FT synthesis not only 

depends on the H2/CO ratio, but also temperature, 

catalyst used and the system. Thus, the suitable H2/CO 

ratio can be chosen depending upon the plant 

requirements. 

The quality of syngas produced depends upon the 

reactor temperature. Figure 6 shows the variations of the 

product gas compositions at different temperatures. 

 

Figure 6. Gas composition for wood residue (STBR = 0.6) 

 
Hydrogen and carbon monoxide concentration 

increases initially and stabilizes after 700°C. Carbon 

dioxide and methane concentration decrease with 

increase in temperature and becomes steady after around 

700°C. H2/CO ratio also becomes steady at around 1.8 

after 700°C., The gas compositions were analyzed for 

different biomass feed. Figure 7 shows the product gas 

compositions for different biomass loadings. 
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Figure 7. Gas composition for wood residue (700°C) 

 
Hydrogen concentration decreases with an increase in 

biomass feed whereas CO concentration increases for 

biomass feed up to 3.25 kg/hr. CO2 concentration 

decreases and then becomes stable after biomass loading 

of 3.25 kg/hr. Methane concentration remains similar 

for all the feed rate. Increase in biomass feed favors the 

forward reactions (2)-(7). Further, CO2 produced during 

the reactions (2) and (4) reacts with carbon from the 

biomass to produce CO and the carbon partial oxidation 

produces CO. Thus, CO concentration increases with 

increase in biomass feed. The H2 produced from the 

reaction (6) and (8) reacts with carbon (7) to produces 

CH4. Hence, there is a decrease in H2 concentration with 

an increase in biomass feed rate.  

4. Conclusions 

A steady-state Aspen Plus model was developed for 

biomass gasification in a fluidized bed. Simulations 

results were validated against the experimental data for 

a research scale fluidized-bed reactor. The model was 

used to predict the gasifier performance for different 

operating conditions and parameters like temperature, 

STBR and biomass loadings. The gas compositions 

were compared for different biomass feed. Hydrogen 

production was around 50% for all the biomasses while 

CO production varies from 8% (Pig manure) to 24.5% 

(Olive residue) at 700°C. H2/CO ratio increases with an 

increase in STBR for all the biomass and H2/CO ratio 

was highest for pig manure and lowest for olive residue. 

Olive residue, wood residue and miscanthus gave the 

H2/CO ratio of 1.5-2.1, which are more suitable as a 

feedstock in Fischer-Tropsch synthesis depending upon 

the operating temperature, a catalyst used and other 

operating conditions. For wood residue, an increase in 

temperature increases the H2 and CO production, 

whereas CO2 and CH4 concentration decreases and 

becomes stable after 700°C. H2 concentration increased 

from 46 % to 54 % and CO concentration decreases 

from 30% to 20% with an increase in STBR from 0.6 to 

1 for wood residue. The experimental results may vary 

from the simulation modeling, as the decomposition of 

biomass feed doesn’t represent the true 

phenomenological behavior during the gasification 

process. Suitable syngas composition for GTL synthesis 

can be obtained by selecting suitable biomass at 

desirable operating conditions of the gasifier. 
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Abstract
This study investigates the behaviour of bubbling

fluidized beds in biomass gasification processes based

on the variation of superficial gas velocity at different

temperatures and air flowrates. In the paper, the

operating window is defined as the gas velocity between

the minimum fluidization and slugging velocities, which

are computed using the correlations in the literature. The

analysis shows that the operating gas velocity depends

on the amount of char accumulated in the bed. An

increase in the char accumulation results in higher

minimum fluidization and slugging velocities of the bed

mixture. This therefore suggests that the gas velocity

ratio required to achieve the desired operating fluidized

bed regime is higher when the biomass accumulation is

considered.

Keywords: biomass, gasification, air-fuel ratio, 

CPFD, bubbling fluidized bed

 

1 Introduction 

Fluidized beds have numerous advantages in chemical 

processes, for example, biomass gasification. Such 

benefits include the excellent gas-solid mixing that can 

lead to uniform heat and mass distribution within the 

reactor. In a biomass fluidized bed gasifier, the 

operation is often aided with a bed material such as sand 

particles of relatively higher density and smaller size 

than the biomass particles. The bed material also helps 

to achieve high solid inventory and a stable pressure 

drop for the case of a bubbling bed. However, one major 

drawback is the limitation to gas flow rate imposed by 

the hydrodynamics of the bed material (Kunii and 

Levenspiel, 1991). For a given material, the bed is in the 

bubbling regime when the gas velocity is not too high 

above the minimum fluidization velocity at the 

operating condition. When the gas velocity is very high, 

the bed may transit into slugging, turbulent flow or fast 

fluidization regime (Kunii and Levenspiel, 1991). The 

flow of slugs in a bed may result in gas bypass and high 

fluctuation of the bed. Different factors can influence 
the gas velocity during operation, which will in turn lead 

to changes in the bed behaviour. 

An increase in the gas yield during the solid fuel 

conversion enhances the gas velocity at the operating 

temperature. With changes in temperature and pressure 

in the conversion process, the fluid properties as well as 

the particle-particle interactions may vary, causing 

changes in the flow velocity. In extreme cases, this may 

lead to changes in the fluidization type (Nemati et al., 
2016). The common observations to these changes is the 

effect of temperature on the transition of fluidized bed 

regimes as have been demonstrated in different studies. 

Increasing the bed temperature decreases the minimum 

fluidization velocity of Geldart A and B particles and 

increases those of Geldart D particles (Pattipati and 

Wen, 1981; Botterill et al., 1982). In addition, the gas 

velocities at the onset of slugging and turbulent 

fluidization may also increase with increasing 

temperature due to changes in the fluid properties and a 

decrease in the bubble size (Otake et al., 1975; Hatate et 

al., 1990). 

In designing bubbling fluidized bed reactors, 

selecting the suitable gas velocities for stable operations 

while achieving the desired gas yields and compositions 

is a critical issue. This study is aimed at investigating 

the effect of gas velocity in a bubbling fluidized bed 

during the biomass gasification. The study is based on 

the theoretical equations developed for fluidized bed 

behaviour. The semi-empirical models are applied to 

simulate the minimum fluidization and slugging 

velocities with and without accumulation of biomass in 

the bed for a given reactor size and operating condition. 

In addition, the possibility of solids entrainment at the 

operating temperature and different gas velocities is 

simulated using the computational particle-fluid 

dynamics (CPFD) code. The outcome of this study can 

be used as a basis to understand the influence of 

unconverted biomass on fluidized bed behaviour.  

2 Theory: Correlations for minimum 

fluidization and slugging velocities      

A fluidized bed reactor usually contains a mixture of 

different types of particles. Each particle type influences 

the behaviour of the bed. The bubble properties (size and 

rise velocities) and transition velocities from one regime 

to another differ significantly from those of pure solid 
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particles. The extent to which the bed behaviour is 

affected by each solid component depends on the 

amount of the individual solids in the bed. In biomass 

gasification reactors, the solid particles include the raw 

biomass, bed material, ash and char particles. For  

simplicity, the ash content of the fuel can be neglected 

since it is relatively low compared to other particles in 

the bed. Raw biomass and char particles can be lumped 

into one solid component using their average mass 

density and particle size. The resulting bed is a binary 

mixture consisting of the lumped biomass and bed 

material particles.  

The minimum fluidization velocity of a binary 

mixture of biomass and bed material can be obtained 

from different correlations (Si and Guo, 2008; Kumoro 

et al., 2014) for a given amount of biomass particles. In 

general, the minimum fluidization velocity of a bed can 

be computed by balancing the bed weight per unit area 

with the Ergun (1952) equation as expressed below 

1.75

𝜀𝑚𝑓
3 (

𝜌𝑓𝑈𝑚𝑓𝑑𝑠

𝜇𝑔
)

2

+
150(1−𝜀𝑚𝑓)

𝜀𝑚𝑓
3 (

𝜌𝑔𝑈𝑚𝑓𝑑𝑠

𝜇𝑔
) = 𝐴𝑟        (1) 

𝐴𝑟 =
𝑑𝑠

3𝜌𝑔(𝜌𝑠−𝜌𝑔)𝑔

𝜇𝑔
2         (2) 

where 𝑈𝑚𝑓 and 𝜀𝑚𝑓 are the superficial gas velocity and 

bed void fraction at the minimum fluidization condition, 

respectively. 𝐴𝑟 is the Archimedes number, 𝜌𝑔 is the 

fluid density, 𝜇𝑔 is the fluid dynamic viscosity, 𝜌𝑠 is the 

density and 𝑑𝑠 is the average diameter of the particles. 

For a bed of sand-like particles, (1) can be reduced as 

given in (3) (Wen and Yu, 1966). 

𝑈𝑚𝑓 =
𝜇𝑔

𝜌𝑔𝑑𝑠
[−33.67 + √(33.672 + 0.0408𝐴𝑟)]       (3)                         

Equation (1) can also be used to predict the 𝑈𝑚𝑓 of a 

binary mixture of biomass and bed material as described 

in Agu et al. (2019a), where the particle diameter and 

density are replaced with the respective average values 

 𝑑𝑠𝑚 and 𝜌𝑠𝑚 for the mixture. The mixture void fraction 

𝜀𝑚𝑓𝑚 = 1 − 𝛼𝑚𝑓𝑚 is computed from (Agu et al., 2019a) 

𝛼𝑚𝑓𝑚 =
1−𝜀𝑚𝑓𝑝

((1−𝜀𝑚𝑓𝑝) − 𝜀𝑚𝑓𝑏(1 − (
𝑑𝑠𝑝

𝑑𝑠𝑏
)

𝛽𝑥𝑝
)(

𝑑𝑠𝑝

𝑑𝑠𝑏
))

𝑦𝑏

(1−𝜀𝑚𝑓𝑏)
 + 𝑦𝑝

        (4)    

𝛽 = 0.623 (
𝑑𝑠𝑝𝜌𝑠𝑝

𝑑𝑠𝑏𝜌𝑠𝑏
)

−0.61

         (5) 

Here, 𝜀𝑚𝑓𝑝 and 𝜀𝑚𝑓𝑏 are the individual void fractions of 

the bed material and biomass particles at minimum 

fluidization condition, respectively. 𝑑𝑠𝑝 and 𝑑𝑠𝑏, and 

𝜌𝑠𝑝 and 𝜌𝑠𝑏 are the corresponding particle diameter and 

density. 𝑦𝑝 and 𝑦𝑏 are the volume fraction of the different 

components in the mixture, where 𝑥𝑝 is the mass fraction 

of the bed material. 

The minimum slugging velocity 𝑈𝑚𝑠𝑚 of the binary 

mixture increases significantly with an increase in the 

amount of biomass in the bed (Agu et al., 2019b). For 

biomass volume fraction less than 40%, the ratio, 

𝑈𝑚𝑠𝑚/𝑈𝑚𝑠𝑝 is independent of biomass properties, 

where 𝑈𝑚𝑠𝑝 is the minimum slugging velocity of the bed 

material. Correlating the results obtained in different 

beds of sand-wood chip and sand-wood pellet mixtures, 

𝑈𝑚𝑠𝑚/𝑈𝑚𝑠𝑝 can be predicted from (Agu et al., 2019b) 
𝑈𝑚𝑠𝑚

𝑈𝑚𝑠𝑝
= 𝑒1.13𝑦𝑏        (6) 

Among other models (Baeyens and Geldart, 1974; Shaul 

et al., 2012), the value of 𝑈𝑚𝑠𝑝 can be predicted from 

the following equation as given in Agu et al. (2018).  
𝑈𝑚𝑠𝑝

𝑈𝑚𝑓𝑝
= 1 + 2.33𝑈𝑚𝑓𝑝

−0.027(𝜑0.35𝑐𝑡
𝑎𝑡 − 1) (

ℎ0

𝐷
)

−0.588
    (7) 

Here, 𝜑 is the particle sphericity, ℎ0 is the initial bed 

height and 𝐷 is the bed diameter. The values of the 

parameters 𝑎𝑡 and 𝑐𝑡 are as described in the literature 

(Agu et al., 2018) depending on the Archimedes 

number, where 𝐴𝑟 > 400.  

The amount of biomass in a bed depends on the 

biomass residence time at the operating condition for a 

given air-fuel ratio (AFr). For a steady biomass mass 

flowrate 𝑚̇𝑏, the mass fraction of biomass 𝑥𝑏 

accumulated in a bed of mass 𝑚𝑝 can be estimated from 

the following equations proposed by Agu et al. (2019c).  
𝑥𝑏

1−𝑥𝑏
= (1 − 𝜆)𝛾𝑐ℎ𝑎𝑟(𝑡𝑒 − 𝑡𝑑)

𝑚̇𝑏

𝑚𝑝
          (8) 

𝑡𝑑 = 681𝑋𝑏
0.028 (

𝑈0

𝑈𝑚𝑓𝑝
)

−0.3

       (9) 

𝑡𝑒 = 4055𝑋𝑏
0.278 (

𝑈0

𝑈𝑚𝑓𝑝
)

−0.185

      (10) 

𝛾𝑐ℎ𝑎𝑟 = 0.414𝑋𝑏
0.245 (

𝑈0

𝑈𝑚𝑓𝑝
)

−0.463

       (11) 

𝑋𝑏 = [4055
𝑚̇𝑏

𝑚𝑝
(

𝑈0

𝑈𝑚𝑓𝑝
)

−0.185

]

1.385

        (12) 

where 0.45< 𝜆 <0.7 is the fraction of time over the char 

residence time (𝑡𝑒 − 𝑡𝑑) that measures the extent of char 

conversion during one cycle of an ideal plug flow 

process. 𝛾𝑐ℎ𝑎𝑟 is the amount of char released at the 

completion of biomass devolatilization (pyrolysis) and 

𝑋𝑏 is the ratio of the mass of biomass loaded over the 

period 𝑡𝑒 to the mass of the bed material.   

3 Computational model  

To investigate the effect of gas velocity on vertical 

movement of particles in hot reactors, the fluidized bed 

behaviour was simulated using Barracuda VR software. 

Barracuda is the commercially developed platform for 

implementing computational particle-fluid dynamics 

(CPFD) scheme. CPFD is based on the multiphase-

particle-in-cell (MP-PIC) concept introduced by 

Andrew and O’Rourke (1996).  In the CPFD scheme, 

the Euler-Lagrangian modelling approach is applied for 

fluid volume and particle tracking in gas-solid systems. 

With the MP-PIC concept, a computational particle 

represents a large number of particles, which have 

similar properties. The grouping of particles in CPFD 

code makes the simulation faster, thereby increasing its 

application to industrial systems. Detailed descriptions 

of the CPFD model and its numerical scheme can be 

found in Chen et al. (2013). 

SIMS 60

159DOI: 10.3384/ecp20170158  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



4 Validation of computational model 

To validate the CPFD model, experimental data were 

obtained from a cylindrical pilot plant of diameter 0.1 m 

and height 1.0 m. The properties of sand particles used 

as the bed material is given in Table 1. 

Table 1. Bed material and biomass at ambient conditions. 

Materials 
𝜌𝑝 

(kg/m3) 

𝑑𝑠 
(mm) 

𝜑𝑠 
(-) 

𝜀𝑚𝑓 

(-) 

𝑈𝑚𝑓 

(m/s) 

Wood 

chips 

423 6.87 0.75 0.57 1.270 

Sand 2650 0.61 0.86 0.45 0.232 

 

   In the temperature range 25 – 550 ºC, the minimum 

fluidization velocities of the sand particles were 

measured using the curves of pressure drop versus 

superficial air velocity at different temperatures, and 

then correlated as given by (13) with correlation 

coefficient (R2 value) of 0.9995, where 𝑇0 = 25 ˚C, 𝜌𝑔0 

= 1.18 kg/m3 and 𝑈𝑚𝑓0= 0.232 m/s. 

𝑈𝑚𝑓 =
𝜌𝑔0

𝜌𝑔
𝑈𝑚𝑓0{0.19 + 0.787 exp[−0.0045(𝑇 − 𝑇0)]} (13) 

Figure 1 compares the minimum fluidization 

velocities computed using (13) with those obtained from 

(3) as well as the CPFD simulations at different 

temperatures. All the results show a decrease in the 

minimum fluidization velocity with increasing 

temperature. Both the CPFD simulation and the Wen 

and Yu correlation agree to some extent with (13) within 

a certain temperature range. The results from (3) are 

better than those from the simulations for temperatures 

above 200 ˚C. The simulation result at the ambient 

temperature closely matches the experimental value, but 

the deviation at higher temperature increases as the 

temperature increases. The mean absolute errors in the 

𝑈𝑚𝑓 predictions within 25 – 550 ºC are 8% and 10% for 

(3) and the CPFD simulations, respectively. It should be 

noted that at higher temperatures > 550 ˚C, the trend of 

the measured 𝑈𝑚𝑓 may deviate, increasing the 

inaccuracies in both model predictions. However, for 

the purpose of analysis, the uncertainties in using the 

models to extrapolate 𝑈𝑚𝑓 at higher temperatures can be 

neglected in subsequent sections. 

5 Results and discussion 

For particle size as large as 600 µm, the inlet superficial 

gas velocity used in most studies on bubbling fluidized 

bed gasification is within 2 – 3 times the minimum 

fluidization velocity of the bed material. When biomass 

is introduced in the reactor, the increase in the gas 

flowrate increases the gas velocity through the bed at the 

operating conditions. Assuming a full conversion, the 

total mass flowrate of gas at steady state can be obtained 

as (𝑚̇𝑎𝑖𝑟 + 𝑚̇𝑏), neglecting the ash content of the fuel. 

Here, 𝑚̇𝑎𝑖𝑟 and 𝑚̇𝑏 are the mass flowrates of air and  

 
Figure 1. Variation of minimum fluidization velocity with 

temperature, comparing experimental data with the CPFD 

simulation results and the Wen & Yu (1966) correlation; 

material: 610 µm sand particles. 

 

biomass, respectively. Considering gasification of wood 

chips (with properties reported in Table 1) at an 

equivalence ratio of 0.25, a value of 1.5 can be obtained 

for air to biomass mass flowrate ratio. Based on this 

ratio, and neglecting the difference between the air 

density and the total gas density, the superficial gas 

velocity in the bed at full conversion can be 

approximated to 1.66𝑈0, where 𝑈0 is the superficial air 

velocity at the operating condition. The effect of this 

total gas velocity depends on how evenly the bed solid 

species are mixed since biomass particle segregation can 

occur within the bed despite the fuel feeding position. 

Assuming a perfect mixing of the solid particles, the gas 

velocity can be considered uniform over the entire bed 

volume. 

5.1 Neglecting the biomass accumulation 

Figure 2(a) shows the influence of temperature on the 

bed behaviour of the 610 µm sand particles at two 

different constant air mass flowrates, 𝑚̇𝑎𝑖𝑟 =
2(𝜌𝑈𝑚𝑓)𝑜𝑝𝑡𝐴0 and 𝑚̇𝑎𝑖𝑟 = 3(𝜌𝑈𝑚𝑓)𝑜𝑝𝑡𝐴0, which are 

assumed to represent cases without any reaction. Figure 

2(b) shows the behaviour for the corresponding cases at 

full conversion. Here, the values of (𝜌𝑈𝑚𝑓)𝑜𝑝𝑡 are 

obtained at the reactor operating temperature 900 ˚C, in 

which 𝑈𝑚𝑓 = 0.187 m/s based on the correlation given 

by (13). The plotted data are the superficial gas 

velocities 𝑈0 and the transition velocities 𝑈𝑚𝑓 and 𝑈𝑚𝑠 

at different temperatures. The minimum slugging 

velocity was computed from (7) at the bed aspect ratio, 

ℎ0/𝐷 = 2.5 and the superficial air velocity was 

obtained from 𝑈0 = 𝑚̇𝑎𝑖𝑟/𝜌𝐴0, where the air density 𝜌 

is at the different temperatures. Due to decreasing gas 

density, the operating gas velocity 𝑈0 increases with an 

increase in temperature at a constant mass flowrate. The  

SIMS 60

160DOI: 10.3384/ecp20170158  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



 
                   (a) 

 

 
         (b) 

Figure 2. Behaviour of bed of sand particles, 610 µm at 

different temperatures and constant mass flowrates, 𝑚̇𝑎𝑖𝑟  

(a) (2𝜌𝑈𝑚𝑓)𝑜𝑝𝑡𝐴0 = 3.19 and (3𝜌𝑈𝑚𝑓)𝑜𝑝𝑡𝐴0 = 4.79 

kg/h (b) 1.66 · (2𝜌𝑈𝑚𝑓)𝑜𝑝𝑡𝐴0 = 5.30 and                                

1.66 · (3𝜌𝑈𝑚𝑓)𝑜𝑝𝑡𝐴0 = 7.95 kg/h, where 𝐴0 = 𝜋𝐷2/4. 

  

gas velocity 𝑈𝑚𝑠 at the onset of slugging also increases 

as the temperature is increased. From the figures, the 

bed is fluidized (i.e. 𝑈0 > 𝑈𝑚𝑓) within the given 

temperature range for the respective mass flowrates. 

With an increase in temperature, the bed remains in 

the bubbling regime until the operating velocity line 

crosses the minimum slugging velocity line. This never 

occurs in Figure 2(a) even at the higher mass flowrate. 

This shows that if the bed is maintained at a gas velocity 

of 3𝑈𝑚𝑓, the bed will remain in the bubbling regime at 

the operating conditions. However, with a full 

conversion, the behaviour is completely different as 

shown in Figure 2(b); the bed slugs at both total mass 

flowrates. 

In a bed of larger particles, bubbles can easily grow 

into slugs. Aside reduction in the gas residence time at 

higher gas velocities, there are also possibilities of 

particle attrition and entrainment of fines especially 

when the reaction column is not tall enough. If a 

complete reaction is assumed at the operating 

temperature, the increase in the total gas flowrate may 

also increase these effects. The effect of gas velocity on 

the distribution of solids along the bed axis is shown in 

Figure 3 for the 610 µm sand particles. The gas 

flowrates are the same as those used in Figure 2. In the 

CPFD simulations, the initial bed height was 25 cm and 

the initial solids fraction was 0.55. The contours of 

solids fraction (captured after 20 s) show that as gas 

velocity increases, the possibility of particles being 

dragged into the freeboard increases. The time-averaged 

solids fractions at different positions are shown in 

Figure 3(e). In these results, the flow regime of the bed 

at different gas velocities can be identified as described 

in Kunii and Levenspiel (1991). The result shows that at 

the gas velocities 𝑈0 = 2𝑈𝑚𝑓 and 𝑈0 = 3𝑈𝑚𝑓, the bed 

is in the bubbling regime, but in the slugging/turbulent 

flow regime at the two larger gas velocities. In addition, 

Figure 3(e) clearly shows that the amount of solids in 

the freeboard increases as the gas flowrate is increased, 

and the particles reach higher up in the column when a 

higher velocity is used. There are traces of solids in the 

column up to a height of 70 cm. At this position, the 

respective solids fractions are 4·10-7, 6·10-6, 6·10-6 and 

5·10-5. Especially for the velocity 𝑈0 = 4.98𝑈𝑚𝑓, this 

shows that there is a possibility of particle entrainment 

from the column. 

 

 
Figure 3. Bed behaviour simulated using CPFD 

Barracuda based on the 610 µm sand particles at 900 ˚C, 

showing the solids fraction distributions captured after 20 

sec at different superficial air velocities (a) 𝑈0 = 2𝑈𝑚𝑓 

(b) 𝑈0 = 3𝑈𝑚𝑓 (c) 𝑈0 = 3.32𝑈𝑚𝑓 (d) 𝑈0 = 4.98𝑈𝑚𝑓  and 

(e) the time-average axial distribution of solids fraction. 

5.2  Considering the biomass accumulation 

By considering the biomass accumulation, (8) was used 

to estimate the amount of unconverted char in the  
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                   (a) 

 

 
         (b) 

Figure 4. Behaviour of a bubbling fluidized bed gasifier at 

constant biomass flowrate, 900 ºC and different 

equivalence ratios (a) amount of unconverted char 

particles (b) gas velocity across the bed, showing the safe 

operating window. 

 

bed at the given operating conditions. Figure 4(a) shows 

the values of 𝑥𝑏 at a constant biomass flowrate 2 kg/h 

and different equivalence ratios (ER) defined as the ratio 

of the actual air-fuel ratio to the air-fuel ratio required 

for stoichiometry combustion of biomass. The 

equivalence ratio measures the relative amount of 

oxygen supplied, and for biomass gasification, ER < 1. 

The results shown in Figure 4 are based on a 10 cm 

diameter bed containing the 610 µm sand particles at 

initial height of 25 cm. As shown in the figure, 𝑥𝑏 

decreases with increasing ER due to increasing amount 

of the fuel particles converted. The bed behaviour at the 

different ER values is shown in Figure 4(b). While the 

values of 𝑈𝑚𝑓 and 𝑈𝑚𝑠 of the bed mixture decrease, the 

gas velocity through the bed increases with increasing 

equivalence ratio. For ER < 0.23, the incoming air 

velocity is too low to maintain the fluidization of the bed 

as the accumulation is relatively high. However, with an 

increase in the total gas flowrate at the completion of

biomass pyrolysis, the bed is fluidized even at ER value

of 0.15. It should be noted that at a low air velocity, the

conversion will be delayed, thus the full conversion gas

velocity will be rarely achieved at equivalence ratio < 1.

If the total gas yield at full conversion acts on the bed

evenly, the bed will remain in the bubbling regime up to

ER = 0.38. The shaded portion in Figure 4(b) should

therefore represent the safe operating window for the

system. At the 0.38 equivalence ratio, the incoming air

velocity, 𝑈0/𝑈𝑚𝑓𝑝 = 3. On the contrary, when the

biomass accumulation is not considered, the maximum

air velocity within the bubbling window at 900 ºC is

𝑈0/𝑈𝑚𝑓𝑝 = 2 as can be seen in Figure 2. This indicates

that the amount of unconverted biomass must be

considered when selecting the gas velocity for a

fluidized bed operation.

6 Conclusions

This study investigated the behaviour of bubbling

fluidized bed in a biomass gasification reactor to

illustrate how the operating window can be established.

The study applied different correlations proposed in the

literature for predicting the minimum fluidization and

slugging velocities of a given bed including those of

binary mixtures of biomass and bed material. Based on

the analysis, the amount of unconverted char particles

plays a significant role in the hydrodynamics of the bed,

and thus must be considered when selecting the gas

velocity for stable operations.
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Abstract 
Segregation of biomass in a gasification reactor is an 

inevitable problem that can jeopardize the advantages 

such as uniform temperature control and proper mass 

circulation, and good solid-gas contacting area of the 

fluidized bed. This work investigates the mixing and 

segregation behavior of the biomass in a bubbling 

fluidized bed using a Computational Particle Fluid 

Dynamic (CPFD) model.  The model is simulated in the 

CPFD software Barracuda VR. The sand particles and 

wood chips are used as the bed material and biomass. 

The simulations are carried out with different volume 

percentage of the biomass at constant bed aspect ratio. 

The results show that the minimum fluidization velocity 

is decreased from 0.08 m/s to 0.06 m/s  with the 

increase in biomass volume from 5% to 20% in the bed. 

The complete segregation of biomass occurs at the 

superficial gas velocity that is 3.5 times greater than 

minimum fluidization velocity. With the increase in 

superficial gas velocity, 𝑢0 ≥ 6. 𝑢𝑚𝑓 , the biomass again 

starts to mix with the bed material. However, the mixing 

of woodchips is mainly limited to the upper part of the 

bed. 

Keywords: fluidized bed, wood chips, segregation, 
mixing, CPFD, Barracuda, biomass gasification. 

1 Introduction 

Background 

Increasing demand of environmentally friendly energy 

has compelled researches and industries to look for an 

alternative source of energy. Biomass gasification in a 

fluidized bed reactor is a promising technology, which 

delivers enormous advantages in terms of higher energy 

yield (environment friendly) producer gases, uniform 

thermal control and proper mass circulation, and good 

solid-gas contacting area. In the bubbling fluidized bed, 

the lower density large particles (biomass) are fluidized 

with the smaller solid particles (bed materials) with the 

fluidizing agent air or steam.  For an energy efficient 

gasification, uniform mixing of the biomass with bed 

material and fluidizing gas is essential. However, the 

difference in densities and sizes of the particles inside 

the bed causes the particles to segregate. Thus, the 

advantages of fluidized bed can be compromised by the 

segregation of solids. The segregation of the biomass in 

the bed can be in axial or lateral direction depending on 

the biomass feeding location, density ratio, ratio of 

biomass to bed material, sizes of biomass and bed 

material, and fluidizing gas velocities (Nienow et al., 

1978; Zhang et al., 2009; Thapa, et al., 2011; Bandara 

et al., 2018; Kraft et al., 2018; Agu et al.,2019). Many 

researches have studied the segregation and mixing 

behavior in the gasification of biomass. However, 

discrepancy still exists in understanding the complex 

behavior of gas-solid interaction during segregation 

phenomenon in the gasification process. 

