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Abstract
In this paper, the philosophy of the lumped-mass approach
is adopted in specifying components so as to enable the
Modelica compiler to formulate equations governing the
motion of a chain-suspended sub-sea load, subjected to
waves and current. The discretized simulation model of
the chain-suspended load is built up using the compon-
ents available in the MultiBody library of OpenModel-
ica, after making necessary modifications. The combined
wave and current loads acting on the segments are determ-
ined using the Morison equation, and applied as discrete
external forces on the lumped segmental masses. The
component model is developed and implemented using
the OMEdit GUI, and the simulation results are then com-
pared with those for a similar system modelled in the pop-
ular commercial ocean-engineering time-domain simula-
tion software, Orcaflex, to demonstrate satisfactory agree-
ment. Conclusions are drawn, and the simulation files are
made available for public access.
Keywords: Modelica component-model for submerged
cables, dynamics of sub-sea loads, OceanEngineering lib-
rary

1 Introduction
The authors discussed the benefits of developing a Model-
ica standard library for ocean-engineering applications in
(Viswanathan and Holden, 2019). In the above work, the
quasi-static approach was adopted to specify the moor-
ing forces at any given simulation time-step. However, it
was noted that this led to the omission of the inertial and
deflection effects of the mooring line, as discussed in de-
tail by the authors in (Viswanathan and Holden, 2020a).
Hence, steps in the direction of developing component-
models capable of simulating the dynamic behaviour of
mooring chains, as accurately as possible, were adopted
by the authors. The present work, which is an offshoot
of such efforts, brings to the proposed library, basic com-
ponents to simulate the dynamics of a fully submerged,
suspended sub-sea load.

The earliest reference to the application of the lumped-
mass approach to sub-sea cables is traced to Walton et. al
(Walton and Polachek, 1960), who prescribes the lumping
of masses of straight segment lengths, and associated ex-
ternal forces, at nodal points which connect the adjoining

segments, and thus arrive at equations of motions for the
discretized mathematical model of the physically continu-
ous cable. They further suggest a fixed time-step numer-
ical scheme to obtain the cable dynamics. Other relevant
works include (Nakajima et al., 1982), and (Thomas and
Hearn, 1994).

We, however, notice that such time-step dependent
methods are inherently opposed to a fundamental philo-
sophy behind Modelica, which is expressed by Dr. Mi-
chael Tiller in his words, (Tiller, 2013):

“The key point is that equations describing physical be-
havior cannot refer to time steps. This is because there is
no timestep in nature or the laws of physics, and so the
response of a system cannot depend on it.”

The statement points to the fact that the Modelica user
needs to specify only the differential algebraic equations
governing the physics of the system, and solution method-
ology is best left to the Modelica compiler.

We, therefore, adopt the philosophy of Walton
in modelling the cable/chain segments in Modelica,
using components already available in the Model-
ica.Mechanics.MultiBody library, albeit with necessary
modifications. Connecting these components enable the
automatic generation of the coupled equations of motion
by the Modelica compiler, which is then solved for obtain-
ing the system dynamics.

The Morison equation is widely used in the ocean en-
gineering domain to calculate fluid loads on slender struc-
tures. Numerous publications deal with the subject, and is
described in detail, for e.g., in (Chakrabarti, 1987). In this
work, the Morison equation is implemented as a Block,
and the determined fluid drag and inertia loads are then ap-
plied as forces, along with buoyancy, at the lumped-mass
points.

We, therefore, proceed by presenting a brief theor-
etical introduction to the discretization of the continu-
ous cable/chain, along with the calculation of Mor-
ison loads. This is followed by a detailed description
of system representation in Modelica. Simulation res-
ults are benchmarked using Orcaflex, and conclusions
drawn. Both Modelica and Orcaflex simulation files are
made available for public access at github.com/Savin-
Viswanathan/Modelica2020Asia.
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2 Theory
Figure 1a shows the forces acting on a chain suspended
sub-sea load, and Figure 1b shows the discretized math-
ematical model for the same.

For simplicity, we consider:

• 2D motions in x and y directions only.

• Top end of the chain is fixed.

• Inelastic chain.

• Fully submerged chain and load at all times.

• End load has negligible drag area, and can be approx-
imated as a point mass.
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Figure 1. Discretization of the chain suspended sub-sea load.

The coupled equations of motion of the chain/cable seg-
ments based on the segment equillibrium may then be
solved to determine the dynamic behaviour of the system.