 Rowe et al., 1972 termed the particles that float to the 

surface of bed as flotsam and jetsam to the particles that 

tend to sink to the bottom of the bed (Rowe, 1972). The 

drag force exerted by the fluidizing gas velocity 

determines whether the particles behave as flotsam or 

jetsam. Thus, the uniform mixing of biomass inside the 

bed depends on the segregation tendency and fluidizing 

gas velocity. The mixing tendency can be enhanced by 

increasing the bed agitation. In a bubbling fluidized bed, 

the intensity of the gas velocity to obtain proper mixing 

is limited to fact that the reactor must be operated within 

optimum bubbling regime for maximum efficiency. 

During gasification of biomass, the inlet fuel particle 

undergoes drying and devolatilization and are converted 

to char particles. The release of volatile gases reduces 

the density of the fuel particles. In addition, endogenous 

bubbles are formed by the devolatilization and drying of 

biomass particles, enhancing the segregation process. 

The endogenous bubbles, which envelop the biomass 

particles, tends to lift the biomass to the surface (Bruni,  

et al., 2002; Chirone et al., 2012) thus, reducing the gas 

exchange between the bubbles and the emulsion phase. 

The volatile matter bypasses the bed materials and are 

mostly released above the surface of the bed. Due to 

poor contact between volatile components and the 

fluidizing gas, the process can be inefficient. Also, it is 

likely, that the fine biomass particles that are segregated 

on the surface, burnout in the freeboard. The process of 

formation of endogenous bubbles from the fuel particles 

and segregation of particles in axial and lateral direction 
are shown in Figure 1. The bed material acts as the 

thermal flywheel in the gasification reactor. Thus, the 
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contact duration of the biomass with bed materials 

determine the fluidization quality and stable operation 

of the process. During devolatilazation of biomass, tar 

components are released into the reactor. The formation 

of tar is strongly influenced by the operating parameters 

for instant temperature (Kinoshita and Wang,1994) and 

type of  biomass used(Font Palma, 2013). The tar 

components may condense and form deposits on the 

downstream equipment that can lead to the complete 

shutdown of the operation. Therefore, it is essential to 

improve fluidization and proper mixing fuel particles for 

the reduction of tar formation(Rowe et al., 1972; Kuba 

et al., 2018).   

 

Wood chips
 (fuel)

Char particle

Endogenous bubble

Air bubble

Volatile flame

    Latera segragation

Free board

Fluidizing gas (air)  
 

Figure 1.Segregation of biomass in axial and lateral 

direction. 

In this work, the segregation and mixing behavior of 

the lower density wood chips with sand particles are 

investigated using a CPFD model. The Computational 

model was validated against the experimental results. 

The results used to validate the model was the pressure 

drop and minimum fluidization velocities. 

The CPFD model is used to study the segregation 

behavior in the bed.  In order to investigate the mixing 

and segregation between the bed material and the wood 

particles, it is necessary to track the concentration/flow 

of the particles along the bed height. For this purpose, a 

number of flux planes are created in the CPFD model as 

shown in Figure 2 (a). Each of the flux planes are set to 
measure time integrated mass of the wood chips. The 

volume percentage of biomass inside the bed were 

varied to study its influence on mixing and segregation 

tendency. 

2 Experimental and Simulation set up 

2.1 Experiment 

The experimental setup used in this work is the same as  

used by (Jaiswal and Agu, 2018) in his previous work. 

The experimental set up consists of a reactor of diameter 

8.4 cm and height 140 cm. The pressure drop inside the 

bed due to change in superficial gas velocity is measured 

by the pressure transducers attached along the wall of 

the column. Experiments were carried out with the sand 

particles and biomass as bed materials at an aspect ratio 

(H/D) = 2.5. Where, H is the static bed height and D is 

the diameter of bed. Table 1 shows the properties of bed 

material and biomass (wood chips) used for this work.  

Table 1. Particle properties 

Particles Desity, 
(𝜌𝑝) 

[𝑘𝑔/𝑚3] 

Solid 
volume 
fraction 
 

Mean 
diameter 

(𝑑𝑚) 
[𝜇𝑚] 

Size 
range 

Sand 2650 0.54 285 200-
355 

Biomass 423 0.44 N/A 5mm-
0.5cm 

2.2 Simulation set up 

The Computational particle fluid dynamics software 

Barracuda VR uses the Multi- Phase Particle in Cell 

(MP-PIC) approach, where particles with similar 

properties such as diameters and densities are grouped 

together to form the computational unit of the 

computational particles termed as parcels. In this MP-

PIC technique, combined Eulerian and Lagrangian 

methods are used for the modeling of gas-solid 

interaction. The fluid phase is solved with the 

continuum model, while the particle phase is solved 

using the Lagrangian method. The advantages of using 

CPFD approach compared to other CFD techniques is 

that it is cost optimal and saves computational time. 

Figure 2. shows the simulation set up used for this 

work. A 3D geometry of height 140 cm and diameter 8.4 

cm was imported to Barracuda VR and uniform grid of 

total cells 8640 were established around the geometry. 

The top of the reactor is open to the atmosphere and set 

as the pressure while the flow boundary condition is 

setup at the bottom of the reactor. The transient data 

points were selected along the height to monitor the 

pressure. The measuring points resemble the 

experimental setup. Different flux planes were assigned 

along the reactor to track the particle species passing 

through it during fluidization. The flux planes, transient 
data points, initial particles species, particle volume 
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fraction and pressure boundary conditions are shown in 

Figure 2 a-e respectively. 

 

          
(a)         (b)              (c)                  (d)                  (e) 

Figure 2. Computational setup showing (a) Flux planes, 

(b) Transient data location, (c) Particle species, (d) Particle 

volume fraction, (e) Pressure and flow boundary 

conditions.  

The operating parameters used for the simulations are 

listed in Table 2. Air is used as the fluidizing agent at 

ambient conditions and the superficial gas velocity is 

increased gradually to obtain the fluidization properties 

of the mixture.  

Table 2. Operating parameter 

Temperature 300K 

Pressure 101325 Pa 

Superficial gas velocities 0.03-0.75 m/s 

Maximum momentum redirection 
from collosion 

0.44 % 

Normal to wall momentum 
retention 

0.33 

Tangential to wall momentum 
retention 

0.99 

 

3 Result and Discussion 

3.1 Model Validation 

The simulations are carried out with sand particles with 

mean diameter of 285µm at an aspect ratio of 2.5. The 

pressure drop is plotted against the superficial air 

velocities. The Wen and Yu drag model has been used 

for the simulation. The profile of pressure drop vs 

superficial gas velocities obtained from the CPFD 

model is compared with the experimental data as shown 

in Figure 3. The result shows that the simulation model 
fits well with the experimental data. Thus, this model is 

used for further simulations. 

 

Figure 3. Pressure drop vs superficial gas velocity. 

3.2 Minimum fluidization  

The different volume percentage of biomass (5%, 10%, 

15%, and 20%) were added to the initial static bed 

uniformly and the superficial gas velocities were 

increased gradually to investigate the fluidization 

behavior of the bed with biomass. Two sensors located 

inside the bed were chosen for the analysis. The result 

shows that the minimum fluidization velocity and 

pressure gradient decreases with increase in biomass 

volume inside the bed. The minimum fluidization 

velocity is found to be decreased from 0.08 m/s to 0.06 

m/s with the increase in biomass from 5% to 20% inside 

the bed. The decrease in the pressure gradient is due to 

increase in the concentration of the lower density 

biomass inside the bed. The larger size biomass in the 

bed increases the void within the bed, making an easy 

passage of fluidizing air through the bed. Thus, the 

minimum fluidizing velocity decreases. The behavior of 

the biomass-sand mixture with the change in gas 

velocities is shown in Figure 4. 

 

Figure 4. Pressure drop profile for the bed with different 

biomass percentage. 

Pressure BC 

Flow BC 
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Figure 5 compares the minimum fluidization velocity 

obtained from the experimental data and the simulation. 

The results show that the simulation results are good in 

agreement with the experimental data.  

               

Figure 5. Minimum fluidization velocity of the bed with 

different biomass percentage obtained from experiment 

and simulation. 

3.3 Bubble behavior 

Figure 9 shows the Cell volume fraction of the particles 

in the bed with 20 % and 5% volume of woodchips. The 

cell particle volume fraction less than 30 percent 

represents the bubble inside the bed. The figure shows 

that the bubbles are larger and more distinct in the bed 

with 5% wood chips. With the increase in wood chips 

load to 20 volume % of the bed, the formed bubbles are 

smaller and most of the bubbles collapse within bed due 

to higher concentration of the irregular sized wood 

chips. The smaller bubbles inside the bed inversely 

affect the gas and solid interaction and mixing behavior 

of the bed. 

 

                 

(a)                              (b)                 

Figure 6. Cell volume fraction of the bed with (a) 20% 

volume of biomass (b) 5% volume of biomass. 

3.4 Segregation of particles 

Flux planes set at different locations in the reactor, as 

shown in Figure 2 (a), are used to monitor time 

integrated particle mass of species: biomass and sand 

particles passing through the planes at different gas 

velocities. Figure 7 shows the time integrated mass of 

biomass in upward direction at different fluidizing gas 

velocities when the bed is mixed with 10 % biomass and 

sand particles. The initial static bed height is 21 cm. One 

of the flux planes is set up on the top of the bed. The 

result shows that the biomass that are initially uniformly 

distributed across the bed starts to move in upward 

direction as soon as the bed is fluidized. The figure 

illustrates that the biomass remained at the bottom 

passes the flux planes at the heights 13 cm and 16 cm at 

the superficial gas velocity 0.12 m/s within 120 s. With 

the increase in gas velocity, the biomass segregated and 

accumulated above the flux plane at height 20 cm at the 

superficial gas velocity 0.18 m/s. The linear trend of the 

time integrated mass of biomass for the flux planes at 19 

cm and 20 cm indicates that there is no biomass inside 

the after 200 s and at the corresponding superficial gas 

velocity of 0.2 m/s. The wood chips float at the upper 

region of the bed. 

 

 

Figure 7. Time integrated mass of biomass across 

different planes with 10% (volume) biomass inside bed. 

 Figure 8 represents the segregation and mixing 

behavior of the wood chips in the bed. The figures are 

produced from the post processing tool available in 

Barracuda. At each time step, the behavior of biomass 

inside the reactor with change in gas velocities are 

analyzed. The particle species that are red in color are 

biomass while the blue color species are the sand 

particles. The biomass that remained at the upper part of 
the bed, segregated quickly and accumulated at the top 

of the bed.  The segregation of biomass locally along 

vertical direction is shown in Figure 8 (a). This tendency 
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of biomass to segregate inside the bed decreases the 

efficiency of the reactor since the biomass has not 

sufficient time for the gasification. In addition, the 

biomass might burnout in the freeboard reducing the 

overall efficiency of the process. The upward movement 

of biomass particles as shown in Figure 8 (a), has a ring 

like structure, suggesting that the movement of biomass 

inside the bed is mostly along the wall of reactor. The 

partial segregation and complete segregation of biomass 

are shown in Figure 8 (b) and 8 (c) respectively. The 

complete segregation occurs at gas velocity 𝑢0 ≥ 3.5 ∙
𝑢𝑚𝑓 . Where, 𝑢0 is the superficial gas velocity and 𝑢𝑚𝑓  

is the minimum fluidization velocity. 

 

                
       (a)                  (b)            (c)                 (d) 

Figure 8. (a) Local segregation (b) partial segregation (c) 

complete segregation (d) mixing. 

3.5 Mixing of wood chips 

 Figure 9 shows the mixing behavior of the bed with 

20% volume of the biomass inside the bed. The result 

shows that the biomass starts to mix at the superficial 

gas velocity, 𝑢0 ≥ 6 ∙  𝑢𝑚𝑓 . The mixing of biomass 

starts when the bed agitation is high enough to 

counterbalance the drag force that tends to lift the 

biomass in the upward direction. The increasing trend of 

the time integrated biomass particles at the flux planes 

at the height 21 cm and 20 cm as shown in Figure 8, 

explains the mixing of biomass inside the bed. The more 

biomass passing thorough the flux plane the more 

indication of mixing of wood particles with the sand in 

these parts of the bed. The quantity of biomass that are 

pushed inside the bed tends to move upwards, increasing 

the mass of biomass passing the flux plane. However, 

the mass of biomass through the flux planes below 20 

cm is constant indicating that the biomass is segregated 

completely. This illustrates that the biomass mixing is 

only limited to the upper portion of the bed. With the 

increase in volume percentage of biomass inside the 

bed, the mixing starts earlier. 

 

 

Figure 9. Time integrated mass of biomass across 

different planes with 20% (volume) biomass inside bed. 

4 Conclusion 

The difference in density, size, and ratio of bed material 

to biomass influences on the segregation and mixing 

tendency in gasification of biomass using fluidized bed. 

The segregation of biomass limits the advantages such 

as   uniform thermal control and proper mass circulation, 

and good solid-gas contacting area of the fluidized bed. 

Therefore, it is crucial to study the segregation and 

mixing properties of biomass in the gasification.  

 This study investigates the mixing and segregation 

behavior of the biomass in a bubbling fluidized bed. 

Sand particles with mean diameter 285 𝜇𝑚 and wood 

chips with size range 7𝑚𝑚 − 0.5 𝑐𝑚  are used in the 

bed. A CPFD model is established in Barracuda VR. 

The model is validated against the experimental results. 

The simulations are carried in a reactor of diameter  

8.4𝑐𝑚 and height 140𝑐𝑚. The biomass volume 

percentages 5%, 10%, 15% and 20% are used inside the 

bed at the constant aspect ratio 2.5. Flux planes at 

different heights are set up inside the reactor to capture 

the biomass behavior with the change in superficial gas 

velocities. The flux planes track the particle species 

along the bed heights. 

 The results show that the minimum fluidization 

velocity is decreased from 0.08 m/s to 0.06 m/s with the 

increase in biomass volume from 5% to 20%. The 

biomass starts to move upward as soon as it reaches the 

minimum fluidization velocity. The movement of the 

biomass are mostly along the wall of the reactor. The 

complete segregation of biomass occurs at 𝑢0 ≥ 3.5 ∙
 𝑢𝑚𝑓.  The mixing of biomass is only limited to the 

upper plane of the reactor and the segregated biomass 
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starts to mix with the bed material at the superficial gas 

velocity 𝑢0 ≥ 6 ∙  𝑢𝑚𝑓 .The formation and growth of 

bubbles are inversely affected by the increase in 

concentration of woodchips inside the bed. 

 The results presented with the CPFD model in this 

study enhances the understanding of the segregation and 

mixing phenomena in the fluidized bed. Also, the CPFD 

method presented in this work explores the possibilities 

to use it at the industrial scale gasification reactors. 
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Abstract 
The effect of ash deposition on fluid dynamic behavior 

in a fluidized bed gasification reactor has been studied 

using experimental and computational methods. The 

experiments were carried out using sand particles as bed 

material and air as a fluidizing agent. A 3D 

computational model has been developed for a bubbling 

fluidized bed gasification reactor. First, the model was 

simulated using only sand particles and air. The results 

are compared with the experimental results. The 

comparison shows good agreement between the two sets 

of the results.  

The model was further used to study the effect of ash 

accumulation on the fluid dynamic properties of a 

biomass gasification reactor. The bed material was 

mixed with 2 and 4vol% of ash and simulated in cold 

conditions. Pressure drop increases and minimum 

fluidization velocity decreases with increasing the ash 

deposition in the bed. The model was also simulated for 

2, 4, and 6 vol% of ash at a temperature of 800ºC. The 

minimum fluidization velocity was decreased in all the 

cases. The particle species concentration shows the ash 

particles start to segregate at the minimum fluidization 

condition and are totally separated at higher velocities. 

The bubble behavior of the bed is not effected by ash 

deposition. 

Keywords: gasification, fluidized bed, segregation, 
mixing, CPFD, ash deposition 

1 Introduction 

Background 

Gasification is the conversion of carbonaceous 

feedstock to the gaseous fuel by oxidation at a specific 

temperature. Gasification of biomass gives products 

such as carbon monoxide, hydrogen, and methane. The 

mixture of these gases is called producer gas. 

Fluidized bed biomass gasification is a high temperature 

process where the producer gas is the main product and 

ash is a byproduct. In some cases, the gasification 
temperature can reach as high as the ash melting 

temperature causing the ash to melt inside the bed. This 

creates bed agglomeration and consequently de-

fluidization of the reactor. Therefore, the ash melting 

phenomenon is undesirable in the gasification reactor.  

Ash melting is also known as ash fusion or ash 

softening. This can also occur only in some of the hot 

spots in the bed. There are various reasons for the 

temperature to rise above the ash melting temperature. 

One of the reasons can be a high amount of ash 

deposition in the bed. Excessive ash deposition can 

reduce uniform mixing and heat transfer between bed 

material, biomass and fluidizing gas. The other reason 

can be the lower melting temperature of biomass ash 

which depends on its composition. Segregation between 

the deposited ash and bed material can also affect the 

mixing and heat transfer in the bed which can cause a 

rapid increase in temperature in some areas of the bed. 

Many researchers have studied bed agglomeration in 

biomass gasification reactors.  Bartels et al. have 

investigated the mechanism of agglomeration and 

concluded the fact that agglomeration takes place due to 

the adhesiveness of bed material caused by alkali 

compounds present in the biomass (Bartels et al., 2008). 

Pietsch (Pietsch, 2008) defined agglomeration as the 

formation of larger entities from particulate solid by 

sticking particles together by short range physical forces 

between the particles themselves, or through substances 

that adhere chemically or physically to the solid surface 

and form a material bridge between the particles. Visser 

and Tardos (Visser et al., 2008; Tardos et al., 1995) found 

two different routes for the initiation of bed 

agglomeration: melt-induced agglomeration and 

coating-induced agglomeration. Melt-induced means its 

adhesiveness with the bed particles that acts like glue. 

Coating-induced agglomeration implies the formation 

of coats between bed material and the liquid phase due 

to adhesive force or stickiness. Tardos and Pfeffer 

(Tardos, 1995) found that the fluidization behavior is 

changed according to the agglomeration of bed 

particles. The bubbling behavior can be useful to 

indicate the agglomeration in BFB (Montes, 2014).  
A number of bubbles passing though the bed in a 

specific interval of time is known as the bubbling 

frequency. Generally, the bubbling frequency is the 
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same in all sections of the bed, but the bubbling 

frequency becomes different due to agglomeration.   The  

pressure drop through the bed is equal to the total 

hydrostatic pressure of the bed during the fluidizing 

condition. So, agglomeration of the fluidized bed is 

characterized by lower pressure drop (Montes et al., 

2014; Furuvik et al., 2019).  

Some of the significant elements in biomass ash are K, 

Na, Ca, Si, P, Mg, and Al. In order to study the behavior 

of ash deposition in relation to the fluid dynamic 

behavior, and develop a computational model for ash, it 

is crucial to study physical properties such as density, 

particle size, sphericity and melting temperatures of 

these elements and the percentage of the major 

components in biomass ash. The study of the melting 

behavior and deposition of the ash are essential to make 

the biomass gasification reactor more efficient (Brown, 

2005). Usually, high temperature is more favorable for 

carbon conversion because it produces less amount of 

tar. However, it brings other technological issues like 

ash melting and bed agglomeration (Niu et al., 
2018).The alkali metals present in the biomass ash, will 

together with sulphur and chlorine in biomass fuels 

contribute to the bed agglomeration in fluidized bed 

reactors.  

Biomass ash can be divided into three different groups 

based on their compositions. They are summarized in    

Table 1. 

Table 1. Types of biomass ash (G. C. Institute. 2019) 

 The ash melting takes place due to the low melting 

point of components such as K, Na, and S that are 

present in woody biomass. The melted components start 

to bind together like glue and cause agglomeration of 

ash particles in the reactor (Vuthaluru et al., 1999). Bed 

agglomeration eventually causes de-fluidization which 

reduces the efficiency and might lead to a total 

shutdown of the bed. Moreover, ash deposition can 

cause corrosion in the reactor surface. 

The studies are helpful for the prediction of ash 

melting and agglomeration of bed. The studies of the 

effect of the ash deposition on flow behavior in the 

fluidized bed reactor can prevent, in some cases, rising 

of the bed temperature above the ash melting 

temperature. Therefore, this work is focused on the ash 

deposition from woody biomass in fluidized bed 
gasification reactors and the effect of the ash deposition 

on the fluid dynamic behavior in the reactor.  

2 Experimental set up and procedure 

The arrangements of the experimental setup are shown 

in Figure 1.The setup consists of a 1.4 m long 

transparent column. The diameter of the column is 8.4 

cm. Pressure transducers are connected to the tapping 

points, which are located along with the height of the 

column. The tapping points are arranged along the 

column in different heights, and the distance between 

each tapping point is 10 cm. At the bottom of the 

column, there is an air distributor. Compressed air is 

supplied from the bottom of the column, and the flow 

rate is is measured by a flow-measuring meter. The flow 

of the compressed air is controlled by valves. The 

particles were filled from the top of the column.  

 

Figure 1. Experimental set up 

The air flow rate and the pressure drop along the height 

of the column were logged in a LabView program. For 

each air velocity, data was recorded for more than 1 

minute (sampling time 1 s), and a minimum of the 60s 

was allowed to establish the flow before the data was 

logged. Data Acquisition was done by Lab View, and 

the data was imported in MATLAB and used to plot the 

pressure drop against superficial gas velocity. The 

pressure drop can be calculated at each tapping point by 

subtracting the distributor pressure at a corresponding 

flow rate.  

∆Pf1 = Pf1 − Df1                                                                (1) 

where ΔPf1 is pressure reading at the pressure tapping 

point, Df1 is the distributor pressure and Pf1is the 

pressure at the pressure tapping point 1.  

The properties of bed material used in the experiments 

are given in Table 2. 

Table 2. Properties of bed materials and fluidizing gas 

Particle mean diameter 285μm 

Density 2650 kg/m3 

Bulk density 1428 kg/m3 

Solid volume fraction 0.54 

Air density 1.25 kg/m3 

Biomass ash group 

 

Ash 

components 

Sintering 

Temperature 

Woody biomass Ca, K rich 

and Si lean 

900-1000°C 

Rice  husk, 

bagasesses or reed 

canary grass 

Si-rich , 

Ca,K lean 

700-1000°C 

Sunflower seed 

and rapeseed seeds 

Ca,K and P 

rich  

700-1000°C 
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3 Computational model 

A Computational Particle Fluid Dynamic (CPFD) 

model have been implemented to simulate the gas-solid 

flow with heat transfer. The commercial CPFD software 

Barracuda VR 17 is used for the simulations. The CPFD 

numerical methodology incorporates the multi-phase-

particle-in-cell (MP-PIC) method. The gas phase is 

solved using Eulerian grid, and the particles are modeled 

as Lagrangian computational particles. Gas and particle 

momentum equations are solved in three dimensions. 

The fluid is described by the Navier-Stokes equation 

with strong coupling to the discrete particles. The 

particle momentum follows the MP-PIC description, 

which is a Lagrangian description of the particle 

motions described by ordinary differential equations 

with coupling with the fluid. More details about the 

computational methods are found in the literature 

(Andrews et al.,1996; Snider et al., 2001). The particles 

are grouped into parcels that contain a number of 

adjacent particles with similar properties such as 

density, size, species, and velocity. The parcels are 

called computational particles. The computational 

particle is a numerical approximation similar to the 

numerical control volume where a spatial region has a 

single property for the fluid. With these computational 

particles, large commercial systems containing billions 

of particles can be simulated using millions of 

computational particles. This possibility of the CPFD 

numerical method is used in this work to simulate the 

ash deposition in a fluidized bed with sand particles as 

bed material. 

3.1 Governing equations 

The gas phase mass and momentum conservation are 

modeled with continuity and time averaged Naiver-

Stokes equations: 

𝜕(𝛼𝑔𝜌𝑔)

𝜕𝑡
+ 𝛻. (𝛼𝑔𝜌𝑔𝑢𝑔) = 0                                       (2) 

𝜕(𝛼𝑔𝜌𝑔𝑢𝑔)

𝜕𝑡
+ 𝛻. (𝛼𝑔𝜌𝑔𝑢𝑔𝑢𝑔)

= −𝛻𝑃 + 𝐹 + 𝛻. (𝛼𝑔𝜏𝑔)

+  𝛼𝑔𝜌𝑔𝑔                                           (3) 

where,  𝛼𝑔, 𝜌𝑔 and 𝑢𝑔 are gas phase volume fraction, 

density and velocity respectively. F is total momentum 

exchange with the particle phase per volume, g is 

gravitational acceleration, P is the pressure and 𝜏𝑔 is the 

gas phase stress tensor, which is given by: 

𝜏𝑔 =  𝜇𝑔 [(𝛻𝑢𝑔 + ∆𝑢𝑔
𝑇) −

2

3
𝛻. 𝑢𝑔𝐼]                            (4) 

𝜇𝑔 refers to the shear viscosity that is the sum of the 

laminar and turbulent components. The large eddy 
simulation is used for the large-scale turbulence 

modeling while the subgrid scale turbulence is captured 

with Smagorinsky model: 

𝜇𝑔,𝑡 = 𝐶𝑠𝜌𝑔∆2|𝛻𝑢𝑔 + ∆𝑢𝑔
𝑇|                                            (5) 

Where ∆ is the subgrid length scale and calculated by 

equation 5. The default value for the model constant 𝐶𝑠 

is 0.01. 

∆= (𝛿𝑥𝛿𝑦𝛿𝑧)
1

3⁄                                                            (6) 

The interface momentum transfer is calculated through 

the viscous drag force: 

𝐹 = ∬ 𝑓 {𝑚𝑝 [𝐷𝑝(𝑢𝑔 − 𝑢𝑝) −
𝛻𝑃

𝜌𝑝
]} 𝑑𝑚𝑝𝑑𝑢𝑝      (7) 

Subscript p refers to the particle phase properties where 

m and u symbolize the mass and velocity. 𝐷𝑝  is the drag 

function. The particle phase dynamics are derived using 

particle distribution function (PDF) calculated from the 

Liouville equation given as:  

𝜕𝑓

𝜕𝑡
+ 𝛻(𝑓𝑢𝑝) + 𝛻𝑢𝑝(𝑓𝐴𝑝) = 0                                    (8) 

where 𝐴𝑝, is the particle acceleration and is expressed 

by: 

𝐴𝑝 =
𝜕(𝑢𝑝)

𝜕𝑡
= 𝐷𝑝(𝑢𝑔−𝑢𝑝) −

𝛻𝑃

𝜌𝑝
−

𝛻𝜏𝑝

𝜌𝑝𝛼𝑝
+ 𝑔         (9) 

𝛼𝑝 is particle volume fraction and  𝜏𝑝 is particle stress 

function that is used in formulating interphase 

interactions of particles.  

𝛼𝑝

= ∬ 𝑓
𝑚𝑝

𝜌𝑝
𝑑𝑚𝑝𝑑𝑢𝑝                                                         (10) 

𝜏𝑝

=
10𝑃𝑠𝛼𝑝

𝛽

𝑚𝑎𝑥[(𝛼𝑐𝑝 − 𝛼𝑝), 𝜀(1 − 𝛼𝑝)]
                                    (11) 

𝑃𝑠 is a constant with the units of pressure, 𝛼𝑐𝑝 is the 

particle volume fraction at close packing, β is a 

constant between 2 and 5 where ε is a very small 

number on the order of 10-7. 

3.2 Model parameters and geometry 

A cylindrical CAD geometry with a height of 1.4m and 

diameter 8.4 cm was imported in Barracuda VR. The 

geometry is divided into 8652 uniform grids. After the 

grid generation, the base materials, the particle species, 

the pressure boundary condition, and the flow boundary 

condition were specified in Barracuda, which are similar 

to the experimental settings. The grid and boundary 

conditions are shown in Figure 2. No particle exit was 

considered during the simulation. The pressure 

monitoring points were selected 3.5 cm, 13.5 cm, and 
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23.5 cm along the height of the bed as in the 

experiments.  

In Figure 2, the top of the cylinder yellow colored) is 

a pressure outlet boundary and the bottom of the reactor 

(red colored) is a velocity inlet boundary. The particles 

and gas are used similar to the experiments. The 

simulations were run in a cold bed as well as in hot bed 

conditions to analyze the flow properties in a real bed 

with various volume percent of ash deposition.  

 

 
Figure 2. Grid and boundary conditions 

 

The Wen-Yu drag model was used with 60% 

momentum loss after the particle collision. The initial 

height of the bed was 21 cm, which gives the bed aspect 

ratio (ratio of height to diameter) of 2.5. The initial time 

step was taken as 0.001 s. Initial particle volume fraction 

was taken as 0.54. The simulations were performed for 

120s of simulation time. Simulations were run for 

several air velocities and with different volume percent 

of ash mixed with sand particles to analyze the flow 

properties variation with the ash deposition. 