Proper translation of the discretized model into a Mod-
elica system-model effects the automatic generation of the
coupled equations of motion governing the dynamic beha-
viour of the system. Details of modelling are described in
detail in the next section.

Considering the jth segment,

Wj = l jµg (1)

B j =
πD2

b
4

l jρwg. (2)

Here, Wj [N] is the weight of the segment, B j [N] is the
buoyancy force experienced by the segment, l j [m] is the
length of the segment, µ [kg/m] is the specific linear mass
of the chain/cable, Db [m] is the diameter based on which
buoyancy is calculated, ρw [kg/m3] is the density of sea-
water, and g [m/s2] is the acceleration due to gravity.

In evaluating the fluid loads, we make use of the Mor-
ison equation for combined wave and current loads on an
inclined oscillating cylinder. See p. 188 of (Chakrabarti,
1987).

Experimental values for drag coefficient CD and iner-
tial coefficient CM are scarce when structures are inclined.
Hence, in determining these loads, we evaluate the fluid
loads along the normal and tangential directions of the
chain segment and then sum up their horizontal and ver-
tical components. The advantage of this approach is that it
enables the specification of separate drag (CD) and inertia
(CM) coefficients for the normal and tangential directions.
See p. 205 of (Chakrabarti, 1987). The normal and tan-
gential components of the Morison force per unit length
of the segment are thus given as
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Here, superscripts n and t denote the normal and tangential
directions, and subscripts w and l denote the water-particle
and the mooring-segment respectively. Further, a [m/s2]
refers to acceleration, v refers to velocity, U [m/s] is the
magnitude of the current velocity, and D [m] is the line
drag diameter.

The current velocity, and wave induced water-particle
velocities and accelerations, at the segment lumped-mass
points, are to be considered in (3) and (4).

For a linear wave, the following are defined:

ω
2 = gk tanh(kd) (5)

η = H/2cos(kx−ωt), (6)

u =
πH
T

coshk(z+d)
sinh(kd)

cos(kx−ωt) (7)

w =
πH
T

sinhk(z+d)
sinh(kd)

sin(kx−ωt) (8)

u̇ =
2π2H

T 2
coshk(z+d)

sinh(kd)
sin(kx−ωt) (9)

ẇ =−2π2H
T 2

sinhk(z+d)
sinh(kd)

cos(kx−ωt). (10)
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Here, ω [rad/s] is the wave frequency, η [m] is the sea
surface elevation, u and w [m/s] are the horizontal and
vertical components of the wave-induced water particle
velocities, the overdot denotes time derivative, H [m] is
the wave height, T [s] is the wave period, k [m−1] is the
wave number, x and z [m] are the horizontal and vertical
co-ordinates of the evaluation point, d [m] is the water
depth, and t [s] is the simulation time. See pp. 51–52 of
(Chakrabarti, 1987).

Figure 2 gives the expression for the normal and tangen-
tial components of the wave-induced water particle velo-
cities associated with a segment inclined at angle θ to the
horizontal. Similar expressions may be obtained for the
relevant current, and segment kinematics.

X
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w vt
w=u cos(θ )+ w sin(θ)
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w=u sin(θ )-w cos(θ)

θ

Figure 2. Normal and tangential components.

The horizontal and vertical components of the Morison
loads on the segment may thus be determined as:

Mx
F = Mt

F cosθ +Mn
F sinθ (11)

My
F = Mt

F sinθ −Mn
F cosθ . (12)

The problem is implicit in the sense of the interdepend-
ency between line orientation, tension and fluid loading.

3 Building the Modelica Model
Representation of the discretized model in Modelica is
realized through the use of components already avail-
able in the Multi-Body-System (MBS) library of Model-
ica, with some modifications to meet the problem require-
ments.

The segmental lumped mass, and the suspended load,
are represented by PointMass components, the massless
lengths of segments lying on either side of its lumped-
mass are represented by FixedTranslation components,
the point of suspension of the top end is specified by a

Fixed component, and the hinge connection between the
segments are represented by Revolute joint components,
all of which are available in the MBS library.

In the determination of fluid loads, we require the ori-
entation of the segment at any given simulation time step,
and hence a modification is effected to the FixedTrans-
lation component by specifying a RealOutput interface to
transmit the coordinates of the flanges. Two variants of
the FixedTranslation components are specified, the icon
representations of which are shown in Figure 3.

(a) UP_Seg. (b) LO_Seg.

Figure 3. Icon views of the modified FixedTranslation compon-
ents.

UP_Seg is modified such that its RealOutput interface
transmits the coordinates of its flange_a.

LO_Seg is modified such that its RealOutput interface
transmits the coordinates of its flange_b.

The diagram view of the simplest sample system show-
ing all used components is shown in Figure 4.

The segment model is built up by connecting the ap-
propriate flanges of upper segment UP_Seg, a Point-
Mass, and a lower segment LO_Seg. The interconnection
between two segments, and of a segment with the point of
suspension, can be effected through a Revolute joint. The
point of suspension of the top end is specified by a Fixed
component, and a PointMass component is used to spe-
cify the suspended load. Drag calculations are carried out
by DnB blocks.The computed drag and buoyancy values
are transformed to world forces by a WorldForce com-
ponent, and applied as loads to the flanges of the lumped-
masses. Gravity is included by the specification of the
World component.

The environment, and cable/chain parameters, are spe-
cified inside the DnB block. The parameters specified are:

General: water depth d, water density ρ , ramping
period for waves and current Trmp.

Regular Wave: wave height H, period T .

Current: vector of depths at which the profile is
defined zcg and fully developed mag-
nitudes of current at these depths U f .

Cable: drag diameter D, buoyancy diameter Db,
normal and tangential added mass coeffi-
cients Cn

A and Ct
A. normal and tangential

drag coefficients Cn
D and Ct

D.
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Figure 4. Modelica representation of a suspended subsea load
system.

The wave number is computed by function waveNum-
berIterator, by iteration of the dispersion relation (5),
as described in (Viswanathan and Holden, 2020b). The
segment lengths, and instantaneous location of lumped-
mass points are calculated based on the real outputs of the
UP_Seg, and LO_Seg, associated with each segment.

The sea surface elevation (SSE) at the x co-ordinate
of the lumped-mass point is calculated using (6), and the
wave and current kinematic profiles are moved with the
SSE as described in (SINTEF, 2014). The current velo-
city at the y coordinate of the lumped-mass point is then
interpolated for using the linearInterpolatorSV function,
and the wave-induced water-particle velocities and accel-
erations are calculated using (7)–(10).

The velocities and accelerations of the lumped-mass
points at the current time step being provided by Model-
ica, the instantaneous drag may be determined using equa-
tions (3), (4), (11), and (12).

Drag and buoyancy forces on the end load may also be
specified by using a similar DnB block, but has been omit-
ted here for simplicity.

4 Results
We discuss the simulation results of a system with para-
meters shown in Table 1:

Figure 5 shows the diagram view of the above system
in Modelica.

Figure 6a compares the line configurations in Modelica
and Orcaflex, at t = 100 [s], when subject to a uniform
current profile defined by zcg = {−50,−25,−10,0},U f =
{1,1,1,1}. Figure 6b compares the same for a cur-
rent profile defined by zcg = {−50,−25,−10,0},U f =
{0,0.5,1,2}. In both cases, the wave height H = 0 [m].

Parameter Value
Depth of suspension point below water
surface

2.5 [m]

Chain length 30 [m]
Chain specific mass 10 [kg/m]
Discretization segment length 5 [m]
Chain buoyancy diameter 0.04 [m]
Chain drag diameter 0.04 [m]
Chain drag coeff. (normal) 1 [-]
Chain drag coeff. (tangential) 0.25 [-]
Chain added mass coeff. (normal) 1 [-]
Chain added mass coeff. (tangential) 0.5[-]
End load mass 100 [kg]
Ramp time for waves and current 10 [s]
Water depth 50 [m]
Water density 1025 [kg/m3]
Current profile variable
Regular wave parameters variable

Table 1. System parameters

Figure 5. Diagram view of a subsea suspended load system.

Figure 7 compares the top end tensions for both the
above cases.

Figures 8a and 8b compare the horizontal and ver-
tical response of the suspended load to regular waves
of H = 5 [m] and T = 10 [s], in both Modelica and
Orca f lex, while Figure 8c compares the top end ten-
sions. Current loading is set to zero by specifying zcg =
{−50,−25,−10,0},U f = {0,0,0,0}.
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Modelica; Orcaflex
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Figure 7. Line top end tensions for different current profiles.

Figure 9a and Figure 9b compares the horizontal and
vertical response of the suspended load to regular waves
of H = 5 [m] and T = 10 [s] in the presence of a current
with profile defined by zcg = {−50,−25,−10,0},U f =
{0,0.5,1,2}, in both Modelica and Orca f lex, while Fig-
ure 9c compares the top end tensions.