Therefore, only the major elements of the ash 

composition were taken for the model. The composition 

and properties of ash particles used in the model are 

presented in Table 2. 

Table 2. Properties biomass ash 

SiO2 30%  of total ash 
components 

K2O 17% 

CaO 53% 

Average density  2959 Kg/m3 

Molar mass  63.75 g/mol 

Particle Size 50μm 

Solid volume fraction 0.6 

Sphericity 0.7 

The minor components of the ash are neglected, and 

the density and molar mass of the ash are calculated 

according to the densities and molar masses of the major 

components. 

4 Results and discussion 

4.1 Experimental results 

A series of the experiments were carried out with 

different superficial air velocities, and the pressure drop 

along the height of the bed was calculated using the 

experimental data. The plot of the pressure drop as a 

function of superficial velocities (Figure 3) shows that 

the minimum fluidization velocity for sand particles is 

0.075 m/s and the pressure drop at the minimum 

fluidization velocity is 13084 Pa/m. 

 
Figure 3. Pressure drop vs. superficial air velocity 

It was difficult to run an experiment with a mixture of 

sand particles and ash because the ash particles are very 

small and fine particles, which could leave the reactor. 

It was actually the main reason for developing the CPFD 

model and simulating the flow of sand particles with 

ash. 

4.2 Computational results 

Simulations were run for the bed with sand particles, 

which is exactly similar to the experimental condition. 

The simulation results are compared against the 

experimental. Figure 4 shows a comparison of 

experimental and computational pressure drops along 

the bed and the minimum fluidization velocity of the 

bed. 

 

 
 
Figure 4. Comparison of pressure drop and minimum 

fluidization velocities 
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The figure shows good agreements between the 

experimental and computational results. The pressure 

drop and minimum fluidization velocities are almost 

similar in both cases. The aim of this comparison was to 

validate a CPFD model for its further use for simulation 

of a bed with various volume percent of ash deposition. 

Therefore, a series of the simulation were run to 

simulate the bed of sand particles with 2% and 4 vol% 

of ash particles by volume. The simulations were run for 

cold conditions at room temperature. 

 

 
Figure 5. Minimum fluidization velocities for   the 

mixture of ash with sand. 

The pressure drop is increased with increasing ash 

volume percentage. The minimum fluidization 

velocities increased with increasing volume percent of 

ash, as shown in Figure 5. Minimum fluidization 

velocity for beds of small particles is strongly depended 

on bed void fraction [13], which can be seen from the 

equation: 

𝑢𝑚𝑓 =
𝑑𝑝

2(𝜌𝑝 − 𝜌𝑔)𝑔

150𝜇
∙

𝜀𝑚𝑓
3 𝜙𝑠

2

1 − 𝜀𝑚𝑓
                               (12) 

where, 𝑑𝑝 is particle diameter, 𝜌𝑝 and 𝜌𝑔 are particle and 

gas densities, 𝜀𝑚𝑓  is bed void fraction, 𝜙𝑠 is sphericity 

and 𝜇 is gas viscosity. Presence of ash particles which 

have small particle size compared to the sand having 

larger particles size makes ash particles to fill the void 

between the sand particles reducing the void fraction in 

the bed. This is the reason for the reduction of minimum 

fluidization velocity. This means a limited ash 

deposition in the bed does not have negative impact in 

flow properties (particularly in fluidization velocity) 

before the sand particles are segregated in the bed.  

Simulations were also run at high temperature. Figure 

6 shows the simulation results at the temperature of 

800ºC. The bed was mixed with sand particles and 2%, 

4% and 6% by volume of ash particles. The results show 

that an increase in the temperature decreases the 

minimum fluidization velocities. When the temperature 

of fluidizing air is increased from 20ºC to 800ºC, the 

viscosity of air increases from 1.825 ∙ 10−5Pa ∙ s to 

4.362 ∙ 10−5Pa ∙ s. The increase in viscosity is the 

reason for the decrease in minimum fluidization velocity 

(See equation 12). The results show that the ash 

deposition up to 6% by volume has no negative effect 

on the flow behavior in the reactor. However, the 

pressure drop in the bed increases with increasing ash 

deposition. The deposition will have negative effect 

only when the temperature of any spot of the bed reaches 

the ash melting temperature. In order to avoid this, it is 

important to enhance the mixing of particles in bed and 

avoid segregation. 

 
Figure 6. Minimum fluidization velocity at high 

temperature conditions. 

The CPFD model allows tracking the particles in the 

bed separately in the form of different particle species. 

The distribution of ash and sand particles in the bed are 

shown in Figure 7. The figure shows the comparison of 

species distribution in the bed at the minimum 

fluidization velocity and the air velocity of 0.21 m/s for 

the bed with 2, 4 and 6 vol% ash respectively from left 

to right.  

The figure shows that a part of the ash particles have 

segregated and moved to the top of the bed already at 

the minimum fluidization condition and the segregation 

becomes more distinct at the higher air velocities.  

 
Figure 7. Sand and ash particle species distribution in 

the bed  

Deposited ash, after segregation can effect negatively 

on the mixing and heat transfer in the bed. This is more 
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probable at the top of the bed where only ash particles 

are present. This can create hot spots in the upper part of 

the bed. 

The bubble behavior in the bed at the air velocity of 0.21 

m/s are shown in Figure 8. The figure shows that there 

is no significant effect of the ash deposition on the 

bubble properties in the middle and the lower part of the 

bed. The reason can be that the ash particles are 

segregated and move to the top of the bed and only the 

sand particles, part of biomass and the air are involved 

in the bed which does not hinder bubble formation and 

growth along with the height of the bed. 

 

 

 
 

Figure 8. Bubble in the bed at an air velocity of 

0.21m/s for 2%, 4% and 6% of ash from left 

to right 

5 Conclusion 

A CPFD model is developed for the study of 3D flow in 

a bubbling fluidized bed biomass gasification reactor. 

The model is validated against the experimental 

measurements in a cold flow model of the reactor. The 

results give good agreement between experiments and 

model predictions. The valid model is used to study the 

effect of ash deposition on the flow behavior of the 

reactor in cold and hot bed conditions. 

The minimum fluidization velocities are decreased 

with increasing volume percent of ash in the bed under 

cold bed conditions. However, the pressure drop is 

increased. The minimum fluidization velocity is further 

reduced at a high temperature.  

The ash particles start to segregate from the minimum 

fluidization condition moving towards the top of the 

bed, and the segregation is increasing with increasing air 

velocity. However, the bubble behavior in the bed 

remains the same with increasing ash volume percent in 

the bed. 
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Abstract

Fluidized beds have been widely applied for the 

gasification of biomass. However, at high temperatures 

ash melting and subsequently bed agglomeration may 

occur. When biomass is used for thermal conver-

sion processes, inorganic alkali components present in 

the biomass fuels can be responsible for major prob-

lems. Understanding the ash melting and ag-

glomeration in various gasification temperatures 

is crucial to optimize the design and operation 

conditions of a fluidized bed gasifier. This study fo-

cuses on the ash melting and the agglomeration 

process in a bubbling fluidized bed biomass 

gasification reactor. Using standard techniques, ash-

melting analyses were performed to determine the ini-

tial agglomeration temperature in laboratory prepared

ash samples from woodchips from Austria.

Computational Particle Fluid Dynamic (CPFD)

simulations were carried out using the commercial

CPFD software package Barracuda Virtual Reactor

(VR). The results show that the fluid dynamics gives

important indications of unwanted agglomeration

processes in a biomass gasification in a bubbling

fluidized bed.

Keywords: bubbling fluidized bed, biomass gasification,
agglomeration, CPFD simulations

1 Introduction

Climate changes are perhaps the biggest and most

challenging environmental problems the world faces

today. Greenhouse gas emissions from burning of fossil

fuels for heat and power generation are major

contributors to the earth’s global warming. Over the last

decades, it has been a growing attention to the use of

renewable energy as an effective tool to fight the climate

changes. On global basis, renewable energy were

estimated to account for 14.1% of the total 573 EJ of

primary energy supply in 2014, of which the largest

energy contributor was biomass (10.3%) (World

Bioenergy Association, 2017).

Fluidized bed gasification (FBG) is an important

route for conversion of biomass into useful gaseous
products, including syngas that can be further utilized

into biofuels. Fluidized bed gasifiers offer distinct

advantages over other conversion technologies, 

especially regarding to their uniform temperatures and 

excellent heat transfers. (Basu, 2013) However, because 

of the special ash-forming constituents of biomass fuels, 

biomass ash has shown to be particularly problematic in 

high temperature FBG processes (Wang et al., 2008). 

Generally, these problems are associated with the ash 

melting and following agglomeration of bed material 

(Van der Drift, 1999). Bed agglomeration is a result of 

interaction between the bed material and molten 

biomass ash with high content of alkali metals. When 

biomass is used for thermal conversion, alkali species 

from the fuel can react readily with silica (Si) from the 

bed material. As a consequence, the particles become 

coated with an adhesive layer that glue the particles 

together forming larger agglomerates. (Bartles et al., 

2008) Bed agglomeration leads to poor fluidization 

conditions, and in the most severe cases it causes de-

fluidization and subsequently total shutdown of the 

gasification process. Fundamental understanding of the 

ash behavior in thermal conversion of biomass, is 

necessary to improve the operational conditions in FBG 

(Khadilkar, 2018). 

The objective of this work is to (a) study the melting 

behavior of woody biomass ash in correlation to 

standard ash melting tests (b) use a previous validated 

CPFD model to simulate agglomeration in a bubbling 

fluidized bed gasifier. 

The ash-melting analyses are performed using a Leco 

Ash Fusion Determinator (AF700). In this test, the 

temperature at which the ash starts to melt is determined, 

giving a good indication of the temperature at which 

agglomerates can be formed. Laboratory prepared ash 

from woodchips from Austria are used for the ash 

melting analyses. The CPFD model is developed to get 

a better understanding of the problem with 

agglomeration phenomenon in a bubbling fluidized bed 

biomass gasification reactor. The connection between 

the ash melting behavior, operating temperatures and 

bed agglomeration in a FBG is investigated. The 

simulations are carried out using the commercial CPFD 

software package Barracuda VR. 
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2 Theory 

2.1 Bed agglomeration 

In the literature, there is good agreement that alkali 

metals are the main components causing problems with 

bed agglomeration in FBG of biomass. (Bartles et al., 

2008) The agglomeration process happens in two ways, 

either as melt-induced agglomeration or as coating-

induced agglomeration. The melt-induced mechanism is 

direct adhesion of the bed particles because of alkali 

compounds from the molten ash acting as a glue that 

forms hard bridges between the particles. The coating-

induced mechanism happens due to chemical reactions, 

between the bed material and the molten ash 

components, causing formation of a sticky uniform 

coating layer on the surface of the bed particles. (Visser 

et al., 2008) Bed agglomeration is in most cases a result 

of the inorganic alkali ash components combining with 

Si, either from the bed material or from the ash itself, to 

form low-melting silicates (eutectics) that coat the bed 

particles. These eutectics are characterized by a lower 

melting point than the individual components. If the 

alkali concentrations are too high, the coating melts and 

adheres the particles together. As a consequence of 

repeated collisions between these sticky ash-coated 

particles, the particles eventually grow towards larger 

agglomerates. (Badhoilya, 2018) The phenomenon is 

shown in Figure 1, an illustration based on (Moradian).  

 

Figure 1. Agglomeration process. 

Ash melting and following bed agglomeration is a 

key concern in fluidized bed biomass gasification 

reactors. The problems are mainly coupled to the high 

temperature chemistry of ash, i.e. its melting at different 

gasification temperatures. Proper fluidization of the 

particles needs to be maintained in order to stabilize the 

operational conditions of the fluidized bed (Badholiya 

2018). As the agglomerated particles are of greatly 

irregular shape, size and structure, they will interfere 

with the fluid dynamics in the bed. In Figure 2 

agglomerates from bubbling fluidized bed gasification 

of biomass is pictured.  

In FBG the particle movement is one of the most 

important factors due to the corresponding transfer of 

energy. Under normal conditions, this energy transfer is 

so effective that the temperature difference across the 

cross section of the bed is kept approximately equal to 
zero. When agglomerates are present in the bed, the bed 

mixing becomes more ineffective due to obstructed 

particle movement. If this agglomeration process comes 

out of control, it can lead to severe agglomerate 

formation and subsequently shutdown of the 

gasification process. (Bartles et al., 2008, Badhoilya 

2018) The obstruction in the particle movement can 

result in local temperature deviations that in turn creates 

de-fluidized volumes in the bed. De-fluidization is 

described as a total collapse of the fluidized bed leading 

to rapidly decreasing pressure drop and substantial 

temperature changes. (Van der Drift, 1999)  

 

Figure 2. Agglomerates from silica sand particles. 

2.2 Ash melting 

Biomass is greatly varying in its physical properties and 

chemical composition, and the ash melting behavior is 

greatly affected by the ash composition. The biomass 

ash composition is in turn essential when it comes to the 

efficiency of a FBG process. (Badholiya, 2016) Biomass 

fuels with high ash content and low ash melting 

temperatures have limited possibilities for successful 

applications due to problems with ash melting, and 

agglomeration that occur under certain conditions. 

(Dragutinovic 2017) In general, woody biomass has 

very low ash content, typically below 1 %, of which 

approximately 40 % calcium (Ca), 15 % potassium (K) 

and 20 % Si. (Vassilev et al., 2017) 

Previous studies have indicated that the bed 

agglomeration process is heavily dependent on the 

chemical characteristics and melting behaviors of the 

coating on the surface of the bed particles (Vassilev et 

al., 2017). Typically, elements such as Ca and 

magnesium (Mg) increase the ash melting temperature, 

while Si, K and sodium (Na) decreases the ash melting 

temperature. The combination of high Si and high alkali 

content is especially problematic for fluidized bed 

biomass gasification because of the formation of 

silicates with low melting temperature. (BISYPLAN, 

2012) 

Apart from the chemical reactions that happens when 

ash melts and interacts with the fluid dynamics in the 

bed, the operating temperature is the most important 

factor determining the time-scale of the agglomeration 

process in fluidized beds. (Van der Drift, 1999) Good 

knowledge about the ash melting temperatures is 
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therefore of great relevance to avoid operational 

problems during biomass gasification in fluidized beds. 

In general terms, ash is used to describe the inorganic 

matter in fuels. In biomass fuels, the content of the 

critical inorganic alkali metals tends to vary within the 

same type of biomass, as well as between the different 

biomass species. (Badholiya, 2016) This makes it 

difficult to determine the ash melting behavior on the 

basis of the melting temperature of the individual 

components. Another challenge when it comes to 

determination of the melting behavior for biomass ash, 

is that it under certain conditions can react to form 

eutectics with lower melting point than the individual 

components. (Dragutinovic, 2017) Performing ash 

melting analyses can be a useful way to estimate the 

tendency of bed agglomeration. The method for 

analyzing the ash melting behavior involves heating the 

ash in a controlled manner and then determining the 

temperatures at which the ash begins to deform, soften 

and completely fuse. This method gives a realistic 

prediction of the initial agglomeration temperature, i.e. 

the temperature where the first molten phases that are 

able to glue particles together are visible. (BISYPLAN, 

2012) 

3 Material and methods  

3.1 Ash melting analysis 

The biomass fuel was ashed at 600ᵒC using a muffle 

furnace, and the ash was subsequently analyzed using a 

Leco Ash Fusion Determinator (AF700). To prepare the 

biomass ash sample for ash-melting analysis, the ash 

was milled and wetted with a few drops of Dextrin 

solution (Part no: 502-010) before it was pressed into a 

cylindrical test piece (Figure 3) with specified 

dimensions. The test piece was mounted on a ceramic 

tray and placed in the high-temperature furnace.  

 

Figure 3. Cylindrical test piece ready for ash melting 

analysis. 

     For the ash-melting analyses, the Approved Standard 

Test Method (ASTM) D1857 was used. This test 

involves heating of the ash samples at a defined heating 

rate in reducing conditions. Table 1 shows the ASTM 

method specifications. 

 

Table 1. Ash melting analyses specifications. 

Step 1 2 Unit 

Start temperature  400 700 ᵒC 

End temperature  700 1500 ᵒC 

Ramp rate 20 10 ᵒC /min 

Ramp time 00:15 01:20 H:min 

Hold time 00:00 00:00 H:min 

Total time 00:15 01:20 H:min 

Four characteristic temperatures were determined for 

the ash sample: (ST) Shrinking starting Temperature, 

(DT) Deformation Temperature, (HT) Hemispherical 

temperature and (FT) Flow Temperature. Each of these 

temperatures correspond to a specific shape of the 

cylindrical ash test piece, and are described in Table 2 

(BISYPLAN, 2012). 

Table 2. Characteristic temperatures in ash melting 

analyses. 

Characteristic 

temperature 

Description 

ST First sign of shrinking of the 

cylinder  

DT First sign of rounding due to 

melting of the corners of the 

cylinder 

HT The cylindrical test piece forms a 

hemisphere 

FT The cylindrical test piece has 

effectively melted and the ash are 

spread out over the supporting tile 

in a layer 

3.2   CPFD model description 

The CPFD software package Barracuda VR 17.1.0 was 

used to simulate the agglomeration process in a biomass 

bubbling FBG. Barracuda VR uses the Multiphase 

Particle-in-Cell (MP-PIC) based Eulerian-Lagrangian 

approach, where the transport equations are solved for 

the continuous fluid phase and each of the discrete 

particles are tracked through the calculated fluid field. 

The fluid-particle interaction is considered as source 

terms in the transfer of mass, momentum and energy 

between the two systems. CPFD simulations are hybrid 

numerical methods, where the Eulerian approach is used 

for solving the fluid phase and the Lagrangian 

computational particle approach is used for solving the 

particle phase (Thapa and Halvorsen, 2013). Chladek et 

al. (2018) and Jayarathna et al. (2017) have described 

the transport equations in detail.        

     The Barracuda software package includes several 

drag models. For the present simulations, the Wen-Yu 

drag model was used. The CPFD model are previously 

developed and validated against experiments performed 

in a lab-scale cold flow model by Furuvik et al (2018). 

The model was scaled up to a full-scale bubbling FBG 
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reactor using Glicksman’s scaling rules that are based 

on a set of dimensionless parameters. The scaling rules 

are explained in detail by Thapa et al (2013).  

A three-dimensional Cartesian coordinate system 

was used to describe the cylindrical column with height 

of 250 cm and 42 cm in diameter. In the present study, 

the static bed height was 105 cm. The mesh size was 

0.0466 m x 0.0466 m x 0.0466 m and the number of 

control volumes was 4 536. The simulations were 

carried out at three different temperature conditions: (I) 

850 ᵒC, (II) 900 ᵒC and (III) 1000 ᵒC, and for each 

temperature, two different agglomeration processes 

were simulated. The fluidizing gas was air at 

atmospheric pressure. Pressure transducers are placed 

with an interval of 10 cm along the height of the bed, 

and the first monitor point is 10 cm above the 

distributor. The simulations were run for 50 seconds 

with a time step of 0.001 s. The simulation conditions 

are summarized in Table 3.  

Table 3. CPFD simulation conditions. 

Operating parameter Value 

Number of grid cells 4 536 

Static bed height 105 cm 

Fluidizing agent Air 

Type of flow Isothermal@  

(I) 850ᵒC  

(II) 900ᵒC   

(III) 1000ᵒC 

Superficial air velocity 0.02; 0.005; 0.15 m/s 

Simulation time for each 

flowrate 

50 s 

Drag model Wen-Yu 

     Quarts sand with a solid density of 2 650 kg/m3 was 

used as bed material. The particle size of the sand were 

300 µm. The agglomerates ranged from 1.0 cm to 4.0 

cm in diameter, with a particle density of 1 506 kg/m3. 

(Furuvik et al., 2018). The maximum close pack volume 

fraction was set to 0.54. The maximum momentum from 

the redirection of particles collision was assumed to be 

40 %, the normal-to-wall and tangential-to-wall 

momentum retention were 0.3 and 0.99 respectively. 

The particle properties are listed in Table 4.  

Table 4. Particle properties. 

Property Bed material Agglomerates 

Diameter 300 µm 1.0 - 4.0 cm 

Density 2650 1506 

Sphericity 0.86 0.6 

Close pack volume 

fraction 

0.54 N/A 

 

For the present simulations, it was assumed that the 

agglomeration process started at the DT measured by the 
ash melting analyses, and that the size and amount of 

agglomerates accumulate once the process has been 

initiated. In total, six different simulation cases were 

performed. Specific details on the agglomeration 

processes in the different simulation cases are presented 

in Table 5. 

Table 5. CPFC simulation specification 

 850ᵒC 900ᵒC 1000ᵒC 

Amount of 

agglomerates 
0 

15% 

20% 

20% 

20% 

30% 

Size of 

agglomerates 
- 

1-2 cm 

2-3 cm 

3-4 cm 

3-4 cm 

3-4 cm 

4 Results and discussion 

4.1 Ash melting analysis 

Woodchips from Austria were used for the laboratory 

prepared ash samples. The ash-processing temperature 

was 600ᵒC. In Figure 4, the form of the cylindrical test 

piece is pictured for each of the defined characteristic 

temperatures. 

 

Figure 4. Results from ash melting analyses showing the 

test piece at (A) ST, (B) DT, (C) HT and (D) FT. 

In order to obtain reasonable results, three separate 

measurements were carried out. The four characteristic 

temperatures were determined for all the three 

measurements. The results from the ash melting 

analyses are listed in Table 6.  

Table 6. Results from ash melting analyses. 

 ST DT HT FT 

1 861ᵒC 870ᵒC 1466ᵒC 1492ᵒC 

2 867ᵒC 874ᵒC 1472ᵒC 1492ᵒC 

3 859ᵒC 865ᵒC 1463ᵒC 1490ᵒC 

For all the three measurements, the ash started to 

show sign of shrinking around 860ᵒC and deformation 

and rounding were observed at approximately 870ᵒC, 
these are the temperatures that correspond to ST and DT 

respectively. For biomass fuels, the DT is considered as 

a valid indication for the tendency of the ash to cause 
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problems during thermal conversion processes. 

(BISYPLAN, 2012) In the present study, the received 

data for the DT are further related to the initial 

agglomeration temperatures. 

4.2 CPFD simulations  

The CPFD simulations were carried out at three 

different temperatures, and with varying combination of 

size and amount of agglomerates in the bed. The chosen 

simulation temperatures were based on the measured 

DT from the ash melting analyses, assuming the initial 

ash-melting temperature will start the agglomeration 

process. It was also assumed that the process continues 

once it has been initiated. The CPFD simulation results 

are presented as plots of the pressure drop in the bed as 

a function of the superficial air velocity.  

Figure 5 represents the results of the simulations at 

850ᵒC. The red line represents fluidization of the bed 

material, and is used as a reference bed. The purple line 

represents 15 % agglomeration in the bed. From the 

figure it is seen that there is a clear correlation between 

the fluid dynamics and the bed agglomeration processes. 

The difference between the pressures drops in the two 

cases increases with increasing superficial velocity until 

the bed is fluidized, at about 0.06 m/s. The pressure drop 

at minimum fluidization is approximately 14 000 Pa/m 

in the reference bed, while it is decreased to 

approximately 12 000 Pa/m in the agglomerated bed. 

 
Figure 5. CPFD simulations at 850ᵒC, (I) silica sand, no 

agglomeration (II) agglomerate size 1-2 cm and 15% 

agglomeration.  

Figure 6 shows the results from the two simulation 

cases at 900ᵒC. In both of the cases 20 % agglomerates 

are present in the bed. The blue line represents the case 

with agglomerates of 2-3 cm, while the black line 

represents agglomerates of 3-4 cm. The deviation 

between the two curves indicates that the fluidization is 

greatly affected by the size of the agglomerates. When 

the maximum size of the agglomerates is increased from 

3 cm to 4 cm, the minimum fluidization velocity is 

increased from about 0.05 m/s to 0.08 m/s. The 

minimum fluidization velocity is a key parameter in 

fluidized beds, and works as a rough indication of the 

quality of the fluidization. Minimum fluidization is the 

point at which the bed conditions are at the boundary 

between fixed and fluidized, and the corresponding 

superficial velocity is referred to as the minimum 

fluidization velocity. The superficial velocity should 

therefore always be kept well above the theoretical 

minimum fluidization velocity to prevent de-

fluidization of the bed 

 
Figure 6. CPFD simulations at 900ᵒC, (I) agglomerate 

size 2-3 cm and 20% agglomeration (II) agglomerate size 

3-4 cm and 20% agglomeration. 

Figure 7 shows the results from the simulations at 

1000ᵒC. The size of the agglomerates is 3-4 cm in both 

the simulation cases. The green line represents the case 

with 20 % agglomeration and the yellow line is 

simulation with 30 % agglomeration. The simulation 

results displayed in Figure 5 indicates that 

agglomeration causes decreased pressure drop in the 

fluidized bed. From Figure 7, it is seen that as the 

agglomerates grow larger it results in heavy instabilities 

in the bed. The pressure drop across the bed start to 

fluctuate as soon as the bed achieves fluidized state. The 

fluctuation in the pressure drops becomes worse as the 

amount of agglomerates increases. This improper bed 

control indicates de-fluidization. Apparently around 

20% agglomeration seems to be enough to initiate de-

fluidization of the bed.  

 
Figure 7. CPFD simulations at 1000ᵒC, (I) agglomerate 

size 3-4 cm and 20% agglomeration (II) agglomerate size 

3-4 cm and 30% agglomeration. 
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5 Conclusion

The objective of this work was to use a previous

developed and validated CPFD model to study the ash

melting and agglomeration in biomass gasification in a

bubbling fluidized bed. The study included ash melting

analyses, and CPFD simulations using the commercial

software Barracuda VR. Ash related problems are the

main obstacle in fluidized bed gasification of biomass,

and are generally associated with high content of alkali

components in the fuels. These elements might form

low-melting temperature compounds that will coat the

surface of the bed particles. If the coating have high

enough fraction of molten ash, it will cause bed

agglomeration.

The measurement of ash melting temperatures

provides a direct correlation between laboratory data

and the temperature at which the ash might have the

tendency to melt. The simulations shows that the

agglomeration process will affect the fluid dynamics in

a bubbling fluidized bed gasifier. Bed agglomeration is

often seen as a consequence of improper bed control.

The more and larger agglomerates, the more severe are

the problems. The point where agglomeration starts to

cause problems is characterized by a sudden drop or

instability in pressure. The simulations shows that

around 20% agglomerates seems to be enough to initiate

de-fluidization of the fluidized bed.
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Abstract
Computational fluid dynamic modeling and simulation

is becoming a useful tool in the detailed analysis 

of multiphase flow systems. The level of uncertainty 

is different depending on selected modeling concept 

and numerical schemes. Physical uncertainties origi-

nated from geometrical dimensions and particle proper-

ties are important aspects. In this work, CPFD method 

was used to analyze the effect of dimensional un-

certainty of loopseal pipe diameter and particle size 

distribution in a circulating fluidized bed. Five differ-

ent pipe diameters were studied and 20% growth in 

particle circulation rate was observed as the diameter 

reduced from 30mm to 26mm. The effect of small 

changes in the particle size distribution was negligible 

and the particle circulation rate decreased by 32% 

with monodisperse particles of mean size.

Keywords: CPFD simulation, uncertainty, circulating

fluidized bed, particle circulation rate

1 Introduction

Computational fluid dynamic (CFD) modeling and

simulation is extensively used in designing and

optimizing of reactive and non-reactive systems. The

flow predictions for single phase systems with CFD is

very much precise and however, multiphase systems are

still encountering number of theoretical and numerical

challenges, such as wide range of spatio-temporal scales

(length scales between single particles, particle clusters,

computational grid and geometry), collision, shear and

interact of particles, mass and momentum exchange

between phases (Pannala et al., 2011).

     Different techniques have been developed to

model the multiphase systems. Direct numerical

simulation (DNS) requires the least modeling effort.

However, the computational time is high as it resolves

the complete flow field around each particle of the

system and the particle movement is modeled with

Newton’s equation of motion (Bale et al. 2019; Tang et

al. 2016). Lattice-Boltzmann method (LBM) uses less

computational power as the flow field around the

particle is approximated by lattice-Boltzmann equation

(Qi , Kuang, and Yu 2019). The simulation time can

further be reduced by discrete element method (DEM)

which averages the fluid flow in the scale of 

computational grid. The particle collisions are modeled 

using the soft-sphere or hard-sphere approach. Even 

with increasing computer power, DEM simulations are 

predicted to be not viable in the coming decade for 

commercial scale reactors. The contact detection of 

particles and calculating geometric areas of contact 

consume more than 80% of the computational time in 

DEM. The Eulerian-Eulerian modeling which is also 

identified as the two-fluid (TFM) or multi-fluid 

modeling has been the main interest over decades due to 

its capacity of modeling large-scale systems. TFM 

requires high modeling effort as the particle phase is 

also considered as a fluid and the properties are derived 

using the kinetic theory of granular flow (KTGF). 

Difficulties and complexities of including the particle 

size distribution, loss of discrete nature of the particles, 

numerical (false) diffusion are the major disadvantages 

related to TFM. The computer efficiency of the DEM 

can be improved by using probabilistic strategy for the 

particle contact modelling such as the multiphase 

particle in cell (MP PIC) method where the collisional 

forces are derived as a stress gradient in the Eulerian 

grid (Ma & Zhao, 2018; Moliner et al., 2018; Pannala et 

al., 2011). The model complexity increases 

progressively from DNS to TFM and simultaneously, 

the uncertainty also increases due to excess use of 

empirical correlations, assumptions, approximations 

and averaging.  

     The sensitivity, uncertainty and errors are three 

aspects of the CFD predictions. The sensitivity is 

primarily involved with the computational grid and 

convergence test should be performed in first hand for 

the CFD simulations. The time step and number of 

computational particles (MP PIC method) are other 

sensitivity tests. Sensitivity of different coefficients, 

models and model constants used have equal 

importance, which can also be addressed as 

uncertainties (Ostermeier et al., 2019). The uncertainties 

have different dimensions related to (Mathelin et al., 

2005; Walters & Huyse, 2002): 

 

 Assumptions in the main model (i.e. 

incompressible, inviscid, linearization, neglecting 

temperature dependences of coefficients) 
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 Deficiency of information related to 

phenomenological or auxiliary models (i.e. 

turbulence model, reaction kinetics)  

 Discretization and computational errors (i.e. flux 

approximation scheme, round off, iterative) 

 Describing the physical reality (the geometry, 

initial and boundary conditions, particle properties 

such as size distribution, density and shape) 

 

     The fundamental structure of the conservation 

equation are fixed in many CFD codes. The suitability 

of different numerical schemes and optimization of 

involved auxiliary models and model parameters are 

possible. However, uncertainties originated from 

physical reality should be minimized in first hand. Some 

experimental data suffers from lack of supporting 

information (i.e. reporting of mean size of particles over 

size distribution, the pipe diameters without mentioning 

internal or external etc.).  

     Circulating fluidized bed (CFB) technology is a 

widely applied industrial process. Robust control over 

the particles, high heat and mass transfer rates are the 

basic advantages of the CFB technology. The simplest 

arrangement of a CFB system is illustrated in Figure 1 

and certain CFB systems can be consisted with two or 

multiple reactors. A typical system contains a bedding 

material that circulates in a closed loop without being 

removed out from the system. Riser operates in the fast 

fluidization regime and the particles are carried away 

with high gas flowrates, which are separated by a 

cyclone and fed back to the riser via a flow control 

valve. Mechanical valves suffer from wearing in high 

temperature applications where non-mechanical devices 

such as loopseal are highly preferred in the industry. 

Rate of particle circulation is one of the important 

parameters in CFB. The dimensions and aeration of the 

loopseal should be designed and optimized to fit the 

targeted flow and avoid gas bypass from the riser.  

 
Figure 1: Circulating fluidized bed 

     The rate of particle circulation is governed by 

number of parameters such as loopseal aeration, riser 

gas flow, loopseal dimensions and the particle 

properties. As discussed prior, deviations in the 

simulation geometry and particle properties are a subset 

of the overall uncertainty. This work includes the 

uncertainty analysis related to pipe dimensions of the 

loopseal and particle size distribution for MP PIC 

simulated results. Barracuda VR is a commercial 

software package built on the MP PIC platform, which 

brought forward the concept of computational particle 

fluid dynamics (CPFD). The simulations were 

performed using Barracuda 17.3.0 and Intel(R) 

Core(TM) 3.50 GHz processor.  

2 CPFD modeling 

Andrews & O'Rourke (1996) extended the MP PIC 

method to particle flow systems, which was developed 

into CPFD.  Later, Snider developed the scheme into 

three dimensional dense particle flows (Snider, 2001). 

The subsequent improvements of the particle collision 

modeling are discussed in several subsequent 

publications (O'Rourke & Snider, 2012, 2014; 

O’Rourke & Snider, 2010; O’Rourke et al., 2009). The 

fluid phase is modeled with Navier-Stokes equations, 

similar to DEM and TFM. The modeling of the particle 

phase has hybrid characteristics of discrete and 

continuum modeling. The real particles are grouped into 

parcels (computational particles) such that the billions 

of particles can be represented by millions of parcels. A 

certain parcel contains a number of real particles having 

same size, density and velocity. The parcel movement 

through the fluid domain is modeled similar to DEM. 

The particle collision force is calculated as a stress 

gradient on Eulerian grid in the advanced time step and 

mapped back to real time with interpolation functions. 

Unlike the TFM, the discrete nature of the particles is 

preserved and the implementation of the particle size 

distribution is straightforward.   

2.1 Governing equations 

The governing equations are referred from Snider 

(Snider, 2001). Gas phase mass and momentum 

conservation are modeled with continuity and time 

averaged Naiver-Stokes equations: 

 
𝜕(𝛼𝑔𝜌𝑔)

𝜕𝑡
+ 𝛻. (𝛼𝑔𝜌𝑔𝑢𝑔) = 0                                     (1) 

𝜕(𝛼𝑔𝜌𝑔𝑢𝑔)

𝜕𝑡
+ 𝛻. (𝛼𝑔𝜌𝑔𝑢𝑔𝑢𝑔) = −𝛻𝑃 − 𝐹 +

𝛻. (𝛼𝑔𝜏𝑔) + 𝛼𝑔𝜌𝑔𝑔                                                      (2)                                                                

Where 𝛼𝑔, 𝜌𝑔 and 𝑢𝑔 are gas phase volume fraction, 

density and velocity respectively. F is the total 

momentum exchange with particle phase per volume, g 

is the gravitational acceleration, P is the pressure, and 𝜏𝑔 

SIMS 60

183DOI: 10.3384/ecp20170182  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



is the gas phase stress tensor.  The stress tensor of the 

gas phase is given by: 

 

𝜏𝑔 =  𝜇𝑔 [(𝛻𝑢𝑔 + ∆𝑢𝑔
𝑇) −

2

3
𝛻. 𝑢𝑔𝐼]                         (3) 

𝜇𝑔 refers to the shear viscosity that is the sum of the 

laminar and turbulent components. The large eddy 

simulation is used for the large-scale turbulence 

modeling while the subgrid scale turbulence is captured 

with the Smagorinsky model: 

 

𝜇𝑔,𝑡 = 𝐶𝑠𝜌𝑔∆2|𝛻𝑢𝑔 + ∆𝑢𝑔
𝑇|                                      (4) 

The default value for the model constant 𝐶𝑠 is 0.01. ∆ 

is the sub-grid length scale and calculated by: 

 

∆= (𝛿𝑥𝛿𝑦𝛿𝑧)
1

3⁄                                                         (5) 

The interface momentum transfer is calculated 

through the viscous drag force: 

 

𝐹 = ∬ 𝑓 {𝑚𝑝 [𝐷𝑝(𝑢𝑔 − 𝑢𝑝) −
𝛻𝑃

𝜌𝑝
]} 𝑑𝑚𝑝𝑑𝑢𝑝        (6) 

Subscript P refers to the particle phase properties 

where m and u symbolizes the mass and velocity 

respectively. 𝐷𝑝 is the drag function. The particle phase 

dynamics are derived using the particle distribution 

function (PDF) calculated from the Liouville equation 

given as:  

 
𝜕𝑓

𝜕𝑡
+ 𝛻(𝑓𝑢𝑝) + 𝛻𝑢𝑝(𝑓𝐴𝑝) = 0                               (7) 

Where 𝐴𝑝, is the particle acceleration and is 

expressed by: 

 

𝐴𝑝 =
𝜕(𝑢𝑝)

𝜕𝑡
= 𝐷𝑝(𝑢𝑔−𝑢𝑝) −

𝛻𝑃

𝜌𝑝
−

𝛻𝜏𝑝

𝜌𝑝𝛼𝑝
+ 𝑔          (8) 

𝛼𝑝 is particle volume fraction and  𝜏𝑝 is particle stress 

function used to formulate the interphase interactions of 

particles.  

 

𝛼𝑝 = ∬ 𝑓
𝑚𝑝

𝜌𝑝
𝑑𝑚𝑝𝑑𝑢𝑝                                            (9) 

𝜏𝑝 =
10𝑃𝑠𝛼𝑝

𝛽

𝑚𝑎𝑥[(𝛼𝑐𝑝−𝛼𝑝),𝜀(1−𝛼𝑝)]
                                    (10) 

𝑃𝑠 is a constant with the units of pressure, 𝛼𝑐𝑝 is the 

particle volume fraction at close packing, β is a constant 

between 2 and 5 and ε is a very small number on the 

order of 10-7. 

3 Computational method 

The experimental data of Thapa et al (2016) was used 

for the comparison of simulation results. The loopseal 

and riser pipe diameters were 30mm and 50 mm 

respectively. The system pressure and rate of particle 

circulation were available where the circulation rate had 

been measured by interrupting (stopping) the loopseal 

aeration followed by measuring the time to accumulate 

a certain volume of particles at the standpipe. Sand with 

of 2650 kg/m3 in density and 130 mm in mean diameter 

(size distribution from 50mm to 250 mm) was the 

particle phase. Air at atmospheric pressure and 

temperature was the loopseal and riser aeration fluid 

     The fluid volume was developed using 

SOLIDWORKS 2018 and imported to Barracuda VR 

17.3.0. Uniform grid option was used and the grid 

refinement at narrow sections was needed to capture the 

geometry domain accurately. The total number of cells 

in the domain was 467376. The turbulence was 

modelled with large eddy simulation and the partial 

donor cell method (a weighted average method of 

central difference and upwind schemes) was used as the 

advection numerical scheme. The default values were 

used for the number of iterations, residuals and the 

minimum and maximum values of Courant-Friedrichs-

Lewy (CFL) parameter (which satisfy the convergence 

criteria). Values of the model constants and other 

simulation parameters are given in Table 1.   

 
Table 1: Simulation parameters 

 Parameter Value 

[1] Closed pack volume 

fraction 

0.6 

[2] Maximum momentum 

redirection 

40% 

[3] Particle-wall collision 

(Normal & tangential)  

0.85 

[4] Diffuse bounce 3 

[5] Pressure constant in 

particle stress model (Ps in 

Pascal) 

5  

[6] Initial time step 

(seconds) 

0.0003 

 

     As the particle flow pattern of a circulating 

fluidized bed with loopseal is analysed, the riser 

operates at dilute phase while the loopseal at dense 

phase. Further, the fluid drag is a function of the particle 

volume fraction. Therefore, the Wen-Yu-Ergun drag 

model (Gidaspow) was used as the Ergun correlation 

has been extensively validated for dense systems. The 

Wen-Yu model is used at higher gas volume fractions 

than 0.8, which is given by (Gidapow, 1994): 
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𝐷𝑊𝑒𝑛−𝑌𝑢 =
3

8
 𝐶𝑑  

𝜌𝑔

𝜌𝑝
 
|𝑢𝑔−𝑢𝑝|

𝑟𝑝
 𝛼−2.65                          (11) 

𝐶𝑑 =             
24

𝑅𝑒
 ,   (𝑅𝑒 < 0.5) 

𝐶𝑑 =
24

𝑅𝑒
(1 + 0.115𝑅𝑒0.687), (0.5 ≤ 𝑅𝑒 ≤ 1000) 

𝐶𝑑 =        0.4,   (𝑅𝑒 > 1000) 
 

As the gas volume fraction decreases below 0.8, the 

Ergun correlation is used, 

 

𝐷𝐸𝑟𝑔𝑢𝑛 = 0.5 (
𝐶1𝛼𝑝

𝛼𝑔𝑅𝑒
+ 𝐶2)

𝜌𝑔

𝜌𝑝
 
|𝑢𝑔−𝑢𝑝|

𝑟𝑝
                       (12) 

 

The default values for the laminar and turbulent 

coefficients in the Barracuda VR are 180 (C1) and 2.0 

(C2) where those are 150 and 1.75 in original Ergun 

formulation. The particle Reynolds number is given by: 

 

𝑅𝑒 =
2𝜌𝑝|𝑢𝑔−𝑢𝑝|

𝜇𝑔
(

3𝑉𝑝

4𝜋
)

1
3⁄
                                          (13) 

 

     The rate of particle circulation was measured by 

the flux plane implemented at the overflow pipe. A flux 

plane stores the data of the amount of particles by 

species and fluid pass across a defined area. Two 

additional flux planes were positioned at standpipe and 

riser to recognize the steady state conditions. The 

computational domain was initially occupied 

exclusively with air where a particle feed flow boundary 

was used to introduce the particles into the system. The 

“particle feed control” option was linked to the particle 

flow boundary to maintain the particle mass in the 

system between 0.58 kg and 0.60 kg throughout the 

entire simulation time. The number density manual at 

the particle feed was set to 200, which decides the 

resolution of computational particles in the domain. The 

boundary conditions, flux planes and the pressure 

monitoring locations are illustrated in Figure 2.  

     The loop seal exerts the highest resistance for the 

particle flow. Therefore, the pipe diameter of the 

loopseal was gradually reduced from 30 mm, which is 

the measured value from a scaled drawing, to 27 mm in 

successive simulations. The pipe diameters given in the 

sketch can be the outside diameter and hence the actual 

diameter for the fluid volume should be equal or less 

than 30 mm.  

     Further, the particle size distribution can have 

uncertainties. Therefore, results from the reported 

distribution was compared with two other size 

distributions. The first two alternatives were taken from 

the arbitrary assumption that the exact size distribution 

can bias more towards smaller sizes than the reported 

value (if the sieving had not been done sufficiently). The 

other set up considered the mono sized particles with 

mean diameter of 125 microns. The size distributions 

are plotted in Figure 3.  

 
 

Figure 2: Computational domain; boundary conditions, 

flux plane and pressure transient data points 

 
Figure 3:   Particle size distribution  

4 Results and Discussion 

The simulation results for the original geometry was 

compared with the experimental data of Thapa et al, 

based on the rate of particle circulation and the system 

pressure. The particle distribution over the circulating 

fluidized bed at steady state operation (pseudo) is 

depicted in Figure 5. The enlarged sections in Figure 5 

shows the particle flow behavior in the loop seal.  
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The particle volume fractions over the riser and the 

cyclone sections are below 0.1 where a dense particle 

region can be observed at the bottom of the cyclone 

conical section. The particle volume fraction in the 

standpipe is approximately 0.5, which reduces in the 

horizontal section and recycle pipe. With the observed 

bubbles, the standpipe seems to operate at bubbling 

fluidization regime. A rigorous fluidization is prevailed 

at the horizontal section and the recycle pipe, which 

indicates that a large fraction of the loopseal aeration 

passes through the recycle pipe and ends up in the riser. 

In the loopseal, air tends to flow near the walls of the 

side of aeration and further, the airflow does not 

penetrate much within particle bed (in the direction of 

injection). Extended grid refining at the air injection 

may improve the length of penetration and however, 

large differences in the grid sizes (in all X, Y and Z 

directions) are not preferred in CPFD. Further, a grid 

cell should be sufficient to place several parcels. 

     The particle circulation rate was averaged over 30 

seconds during steady state operation and calculated to 

be 315 kg/h, which is approximately equal to the 

experimental data. However, the rate was highly 

dynamic and large fluctuations between 100 kg/h to 

1000 kg/h could be observed. The airflow rate across the 

flux plane was -0.00037 kg/s and the loopseal aeration 

was 0.00036 kg/s. This guarantee the proper operation 

of the loopseal that does not allow gas to bypass from 

riser via loopseal. Further, small amount of riser gas is 

recycled back across loopseal without escaping from the 

cyclone top. This is possible at high particle circulation 

rate, where the air is carried along with the voidage of 

the particle phase. The gas flow across the loopseal had 

not been monitored during experimental studies and the 

simulation results are useful in further optimizing the 

loopseal dimensions. The system pressure was also 

monitored at different locations (given in Figure 2) and 

the results are given in Figure 4 together with 

experimental data. Pressure prediction from the 

simulation is lower than the experimental data over the 

entire system. The cyclone exhaust pipe was replaced 

with a pressure boundary with 101325pa (atmospheric 

pressure) boundary value and the downstream pressure 

drop was excluded. Geometrical lengths, pressure 

monitoring locations, particle size distribution and the 

assumption of spherical particles can be other physical 

uncertainties for the deviated pressure readings.  

     Olatunde, and  Fasina (2019) have mentioned the 

observed deviations related to coefficients of Ergun 

equation for different particles. The laminar viscous 

coefficient has reported to as high as 267 while the 

turbulent coefficient up to 4.02. The barracuda default 

values of 180 and 2 were used in this study. Further, the 

competency of the Wen & Yu model for the dilute phase 

systems is not concretely validated as Ergun model. The 
particle hold up in the riser depends on the drag force 

exerted by the gas flow. In this case, the Wen & Yu 

model might over predict the drag force and 

consequently caused a reduced particle, which could 

lead for a lower pressure drop in the riser. This has a 

direct effect on the reduced pressure reading from the 

simulation at the recycle chamber. The effect of the 

particle phase modelling parameter of closed pack 

volume fraction is also significant for the pressure drop 

in dense particle regions. Due to the lack of data related 

to particle phase, the default value of 0.6 was used. The 

prediction error of the system pressure can be originated 

from one or many of these uncertainties and lack of data.  

Figure 4: System pressure: experimental vs simulation 

      
Figure 5: Particle volume fractions over CFB at steady 

state 

SIMS 60

186DOI: 10.3384/ecp20170182  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



4.1 Effect of the loopseal pipe diameter 

Successive updates of the simulation parameters related 

to particle properties were needed to achieve the particle 

circulation rate similar to experimental values and the 

optimized values used are given in Table 1. However, 

the system pressure was not considerably sensitive for 

the analyzed parameters, where the observed deviations 

might originate from errors and uncertainties. The 

highest deviation of the pressure was recorded at the 

loopseal, which was lower than experimental data. 

Hence, simulations were performed for different 

diameters of the loopseal piping.   

     As illustrated in Figure 6, the particle bed height 

at the standpipe is slightly increasing towards reduced 

diameters. The loopseal balances the cumulative 

pressure drop of the remaining sections of the CFB 

system and the bed height at the standpipe is 

automatically adjusted following the system variations.  

The rate of particle circulation and the system 

pressure are illustrated in Figure 7 and Figure 8 

respectively. The particle circulation rate is greatly 

influenced by the pipe diameter, which showed a 20% 

increment when the diameter was reduced from 30 mm 

to 27 mm. The variation shows second order polynomial 

characteristics against pipe diameter. The gas velocity 

across the loopseal increases as the diameter is reduced 

and consequently, the fluid drag force on the particle 

increases. Similarly, the air bypass from cyclone to riser 

across loopseal has also increased.  

 

 
 

Figure 6: Particle flow hydrodynamics at different 

loopseal pipe diameters 

 
Figure 7: Change of particle circulation rate over different 

loopseal pipe diameters 

 
Figure 8: Change of system pressure over different 

loopseal pipe diameters  

     An improvement in the pressure prediction can be 

observed and the results reach the experimental values 

at P2 and P15. The particle holdup within the riser 

compartment can be high at increased particle 

circulation, which contribute for increased pressure at 

the riser bottom, P15. Prediction error of pressure at P1 

may be originated from incorrect height of the recycle 

pipe, where the height effect can be further analyzed.  

 

4.2 Effect of the particle size distribution 

Particle size distribution is measured using sieving 

analysis equipment. Inadequate sieving time may avoid 

sufficient separation of particles. Further, with the 

difficulties of implementing the particle size 

distribution, monodisperse particles have been widely 

used (i.e. two-fluid modelling). Therefore, the 

simulation results from different size distributions as 

given in Figure 3 and 125 micron monodisperse 

particles were compared using original geometry. The 

rate of particle circulation is given in Figure 9.  

Significant changes of particle circulation was not 

observed between different size distributions used. 

Specially, merely the weight fractions were changed 

keeping the smallest and largest particle size similar to 

original. However, a considerable reduction of particle 

circulation, about 32%, was observed with 
monodisperse particles. This is a clear illustration of the 

force exerted by smaller particles on larger particles and 
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highlights the percentage error related to using mean 

size rather than size distribution. The geometry and the 

particle mass were equal for all cases and further, the 

loopseal operates at fluidizing regime (i.e. size 

distribution can affect the pressure drop at packed bed 

conditions), which can be the reason behind the similar 

pressure results for different size distributions. 

 

 
Figure 9: Change of particle circulation with size 

distribution      

5 Conclusion 

This work was carried out to analyze the effect of 

selected uncertainties related to geometrical lengths and 

particle size distribution in a circulating fluidized bed 

system. If the experiments are deliberately designed to 

generate data for CFD model validation, all the 

necessary parameters are available. However, whenever 

the existing experimental data from the literature are 

used in validation, certain uncertainties can be existed 

and therefore, adequate illustrations should be presented 

to compensate. The uncertainties related to physical 

reality and all accurately measurable parameters should 

be minimized (avoided) prior to the sensitivity analysis 

of models and model constants.  

     The loopseal pipe diameter displayed a great 

influence over particle circulation rate. The system 

pressure prediction was lower than experimental data in 

all the sections of the domain. Prediction error of the 

pressure at the recycle pipe was comparatively high, 

which might originate from incorrect height of 

computational geometry used or deviated pressure at the 

riser bottom due to inaccurate particle holdup in the 

riser. Small changes in the particle size distribution 

within the same smallest and largest sizes did not cause 

much change in particle circulation rate. However, 

monodisperse particles with mean particle size gave a 

substantially reduced circulation rate, which was 32% 

lower.  

     More uncertainties can be prevailed related to 

geometrical lengths of other sections, particle mass in 

the system, particle properties such as sphericity and 

closed pack volume fraction, loopseal aeration velocity 

and location. Therefore, further analysis will be 

supportive to demonstrate the effect of mentioned 

uncertainties and it is highly recommended to perform 

specially designed experiments for CFD model 

validation with all the required data. 
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Abstract
In this paper, we extend a previous study on a totally en-
closed thermal model of a synchronous generator, with
temperature state estimation using experimental data. The
extension includes a new formulation of the system model,
with four different model variations with and without
temperature dependence in the metal, air, and water heat
capacities and the copper resistances, where tempera-
ture variation in water and/or air requires a non-standard
heat exchanger model. In the former study, the Un-
scented Kalman Filter (UKF) was used for state estima-
tion. Here, we include both the UKF as well as the En-
semble Kalman Filter (EnKF) in the comparison. UKF
and EnKF are compared based on estimation accuracy
and computational speed. Results show that EnKF ex-
hibits lower RMSE for the innovation process and thus is
more accurate than the UKF even with a “minimum” of
50 particles, but the UKF with 6 sigma points (3 states)
is faster. It is too early to conclude which of 4 models is
more accurate, as they need to be tuned individually wrt.
parameter fitting.

Keywords: Air-cooled synchronous generator, dynamic
model, state estimation, Unscented Kalman filter, Ensemble
Kalman filter

1 Introduction
1.1 Background
Due to the increase in intermittent renewable energy re-
sources, hydropower plants will become a key compo-
nent to provide higher operational flexibility in the fu-
ture power system. In European hydropower generation,
the synchronous generator power factor is restricted to
the range [0.85,0.95], (ENTSO-E, 2016); for Norway, the
power factor should be less than 0.86, (Statnett, 2012).

The power factor is the ratio of active power to apparent
(complex) power. A small power factor implies a reduced
active power production compared to a higher power fac-
tor. High production of active power is desired by the plant
owners, but an increased power factor may cause prob-
lems due to the thermal design limitation of the machine.
An important question is: would it be acceptable to relax
on the constraint on the power factor for a limited time pe-
riod in order to take out unexploited power in critical situ-
ations? To allow for such a relaxation in the power factor,
it is important to have a measure of the temperature evolu-
tion, and how this influences the lifetime of the generator.

Figure 1. Thermal model of air-cooled synchronous generator,
from (Lie, 2018).

In this paper, we consider how to obtain information about
the temperature evolution.

A thermal model of a totally enclosed air-cooled hy-
dro generator was developed in (Øyvang, 2018), using
a closed-loop, water cooled heat exchanger for cooling
heated air from the outlet of generator, and applied to a
case study of a vertically mounted 103MVA air-cooled
hydro generator at Åbjøra, Norway. A similar model with
more general structure and more efficient heat exchanger
description was developed in (Lie, 2018).

It is of interest to extend the description in (Lie, 2018)
with temperature dependent heat capacities (metals, air)
and temperature dependent copper resistances. Further-
more, it is of interest to carry out a more extensive study on
state estimation compared to (Øyvang, 2018), using sev-
eral variations of the Unscented Kalman Filter (UKF) as
well as introducing the Ensemble Kalman Filter (EnKF).

1.2 Organization of paper
The paper is organized as follows. The mathematical
model is presented in Section 2. State estimation algo-
rithms UKF and EnKF are presented in Section 3. Results
are presented and discussed in Section 4. Finally, conclu-
sions are drawn in Section 5, together with possible future
work.

2 Mathematical model
Figure 1 shows the thermal operation of an air-cooled syn-
chronous generator.

The cold air out of the heat exchanger is blown by a fan
into the rotor/stator air gap. The air is heated by heat flow
from rotor, air gap windage, and bearing friction. Next,
air is forced into ducts through the stator iron core where
it gets heated by heat flow from the iron. At the outlet
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Figure 2. Functional diagram for air-cooled synchronous gen-
erator, from (Lie, 2018).

from the stator ducts, the heated air is collected and passed
through a counter-current heat exchanger. The heated air
is cooled down through the heat exchanger using continu-
ous cold water circulation, before it is re-injected into the
air gap in a continuous, closed loop process.

The water mass flow rate through the heat exchanger is
ṁw, and it enters at temperature T c

w and leaves the heat ex-
changer at temperature T h

w . The air mass flow rate is ṁa
with temperature T h

a at stator outlet and heat exchanger
entry; through the heat exchanger, the air is cooled down
to temperature T c

a . The metal volumes are assumed to be
homogeneous in temperature, with rotor copper at temper-
ature Tr, stator copper at temperature Ts, and stator iron at
temperature TFe. Rotor copper is heated by heat rate Q̇σ

r
due to resistive electric loss from the field current If. Sim-
ilarly, the stator copper is heated by heat rate Q̇σ

s due to
stator terminal current It. The stator iron is heated by heat
rate Q̇σ

Fe due to eddy current losses and hysteresis losses,
(Hargreaves et al., 2011). The air gap between rotor and
stator is heated at heat rate Q̇σ

f due to bearing and windage
losses, (Øyvang, 2018). In addition, heat conduction/con-
vection between the various volumes take place. It is of
interest to consider how the inputs ṁw, ṁa, T c

w, Q̇σ
Fe, Q̇σ

f ,
It and If influence the temperatures in the generator met-
als, Tr, Ts, and TFe. A functional diagram for the air-cooled
synchronous generator is shown in Figure 2 relating inputs
and outputs.

The mathematical model governing generator metal
temperatures is taken from (Lie, 2018),

mrĉp,Cu
dTr

dt
= 1.1RrI2

f −U Ar2δ

(
Tr −T δ

a

)
(1)

msĉp,Cu
dTs

dt
= 3RsI2

t −U As2Fe (Ts −TFe) (2)

mFeĉp,Fe
dTFe

dt
= U As2Fe (Ts −TFe)

−U AFe2a

(
TFe −T h

a

)
+ Q̇σ

Fe. (3)

Here, mr, ms, and mFe are the masses of the respective
metal volumes. ĉp,Cu and ĉp,Fe are specific heat capaci-
ties of copper and iron, respectively. Rr and Rs are re-
sistances of copper in the rotor and stator, respectively,
U Ar2δ , U As2Fe, and U AFe2a are heat transfer factors be-
tween rotor metal and rotor-stator air-gap, stator copper
and stator iron, and stator iron and stator duct air gaps,

respectively. T δ
a and T h

a are air temperatures in the rotor-
stator air-gap and in the stator duct, respectively.

Similarly, for air inside the generator,

0 = ṁaĉp,a

(
T c

a −T δ
a

)
+U Ar2δ

(
Tr −T δ

a

)
+ Q̇σ

f (4)

0 = ṁaĉp,a

(
T δ

a −T h
a

)
+U AFe2a

(
TFe −T h

a

)
. (5)

Here, ĉp,a is the specific heat capacity of air.
For the heat exchanger, we introduce Stanton numbers

Nw
St and Na

St,

Nw
St =

U Ax

ĉp,wṁw
(6)

Na
St =

U Ax

ĉp,aṁa
(7)

N∆
St = Nw

St −Na
St. (8)

Here, ĉp,w is the specific heat capacity of water, and U Ax
is the heat transfer factor between water and air in the heat
exchanger. Provided that the Stanton numbers are constant
and independent of (i) position, and (ii) temperatures, the
counter-current heat exchanger model is

(
Nw

St −Na
St exp

(
−N∆

St

))
T c

a =N∆
StT

h
a +Na

St

(
1− exp

(
−N∆

St

))
T c

w.