5 Result Discussion
From the above figures, we observe a general agreement
between Modelica and Orcaflex responses. To quantify the
degree of agreement, we present the percentage variation
between them in Table. 2.

In most cases, we observe good agreement with <5%
variation. On examining the values with higher % vari-
ation, we infer that the numerical significance is quite low,
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Figure 8. Regular wave response.
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as demonstrated below for the highest variation of 21.9%,
corresponding to the vertical displacement of the suspen-
ded load, as depicted in Fig. 8b.

Numerically, the Modelica and Orcaflex responses are
−32.4193− (−32.4970) = 0.0777 [m], and −32.4324−
(−32.4960) = 0.0636 [m], indicating a difference of
0.014 [m], which is quite insignificant when we consider
that this variation of 1.4 cm is for the motion of the tip
of a chain that is 30 [m] long. Similar inferences can be
arrived at for all other values.

These variations could be due to the fact that we use
moved kinematic profiles, while Orcaflex uses Wheeler
stretching of wave and current kinematics.

Larger variations observed during the ramp-up time
Trmp = 10 [s], in all cases, is attributed to the fact that
we use a sinusoidal ramping function while Orcaflex uses
an in-built ramping function with a different ramp curve.

The reason for the variation in initial top-end tension
and tension response to currents as observed in Figure 7,
though insignificant, has not yet been understood.

Variable Description %variation
Horizontal position of end load in uniform
current (Fig. 6a)

-0.07

Horizontal position of end load in profile
current (Fig. 6b)

3.72

Vertical position of end load in uniform
current (Fig. 6a)

0.00

Vertical position of end load in profile
current (Fig. 6b)

-0.03

Top end tension in uniform current (Fig. 7a) 0.04
Top end tension in profile current (Fig. 7b) -0.05
Horizontal response in waves (Fig. 8a) 6.47
Vertical response in waves (Fig. 8b) 21.9
Top end tension response in waves (Fig. 8c) -2.34
Horizontal response in waves and current
(Fig. 9a)

-3.62

Vertical response in waves and current (Fig.
9b)

-7.31

Top end tension response in waves and
current (Fig. 9c)

-11.11

Table 2. Variation between Modelica and Orcaflex results.

6 Conclusion
The work presented in this paper introduces a novel
method for specifying fluid loads on a mass discretized
subsea cable using components already available in the
Modelica MultiBody library, with minor modifications.

Based on the agreement between Modelica and Or-
caflex simulation results, it is concluded that the model
exhibits satisfactory representation of structural and fluid
inertia effects, and accurate modelling of the drag loads on
a cable structure.

The only traceable reference to an attempt to use Mod-
elica in a similar scenario, by other researchers, is in the
modelling of the station keeping system of an offshore

wind turbine in (Leimeister and Thomas, 2017), where
limitations included the inability to account for:

• Relative accelerations in wave load calculation.

• Current loads on submerged structures.

These limitations have been successfully mitigated in the
present model.

It may also be noted that the authors are relatively new
to Modelica, and the results presented here are for a work
in progress. The code presented along with this work may
show instances of under-utilization of advantages offered
by Modelica, for e.g., the use of the array concept in im-
plementing the lumped mass philosophy. The main focus
of the present stage of the authors’ research is to build
a general framework for simulation of ocean engineering
systems in Modelica. Code refinement is planned for the
next stage of the project.

Extension of the modelling philosophy presented in this
work is expected to open the window towards the develop-
ment of Modelica component models for catenary as well
as taut moorings. Inclusion of linear and torsional spring
elements is expected to enable Modelica representation of
flexible structures with elasticity and bending stiffness viz.
risers, elastic moorings, and umbilicals, in the future.

The further development of this work, coupled with
the development of component models for waves and cur-
rents as described in (Viswanathan and Holden, 2020b),
and for non-diffracting floating objects as described in
(Viswanathan and Holden, 2020a), followed by the de-
velopment of component models for diffracting objects in
the future, would thus enable the integrated simulation of
multiphysical ocean-engineering systems, in their entirety,
using Modelica.

Presently, the authors are developing an open-source
code for determining the hydrodynamic coefficients which
appear in the equation-of-motion of diffracting floating-
objects. The initial results look promising, and the subject
will be dealt with in a future publication.
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