(9)
The heat exchanger model in 9 is the result of analytically
solving a linear two point boundary value problem.

This model can be extended in several directions, by (a)
introducing temperature dependence in the specific heat
capacities ĉp, j, (b) introducing temperature dependence
in the copper resistances Rr and Rs, and (c) in principle
also in the heat transfer factors U A j. The only substantial
change in the model is that if any of the Stanton numbers
become temperature dependent, this will invalidate 9, and
the involved two point boundary value problem must be
solved numerically instead of analytically. Here, we as-
sume constant Stanton numbers, even when the specific
heat capacity of air is allowed to vary in 4–5.

To this end, four different models will be considered
here:

• Model 1: constant values, ĉp, R

• Model 2: constant specific heat capacity, temperature
dependent resistance, ĉp, R(T )

• Model 3: temperature dependent specific heat capac-
ity, constant resistance, ĉp (T ), R

• Model 4: temperature dependence specific heat ca-
pacity and resistance, ĉp (T ), R(T ).
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To simplify the discussion and avoid invalidating the heat
exchanger model in 9, we will assume that specific heat
capacity of air is constant in the heat exchanger but varies
with temperature in the air gap/air duct, while we will in-
troduce temperature dependence in copper and iron. To
this end, for ĉp, j (T ), j ∈ {a,Cu,Fe}, we will use a linear
approximation given as,1

ĉp, j (T ) =
R

M j
(a j +b jT ) , (10)

where R is universal gas constant and M j is the molecular
mass. For the copper resistance,

R j (Tj) = R◦
j (1+αCu (Tj −T ◦

Cu)) , j ∈ {r,s} (11)

where αCu is temperature coefficient of resistance for cop-
per.

The parameters for the model of (Øyvang, 2018) are
given in Table 1.

Operating conditions for the model are given in Table 2.

2.1 Overview of experimental data
A heat-run test of the synchronous hydro generator ma-
chine was performed for 600min, (Øyvang, 2018). Table 3
lists measured quantities in the test.

Measurements were logged every minute for a sup-
plied field current (If) from cold-start. The cold-run lasted
53min, where the terminal voltage was built-up by resid-
ual flux in rotor windings. After the cold-run period, the
supplied field current was increased leading to an increase
in the measured stator copper and iron temperatures. The
experimental results are displayed in Figure 3.

3 State Estimation
Notation used in the state estimation algorithms are given
in Table 4.

A relatively general nonlinear system model can be rep-
resented as

xk+1 = f (xk,uk)+wk (12)
yk = h(xk)+ vk (13)

with wk ∼ N (w̄k,Wk) and vk ∼ N (v̄k,Vk).
For our model, the state is x =

(
Tr Ts TFe

)
, while

the measurements are y =
(

Ts TFe
)
. We wish to com-

bine the measurements (y) with the state space model to
estimate the unmeasured rotor copper temperature Tr and
air gap temperature T δ

a . To do that, we use two different
Kalman Filter algorithms: the Unscented Kalman Filter
(UKF) is presented in (Simon, 2006), while the Ensemble
Kalman Filter (EnKF) is succinctly described in (Brastein
et al., 2019). A summary of the UKF and EnKF algo-
rithms are given in Tables 5 and 6, respectively.

1We will be considering linear approximation for temperature de-
pendent specific heat capacity. The 7-coefficients, often called as NASA
Lewis coefficients, power series form is given in (McBride et al., 2002;
Zehe et al., 2002) which is converted to linear approximation for sim-
plifying mathematical models.

Table 1. Parameters for air-cooled synchronous generator
model. For the NASA Lewis coefficients, see 10.

Quantity Symbol Value
Atmospheric
pressure

pa 1.01 ·105 N/m2

Specific heat
capacity, air

ĉp,a 1.15kJ/kg/K

Specific heat
capacity, water

ĉp,w 4.2kJ/kg/K

Specific heat
capacity, copper

ĉp,Cu 385J/kg/K

Specific heat
capacity, iron

ĉp,Fe 465J/kg/K

Universal gas
constant

R 8.314J/K/mol

Molar mass, air Ma 28.97g/mol
Molar mass, water Mw 18.01g/mol
Molar mass, copper MCu 63.54g/mol
Molar mass, iron MFe 55.84g/mol
NASA Lewis
coefficient-linear
approx., air

aa, ba 3.28, 6.72 ·10−4

NASA Lewis
coefficient-linear
approx., copper

aCu, bCu 2.56, 1.2 ·10−3

NASA Lewis
coefficient-linear
approx., iron

aFe, bFe 0.19, 6.76 ·10−3

Copper mass, rotor mr 9260kg
Copper mass, stator ms 6827kg
Iron mass, stator mFe 71.2 ·103 kg
Heat transfer, rotor
to air gap

U Ar2δ 2.7kW/K

Heat transfer, stator
copper to iron

U As2Fe 20kW/K

Heat transfer, stator
iron to air

U AFe2a 14.3kW/K

Heat transfer, solid
to air

haAx 55.6kW/K

Heat transfer, solid
to water

hwAx 222kW/K

Heat transfer, air to
water

U Ax 1/
(

1
haAx

+ 1
hwAx

)
Reference
temperature air

T ◦
a 25 ◦C

Rotor copper ohmic
resistance,
T ◦

r = 15.7 ◦C

R◦
r 0.127Ω

Stator copper ohmic
resistance,
T ◦

s = 20 ◦C

R◦
s 1.95mΩ

Resistance nominal
temperature

T ◦
Cu 25 ◦C

Resistance
temperature coeff.

αCu 4.04 ·10−3 ◦C−1
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Table 2. Operating conditions for air cooled synchronous gen-
erator model.

Quantity Symbol Value
Initial value, rotor
temperature

Tr (t = 0) 28 ◦C

Initial value, stator
copper temperature

Ts (t = 0) 28 ◦C

Initial value, stator
iron temperature

TFe (t = 0) 28 ◦C

Influent water
temperature

T c
w 3.8 ◦C

Water mass flow
rate

ṁw 53.9kg/s

Air mass flow rate ṁa 49.2kg/s
Rated rotor field
current

If 1055A

Rated stator
terminal current,
rated

It 5360A

Stator iron
generated heat

Q̇σ
Fe 212kW

Friction work Ẇf 528kW
Friction heating Q̇σ

f 0.8 ·Ẇf

Table 3. Measured quantities.

Quantity Symbol Units Sensor #
Generator
terminal
voltage

Vt kV – –

Active power
of generator

Pg MW – –

Reactive
power of
generator

Qg MVar – –

Rotor field
current

If A – –

Temperature
of stator
copper

Ts
◦C PT100 15

Temperature
of stator iron

TFe
◦C PT100 4

Hot air
temperature

T h
a

◦C PT100
/CTD

2/2

Cold air
temperature

T c
a

◦C PT100
/CTD

2/2

Cold water
temperature

T c
w

◦C Analog –

Hot water
temperature

T h
w

◦C Analog –

Terminal
current

It =
P2

g +Q2
g√

3·Vt

A – –

Figure 3. Experimental data for generator model from a 600min
heat-run test.

Table 4. Notations for the UKF and EnKF algorithms.

Symbol Description
x, x̄, x̂ State vector, its mean, its estimate
xk Vector x at time instance k
x̂k|k−1 a priori estimate of xk based on

measurements up to time tk−1
x̂k|k a posteriori estimate of xk based

on measurements up to time tk
X State co-variance
w Process noise
v Measurement noise
W Process noise co-variance
V Measurement noise co-variance
K Kalman gain
E Innovation co-variance
Z Cross co-variance
ε Error between measurement and

estimate

SIMS 60

193DOI: 10.3384/ecp20170190  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



Table 5. Algorithm: UKF.

Initialization, k = 1 :
x̂1|1 = E(x1) = x̄1
X1|1 = X1
for k = 2, 3, ...
Propagation step:
1. Generate sigma points using unscented transformation
x(i)k−1|k−1 = x̂k−1|k−1 + x̃(i), i ∈ {1,2, ...2n}
where, with Cholesky root R: RT R = n ·Xk−1|k−1,
x̃(i) = R:,i, i ∈ {1,2, ...n}
x̃(n+i) =−R:,i, i ∈ {1,2, ...n}

2. Propagate sigma points through process model
x(i)k|k−1 = f

(
x(i)k−1|k−1,uk−1, w̄k

)
, i ∈ {1,2, ...2n}

3. a priori state and co-variance estimate
x̂k|k−1 =

1
2n ∑2n

i=1 x(i)k|k−1
Xk|k−1 =

1
2n ∑2n

i=1

(
x(i)k|k−1 − x̂k|k−1

)(
x(i)k|k−1 − x̂k|k−1

)T
+Wk

Information update:
1. Propagate sigma points through measurement equation
y(i)k|k−1 = h

(
x(i)k−1|k−1,uk−1, v̄k

)
, i ∈ {1,2, ...2n}

2. Predicted measurements
ŷk|k−1 =

1
2n ∑2n

i=1 y(i)k|k−1

3. Innovation and cross co-variance
Ek|k−1 =

1
2n ∑2n

i=1

(
y(i)k|k−1 − ŷk|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T
+Vk

Zk|k−1 =
1

2n ∑2n
i=1

(
x(i)k|k−1 − x̂k|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T

4. Kalman gain
Kk = Zk|k−1E

−1
k|k−1

5. a posteriori update
εk|k−1 = yk − ŷk|k−1
x̂k|k = x̂k|k−1 +Kkεk|k−1

Xk|k = Xk|k−1 −KkEk|k−1KT
k

Table 6. Algorithm: EnKF

Initialization, k = 1 :
xi

1|1 ∼ N (x̄1,X1), i ∈
{

1,2, ...,np
}

wi
k ∼ N (w̄1,Wk), i ∈

{
1,2, ...,np

}
vi

k ∼ N (v̄1,Vk), i ∈
{

1,2, ...,np
}

x̂1|1 =
1

np
∑np

i=1 x(i)1|1

X1|1 =
1

np−1 ∑np
i=1

(
x(i)1|1 − x̂1|1

)(
x(i)1|1 − x̂1|1

)T

for k = 2, 3, ...
Propagation step:
1. Propagate particles through process model
x(i)k|k−1 = f

(
x(i)k−1|k−1,uk−1,w

(i)
k−1

)
i ∈

{
1,2, ...,np

}
2. a priori state and co-variance estimates
x̂k|k−1 =

1
np

∑np
i=1 x(i)k|k−1

Xk|k−1 =

1
np−1 ∑np

i=1

(
x(i)k|k−1 − x̂k|k−1

)(
x(i)k|k−1 − x̂k|k−1

)T

Information update:
1. Propagate particles through measurement equation
y(i)k|k−1 = h

(
x(i)k−1|k−1,uk−1,v

(i)
k−1

)
i ∈

{
1,2, ...,np

}
2. Predicted measurements
ŷk|k−1 =

1
np−1 ∑np

i=1 y(i)k|k−1

3. Innovation and cross co-variance
Ek|k−1 =

1
np−1 ∑np

i=1

(
y(i)k|k−1 − ŷk|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T

Zk|k−1 =

1
np−1 ∑np

i=1

(
x(i)k|k−1 − x̂k|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T

4. Kalman gain
Kk = Zk|k−1E

−1
k|k−1

5. a posteriori update of state and co-variance
ε(i)k|k−1 = yk − y(i)k|k−1

x(i)k|k = x(i)k|k−1 +Kkε(i)k|k−1

x̂k|k =
1

np−1 ∑np
i=1 x(i)k|k

Xk|k =
1

np−1 ∑np
i=1

(
x(i)k|k − x̂k|k

)(
x(i)k|k − x̂k|k

)T
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The UKF and EnKF are initialized with W =
diag(4,4,4), V = diag(1,1) and X = 10 ·W . Both the
process noise w and measurement noise v are considered
to be white Gaussian noise with zero-mean. The simu-
lation time step ∆t is set to 1min and the total time of
simulation is 584min.

The simulation environment is the Julia programming
language2. UKF and EnKF are compared based on root
mean square error (RMSE) of innovation residuals, ε =
yk − ŷk|k−1, and computational speed3.

4 Results and Discussion
The result for air and metals temperature estimation for
Model 1 (ĉp, R) using UKF and EnKF for different parti-
cles is given in Figure 4.

Similarly, for four different models the estimates using
UKF is given in Figure 5 and using EnKF with np=1000
is given in Figure 6.

The rotor copper temperature and air gap temperature
estimates using EnKF, for Model 1, with different particles
is given in Figure 7.

Figure 5 and 6 show a substantial difference in rotor
copper and air gap temperature estimates for Model 3 and
Model 4: models with temperature dependence in ĉp tend
to decrease the temperature of metals, but increase the air
temperatures. In opposition to this, models with tempera-
ture dependence in R show an increase in both metal and
air temperatures.

Figure 7 shows a comparison of EnKF depending on
particle number np: with increased np, the estimates con-
verge better and give a result similar to that of the UKF.

A comparison of UKF and EnKF with different number
of particles, based on RMSE of innovation residuals and
computational speed, is given in Table 7.

The results show that the RMSE of the UKF is larger
than that of the EnKF. Furthermore, for EnKF the resid-
uals decrease with increased number of particles np. The
RMSE of residuals were lowest for Model 2 as compared
to the other models. The computational time increases
from UKF to EnKF and with np. The computational time
also increases when the model complexity increases from
Model 1 to 2 to 3 to 4 for EnKF with np = 1000.

5 Conclusions and future work
State estimation using UKF, and EnKF with different
number of particles, have been studied for four differ-
ent models. Results indicate that temperature dependent
heat capacities increase air temperatures and reduce metal
temperatures, while temperature dependent resistances in-
crease all temperatures. EnKF shows better estimation
accuracy than UKF, but with a penalty in computational
speed. In the comparison, we have re-used the constant

2Version 1.0.3 (2018-12-18)
3Processor: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz, 2901

Mhz, 2 Core(s), 4 Logical Processor(s)

Figure 4. Air and metal temperature estimates using UKF and
EnKF for Model 1 (ĉp, R). Subscript k | k represents a posteriori
estimate.
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Figure 5. Air and metal temperature estimates using UKF for
different models.

Figure 6. Air and metal temperature estimates using EnKF
(np = 1000) for different models.
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Figure 7. Rotor copper temperature and air gap temperature
estimates using different number of particles for EnKF.

Table 7. Comparing Kalman filters with different models.

Model KF RMSE(ε) Elapsed[s]
UKF 2.215 0.338
EnKF(np = 50) 2.066 1.088

1 EnKF(np = 100) 2.039 2.211
EnKF(np = 500) 2.010 10.860
EnKF(np = 1000) 2.012 26.343
UKF 1.652 0.744
EnKF(np = 50) 1.573 1.774

2 EnKF(np = 100) 1.524 3.414
EnKF(np = 500) 1.500 16.729
EnKF(np = 1000) 1.492 32.225
UKF 3.137 1.041
EnKF(np = 50) 2.735 3.238

3 EnKF(np = 100) 2.729 7.643
EnKF(np = 500) 2.705 36.663
EnKF(np = 1000) 2.701 58.595
UKF 2.730 0.798
EnKF(np = 50) 2.407 3.154

4 EnKF(np = 100) 2.342 5.287
EnKF(np = 500) 2.331 35.877
EnKF(np = 1000) 2.327 60.993

model parameters in all the models. Because these param-
eters essentially have been tuned for Model 1, it is difficult
to draw strong conclusions on which model is best at this
moment.

Future work will involve studies of (i) temperature de-
pendent specific heat capacity for air and water with nu-
meric solution of the resulting two point boundary value
problem, (ii) extending the number of outputs from two
(Ts, TFe) to four (Ts, TFe,T c

a , and T h
a ), (iii) and a more for-

mal model fitting for the various models.

References
Ole Magnus Brastein, Bernt Lie, Roshan Sharma, and Nils-Olav

Skeie. Parameter estimation for externally simulated thermal
network models. Energy and Buildings, 191:200–210, 2019.
doi:10.1016/j.enbuild.2019.03.018.

ENTSO-E. Commission regulation (eu) 2016/631 of 14 april
2016 establishing a network code on requirements for grid
connection of generators. Technical report, European Net-
work of Transmission System Operators for Electricity,
ENTSO-E Avenue de Cortenbergh 100 1000 Brussels Bel-
gium, 2016.

Philip A. Hargreaves, B.C. Mecrow, and Ross Hall. Cal-
culation of Iron Loss in Electrical Generators Us-
ing Finite-Element Analysis. Industry Applications,
IEEE Transactions on, 48(5):1368–1373, May 2011.
doi:10.1109/IEMDC.2011.5994805.

Bernt Lie. Solution, Project, FM1015 Modelling of Dynamic
Systems. University of South-Eastern Norway, November
2018.

Bonnie J McBride, Michael J Zehe, and Sanford Gordon. Nasa
glenn coefficients for calculating thermodynamic properties
of individual species. Technical Report NASA/TP–2002-
21155, NASA, NASA Center for Aerospace Information
7121 Standard Drive Hanover, MD 21076, 2002. URL
http://gltrs.grc.nasa.gov/GLTRS.

Thomas Øyvang. Enhanced power capability of generator
unites for increased operational security. PhD thesis, Univer-
sity of South-Eastern Norway, Faculty of Technology, Nat-
ural Sciences and Maritime Sciences University of South-
Eastern Norway N-2018 Porsgrunn Norway, December 2018.
ISBN: 978-82-7206-503-3 (print) ISBN: 978-82-7206-504-0
(online).

Dan Simon. Optimal State Estimation: Kalman, H Infinity, and
Nonlinear Approaches. Wiley-Interscience, Hoboken, New
Jersey, 2006.

Statnett. Fiks funksjonskrav i kraftsystemet [functional require-
ments in the power system]. Technical report, Statnett, 2012.

Michael J. Zehe, Sanford Gordon, and Bonnie J. McBride. CAP:
A Computer Code for Generating Tabular Thermodynamic
Functions from NASA Lewis Coefficients. Technical Report
NASA/TP–2001-210959/REV1, NASA, NASA Center for
Aerospace Information 7121 Standard Drive Hanover, MD
21076, 2002. URL http://gltrs.grc.nasa.gov/
GLTRS.

SIMS 60

197DOI: 10.3384/ecp20170190  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019

https://doi.org/10.1016/j.enbuild.2019.03.018
https://doi.org/10.1109/IEMDC.2011.5994805
http://gltrs.grc.nasa.gov/GLTRS
http://gltrs.grc.nasa.gov/GLTRS
http://gltrs.grc.nasa.gov/GLTRS


Online Monitoring of a Synchronous Generator’s Capability with
MATLAB

Prabesh Khadka Dietmar Winkler Thomas Øyvang

University of South-Eastern Norway, corresponding author: thomas.oyvang@usn.no

Abstract
The future power systems are expected to operate closer
to its security and stability limits mainly due to growth
in variable renewable generation and the increase in load
demand. In particular, voltage stability has been a major
subject of discussion and concern in electric power sys-
tem operation and planning worldwide. This evolution of
the power system demands enhancement in ability from
large synchronous generators to respond to change in de-
mand and supply. In this contribution, a new visualization
tool for online monitoring of a synchronous generator’s
capability is presented. In addition, the proposed tool is il-
lustrated with a long-term voltage stability simulation car-
ried out on a 10-bus benchmark power system. It is shown
that the load models, load tap changing transformer and
generator over-excitation limiter have a significant influ-
ence on voltage stability and collapse phenomena.
Keywords: generator capability diagram, visualization
tool, long-term voltage stability, PSAT, MATLAB

1 Introduction
Voltage stability is becoming one of the major concern
in power system operation and planning worldwide due
to the increased power demand. Many incidents of volt-
age collapse have been reported at different corners of the
world and few examples can be found in CIGRE report
(CIGRE Task Force 38.02.10 1993). The inability of the
power system to meet the reactive power demand in an
electrical network is one of the causes of voltage instabil-
ity. Generators are normally the sources of reactive power
support during voltage insecurities. Thus, monitoring the
voltage profiles, voltage regulation and the reactive power
output of generators is one of the important countermea-
sures for voltage collapse.

In a recent Ph.D. study (Øyvang 2018), utilization of the
thermal capacity of a synchronous generator to enhance
the voltage stability of the power system was studied. The
available voltage control capability depends upon the tem-
perature rise of the machine during contingencies (Øyvang
2018). Furthermore, the normal limits of operation of gen-
erators without exceeding their thermal limitations are de-
fined by the reactive capability curve. The method of de-
termining the capability curves are described by various
authors in different papers as in (Pejovski, Velkovski, and
Najdenkoski 2016) and (I.Ili et al. 2007). However, the de-

velopment of an automatic visualization tool which moni-
tors the generator’s operating conditions in real-time with
sophisticated visualization adds quality to the usefulness
of the PQ diagram.

This paper will primarily address the implementation of
PQ capability diagram for online monitoring of the gen-
erator’s capability in MATLAB through a visualization
tool. In addition, long term voltage stability or the collapse
phenomenon which includes the dynamics of slow acting
components such as transformer under-load tap changer
(ULTC), generator overexcitation limiter (OXL) and ther-
mostat controlled loads, has been investigated in this re-
search work along with the visualization of its result in the
visualization tool. The dynamic simulation is carried out
on Kundur 10-bus test system (Kundur 1994), in MAT-
LAB based power system toolbox PSAT; a Free and Open
Source Software (FOSS) which includes different static
and dynamic power system component models. Moreover,
the PQ capability diagram is implemented in the MAT-
LAB programming language with the help of Graphical
User Interface.

This paper is organized as follows. Section 2 gives a
brief introduction to the generator PQ capability diagram.
Section 3 presents the model formulation and the develop-
ment of a automatic visualization tool. In Section 4, the
dynamic voltage stability analysis of a test power system
is demonstrated whereas the temperature visualization of
a hydrogenerator in the visualization tool is shown in Sec-
tion 5. The simulation results and the discussions are in-
cluded in Section 6.

2 Generator capability curve
Synchronous generator is a primary source of reactive
power in the network and plays an important role in main-
taining the voltage stability in the network. The bound-
aries for supplying the reactive power at a given active
power output is defined by the generator capability curve
provided by the manufacturers (Dragosavac et al. 2012).
Following operational constraints are the reasons for the
limits in active and reactive power of the synchronous gen-
erator (Machowski, Bialek, and Bumby 2008).

1. Armature current limit.

2. Field current limit.

3. Steady-state stability limit.
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4. Stator end region heating limit.

5. Generator active power limit.

Figure 1 shows the synchronous generator capability di-
agram where the area bounded by the curve ABCDEFG
indicates the safe region of operation for salient-pole ma-
chine.

Q

Practical stability 
Limit (4) 

Theoretical 
stability Limit 

Reluctance 
circle Minimum rotor 

field current 
limit 

Cylindrical rotorCylindrical rotor
Salient-poleSalient-pole

P

Q

Maximum turbine power rating (5) 

Armature heating limit(1)

Maxmimum 
field current 

limit (2)

Q
Leading Lagging

A B

C

DE

F

G
(3)

5 % excitation margin

0

qx

V 2−

dx

V 2−

d

q

x

VE max

maxVI

Figure 1. Capability diagram of synchronous generator (Walker
1953).

3 Model development
This paper presents the methodology for obtaining the PQ
diagram for a cylindrical rotor synchronous generator with
the following simplification during its modelling:

• The synchronous generator has been assumed to be
connected to the infinite bus, i.e., with constant volt-
age.

• The machine saturation effect on the direct axis syn-
chronous reactance has not been considered, i.e.,
xd = constant.

• The effect of armature resistance has also been ne-
glected.

The rated parameters of generator G3 in local area in
the Kundur 10-bus system (Kundur 1994) is taken as ref-
erence for determining capability diagram with 10% sta-
bility margin.

The theoretical PQ diagram can be derived by divid-
ing every phasor in the vector diagram by direct-axis syn-
chronous reactance xd and multiplying them with the ar-
mature voltage as shown in Figure 2. The figure so ob-
tained, contains P and Q as the x-axis and y-axis respec-
tively.

3.1 Rated turbine power limit
The maximum and the minimum turbine power limits are
drawn according to the following two conditions (I.Ili et
al. 2007):

0E

U

dIX dX

UE0

dX

U 2

UI

Q
 

0E

U

dIX dX

UE0

dX

U 2

UI

Q
 

P

Figure 2. Derivation of a P-Q capability diagram from the
phasor diagram (cylindrical rotor) (Vrazic, Viskovic, and Hanic
2014).

• If the power of the turbine (PT ) exceeds the rated
power of the generator (Pn), i.e., if PT > Pn, then
Pmax = Pn.

• If the power of the turbine is equal to or less than the
rated power of the generator (PT ≤ Pn), then Pmax =
PT ·ηG.

This limit is indicated in Figure 3 as Pmax. The min-
imum power depends upon the turbine requirements re-
garding turbine efficiency. For example, in Kaplan and
Francis turbine minimum power output is 5 % to 30% of
rated output whereas in some turbines like Pelton turbine
this limitation does not exists (I.Ili et al. 2007).

3.2 Rated stator current limit
The rated stator current limit is plotted as a constant semi-
circle with center at origin ‘0’ and radius as the rated ap-
parent power, Sn as shown in Figure 3. Point ‘P’ denotes
the rated operating condition of the generator. The typical
operating point is considered as cosφn = 0.72. So,

Prated = Sn cosφ = 1 ·0.72 = 0.72 p.u.

Qrated = Sn sinφ = 1
√

1− (cosφ)2 = 0.69 p.u.
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Figure 3. Rated stator current limit and maximum turbine limit
plot.

3.3 Rated field current limit
For implementing the rated field current limit, an arc is
drawn with the center at (0,-V 2

xd
) and radius Eqmax V

xd
from
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cosφ = 0 to cosφ = 0.72 (rated) where Eqmax is calculated
from the phasor diagram as shown in Figure 2 as:

Eqmax =
√
(V + Ixd sinφ)2 +(Ixd cosφ)2 (1)

The limit is drawn as curve PK in Figure 4.
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Figure 4. Rated field current limit plot.

3.4 Practical Stability limit
For round-rotor generators, theoretical stability limit is
achieved at load angle δ=90°. However, the theoretical
stability curve is reduced by a constant power value, for
example by 10% of the rating of the machine as a safety
margin and the corresponding curve so obtained is termed
as practical stability margin (Walker 1953).

The theoretical stability curve is drawn as a straight
line at point (0,-V 2

xd
)= (0,- 1

2.07 )= (0,-0.48) represented by
dashed line in Figure 5. The practical stability limit is rep-
resented as curve AD in the same figure.
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Figure 5. Theoretical and practical stability limit plot.

Hence, the safe region for the operation of a syn-
chronous generator is represented by the area bounded by
curve APKD in Figure 5.

3.5 Visualization tool
As discussed earlier in this section, various operational
limits in PQ diagram was implemented in the MATLAB
software environment. For improved visualization of the
diagram, a visual App was created using MATLAB App
designer. The App yields a more accurate approximation
to test for conditions of instability as it provides enhanced
online information of the system. A Graphical User Inter-
face was created by using different components from the

component library and specifying app’s design and lay-
out. For defining the App behavior, App designer allows
an integrated version of the MATLAB Editor (MATLAB
App Designer 2019). All the parameter values imple-
mented, and the dynamics observed in the visualization
tool is based upon the case study of Kundur 10-bus test
system which is described further in Section 4.

(1)

(7)
(4)

(3)

(2)

(5)

(6)

(8)

Figure 6. Graphical User Interface for generator capability dia-
gram.

Figure 6 shows a GUI environment for the designed
App in order to visualize the generator capability. The
GUI consists of three figure windows and two main tabs.
The upper figure (1) in the user interface shows the ca-
pability curve with the real-time operating point as indi-
cated by ‘red’ asterisk symbol. The ‘Parameters’ tab (2)
shows the operating point (P and Q) values in real time
along with the operational power factor. The ‘Operat-
ing conditions’ tab (3) shows the actual operating condi-
tion, i.e., whether the generator is operating in over excita-
tion mode or under excitation mode with current operation
mode indicated by lamp glowing ‘green’. The ‘Machine
Paramters’ tab as shown in Figure 7 indicates the gener-
ator rated conditions which can be changed by changing
the values in the respective fields. For example, the ef-
fect of change of direct axis synchronous reactance on the
generator limits can be visualized in the figure section (1)
by changing its value in the ‘Machine rating’ tab. The two
lower figure windows (7) and (4) shows the plot of active
and reactive power, and the plot of rotor and stator tem-
perature of the synchronous machine respectively.

On top of the ‘Parameters’ tab resides a ‘Limit checker’
(5) as indicated by a lamp which glows ‘red’ when
the defined operational limits on the capability curve
are violated along with the actuation and information of
‘ALARM’ (6) to notify the operating personnel about the
limit violation as shown in Figure 6. The lamp glows
‘green’ along with an information ‘NORMAL’ when the
operating point lies within the defined boundaries as
shown in Figure 7. The ’Trace’ button (8) is used to turn
on or turn off the trace of the operating point’s path which
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is as shown in Figure 6 and Figure 7 respectively.

Figure 7. Graphical User Interface for Generator Capability Di-
agram showing ‘NORMAL’ condition.

4 Case study
As a case study, the long term voltage stability analysis is
carried out on a 10-bus benchmark power system, and the
dynamics involved during the simulation is visualized in
the automatic visualization tool.

4.1 Description of a test system
The Kundur-10 bus test system (Kundur 1994) is chosen in
order to analyze the performance and influence of differ-
ent power system components in voltage stability. The test
system used for the study is actually based on the system
described in (CIGRE Task Force 38.02.08 1995) as BPA1

test system, with some changes in load and compensat-
ing devices parameters. The necessary data used for the
simulation of the system is provided in Appendix A.

Here the generators G1 and G2 in remote areas supply
loads to the local area through five 500 kV transmission
lines. The local generator G3 at bus 3 generates 1154 MW
and the remaining power is supplied by two remote gener-
ators. Shunt capacitors are placed at various locations in
the local area. Figure 8 shows the implementation of test
system in PSAT.

4.2 Simulation results
The voltage at bus 11 and the reactive power output of
the generator G3 is compared for the test system includ-
ing and excluding the overexcitation limiter (OXL) with
under-load tap changer (ULTC) in action for both cases,
which are as presented in the Figure 9 and Figure 10 re-
spectively.

The sequence of events triggered during the simulation
in different time frames can be explained as follows.

1Bonneville Power Administration https://www.bpa.gov

Figure 8. Single line diagram implementation of the test system
in PSAT.

• One of the transmission lines is disconnected at time
t=5 seconds. When the line has been disconnected,
the apparent impedance and consequently the line
losses and voltage drop of the transmission system
is increased.

• The second time frame starts at around 10 seconds
where the ULTC is activated as the voltage at the bus
11 is lower than the preset value. The ULTC tries
to keep the voltage at the secondary bus (bus-11) at
its original value by adjusting its tap ratio which de-
mands more reactive power support from the gener-
ators present in the network. Thus, to meet the in-
creased reactive power demand the excitation current
is continuously increased until the maximum tap of
transformer is reached or voltages at the buses are
recovered. This time frame can be observed in Fig-
ure 9a and Figure 10a. The voltage at bus 11 is re-
stored to nearly its reference value in about 90 sec-
onds as shown in Figure 9.

• The third time frame begins with the actuation of
overexcitation limiter as shown in Figure 9b at
around t=150 seconds by ramping down the field cur-
rent. The following chains of events occurs after the
actuation of OXL.

– As the field current of G3 is reduced, its termi-
nal voltage drops.

– Voltages at bus 11, 10 and 7 drops.

– ULTC on T6 tries to restore the voltage at bus
11 back to its original value.

– The reactive power demand on generators in-
creases. Field current of machine 3 increases
and continues to remain at its limit and the ter-
minal voltage of G3 further decreases.

– Voltage at bus 7 drops and causes a further re-
duction in terminal voltage of bus 10 and bus
11.

– The ULTC operates again, repeating above
mentioned chains of events.

Hence in response to each tap movement of ULTC,
the voltage at bus 11 reduces rather than increased.
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(a) With only ULTC
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(b) With ULTC and OXL

Figure 9. Bus 11 voltage without and with OXL.

This indicates that the system has entered into the
voltage instability phase. The bus 11 voltage falls
progressively as shown in Figure 9b until the ULTC
reaches its maximum tap position at around 260
seconds. The voltage at bus 11 settles at around
0.77162 p.u.

Furthermore, the effect of static load models on long
term voltage stability was studied for the test case consid-
ered. Figure 11 shows the voltage profile at bus 11 when
the load at bus 8 is modelled as constant impedeance, con-
stant current and constant power load keeping the load at
bus 11 as constant impedeance. The ULTC and OXL were
kept inactive during this condition and transformer T6 is
implemented as a fixed tap transformer with tap ratio same
as that of transformer T5.

It is observed that the constant power load stabilizes at a
lower value as compared to constant impedance and con-
stant power load because of its load restoring character-
istics (Nguyen 2008). That means constant power load
tries to consume the same power at a pre-disturbance level
as consumed power is independent of voltage variations
and hence the voltage drops even further. The dynamics
of voltage profile obtained is comparable to the similar
case study performed in Ph.D. thesis (Nguyen 2008) us-
ing PSS/E software.
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(b) With ULTC and OXL

Figure 10. Reactive power output of generator G3 without and
with OXL.
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Figure 11. Voltage profile at bus 11 for different load types.

5 Temperature visualization
The temperature development in the stator and rotor wind-
ings of the synchronous generator was also observed in the
same tool by using the thermal model as described in (Øy-
vang 2018). This is shown in Figure 13. Figure 12 shows
the thermal model implemented in Simulink software en-
vironment. The output temperatures as seen in the fig-
ure is the result of input field current and armature current
taken from the local generator G3 in Kundur 10-bus sys-
tem when replaced by 103 MVA hydrogenerator at ‘Åb-
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jøra’ in Norway. The machine data of hydrogenerator is
provided in Table 6. The field and the stator currents in
real time are observable in the tool. The initial tempera-
ture in the stator and rotor was taken as 28°C during the
simulation.

Figure 12. Simulink circuit for the thermal model proposed in
(Øyvang 2018)

Figure 13. Temperature observation in the visualization tool.

6 Conclusion and further work
This paper proposes a visualization tool for the online
monitoring and visualization of a generator’s capability.
The tool was developed using a MATLAB software envi-
ronment with the help of Graphical User Interface which
provides the user interaction with the visualization tool
through graphical displays, inputs, and visual indicators.
The tool provides power factor, active and reactive power
in real-time along with an alarm signal in the case of limit
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violation. For the validation of the tool, a simulation re-
garding a long term voltage stability analysis is carried out
and the dynamics involved are shown in the same tool.

Furthermore, the effect of ULTC, overexcitation limiter
and the static loads on the voltage collapse scenario is pre-
sented in this paper. The severity of effect depends upon
the type of load.

Future work will focus on the implementation of addi-
tional characteristics in the tool such as stator end region
heating limit, the temperature dependence of the generator
limits and the variable terminal voltage. In addition, the
effect of dynamic load characteristics which has a signifi-
cant influence on voltage stability can be analyzed further.
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A Data for Test System
Sbase = 100 MVA

Table 1. Bus Data

Bus Base Vscheduled Phase Qshunt Pload Qload
No [kV] [p.u.] [rad] [Mvar] [MW] [Mvar]

1 13.8 0.98 0 0 0 0
2 13.8 0.96 0 0 0 0
3 13.8 1.04 0 0 0 0
5 500 1.00 0 0 0 0
6 500 1.00 0 0 0 0
7 500 1.00 0 750 0 0
8 13.8 0.94 0 1500 3000 1800
9 115 0.95 0 300 0 0
10 115 0.89 0 0 30 0
11 13.8 0.91 0 0 3100 90

Table 2. Generators load flow data

Bus Gen Base Pgen Qgen Sbase Qmax Qmin
No Name [kV] [MW] [Mvar] [MVA] [Mvar] [Mvar]

1 G1 13.8 3471.9 1129.03 5000 1600 -1000
2 G2 13.8 1736 712.53 2200 725 200
3 G3 13.8 1154 414.58 1600 700 -100

Table 3. Transmission lines data

From To R X B
Bus Bus [p.u.] [p.u.] [p.u.]

5 6 0.0000 0.0040 0.0000
6 7 0.0015 0.0288 1.1730
9 10 0.0010 0.0030 0.0000

Table 4. Transformers data

Transformer R X Tap ratio
[p.u.] [p.u.]

T1 0.0000 0.0020 0.8857
T2 0.0000 0.0045 0.8857
T3 0.0000 0.0125 0.9024
T4 0.0000 0.0030 1.0664
T5 0.0000 0.0026 1.0800
T6 0.0000 0.0010 0.9750

Machine parameters:
Machine 1: Infinite bus
Machine 2: H = 2.09, MVA rating = 2200 MVA
Machine 3: H = 2.33, MVA rating = 1400 MVA

Following are the parameters for machine 2 and ma-

Table 5. Thermal model data

Parameters Symbol Value Unit

Thermal resistance, TFe −Tδ RFe 0.07 K/kW
Thermal resistance, Ts −TFe Rs 0.05 K/kW
Thermal resistance, air R1 0.018 K/kW
Gain coefficient, T2,i K1 0.59 -
Gain coefficient rotor(Cu) K2 0.5 -
Gain coefficient stator(Fe) K3 0.36 -
Heat exchanger effieicency (epsi) ε 0.595 -

Table 6. Machine data of Åbjøra (Øyvang 2018)

Description Parameters Value Unit

Rated power Sn 103 MVA
Rated voltage Vtn 11 kV
Rated current Itn 5406 A
Rated field current I f dn 1064 A
Inertia constant H 2.66 s
Number of polepairs p 6 -
Synchronous reactance d-axis xd 1.09 [p.u.]
Synchronous reactance q-axis xq 0.67 [p.u.]
Transient reactance d-axis x′d 0.24 [p.u.]
Subtransient reactance d-axis x′′d 0.15 [p.u.]
Subtransient reactance q-axis x′′q 0.19 [p.u.]
Transient OC Time constant d-axis T ′

do 10 s
Transient OC Time constant q-axis T ′

qo 0.23 s
Subtransient OC Time constant d-axis T ′′

do 0.086 s
Subransient OC Time constant q-axis T ′′

qo 0.23 s
Stator leakage inductance Xl 0.08 [p.u.]
Stator resistance Ra 0.00182 [p.u.]

chine 3 on their respective MVA ratings:

Ra = 0.0046 Xd = 2.07 Xq = 1.99
Xl = 0.155 X ′

d = 0.28 X ′
q = 0.49

X ′′
d = 0.215 X ′′

q = 0.215

T ′
do = 4.10 T ′

qo = 0.56

T ′′
do = 0.033 T ′′

qo = 0.062

Exciters:
Both machine 2 and machine 3 uses thyristor exciters with
a gain of 100 and the time delay of the measurement sys-
tem as 0.02 seconds.

Overexcitation limiter for machine 3:
The OXL model used in the simulation is as described in
Section 4.2 with integrator time constant (T0)= 60 seconds,
maximum field current ilimf d = 11.7 p.u. and maximum out-
put signal vmax

OXL= 5.02 p.u.

ULTC data for transformer T6 between bus 10 and
bus 11:
Deadband: ±1 % p.u. bus voltage
Tap range: ±16 steps
Step size: 5/8 % (=0.00625 p.u.)
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Abstract
This paper presents the findings of a web-based survey

on the current use of lighting simulation tools in

Sweden. The objective was to understand which lighting

simulation tools are currently used in Sweden and to

understand the design practitioners’ needs for future

software development. The results showed that lighting

simulation programs are widely used in Sweden.

However, the respondents paid less attention to daylight

than to artificial light. The respondents’ principal

training methods were university courses and self-study.

Interior illuminance values, glare indexes, and the

daylight factor were the most commonly calculated

simulation outputs. “Ease of use” and “accuracy” were

identified as the most important factors in the use of the

software, while “the slowness of simulation pro�

cesses” causes the most dissatisfaction. Dialux was 

the most popular software program used.

Keywords: lighting simulation tools, simulation

programs, lighting design, Dialux

1 Introduction

Good lighting quality is one of the essential values that

buildings provide. The effect of daylight on saving

energy, occupant well-being, and productivity is

demonstrated in various studies  (Veitch and Newsham

,1997; Bodart and De Herde, 2002; Krarti et al., 2005;

Reinhart et al., 2006; Aries and Newsham, 2008;

Borisuit et al., 2015; Yu and Su, 2015; Arif et al., 2016;

Tonello et al., 2019). In addition, the right balance

between daylighting and artificial lighting is necessary

for providing good lighting (Boyce 2014).

Lighting simulation tools help designers to analyze

different aspects of lighting quality and assess

alternatives design solutions (Reinhart and Fitz, 2006).

Using these tools provides a great opportunity to

improve the quality of lighting in indoor environments

as well as to save energy. Their applications and

functions are growing rapidly, and currently more

lighting designers, engineers, and architects

increasingly tend to use these tools (Hien et al., 2000;

Reinhart and Fitz, 2006)

This survey investigated the current use of lighting

simulation tools in Sweden. The aim of the survey was

to understand which lighting design tools are currently

used, and to understand the design practitioners’ needs 

for future software development. The target audience 

was lighting designers, architects, engineers, and 

researchers who work in interior lighting design. 

1.1 Previous studies 

Reinhart and Fitz (2006) reviewed previous surveys on 

the use of lighting simulation tools covering the period 

from 1985 to 2002 and followed on with a web-based 

survey focused solely on the use of daylight simulation 

tools. The goals of the paper were to identify the most 

popular daylighting design tools, the top metrics 

measured and to investigate how these metrics 

influenced design decisions. They received responses 

from 193 participants from 27 countries. More than 50% 

of the simulation software used by the participants was 

based on Radiance (Larson, Shakespeare et al. 1998). 

Daylight factor and illuminance level were the most 

measured metric, and type and control of shading 

devices were the design aspect most influenced by the 

simulation results. 

A paper authored by Attia et al. (2012) reviewed 

current trends in building simulation and outlined the 

major criteria for selection and evaluation of building 

performance simulation (BPS) tools, based on analyzing 

user’s needs for tools capabilities and requirement 

specifications. The main criteria suggested for software 

evaluation included: usability and information 

management (UIM), integration of intelligent design 

knowledgebase (IIKB), accuracy of tools and ability to 

simulate detailed and complex building components 

(AADCC), interoperability of building modeling (IBM), 

and integration with building design process (IBDP). 

Four hundred and forty-five architects and 453 

engineers responded to the survey, providing a snapshot 

of the preference for and current use of the ten BPS 

tools. The results of the survey confirmed the previous 

findings of architects’ preference for better UIM of BPS 

interfaces (Attia 2009; Holm 1993; Mahdavi, 2003; 

Punjabi 2005; Van Dijk 2002). On the contrary, the 

engineers’ top BPS tool selection criterion was the 

AADCC. The authors concluded that development of 

the next generation of BPS tools had to be directed 

within the gestalt of UIM interface, IIKB, AADCC, 

IBM, and IBDP (Attia et al., 2012). 

A state of the art literature review in lighting 

simulation for building science was conducted by 
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(Ochoa et al., 2012). The study explored main aspects 

of a program (input, modelling, and output) and 

concluded that lighting simulation for building science 

has advanced rapidly within two decades. Aspects that 

have experienced development were: accuracy, number 

of parameters to calculate, computational times, 

scenario complexity and connection to whole building 

simulation. Radiance remains a widely accepted general 

purpose simulation engine. 

2 Method 

The method and questionnaire for the survey by 

Reinhart and Fitz (2006) was used as a base for this 

survey. The major differences were that this survey was 

geographically limited to Sweden with a special focus 

on lighting designers. In addition, the domain was 

extended beyond daylight to include electrical light.  

2.1 Participants selection 

For convenience and ease of reach, this survey was 

conducted remotely via an online surveying service from 

October 27 to December 8, 2014. Two resources were 

used to identify lighting designers: the first resource was 

the list of graduates from Lighting Design program at 

Jönköping University (Sweden), which accounted for 

about 43% of participants (N=54). The remaining 

(N=81) lighting designers were identified from the list 

of registered companies in the Ljuskultur database 

(www.ljuskultur.se), the magazine for lighting 

designers in Sweden. In total, emails were sent to 135 

people to invite them to participate, out of which 15 

emails were not delivered. One of the participants 

forwarded the questionnaire to four other lighting 

designers, so the target audience was 124 designers in 

total. Nine people responded saying they do not work in 

the area (anymore). Five people declined to participate. 

Thirty-one people took part and filled out the 

questionnaires, which was 28% of our target audience.  

According to the Ljuskultur database, there are 75 

registered companies in the lighting design field. Since 

the questionnaire spread over 25 unique companies, the 

results of this survey represent one-third of the Swedish 

lighting design companies. 

2.2 Questionnaire procedure 

The creation and administration of the questionnaire 

were done with Survey Gizmo 

(www.surveygizmo.com). The questionnaire contained 

four types of questions: multiple choice multiple 

selection (check box), multiple choice single selection 

(radio button), prioritizable selection list (Drag & Drop 

Ranking question), and open question (free text). Some 

of the multiple-choice questions had an additional 

textbox for custom input or clarification of answers. It 

was possible to leave some questions unanswered. 

A draft version of the questionnaire was tested for 

clarity and integrity by lighting expert colleagues at 

Jönköping University. The questionnaire was revised 

according to the comments and feedback and approved 

for final distribution. 

The questionnaire began with a welcome page and a 

short description of the survey. The first section 

collected the background information of the 

participants: age, gender, education, profession, and 

types of companies in which they worked and for how 

long. The second and third sections were dedicated to 

daylighting and electric light, respectively. There were 

two branching questions in each section and a final open-

ended question as outlined below: 

1. Do you consider daylighting/electric lighting in 

your design? 

a. If yes, answer more detailed questions 

b. If no, go to 3 

2. Do you use simulation tools in your design? 

a. If yes, answer more questions about 

simulation tools and their pros and 

cons 

b. If no, why not? 

3. Open-ended question: 

a. For daylighting section: “Do you think 

the use of daylight should be 

increased? If so, how?” 

b. For electric lighting section: “What do 

you think is the most important item to 

do to create better electric lighting 

design?” 

Depending on the answers given, the questionnaire 

varied in length from 11 to 36 questions.  
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3 Results 

3.1 Participants’ background  

The survey results on the participants’ background 

showed that 46% of them were 25 to 34 years old and 

35% were 35 to 54 years old; two-third of the 

participants were men. In terms of education, 55% had 

a bachelor’s degree and 29% had a post-graduate degree 

(Figure 1.). 

 

Figure 1. Participant´s education 

As expected, most of the participants (85%) identified 

themselves as a lighting designer. In addition, there 

were two lighting consultants, an engineer, a technical 

manager, and outdoor lighting designer among the 
participants (Figure 2.) 

 

Figure 2. Participant´s profession 

Forty-three percent of the participants had more than 

10 years of work experience in lighting design, 30% had 

3–5 years, and 17% had 5–10 years. Only three 

respondents had less than two years of work experience. 

The majority of participants (87%) said that they worked 

in a lighting design company. However, they also added 

other fields to their company's area of operation 

including luminaire manufacturing/trade, construction, 

infrastructure and urban design and planning, landscape 

architecture, environmental consulting, electrical 

design, heating ventilating/ventilation and air 

conditioning (HVAC) design, and telecommunications.  

The participants were from companies of varying 
sizes: 23% of the people were from companies with 1–

19 employees, 27% with 20–99, 13% with 100–499, 

23% with 500–100,000, and 13% with 10,000+ 

employees.  

3.2 Daylight 

The aim of the daylight section was to investigate 

how and to what extent lighting designers considered 

aspects of daylight in their design. Twenty (65%) of the 

31 individuals who completed the survey, said that they 

take daylighting into account in their designs.  

Out of those who considered daylighting, 85% (17) 

used daylight simulation tools. The 15% who did not 

simulate daylight, mentioned two reasons for this: either 

their clients were not willing to pay for the service or the 

tools were not reliable. This group used their experience 

combined with lookup tables for estimating and 

calculating daylight metrics during the schematic design 

and design development phases.  

The 17 participants who used simulation tools were 

asked to specify the primary simulation tool they were 

using. They could choose one item out of ten popular 

programs or enter a custom program name. As shown in 

Figure 3., Dialux was by far the most popular software, 

followed by Diva (12%), Relux (12%), and 

Ecotect/Radiance (6%). 

The lighting designers then selected the type of 

outputs they calculated using simulation tools. They 

could choose from several predefined options and could 

append additional comments. The overall majority 

(88%) of designers calculated interior illuminance. 

Glare indices came second. Daylight factor and interior 

luminance were calculated with the same frequency at 

the third place. One person also mentioned the 

calculation of exposure time to UV. Figure 4. illustrates 

the answers. 

 

 Figure 4. Type of outputs calculated using software 
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The next set of results was about the stages(s) of the 

lighting design process in which simulation tools were 

employed. The participants could choose among the 

following alternatives: schematic design, design 

development, detailed design, and others. Answers 

indicated that the use of simulation tools were highest 

during the design development stage (34%); however, a 

number of comments highlighted the importance using 

the simulation tools in all stages of the design. The 

choices for which of the eight design aspects most 

influenced daylighting analysis were weighted based on 

how the respondents had prioritized them (number of 

options minus the rank in the selection). The score 

computed for each answer option is the sum of all the 

weighted values. The results showed that “size of 

windows”, “room dimensions”, and “building 
orientation” were influenced the most by daylighting 

analysis. The results for how participants had learned to 

work with the software tools showed that 65% had 

university training, 53% trained themselves, and 18% 

were trained at a company (respondents could select 

more than one training method). 

The results on the advantages of the simulation 

programs (including ease of use, accuracy, performance, 

simulation speed, sufficient program documentation, 

other) are shown in Figure 5. One designer expressed 

his/her satisfaction with the ability to reuse models from 

other disciplines by importing them into the chosen 

program.  

 
 

Figure 5. Advantages of simulation programs 

Regarding disadvantages of simulation tools, one 

concerned poor quality of rendering and another 

concerned the incompatibility of Dialux with Mac OS. 

program. The results on the Disadvantages of the 

simulation programs (including slowness, inaccuracy 

complexity, insufficient documentation, performance 

problems, and other) are shown in Figure 6. 

 

 
 

Figure 6. Disadvantages of simulation programs 

Finally, eight participants said they used additional 

software for daylighting analysis. The secondary 

software programs were: 3DS max (+mental ray), 

DAYSIM, Ecotect, Ecotect + DAYSIM, Photoshop, 

andAGI32. One of the participants added a tertiary 

software, Velux Daylight Visualizer. 

3.3 Electric light 

The results for the section on electric light show that all 

the participants except one (97%) did consider electrical 

lighting. Of those who considered it, the majority (93%) 

used a simulation tool in their design process. One 

participant did not use any simulation tools because 

his/her clients were not willing to pay for the extra 

service. Another did not find simulation tools reliable. 

These two designed based on their knowledge and 

experience. 

The17 participants who considered both daylighting 

and electrical lighting in their design were asked if they 

were using the same tools for both tasks. Seventy 

percent of them responded yes. Dialux stood out being 

86% of participants’ top choice. The type of outputs 

generated by designers using these tools are shown in 

Figure 7. 

Figure 7. Type of outputs calculated by simulation tools 

 A comparison between the outputs generated for 

daylighting and electrical lighting is illustrated in Figure 

8. By interpreting the answers, it can be observed that 

many designers used Dialux for calculating glare 

indexes produced by daylight. The method that Dialux 

used to calculate glare is recommended for electric light, 

but not for daylight (DiLaura, 2011; Jakubiec and 

Reinhart, 2012). 

 

 

Figure 8. Comparison of outputs generated for daylighting 

and electric lighting 
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Similar to that in daylighting design, the use of 

simulation tools in the electrical lighting design was 

highest during the design development phase (43%). 

Some designers stated that they used simulations tools 

throughout all stages of design. 

The results on building design aspects that were 

influenced by electric lighting analysis revealed that 

“placement of fixtures” was affected more than any 

other design aspect.  

The results on the software training methods (from 

those who had not already answered the question show 

that self-training was the dominant training method 

among participants (91%), followed by university 

(27%), company (18%), and workshop (18%) training.  

Those who had skipped the daylighting section 

(N=12) were asked about the advantages and 

disadvantages of the software tools in relation to 

electrical lighting. There were some complaints 

regarding the inconsistency of simulation and reality, 

poor performance, and lack of feature. The view of 

participants on the advantages of the software (including 

ease of use, accuracy, performance, simulation speed, 

sufficient program documentation, other) is illustrated 

in Figure 9. 

 

 

Thirty-six percent of the participants said they 

worked with other simulation programs, and mentioned 

using 3ds Max, DIAlux (+ evo), Photoshop, RELUX, 

AGi32, and HIlITE as their secondary software. 

3.4 Qualitative Results (Content Analysis) 

Fifty-five percent of participants provided answers to 

the questions, “Do you think the use of daylight should 

be increased? If so, how?” Most of them believe that it 

should be increased, although one person said "Not 

necessarily more daylight but the ability to control  

daylight should be increased in a way that benefits the 

sense of light (e.g., excessive daylight from 

uncontrolled large glass windows that let in plenty of 

natural light can also increase the feeling of darkness in 

inner spaces farther away from windows.)" [Translated 

from Swedish]. The answers to the questions were 

summarized in five categories including organizational, 

technical development, laws and rule and education of 

designers.  

Forty-eight percent of participants answered the 

questions, “What do you think is the most important 

thing to do to create better electrical lighting design?”  

Some of their suggestions were ‘better cooperation 

between different actors in the process’, ‘better use of 

simulation programs’, and ‘Take the human demands 
into consideration to a larger extent’. 

4 Discussion 

Boundaries of this survey were limited in three aspects: 

geographically to Sweden, domain-wise to lighting 

design, and sample size to around 33% of the population 

of lighting designer’s company in Sweden. Therefore, 

care must be taken when using the results for other 

studies. 

As the results show, the majority of lighting designers 

tend to consider both daylight and artificial light in their 

design. Moreover, a high percentage use some type of 

simulation tools for analysis and/or rendering. Among 

the different factors mentioned, user friendliness (ease 

of use), accuracy, and speed, stood out as being key 

criteria for users’ choice of software. Users were also 

reluctant to work with multiple software tools and 

preferred a one-size-fits-all type of software. The 

majority of participants ignored metrics such as daylight 

glare probability and dynamic daylight performance 

metrics, which are present only in relatively specialized 

software programs with relatively complicated user 

interfaces. If more attention was paid to these key user 

experience design factors in the development of new 

software programs or improvement of existing ones, it 

may result in greater use of the advanced metrics. If 

(very) specific lighting knowledge is needed to come up 

with proper results, it must be possible to bypass a 

sophisticated part of the software. The survey showed 

that the majority of the lighting designers has a 

bachelor’s degree in lighting design and know about the 

existence of certain advanced metrics but have no 

sufficient training in using them. Nonetheless, fixing 

one issue should not come at the cost of another but an 

optimal trade-off should be achieved. One such example 

is sacrificing accuracy for speed. As reported by some 

designers, low accuracy and reliability were the main 

reasons why they did not use certain software tools. 

However, advancements in computer technology will 

have a positive effect in overcoming issues regarding 

simulation time. 

Participants’ comments in the open-ended questions 

imply that designers need a better understanding of 

software tools in terms of the features and limitations, 

accuracy, reliability, and the stage in which these tools 

should be employed. The results of this survey show that 

universities were the main training channel, which 

highlights the important role that universities can play 

in educating future lighting designers by offering 

specialized and advanced courses. This is especially true 

because of the ongoing paradigm shifts in building 

82%

36% 36% 45%
27% 18%

Figure 9. The view of participants on the advantages of 

the software 
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modeling from document-based CAD models to 

objectbased Building Information Modeling (BIM) 

process. BIM's emphasis on collaboration is in 

line with collaborative nature of lighting design pro-

cesses, and the new generation of software applications 

can provide new methods of design at different levels 

and stages in an integrated environment. Simulation 

tools could also be used as an effective educa-

tional tool for understanding physical concepts 

in an interactive environment (Feng 2003, Reinhart, 

Dogan et al. 2012).

5 Conclusions

The work in this study revealed that lighting simulation

programs are widely used in Sweden. The most

commonly calculated performance metrics were

illuminance values, glare indexes, and the daylight

factor. “Ease of use” and “accuracy” were identified as

the most important factors in the use of the software,

while “slowness of simulations process” causes the most

dissatisfaction. Dialux was the most popular software

program used.
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Abstract

Hourly energy readings from heat billing meters are valu-
able data source for the energy performance assessment of
district heating substations and the buildings they serve.
The quality of such analyses is bounded by the accuracy of
the hourly readings. Thus, assessing the accuracy of the
hourly heat meter readings is a necessary (but often over-
looked) first step to ensure qualitative subsequent
analyses.

Due to often limited bandwidth capacity hourly read-
ings are quantized before transmission, which can cause
severe information loss. In this paper we study 266
Swedish heat meters and assess the quantization effect by
information entropy ranking. Further, a detailed compari-
son is conducted with three heat meters with typically oc-
curring quantization errors. Uncertainty due to the quanti-
zation effect is compared with the uncertainty due to typi-
cal accuracy of the meter instrumentation. A method to
conflate information from both energy readings and en-
ergy calculated from flow and temperature readings is de-
veloped.

The developed conflation method is shown to be able
to decrease uncertainty for heat meters with severely quan-
tized energy readings. However, it is concluded that a
preferable approach is to work with the heat meter infra-
structure to ensure the future recorded readings holds high
enough quality to be useful for energy performance assess-
ments with hourly or subhourly readings.

 
Keywords: heat meters, uncertainty, district heating,
information entropy, EN 1434

Nonmenclature
Symbols� Energy/heat [kWh/h]

V Volumetric flow rate [m3/h]� Temperature [°C]Δ� Temperature difference [°C]� Information entropy [bits/sample]� Heat capacity [MJ/(K·m3)]Δ Quantization step size� Number of quantization levels

� Standard deviation 

Subscripts  

Conflated, energy reading, calculated 

Permanent/nominal approved flow  

Inferior/minimum approved flow 

Quantization error 

Meter instrumentation error � Flow meter 	 Temperature sensor pair 

1 Introduction
Many district heating operators gather hourly values to
centralized databases from their heat billing meters (Gadd
and Werner, 2015; Sandin et al., 2013). These hourly read-
ings are a valuable information source for fault detection
and energy performance assessment of the district heating
substations and the buildings they serve (Gadd and
Werner, 2015; Mansson et al., 2019; Sandin et al., 2013).
In Sweden, district heating operators are required to share
daily meter readings to their customers (EIFS 2014:2),
while hourly values only must be provided if these are
used for billing. Readings typically available in heat meter
data management systems are hourly averages of energy
and flow and hourly instantaneous samples of the primary
side supply and return temperatures (Sandin et al., 2013).
Because of bandwidth constraints, only a finite number of
bits are available and recorded values are therefore quan-
tized before transmission. Quantization can cause in-
creased uncertainty, especially when the recorded value
needs to be able to represent a large value range (e.g. cu-
mulative values). Therefore, hourly values transmitted
from the heat meters can have quantization error that is
much larger than the accuracy of the measurement equip-
ment. Such large quantization errors can severely deterio-
rate the quality of subsequent analyses.

In this paper we study 266 Swedish heat meters and
assess the quantization effect by information entropy rank-
ing (Section 2.1). Further, a detailed comparison is con-
ducted with three heat meters. Uncertainty due to the
quantization effect is compared with the uncertainty
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due to typical accuracy of the meter instrumentation
(Section 2.2). A method to conflate information from
both energy readings and energy calculated from flow
and temperature readings is developed (Section 2.3-2.4).

2 Material and methods
Material consist of data from 266 district heating billing
meters, serving multifamily buildings located in
Eskilstuna, Sweden. Most of the heat meters are
Kamstrup Multical 601 / 602 calculators equipped with
Kamstrup Ultraflow 54 / 34 ultra sonic flow meters.

2.1 Information entropy

Sandin et al. (2013) suggested using information entropy
ranking as a way of identifying heat meter readings with
large quantization errors. Information entropy is defined as
the sum of the negative binary logarithm log (∙) of the
probabilities p(∙) for each value  in the time series of
length :

� = − � p(��) ⋅ log
�p(��)� (1)
�
���

Two to the power of the entropy indicates the
number of quantization levels (L) available in the meter
readings: ∝2  (provided that the observation period
holds rich enough operation conditions). For example, H
= 8 would indicate 256 levels and H = 4 would indicate
16 levels. However, information entropy depends on the
actual operation conditions such as weather and the
probability of an observation to occur (i.e. meters re-
peating same observation quantities, due design or even
weather conditions, will get a lower information entropy
value). Therefore, the 2 estimate, will generally result in
fewer levels than what is available due to the meter con-
figuration. Figure 1 shows the 266 heat meters ranked
by their calculated entropy for energy readings and flow
readings.

2.2 Uncertainty of the energy readings of the heat 

meter 

The energy reading at time index ! is denoted as ��;� . 
The time-varying uncertainty of the energy readings is 

estimated as 

��;� = $ �&'(;�
   + Δ+
12 
(2) 

where �&'(;�  is the standard deviation (SD) at time 

index k due to uncertainty of the meter equipment and -+  denotes the quantization step size of the energy 

readings (i.e. the largest unit of measure, typically 1, 10 

or 100 kWh). The Δ+
 /12  is a commonly used 

approximation of the variance for the quantization 

effect used for noise modelling (Marco and Neuhoff, 

2005).  

The uncertainty calculations of the meter 

equipment is adopted from the European Standard EN 

1434-1:2015: 

�&'(;� = /�0;�
  + �(;�
    (3) 

where �0;� is the standard deviations of the flow meter 

at time index k and �(;� is the standard deviation of the 

temperature sensor pair and the calculator (where the 

temperature sensor pair is the dominating error source). 

Typical accuracy of Multical heat meters equipped with 

Ultraflow flow sensors (Kamstrup A/S, 2018) is used 

�0;� = 1 ��;�(1 +  0.0134/3�)/100, 6� 3� >  38∆��;�38�(1 +  0.0134/38)/100, 6� 3� ≤  38  (4) 

�(;� = 1��;�(0.6 +  6/∆��;�)/100, 6� ∆��;� >  223��(0.6 +  6/2)/100, 6� ∆��;� ≤  2 (5) 

Figure 1. Entropy ranking of hourly energy and flow readings from 266 heat meters. 
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where ��;� [kWh] is the energy reading at time step k 

(accumulated heat use between k-1 to k), 3� [m3/h] is 

the flow rate reading at time step k (flow rate between 

k-1 to k), 34 is the permanent nominal flow rate , 38 is 

the inferior flow rate (where the meter shall function 

without exceeding the allowed accuracy), c is the heat 

capacity of the fluids (assumed as a constant of 4.12 

MJ/(K·m3) (OIML R 75-1, 2002)), and ∆��;�  is the 

average temperature difference between fluids 

calculated as  

∆��;� = ��;�/(3��) (6) 

2.3 Energy calculated from flow and temperature 

readings  

The quantization error of flow readings is generally 

lower than for the energy readings, especially during 

operation conditions when the temperature difference 

is low (see visualization in Figure 3). Therefore, in case of 

large quantization errors, it can be more accurate to 

estimated energy use from flow and temperature 

readings: 

�
;� = � ∙ ∆�
;�3� (7) 

�
;� = max(��;� − -+ , ?6�(��;� + -+ , �
;�))  (8) 

where ∆�
;�  denotes the temperature difference 

estimated from the temperature readings. Due to the 

instantaneous nature of the temperature readings, 

the  ∆�
;�  approximation can deviate much from the 

true average temperature difference. While, Eq. (6) can 

be assumed to calculate the true average ∆� when the 

quantization error is negligible.  

Following equations are suggested to estimate the 

time-varying standard deviation for the energy use �
: 

�
;� = /��
;(;��
 + ��
;@';��
 + ��&'(;��

 (9) 

where �
;(;�  denotes the uncertainty due to 

instantaneous nature of the temperature readings and �
;@';�  denotes the quantization error due to low 

resolution in the flow readings (see Eg (11)).  

�
;(;� = �4/200 + 0.02 ∙ �
;� (10)

�
;@';� = ∆�
;�-A�√12  (11)

where �4 denotes the energy at nominal flow and -A 

is the width of the quantization step size of the flow 

readings.  

2.4 Conflation 

The two energy variables ��  and �
  are not fully 

independent as they are derived from the same 

metering equipment. Therefore, the two quantities are 

weighted as two dependent normal variables (Winkler, 

1981) 

�C = (�

  −  D���
)�� + (��
 −  D���
)�
��
 + �

  −  2D���
  (12)

�C
 = (1 − D
)��
�





�� + �

 −  2D���
 (13)

where D denotes the correlation, which is assumed asD = 0.5 ∙ min(��, �
)/max(��, �
).  The practical

impact of assuming a dependency between the variables

is a more conservative conflated estimate (both on

mean and uncertainty interval) than if the variables

would be assumed fully independent.

3 Results
Figure 2 shows the estimated uncertainty of hourly en-
ergy readings due to meter instrumentation accuracy
and quantization effects. For the heat meter (a) the quan-
tization error is a much larger uncertainty source than
the meter instrumentation accuracy – the quantization
causes severe information loss. For heat

Figure 2. Uncertainty of hourly energy readings due to meter instrumentation accuracy and quantization effects for three 

example substations. Information entropy of the hourly energy readings are given in the subtitles. 
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meter (b), the quantization does contribute to increased
uncertainty, especially during low energy use condi-
tions. For heat meter (c), the quantization only has ef-
fect during very low energy use conditions.

Figure 3 shows hourly energy readings with stan-
dard deviation for three example substations. As can be
seen in the figure, the uncertainty of the calculated en-
ergy quantity (blue dots) dominates under most condi-
tions (due to the high uncertainty in that the instanta-
neous temperature readings represent the average tem-
perature difference for the whole integration step). How-
ever, when the quantization error is large, as in substa-
tion (a), the calculated energy quantity is a better esti-
mate than the energy readings (black dots), especially
during low energy use conditions. The conflated vari-
able (purple dots) is a weighted estimate that weights
the two variables according to their empirically esti-
mated time-varying uncertainties.

4 Discussion
The information entropy ranking method, suggested by
Sandin et al. (2013), is suitable for identifying meters
with large quantization errors. The method is straight-
forward to conduct as the only required input are the
readings themselves. However, it is dependent on the
actual operation conditions, which makes it less suitable
to compare meter readings from different time periods
or different district heat operators.

There is no explicit regulation regarding the accuracy
of the recorded energy readings. Flow meters have a

maximum allowed error (1.96σ) of 5 % at 0.1∙34
(SWEDAC, 2007) and district heat operators are re-
quired to provide their customer with daily energy read-
ings (EIFS 2014:2). Using a 5 % error limit also for the
quantization effect on daily energy readings would
mean that hourly energy readings still could have en-
tropy values as low as approximately 2.8-3.0 bits/sam-
ple.

The next generation of heat meters and data acquisi-
tion infrastructure (Kamstrup A/S, 2018) can provide
data with higher resolution. However, it will take many
years before all current infrastructure is upgraded.
Therefore, the suggested conflation method can play a
role in improving hourly readings for many years to
come.

The proposed conflation method assumes normal
distributions. The quantization error is however uniform
and can also be biased (Marco and Neuhoff, 2005). The
used additive noise approximation(Δ /12)is only valid if
Δ is small compared to the quantization levels . There-
fore, the proposed method is likely to have some dis-
crepancies and can still be improved. The empirical un-
certainty models, equations (4), (5) and (10), are how-
ever likely to be a larger error sources than the confla-
tion method or the additive noise approximation. Not-
withstanding, the proposed conflated energy quantity
Ccan be anticipated to be closer to the true mean values
and have a tighter distribution than � and �  would by
themselves.

Figure 3. Three example heat meters (columns a, b and c) visualizing the impact of typically occurring quantization errors. 

Entropy of the hourly energy readings are given in the subtitles. Upper row: energy vs temperature difference between supply 

and return flows. Bottom row: energy vs standard deviation. 
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5 Conclusions
District heat operators should aim at information en-
tropy at minimum of 5 bits/sample (approximately 32
observable quantization levels in a typical year) to en-
sure qualitative hourly readings.

To ensure high quality readings for the whole me-
tering range and enable sub-hourly sampling, at least 7
bits per hourly sample information entropy is required.

For energy readings with entropy less than approx-
imately 5 bits/sample, the suggested conflation method
can counteract part of the quantization error by merg-
ing information from the flow and the instantaneous
temperature readings, especially during low energy
use conditions.

Acknowledgements

The work has been carried out under the auspices of the
industrial post-graduate school Reesbe, and was funded
by Eskilstuna Kommunfastigheter, Eskilstuna Energy
and Environment, and the Knowledge Foundation (KK-
stiftelsen).

References
EIFS 2014:2. Energimarknadsinspektionens

författningssamling, Swedish Energy Markets In-
spectorate regulatory code. EIFS, 2014.

H. Gadd and S. Werner. Fault detection in district heating
substations. Applied Energy, 157: 51–59, 2015. https://
doi.org/ 10.1016/j.apenergy.2015.07.061.

Kamstrup A/S. Technical description. Multical ® 603,
5512th– 2029_ ed. Kamstrup A/S, Skanderborg, Den-
mark, 2018.

S. Mansson, K. Davidsson, P. Lauenburg, and M. Thern. 
Automated statistical methods for fault detection in dis-
trict heating customer installations. Energies, 12(1), 
2019. https:/ /doi.org/10.3390/en12010113.

D. Marco and D. L. Neuhoff. The Validity of the Additive 
Noise Model for Uniform Scalar Quantizers. IEEE
Transactions on Information Theory, 51: 1739–1755, 
2005. https://doi.org/10.1109/TIT.2005.846397.

OIML R 75-1. Heat meters Part 1: General require-
ments (OIML R 75-1). Paris, France, 2002.

F. Sandin, J. Gustafsson, J. Delsing. Fault detection
with hourly district data. Stockholm, Sweden.
2013.

SWEDAC. STAFS 2007:2. Styrelsens för ackreditering och
teknisk kontroll (SWEDAC) föreskrifter och allmänna
råd om återkommande kontroll av vatten- och
värmemätar, 2007.

R. L. Winkler. Combining Probability Distributions from 
Dependent Information Sources. Management Science,
27(4):479–488, 1981. https://doi.org/10.1287/
mnsc.27.4.479.

 

SIMS 60

216DOI: 10.3384/ecp20170212  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019

EN 1434-1:2015. Heat Meters - Part 1. European Stan-
dards, Geneva, Switzerland, 2015.



The optimization of a distribution and over distribution line 
structure 
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Abstract 
This paper discusses that the significant voltage drop 
under load condition is the big problem of distribution 
networks, because it limits the transfer capability of 
distribution lines. A utilization of the compact lines 
technology allows a significant increase in the transfer 
capability of distribution lines. Important developments 
for controlling over voltage and conductor resonances in 
recent decades gave the possibility to reduce the 
distances between phases. The modern distribution lines 
can be optimized with respect to their electric 
parameters in comparison with normal distribution 
lines, and by this increase the capacity in energy 
transmission.  

Keywords: Natural power, transmitted power, capacity 

Nomenclature 

Pn = SIL surge impedance loading  
U1 voltage at the start of line  
U2 voltage at the end of line  
λ line impedance λ =wl/ υ 
J  current density, A/mm2 
ρ  conductor special resistance 
ℓcr length of line 
X inductive impedance 
R active resistance 
P/Pn transmitted power / surge impedance 

loading or natural power  
U2.nom real value voltage  
φ shift angle between voltage and current 
Dav average geometrical distance between 

conductors  
 Z surge impedance 
r0 radius of a conductor  
Irc reactive current end of line for 

consumed 
I2 loading current end of a line 

1 Introduction 
Voltage drops occur in transmission lines, sub 
transmission lines and distribution lines between the 
source and load. The voltage drop is very important 
when the impedance of transmission and sub-
transmission line is high relative to the components of 
the circuit. By choosing suitable physical inductive 
reactive power and capacity power in exit line. Then we 
do not need to have extra equipment like capacitors and 
reactors. The high efficient transmission of electricity is 
depending on two important problems: voltage drop and 
power losses. Since alternating current (AC) depend on: 
(1) reactive power, and (2) characteristic impedance 
(inductance and capacitance). 
       Part of the capacity transmitted depends on reduced 
reactive power in the line. If we provide the right 
conditions, electrical energy can be transmitted without 
power losses. The reactive power can be compensated 
by extra equipment installed in the line as a parallel 
reactor or compensating capacitor, but we will have 
problems to provide equipment and we have to pay a lot 
of money for the purchase of the equipment. There are 
other methods for reducing reactive power by creating 
balance between reactive power, inductance and 
capacitance in the line. This will be discussed in this 
paper.  

The effect cost for these equipment can be 
predicted, respectively. Transmission line design is 
discussed in (Clerci and Landonin, 1991; Heidari and 
Heidari, 2002; Doss, 2002). More details of technology 
is available e.g. in (Alcola Conduc tor Accessories, 
2003; ACCR, 2003; 3M, 2003). 

 

2 Designing modern lines in sub-
transmission and distribution 
voltages 

The equivalent scheme of a distribution lines is 
presented in Figure 1, Here X is the inductive impedance 
of a line, R is its active resistance. Let us present the 
loading current at the consuming end of a line in the 
symbolized form 

 
 
 

(1) 

SIMS 60

217DOI: 10.3384/ecp20170217  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



 
 
 

(2) 

where Z is the surge impedance of a line, Pn is the natural 
power of this line or surge impedance loading, P is the 
transmitted power, φ is the shift angle between voltage 
and current. The reactive current, consumed (generated) 
by the line at its end is equal to 

 
 
where λ is the wave length of a line. By P = Pn, the line 
does not consume and does not generate reactive 
current. But when P < Pn the line generates a reactive 
current, and when P > Pn, the line consumes reactive 
current. The sum of a current at the end of a consuming 
end of a line is equal to 

 
The voltage at the sending end of a line is shown in 
Figure 2. 

 

Figure 1. Inductive impedance (X) and active resistance 
(R) in distribution line. 

 

 
 
Figure 2. Vector diagram of voltages for transmission lines 
(a) for clean active loading and by presence of inductive 
component (b). 
 

 
where vector U2 is combined with the axis of a real value 
and X = λZ . By neglecting the unreal component, which 
influences on the value of U1 practically negligible  
and by assuming that U2 = U2.nom we obtain the value of 
voltage at the sending end of a line: 
 

 
where the assumption (U2 = U2.nom) is real, because by 
permissible voltage drop the voltage at the consuming 
end is to be not less then U2.nom.  

The ratio R / Z can be estimated by the next method. 
The active cross-section of the phase conductor is equal 
to 

 

where J is the current density in a conductor. Hence the 
active resistance of the phase conductor is equal to 

 

where ρ is the specific resistance of a conductors and / 
is the length of a line. Therefore, the ratio 

 

Putting this ratio into the relation (6) we obtain 

 

or the square equation in relation to the ratio P / Pn 

 

As a result of this equation solution the permissible 
ratio P / Pn by the given permissible  
ratio U1/U2 is equal to 
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Inserting in the last formula we get a value of  SIL 

 

We obtain another formula for the permissible 
transmitted power over a line  

 

 
It is possible to conclude from these last formulas, 

that it is impossible to transmit electrical energy over 
relatively short lines (λ ≤ 0.1 rad), for which these 
formulas were obtained, without voltage drop. More 
over the voltage drop along the line is to be bigger than 
the voltage drops on the active resistance, which is 
determined by the item with the specific resistance ρ.  

 By the presence of an inductive load (φ > 0), the total 
voltage drop over the line is to be cover and increasing 
the reactive item, which is determined by the last item 
in (12) and (14). Therefore by nominal operating voltage 
at the consuming end of a line the voltage at the sending 
end of a line is to be bigger, however, not bigger than 
the maximum operating voltage. For this reason the 
bigger is the length of a line, the less is the permissible 
transmitted power.  By the given permissible ratio U1/U2 
and by the given length of a line, the permissible 
transmitted power P is inverse proportional to the surge 
impedance of a line. 

3 Identification of surge impedance in 
modern distribution lines 

This conclusion confines the efficiency of measures for 
compactization of a line structure and additional 
measures, caused the decrease of the surge impedance 
of a line. Really the surge impedance of lines with single 
conductors in a phase is equal to 

where Dav.g is the average geometrical distance 
between all three phases, r0 is the radius of a conductor. 
By the decrease of Dav.g. The surge impedance Z 
decreases, but not so much. It is possible to decrease Z 
by using a conductor bundle instead of a single 
conductor with the same cross-section which is 
determined by the selected value of J. For double 
conductors in a phase the surge impedance of a line is 
equal to 

 

where d is the distance between two sub conductors. By 
triple conductors in a phase, the surge impedance of a 
line is equal to 

and by four sub conductors 

 

It is possible to see that the bigger the number of sub 
conductors the more effective is the splitting of the 
conductor. It is necessary to note that the efficiency of a 
conductor splitting increases by the decrease of Dav.g. 
The minimum Dav.g is by the triangle disposition of all 
phases.  

By optimizing the distance between neighboring 
conductors d=0,5 - 0,6 cm and by minimum possible 
distances between phases it is possible to decrease the 
surge impedance of a distribution line by two - three 
times compared to conventional lines (130 - 160 Ohm 
instead of 350 - 400 Ohm). Without interphases, the 
insulation spacers (compact lines) are two times and 
approximately three times less by the installation of 
interphase insulation spacers (super compact lines).  
This is in accordance with (14).   

4 Ratio P/Pn versus length 
The permissible ratio P/Pn , which was calculated by 
means of formula (12) with permissible voltage drop 
U1/U2 = 1.1 by current density J=1 A/mm2, by different 
values of a power factor cosφ and by different operating 
voltages of lines are presented in Figure 4 versus their 
length. 

 

Figure 3. Voltage line. 
 

As it is possible to see for each level of operating 
voltage a decrease of the power factor cosφ leads to a 
significant decrease of permissible ratio P / Pn , if this 
ratio P / Pn > 1. On the contrary if this ratio P / Pn < 1 
the decrease of cosφ leads to the increase of a 
permissible ratio P / Pn. A crossing of all curves takes 
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place by the same length of lines. This critical length of 
lines ℓcr increases when the operating voltage increases: 
The dependence ℓcr = f (Unom) is linear (Table 1) and can 
be estimated by means of the simple formula 

 
where ℓcr is in km and Unom is in kV. 
 

 

Figure 4. Ratio P/Pn versus length in kilometers. 
 

An increase of the operating voltage leads to a 
significant increase of the permissible ratio P / Pn for 
the given length of a line. Respectively, the permissible 
length of a line for a transmission of the given ratio P / 
Pn increases significantly by an increase in the operating 
voltage. Table 1 shows the significant length of modern 
distribution line for different operating voltages 
 
Table 1. Operating voltages. 
 

 

5 Conclusions 
 
Low power factor leads to the increase of voltage drop 
along the line and as the result limits the transmitted 
power and the possible length of electrical energy 
transmission. In order to decrease the influence of the 
power factor on the transfer capability of lines it is very 
useful to decrease inductive impedance of lines by using 
bundles of conductors and decreased distances between 
phases. 
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Abstract 
Important developments for controlling over voltage 
and conductor resonances in recent decades has given 
the possibility of reducing the phase distances in vast 
range.  By this optimization can be made of some of the 
electric parameters in comparison with normal 
distribution lines, increasing the capacity in energy 
transmission.  The reduction of the reactance of the line, 
increasing capacitance, increasing serge impedance 
loading (SIL) and reduction or increase of some of the 
other electrical parameters such as the  geometric mean 
distance (GMD), will increase the capacity of this kind 
of modern distribution lines in comparison to normal 
distribution lines. By doing this, optimization can be 
made for different parts of the net. In this paper, a 
program in windows using Delphi software is presented 
for this optimization. The electrical specifications of 
modern and normal distribution lines are compared.  

Keywords:     SIL-GMD surge impedance, modern line, 
sub-transmission line 

Nomenclature 

 

1 Introduction 
If we want to transmit energy in alternating current with 
acceptable efficiency, we must provide the minimum 
drop of voltage and energy. Alternating current is 
accompanied with reactive power and the transmission 
capacity of the line is determined by this. For suitable 
operation and using the maximum transmission capacity 
of the line, the reactive power should be minimized for 

any current load. If we provide these conditions, we can 
transmit energy without any loss due to reactive and 
capacitive characteristic. We can reduce the reactive 
power of the line by balancing between reactive power 
of line and additional equipment like capacitors or 
reactors. The effect cost for these equipment can be 
predicted, respectively. Transmission line design is 
discussed in (Clerci and Landonin, 1991; Heidari and 
Heidari, 2002; Doss, 2002). More details of technology 
is available e.g. in (Alcola Conduc tor Accessories, 
2003; ACCR, 2003; 3M, 2003). 

Another way to reduce the reactive power of lines 
is to balance between the inductive and capacitive 
reactive power of the line as such, whereby the total 
reactive power of the line will be minimum and about 
zero. The balancing between inductive reactive power 
and capacitive reactive power, can be possible by 
selecting the suitable physical shape of pilars and 
suitable placement of conductors. In this way, we don’t 
need additional equipment such as classical lines. For 
modern compared to normal lines, a basic review in 
calculation and reduction of phase distance is required. 
Gas insulated transmission lines (GIL) are discussed in 
(Koch and Schuette, 1997; Hiller and Koch, 1997; Hiller 
and Koch, 1998a; Chakir and Koch, 2001; Chakir and 
Koch, 2002) and their applications in metropolitan areas 
(Hiller and Koch, 1998b), Heningen et al. (2000) focus 
on long-time electrical and mechanical behavior of 
GILs. Full scale tests are presented in (CRIEPI). 

The advantage of this process is increasing the 
capacity, reducing the passing band width and reducing 
the line cost. The research shows that reducing the 
geometric mean distance (GMD) in a wide range is 
possible. (Markus et al., 2000; Inventions and 
Innovation, 1999). 

2 Designing modern lines 

2.1 Sub-transmission and distribution 
voltages 

In Iran, the 10-20 kV voltages are considered as 
distribution voltages and the 63-132 kV voltages as sub 
transmission voltages. The length of these lines is 
several tens multiplied by the length of transmission 
lines. Distribution and sub transmission nets provide the 
required energy for consumers. For this reason all of the 
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cities, province centers, industrial centers and 
productive centers, agricultural and animals' 
installations, are connected to distribution 20 kV or sub- 
transmission 63 kV nets. For this voltage range, the 
classic approach is to not use groups of conductors. Lack 
of the conductor group and incremental capacitive 
properties, causes problems in the designing of modern 
lines. The other property of distribution lines is not the 
use of tall towers with wooden or concrete legs but our 
main discussion in this article, are the GMD variations 
for increasing natural power or the serge impedance 
loading (SIL) of the line (Alexandrov and Heidari; Koch 
and Schuette, 1997). 

2.2 Geometric mean distance of phases 
One of the most important parameters for defining the 
inductance and capacitance of distribution lines is the 
distance between line phases. By assuming transposed 
line on the way of it we use, the GMD to evaluate the 
transmission line parameters. As the distance between 
conductors in the tower arrangement is defined, the 
expression (1) is achieved.  

 

where the quantity of GMR is the geometric mean radius 
of filled cylindrical conductors. Normally, if we replace 
the phases in towers, even for a specified distribution 
line, the GMD can have different quantities. As the 
erected shape of modern lines in the appendix of this 
article shows, according to the phase's arrangement, the 
GMD varies in a wide range. So, the electrical 
parameters of distribution lines have vast varieties 
according to the conductors' arrangement. 

2.3 Inductive reactance 
Inductive reactance is one of the most important 
parameters in voltage loss, stability limit and active and 
reactive losses and distribution line capacity too. 
Normally if we reduce the inductive reactance, we get 
some benefits for the lines. To calculate the inductance 
in a three-phase distribution line, we can use (1) for 
conductors of one kind that we get from 

 

where r is the radius in centimeter and μ is the respective 
permeability of conductor that for copper and aluminum 
is equal to one. Most of the distribution lines are 
filamentary, and in some cases these filaments are of 
different kind like (ACSR). So the real quantity of GMR 
is a little different from the formula. By replacing the 
quantity of  μ in (2), we can calculate GMR by  

 

Above formulas are related to simple distribution 
lines with one conductor in every phase. If distribution 

lines are installed in the form of bundles (some 
conductors in each phase) the quantity of GMR must be 
corrected as  

 

 

In above formulas ns is the number of extraneous 
conductors in each phase, ds is the distance between 
extraneous conductors in centimeter and A is area of 
conductor. Above formulas show that if we reduce the 
phase distance, the quantity of line will decrease the 
variations of inductive reactance of lines in the GMD for 
several conductors compared to only one. In (3), the 
variation of inductive reactance of line according to the 
number of conductors in each phase for (curlew) 
conductors has been shown. It is shown in the fig that, 
if we compare the inductive reactance of simple and 
bundle lines in some cases, the inductive reactive 
reactance of simple modern lines (one conductor in each 
phase) is nearly equal to normal double bundle lines.  

 

2.4  Capacitive reactance 
Distribution lines are the consumers of reactive 

power and because of capacitive property, phases 
produce reactive power too. In a three-phase distribution 
line, the capacitance reactance Xc of the distribution line 
is as  

 

where rb is the radius of the group of conductors in 
centimeter. Other parameters are corresponding to 
former definitions. By designing modern distribution 
lines that have less phase distance than normal lines, the 
susceptance of line will increase too. For reduction of 
the amount of capacitive reactance or increasing the 
susceptance of line, we can use more numbers of 
extraneous conductors in each phase. 

2.5 Surge impedance 
Surge or natural impedance in distribution lines is the 
amount of consuming impedance when the generative 
and consuming VAR are equal 

 

 

when the generative VAR (QC) and consuming VAR 
(QL) of distribution lines are equal (QC=QL) we have  
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2.6 Natural power of line 
The other factor that is important in distribution lines is 
the natural power of line (surge impedance loading). 
This is the power needed to load with pure resistance 
and equal surge impedance. If the transmission power of 
the line is equal to the natural power of the line, the 
voltages at both ends of the line are nearly equal. So the 
power can be uses as an important index in loading 
distribution lines. The amount of natural power of 
distribution line depends on the amount of reactance and 
susceptance of the line. We can use the following 
formulas  

 

 

to calculate them (Sganzerla et al., 1996; Alexandrov 
and Heidari; Heidari, 1995: Heidari and Alexandrov, 
1996). 

As you see in  

 

this power is a function of the inductive and capacitive 
reactances of the line. As much as is reduced from 
reactance (or is increased to the capacitance of line),  so 
much the surge impedance loading of the line will 
increase. Modern or bundle distribution lines that have 
low inductive reactance have more natural power 
inductance multiplied by the capacitance of the line. 
This is a function of the voltage of electromagnetic 
waves, that is expressed as below 

As seen in (14), v or the velocity of electromagnetic 
waves is nearly constant. The amount of inductance 
multiplied by capacitance are constant too. It means that 
that whatever reactance decreases, capacitance 
increases and leads to an increase in the quality of 
distribution line. By combining formulas (12), (13) and 
(14), we can show the natural power of the line is a 
function of line voltage, the velocity of electromagnetic 
waves and inductive and/or capacitive reactance of the 
line: 

 

 

These formulas show that, because of constant amounts 
of a distribution line, natural power is a function of 

inductive or capacitive reactance of the lines. In other 
words, increasing or decreasing the amount of inductive 
and/or capacitive reactance of a line directly affects the 
natural power of the line. 

3 Modern means voltage line 
The 20 kV lines as distribution lines are usually 
forecasted and built as one or two circuits on cement or 
wooden tower (Figure 1). We need a distance about 1.5-
2 meters between the phases, according to the tower 
distance or span. This decreases the capacitive property, 
but also increases the required right-of-way in the 
transmission line. In modern lines, the distance between 
phases in tower place and along the span is decreased by 
0.4 - 0.5 meters. So the capacitive property of the line 
increases about 20-30%. By a suitable design of line, 
forecasting isolated insulators and using polymer 
insulators and assuming three phases in three vertexes 
of a triangle, the phase distance is limited to 0.5 meter. 
(Heidari and Alexandrov, 1996) 

According to phase distance the amount of surge 
impedance in existed lines is 370 Ω and in modern lines 
250 Ω. For case one, natural power of the line is 

 

For modern line by installing three similar phases we 
will have 

 

 

Figure 1. Voltage line. 

As you see, the SIL or the natural power of 20 kV line 
increases about 0.7 MW. The reactive power for two 
kinds of above lines with 15 MW nominal power and 20 
km length is calculated as below. 
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A) Line with GMD = 1.5 (existing line) 

 

 

 

B) Line with GMD=0.5 (modern line) 

 
 

where λ is the wave length of line and υ is the velocity 
of wave propagation=300,000 km/sec.  

 As is seen, the consumed reactive power of the line 
has decreased about a half. As the load of 15 MW, was 
an industrial load and is maintained continuously and 
stable in 24 hours, decreasing reactive power to half, 
will accompany considerable economy from decreasing 
losses. By providing software we can do the calculations 
by computer easier and the results are analyzed faster 
and in for a wide range of data. 

4 Program provided in Delphi  
This program can do the electrical calculations of the 
line from the formulas in presented in this article. This 
capability means, according to the conditions, we can 
find the best situation by different inputs. The reports 
contain all electrical information of the line. As it was 
said in Section 2.7 about the GMD changes, the program 
can handle it.  

By drawing two charts of the GMD changes 
according to SIL and P/SIL, we can observe the charts 
of changes by decreasing and increasing GMD and a 
boundle line or multicircuit lines that we show as 
examples. The page of reports contains all electrical data 
of the line. It is opened in the page of input data by 
specifications that are shown in Figure 2 and pressing 
the key of doing calculations.   

 

Figure 2. Face plate for input data. 

As you see in Figure 2, the phase distance of line is 
specified by assuming that the line is modern, the phase 
distances equal. The ambient or primary temperature 
and the temperature of the under load conductor are 
considered too. 

The circuits' numbers of line can calculate up to three. 
As you see in (4) and (5), if the number of line bundles 
is one, the number of line for n boundles can be 
calculated.  If the number of line boundle is one, the 
other data of the line like the line length, line current, 
line voltage, cosφ and the active power of line for 
accurate calculations are required. If the line is long, π 
model can be used for that.          

The output data of the calculations are seen in Figure 
3. This has all the required electrical data for line design 
as it is shown with the data in Figure 3: the losses of the 
line are 1.04. 

 

Figure 3. Output data from the calculations. 

 

 

Figure 4. Table with relationship between changes in 
GMD with different kind of conductor. 

In Figure 4, the change in the SIL can be seen by  
changing the GMD and it is concluded that by 
increasing the GMD means increase in the phase 
distance and the SIL, the natural power of the line 
decreases (Figure 5). 
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Figure 5. Curve GMD vs. SIL and GMD vs. P/SIL. 

4.1 The ratio of transmitted power to 
natural power of line P/SIL  

When the induced reactive power of a line is minimum, 
the ideal ratio of P/SIL is equal to one. To reach this 
amount P/SIL=1 we can not reduce P, because 
decreasing P and conductor's section is not economic. 
However, we can increase SIL and this is achieved by 
decreasing impedance Zs that increases the capacitive 
property of the line as below: 

 

The propagation velocity of wave is equal to  

 

4.2 Surveying the GMD changes and its 
effects on the ratio of transmitted 
power to Surge Impedance Loading.  

 
By changes in GMD, we can see the changes in C, L, 
Zs, and at last SIL that is the natural power of the line.  
The purpose of this program is decreasing the 
inductance of line (L). A comparison between the 
conventional and compact lines with consideration 
(GMD) is presented in the appendix, the difference 
between a normal 20 kV line and a modern 20 kV line 
shows that the natural power in modern lines is more 
than in normal lines. By increasing the natural power 
according to decreasing GMD and changes in phase 
arrangement, power is increased. Increasing transmitted 
power will decrease the ratio of transmitted power to the 
natural power of line SIL (Figure 5). By decreasing the 
GMD, this ratio is near to one now. In 20kV lines, the 
ratio of P/SIL is more than three, but we must make it 
near to 1 by changing the phase arrangement.  

The provided software has this capability to decide 
how much we should change the GMD, and to find the 
optimum point of the GMD for every voltage. For 
example, the best status of phase's arrangement in 20 
and 63, 33 kV voltages can be defined. At the same time, 
the difference between two circuits and two boundles or 
three circuits, can be specified pluralization and 

deduction: don’t need to develop a bay at 63, 20 kV 
stations. 

5 Conclusions  
According to two basic theories in modern transmitting 
energy:    

 For transmitting energy in modern lines, it is 
better to have two or three circuit lines as more 
energy can be transmitted.   

 In the second theory, its better to transmit 
energy in two or more boundless, because in 
this situation we can in fact transmit more 
energy and don’t need to pay anything for the 
development of the station bay.  

However, regard to the above reasons, we have a new 
suggestion in this article. By using Delphi software and 
several experiments we concluded that for transmitting 
energy, if we want to use the number of circuits, 
construct the transmission lines with two circuits, and if 
we require to transmit more energy it is better to 
construct a modern line with three or four boundless, 
instead of three circuit line, because the natural power 
of a three-boundle line is more than a three-circuit line. 

For increasing the SIL, the natural power, of 20, 33 
and 63 kV lines, the major solution is an increasing 
capacitive property by nearing three-phase conductors 
to each other and providing the minimum distance of the 
phase to phase isolation. By this way, we conclude the 
following:   

1) Increasing the capacitive property of line.  
2) Reducing voltage and power loss.  
3) Reducing the losses of line.  
4) Reducing the surge impedance.  
5) Reducing the inductive inductance.  
6) Increasing the stability of line.  

Our research shows that it is possible to reduce GMD in 
a wide range. By modern lines in 20, 33 and 63 kV 
voltages, we can reduce the GMD triply. 
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Appendix: Comparison between conventional and compact line with consideration (GMD) 
 

 
2

1

u

u
 

 
SIL

Cub C XC L XL ZI u%  
conductor

circuit (Cm) GMD 

1.44 4.8 30 319 33.5 0.01066 30.5 0.0001 1 1 70-70-140 
1.2 2.7 18 183.5 19.22 0.0612 17.5 0.00018 2 1 20 KV 
1.17 2.22 15 147 15.44 0.04917 14.06 0.00023 1 2 " 
1.09 1.24 8.5 82.25 8.6 0.02743 7.85 0.0004 2 2 " 
           
1.41 4.6 29 305 32.04 0.10198 29.18 0.00011 1 1 70-70-70 
1.19 2.5 17 169 17.78 0.05658 16.19 0.0002 2 1 20 KV 
1.17 2.3 15 152 16.01 0.05099 14.59 0.00022 1 2 " 
1.09 1.28 8.7 84.88 8.88 0.02829 8.09 0.00039 2 2 " 
           
1.2 4.9 16 326 34.22 0.108 31.17 0.0001 1 1 140-140-280 
1.12 3.13 11 207 21.7 0.069 19.83 0.00016 2 1 63 KV 
1.08 2.25 7.9 149 15.7 0.0499 14.3 0.00022 1 2 " 
1.05 1.36 4.9 90.4 9.47 0.03 8.63 0.00036 2 2 " 
           
1.19 4.7 16 312 32.77 0.1043 29.85 0.00011 1 1 140-140-140 
1.11 2.92 10 193 20.32 0.0646 18.51 0.00017 2 1 63 KV 
1.09 2.35 8.2 159 16.38 0.05216 14.92 0.00021 1 2 " 
1.05 1.46 5.2 96.98 10.15 0.03234 9.25 0.00034 2 2 " 
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Abstract
Emerging technologies of Industry 4.0 have introduced
novel ways of perceiving maintenance management,
which has developed from being perceived as a
“necessary evil” to become proactive with a holistic
focusing on entire systems rather than single machines
from Maintenance 3.0. In this context, the industry has
begun to really appreciate the unique opportunities
followed by system dynamics and simulation tools
capabilities of representing the real world. However,
maintenance management and performance are complex
aspects of asset’s operation that is difficult to justify
because of its multiple inherent trade-offs. Although the
majority areunanimous when it comes to the expected
impact maintenance plays on company profitability, this
is in most cases challenging to determine and quantify.
Moreover, relevant literature is considered as limited,
especially with regards to impact simulation of
Maintenance 4.0. Therefore, this paper focuses on the
supportive function system dynamics, and modeling and
simulation tools can be of help to assess behavior and
predicting the future outcome of Maintenance 4.0 in the
era of Industry 4.0. This includes developing a
conceptualized model that enables simulating the future
expected behavior i.e. (un)availability and cost by
implementing such a maintenance system. In this
context, a centrifugal compressor with the function of
exporting gas to Europe is applied as a case study.

Keywords: Industry 4.0 Architecture, system dynamics,
maintenance management, impact simulation

1 Introduction
The perception of maintenance management has been
highly influenced by several technological
developments and evolved in from being a “necessary
evil”, “technical  matter”, “cost-cutting contributor”,
“profit contributor” until it today is perceived as a
“cooperative partnership” that can potentially add value
to the business (Pintelon and Parodi-Herz, 2008).
Moreover, maintenance strategies have developed
rapidly over the last three industrial revolutions from
being reactive, preventive, predictive and finally to
become proactive and holistic (focus on entire system
rather than single machine) (Alsyouf, 2007). Those

strategic changes lead to several maintenance programs 
e.g. reliability centered maintenance (RCM), condition 
based maintenance (CBM), and total productive 
maintenance (TPM) (Pintelon and Parodi-Herz, 2008).  

Maintenance is often associated with high cost 
allocated in the phase of an asset’s operation and 
maintenance (O&M). In fact, the cost of maintenance is 
determined as sector dependent and varies all from 15 to 
70 percent of total production cost (Bevilacqua and 
Braglia, 2000; Mobley, 2002; Gräber 2004). Moreover, 
several authors state that maintenance management is 
often attributed to poor planning and decision support 
resulting into inefficiency and waste of both cost and 
resources (Wireman, 1990; Noemi and William, 1994; 
Mobley, 2002; Wireman, 2004; Bardey, 2005). 
However, maintenance management and performance 
are complex aspects of asset’s operation that is difficult 
to justify because of its multiple inherent trade-offs. 
Therefore, the expected or estimated impact of 
maintenance is often challenging to determine and 
quantify. Nevertheless, several literature are in fact 
unanimous when it comes to the expected impact 
maintenance plays on company profitability, supporting 
current perception of maintenance as a “cooperative 
partnership” (Komonen, 2002; Alsyouf, 2007; Maletič 
et al., 2012; Erguido et al., 2017; Colledani et al., 2018; 
Olde Keizer et al., 2018). 

The importance of facilitating simulating the 
expected impacts of emerging technologies in the 
context of Industry 4.0 and its associated concepts has 
never been as important as it is today. It exists a great 
optimism of what the expected impact Industry 4.0 will 
bring to the oil and gas sector (O&G). (World Economic 
Forum, 2017) states that predictive maintenance and 
operations optimization are the two main technologies 
that will have the highest industrial and societal impacts 
in this specific sector, by e.g. reducing maintenance 
costs by 20% and operational downtime by 5% (mainly 
due to predictive maintenance). However, nowadays, 
only one single percent of data originating from 30 000 
sensors located on a traditional oil rig is exploited. 
Moreover, this single percentage is in most cases 
utilized with regards to control and detection of 
operational anomalies (Manyika et al., 2015) and not for 
optimization and prediction in which World Economic 
Forum (2017) highlights as the most beneficial impact. 
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Moreover, as the cumulative maintenance expenditures 
concerning offshore installations with the design life of 
30 years can reach up to £2 Billion, and often more, as 
life-extending measures are commonly adopted to 
enable operating such facilities over its designed 
lifetime (Register, 2017), there exist a great potential of 
reducing the associated cost by £400 Million, given that 
a 20% reduction in maintenance cost as presented by 
World Economic Forum (2017) is reasonable. Hence, 
the potential impacts of adopting an intelligent 
maintenance system in Industry 4.0 is considered as 
tremendous. However, estimating these specific impacts 
of predictive maintenance and operations optimization 
require techniques with growing complexity and 
capabilities. Therefore, simulation is considered as the 
key enabling technology as highlighted by (Oesterreich 
and Teuteberg, 2016) that may facilitate forecasting 
impacts of e.g. intelligent maintenance in Industry 4.0 in 
the context of predictive maintenance and operations 
optimization. 

Several studies have adopted the methodology of 
system dynamics and investigated the opportunities of 
developing a model that enables simulating the impact 
of maintenance or internet of things (IoT) with respect 
to output variables such as e.g. companies’ availability, 
cost and profit (Jokinen et al., 2011; Endrerud et al., 
2014; Manyika et al., 2015; Hussain et al., 2016; 
Linnéusson et al., 2016; Qu et al., 2016; Linnéusson et 
al., 2018; McKee et al., 2017; Marshall, 2015; Jalali et 
al. 2017; Markus et al., 2018). Regardless, the authors 
identify two research gaps: (1) none of the existing 
models enables simulating the causal relationship that is 
present in the maintenance phase of a centrifugal 
compressor applied to export gas in the O&G industry 
and (2) none of existing literature facilitate simulation 
of intelligent maintenance architecture based on 
Industry 4.0 requirements. Hence, the purpose of this 
paper aims to develop a conceptualized model that 
enables simulating both the behavior of the associated 
compression system applied in gas export and the 
expected impacts introduced through the 
implementation of an intelligent maintenance system, 
by adopting the methodology of systems dynamics (SD) 
and simulation. 

The remainder of this paper is organized as follows. 
Section 2 presents some relevant theory regarding 
process modeling and industrial simulation. Then, the 
case study of the centrifugal gas export compressors is 
investigated in Section 3. Section 4 is dedicated to the 
presentation of the conceptualized model developed in 
which enables simulating the behavior of the case study 
and the expected impact of implementing intelligent 

maintenance in the era of Industry 4.0. At last, Section 
5 provides some concluding remarks.   

2 Process Modeling and Industrial 
Simulation 

Industry 4.0 and associated emerging technologies of 
cyber-physical systems (CPS), internet of things (IoT), 
big data, and cloud computing (including diagnosis and 
prognosis) are expected to play a vital role in companies 
future competitiveness and sustainability. However, 
determining the future benefits of adopting such 
technologies is of vital importance. Therefore, model-
based representations i.e. process modeling and 
industrial simulation approaches e.g. system dynamics 
have become a highly embraced tool with its growing 
complexity and capabilities (McKee et al., 2017). This 
includes tools such as e.g. discrete event simulation (e.g. 
Arena), system dynamics (e.g. Vensim), and multi 
simulation methods (e.g. Anylogic and Numerus 
(Nova)), which all are frequently applied by industries 
to facilitate modeling and simulation of complex 
processes to perceive their nonlinear characteristics, 
either in the phase of early design, operation and 
maintenance, or late in decommissioning. The benefit of 
adopting process modeling and industrial simulation 
relates to its unique way of representing scenarios that 
are as close as possible to the real world. In this process, 
causal relationships are investigated and described in 
details, yielding an understanding of system behavior.  

The literature describes the application of process 
modeling and industrial simulation in order to enhance 
asset operation. This is especially interesting i.e. 
maintenance and its impact on companies' availability, 
cost, and profit. In this context, some of the most well-
known simulation models are presented in Table 1, 
considering their associated influencing variables, rates, 
and estimated benefits. Moreover, these well-known 
models constitute a supportive function when 
developing the conceptualized model presented in this 
paper. In fact, the model of (Jokinen et al., 2011) is 
especially interesting by its classification of failures 
(critical, degraded, and incipient) and its description of 
detection rate w.r.t sensor technology and maintenance 
management. 

In this paper, the authors intend to adopt the approach 
of system dynamics to investigate and describe the case 
study and successively aid developing a model that 
enables simulating the causal relationship(s) associated 
with the operation of the case study.   
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Table 1. Summary of four of the most well-known simulation models. 

 

3 Case Study 
The case study in this investigation is a compression 

system with the primary function of enabling 
transporting sales gas (processed natural gas) through 
subsea pipelines by dynamically compressing it from 62 
to 185 barg – thus, decisive as it determines whether the 
end users receive their booked gas or not. The 
compression system comprises four identical 
compressor trains, which each includes an electric 
motor, gearbox, and two centrifugal compressors 
arranged in series. In operation, only two out of the four 
compressor trains are in operation and sharing loads. 
Hence, two trains are at any time functioning as 
redundancy in cold standby (Wang, 2009; Tan, 2011). 
A cold standby system is a system that does not 
deteriorate or includes economic dependence of the 
operation.   

Moreover, each compressor train includes 45 sensor 
signals related to condition monitoring: 26 sensor 
signals of single sensor signal that monitors vibration in 
terms of velocity. The data generated by the different 
sensors are in most cases exploited through trending. 
Therefore, it is of interest to investigate the behavior of 
the respective compression system (as a decisive part of 
the transportation system) and how a potential 
implementation of an intelligent maintenance system in 
the era of Industry 4.0 may impact the operation/ 
transportation in terms of availability and cost. To do so, 
the methodology of system dynamics and modeling and 

simulation is adopted.  In order to manage to develop a 
simulation model that allows simulating the expected 
impacts, several processes must be studied at first: 

1. Gas production/compression scenario (normal 
loading, seasonal demand): The need for gas 
compression is highly dependent on the season as the 
consumers mainly utilize the gas for heating and 
cooking at households (in addition to industrial 
consumption). Thus, end-user demand is peaking at 
winter-season when the need for heating is at its 
greatest. From a maintenance perspective, this will 
obviously play an important role when it comes to 
planning as a specific action will affect the 
operational (un)availability differently.  
2. Planned maintenance scenario (planned 
schedule timeline): Equipment vendor usually 
provides customers with recommendations of 
preventive maintenance action throughout the 
equipment’s life cycle. These are often based on 
either time in operation or numbers of cycles. Clearly, 
this will have an impact on planned unavailability and 
maintenance cost, and must, therefore, be considered 
in the context of intelligent maintenance and 
maintenance decision support (maintenance 
optimization).  
3. Failure growth scenarios: The occurrence of 
symptoms of failure, or even failure, rises demand for 
necessary future action. The (symptom of) failure will 
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impact the operation differently based on its 
characteristics i.e. location, size, and severity. This is 
highly associated with maintenance management and 
the application of condition monitoring technologies 
including sensor technology, diagnosis, prognosis, 
which determines detection stage and thereby the 
criticality of the degradation and urgency for repair 
along with its cost.  
4. Fault detection scenario: The introduction of 
Industry 4.0 has brought novel opportunities in 
maintenance management, especially considering 
cloud computing including diagnosis and prognosis. 
In more detail, maintenance 4.0 differentiates from 
maintenance 3.0 by moving its focus from the 
traditional enterprise level to become more holistic 
comprising the asset-level and between asset and 
enterprise-level. Therefore, it is of interest to simulate 
the difference between three monitoring scenarios in 
terms of impact: (1) compressor without CMS, (2) 
compressor with CMS (maintenance 3.0), and (3) 
compressor with maintenance 4.0. In this context, it 
is expected that the detection rate related to condition 
monitoring increases and the cost related to the level 
of repair is reducing, respectively.   
5. Fault prevention scenario (by the control 
system): The objective of intelligent maintenance is 
to enhance right maintenance to be executed at the 
right time. This could e.g. include performing 
temporary maintenance actions that extend the 
remaining useful lifetime (RUL) estimate, which 
enables delaying the need for executing the required 
maintenance action from the diagnosis – thus, gaining 
opportunistic benefits. This comprises, for instance, 

the ability to plan the maintenance work for next 
opportunistic interval e.g. low production season or 
no-production days. Additionally, preventing the 
needs for corrective (maintenance) measures, which 
is commonly known as costly in comparison to other 
maintenance strategies.   
6. Fault prevention scenario (by maintenance 
action): Accurate health assessments (diagnosis) and 
remaining useful life (RUL) estimations enable 
developing detailed work orders including spare part 
management, required human resources, and 
expected execution time. This improves the 
maintenance supportability and enhances the 
maintenance action’s successfulness ensuring that the 
right maintenance action is conducted.  
7. Maintenance performance: It is clear that 
execution of diagnosis will pose a beneficial impact 
of the maintenance performance since it enables 
assessing the current health status of the equipment 
and by this pinpoint the exact degradation 
mechanism. Thus, if the diagnosis e.g. reveals 
degradation of outer racing of a roller bearing, the 
maintenance personnel can plan down to the smallest 
details on how to maintain this in the best way. 
Hence, enhancing the improved performance of the 
maintenance action that is measurable through e.g. 
the mean-time-to-repair (MTTR). 
8. Spare Part Management: The capabilities of 
prognostics is expected to impact the cost of 
inventory since it reduces the need for having spare 
parts in stock as it is possible to forecast at what time 
the different spare parts are required in advance. 

Table 2. Summary of the related case study scenarios with associated potential estimated impact. 

4 The Conceptualized Model 
The prime objective of implementing intelligent 
maintenance architecture based on Industry 4.0 is to 
facilitate optimizing existing maintenance schedule. 
Although, the definition of “optimization” (Diwekar, 
2008) can be interpreted ambiguously, it is in this 
context referred to as the mathematical concept that 
determines the optimal solution to a function comprising 

several different input and output variables such as e.g. 
gas price, cost, spare part management, operational 
(un)availability, and resources required and available. 
The most optimal solution based on the multiple 
variables is dependent on their weighting that may vary 
from time to time, under different circumstances. 
Resultantly, the optimization process shall ensure that 
the right maintenance takes place at the right time.  
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The conceptualized model developed to enable 
simulating this optimum maintenance action is based on 
maintenance theory from the literature review, systems 
dynamics (Vensim), the well-known simulation models 
presented in Table 1, and the scenarios extracted from 
the case study.  As seen from the conceptualized model 
presented in Figure 1, it can be decomposed into four 
sub-models: (1) production, (2) maintenance 
management, (3) CBM, and (4) equipment degradation. 
In general, production (sub-model 1) is similar to any 
commodity, highly associated with the logic of supply 
and demand comprising variables such as e.g. politics, 
regulations, wealth, technology, population, and 
substitutes. Briefly, this is, in turn, determining the price 

of the commodity and thereby the revenue of the 
company. Moreover, the production is restricted by the 
availability of resources (hydrocarbons) and the 
associated overall equipment efficiency (OEE) that is 
governed by specific maintenance management (sub-
model 2). The most important content of maintenance 
management is to optimize the existing maintenance 
schedule. This includes detecting failures (diagnosis), 
predicting the future development of the degradation 
and its impact on the system (prognosis), in which 
enables developing a detailed maintenance plan that 
identifies the best opportunistic window to perform the 
required action that improves availability and thus 
minimizes unavailability. 

 

Figure 1. The conceptualized simulation model developed with associated sub-models. 
 
CBM (sub-model 3) is all about monitoring 

performance and health data through sensor technology 
in order to detect (diagnosis), predict (prognosis), and 
extend the RUL estimate by prolonging the time to when 
the specific maintenance action is required. In this 
context, failure modes are classified into critical, 
degraded, and incipient failure modes. Traditionally, 
critical failure modes are detectable through 
performance monitoring (variables related to the 

process such e.g. pressure, temperature, and flow), 
while health parameters can improve the detection rate 
of critical failure modes and may even comprise certain 
degraded failure modes by combining performance and 
health parameters in terms of multivariate analyses of 
big data. 

In order to detect degradation mechanisms early, 
awareness of equipment degradation (sub-model 4) 
affected by certain characteristics such as e.g. 
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environment (weather and climate) and operation (rpm 
and loading) is of high importance as it is connected 
with the equipment’s failure rate. Moreover, such 
awareness supports achieving an understanding of 
equipment behavior along with responding to the results 
from the diagnosis and prognosis by e.g. prolonging the 
time to required maintenance action. 

 

Figure 1. Three different causal loops identified by the 
conceptualized simulation model. 

   
In final, Figure 2 shows the three causal loops 

identified in the conceptual model, which is the basic 
benefit of systems dynamic to manage (balancing or 
reinforcement). To summarize, the conceptualized 
simulation model shows the interaction between the 
different maintenance strategies affecting maintenance 
management. Furthermore, this plays a vital role for the 
estimated impacts i.e. availability and cost efficiency (as 
shown in Figure 1). It is clear from Figure 2 that the 
causal loop of CBM (L3) yields the greatest impacts and 
thus the objective of maintenance management, and vice 
versa for the causal loop regarding corrective 
maintenance (L1). However, in order to estimate the 
specific impacts, the capabilities of detecting the 
different failure modes associated with the system 
through sensor technology (parameter monitoring) and 
data analyses (diagnosis and prognosis) must be 
investigated. 

5 Conclusions 
Industry 4.0 and associated emerging technologies of 
CPS, IoT, big data, and cloud computing (including 
diagnosis and prognosis) are expected to play a key role 
in companies’ future competitiveness and sustainability. 
However, determining these future benefits of adopting 
such technologies is of vital importance. Therefore, 
process modeling and industrial simulation approach 
e.g. system dynamics have become a highly embraced 
tool with its growing complexity and capabilities to 
facilitating perceiving nonlinear characteristics of 
complex processes. 

Literature describes the importance of having a rigid
maintenance management, which is reflected in
associated impacts such as e.g. availability and cost
estimations. Moreover, based on the growing
complexities and capabilities of system dynamics,
simulation is frequently adopted to estimate such
impacts. However, maintenance management and
performance are complex aspects of asset’s operation
that is difficult to justify because of its multiple inherent
trade-offs. Although the majority are unanimous when
it comes to the expected impact maintenance plays on
company profitability, this is in most cases challenging
to determine and quantify.

The conceptualized model developed in this paper
demonstrates three causal relationships between
different scenarios and its potential estimated impacts
related to a case study concerning a centrifugal
compressor that is applied to transport natural gas. The
three causal loops (corrective maintenance, preventive
maintenance, and CBM) shows the importance of
having rigid maintenance management and its impact on
company availability and cost. However, in order to
quantify these specific impacts, the capabilities of
detecting the different failuremodes associated with the
system through sensor technology (parameter
monitoring) and data analyses (diagnosis and prognosis)
must be investigated. Moreover, it is expected that
implementation of maintenance 4.0 will not only aid for
improved operational impacts such as those two
mentioned but also enhance the asset’s HSE. This is
described rather narrowly in the report. Nevertheless,
HSE is of greatest importance but is excluded as it is
challenging to quantify and simulate such intangible
aspects of the operation.
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