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Abstract

The development of the Chinese high-speed railway has
experienced considerable dynamics in recent years. Fur-
ther development of the trains depends to a large extent
on the optimization of the key subsystems and monitoring
of reliability and safety. In this paper the sample identifi-
cation based health monitoring method for fault diagnosis
and health monitoring by use of a Modelica based model
of the train system is addressed. In this study the proposed
method sovled the issue of generating enough fault sam-
ples for health monitoring and be validated by the train
operation realtime data. The paper demonstrates the ap-
plicability of the method and modeling concept by means
of diagnosis and monitoring of the state of health of the
braking system.

Keywords: high speed train, braking system, health moni-
toring

1 Introduction

1.1 Development of Chinese railway and re-
cent activities in high speed train develop-
ment

The Chinese high speed railway (HSR) was first intro-
duced in 2007 designed for the speeds of 250-350 km/h.
In 2008, the world’s first high speed rail with a designed
speed of 380 km/h between Beijing and Shanghai was
in operation. In mid-2018, the HSR has extended to
30 provincial-level administrative divisions and reached
27000 km in total length (author?) (1). Since 2008,
China has developed CRH trains (CRH1, CRH2, CRH3
and CRHS) with a maximum velocity of 300-350 km/h.
In 2010, a new generation of CRH trains with a top speed
of 380km/h were developed and entered service on the
Shanghai-Hangzhou High Speed Railway. The newest
trains CR400AF and CR400BF called “Fuxing Hao” in
figure 1 can reach the top speed of 400km/h narrowing the
commuting time from 6 hours to 4.5 hours between Bei-
jing and Shanghai.

1.2 Motivation

As the fast development of the Chinese high-speed trains,
the reliability and safety of the high-speed trains are crit-

Figure 1. Fuxing Hao

ical for multiple-unit train (EMU) further development.
However, there is no efficient fault detection and health
monitoring methods which are really applicable in EMU
trains due to the lack of failure data samples. And the high
cost and difficulty of the experiment test of failure makes
the health monitoring of EMU more difficult to achieve. In
this paper, a modelica-based model is developed to gener-
ate fault samples for health monitoring.

1.3 Overview of the paper

As depicted in figure 2, the Chinese high-speed train con-
sists of two parts: plant system containing traction system,
braking system, auxiliary system and so on; and control
system including network system, safety detection system.
etc. In this paper, the braking system is used for demon-
strating the sample identification method. First, we give
a short background of the Chinese railway development
and the motivation for the new health monitoring method
proposed in this paper. Then the failure of the braking
system of EMU was analyzed in the motivational exam-
ple. Afterwards, the theroy of the sample identification
method was explained in the technical background of fault
diagnosis. Besides the theory of the proposed method, a
demonstration of fault sample generation and health mon-
itoring was also dicussed to verify the sample identifica-
tion method, explicitly. In the presented study, a braking
system with braking control unit (BCU), electromagnetic
valve, reverse valve, double check valve and distribution
valve were implemented with Modelica in Dymola. The
health monitoring for the pressure and delay time of the
reverse valve in the relay valve has been performed to il-
lustrate the proposed approach.
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Figure 2. The high speed train and the components of subsys-
tems

2 Motivational Example
2.1 Introduction of the EMU braking system

Braking is divided into two forms: dynamic braking and
friction braking. Dynamic braking transforms the kinetic
energy into electrical energy by changing the traction mo-
tor into a generator in braking. Disk braking is the most
widely used in the friction braking (2). The EMU braking
is achieved through the combination of electric braking
and pneumatic braking, because the kinetic energy is too
large for electric braking to consume in the limited time.
The braking system can realize multiple functions such as
service braking, emergency braking, urgency braking and
so on. This paper takes focus on the urgency braking in
which only pneumatic braking is applied to the train. The
EMU braking system consists of three subsystems: brak-
ing control system, air supply system and braking devices.
For the pneumatic braking, control system is the criti-
cal part that directly influence the braking performance of
the train. As shown in figure 3, the braking control sys-
tem consists of braking control unit (BCU), electromag-
netic valve (BAV, BRV and EBV), reverse valve (RV),
double check valve (DCV) and distribution valve (DV).
The electromagnetic valve activates the electro-pneumatic
braking and the distribution valve activates the pneumatic
braking. The electromagnetic valve and distribution valve
both produce the pre-controlled pressure C,, the double
check valve can ensure the transformation from C, to ac-
tual braking force. The braking cylinder pressure C was
adapted by reverse valve according to the C, value and ac-
commodated the air volume of cylinder.

2.2 Description of the failure to be analyzed

In the emergency braking mode, a failure of changeover
on high and low speed occurred occasionally, resulting in
a low braking force during the braking, thereby prolong-
ing the braking distance. Through the preliminary anal-
ysis of the fault performance and braking system princi-
ple, it is considered that relay valve of the braking con-
trol module causes the fault, and the reason is that the
switching resistance of the relay valve is too high. In the
braking control system, the relay valve (shown in figure 4)
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Figure 3. Control system of braking system
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Figure 4. Relay valve

outputs the braking cylinder pressure complying with the
requirements of the brake command by high-low speed
changeover signal. After further analyzing the working
principle of the relay valve, the cause of the fault is lo-
cated in the reverse valve of the relay valve responsible
for controlling the switching of the high/low speed brak-
ing force, as shown in figure 5. The reverse valve works as
the following principle: when the train is applied brake at
high running speed, compressed air pushes the changeover
piston to right side to charge air into relay valve’s pres-
sure adjusting chamber, and relay valve outputs a lower
braking pressure, which means lower braking decelera-
tion of the train. While the running speed is decreased,
compressed air in left side’s chamber of changeover pis-
ton is cut off and vented, and the piston is pushed by re-
turn spring’s force so that compressed air in pressure ad-
justing chamber of relay valve is vented, and control the
relay valve to output a higher braking pressure, and of
course, higher braking deceleration to the train. Failure

Figure 5. Reverse Valve
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Figure 6. Pressure of fault valve and non-fault valve

phenomenon indicates that the piston can not be restorable
by right side spring when the piston’s left side pressure is
vented. The reasons include: the excessive piston move-
ment resistance; spring failure; small spring force. Be-
cause the failure is accidental, the piston can be finally
restorable by right side spring in most cases, which indi-
cates that this phenomenon is not caused by spring failure.
So it should be caused by excessive resistance of valve
stem. Finally, it was confirmed by experiments that the
compatibility of the piston’s rubber articles and lubricat-
ing grease was poor, resulting in excessive expansion of
the outer dimensions, which further increased the friction
force and verified the previous analysis. It can be seen
from the experimental results that as the number of use
time changes, the pressure required for switching gradu-
ally increases, and the increase amount in the fault valve
is significantly higher than that of the normal valve, as
shown in figure 6.

3 Technical background of fault diag-
nosis

3.1 Traditional methods

A fault is defined as an unpermitted deviation of at
least one characteristic property or parameter of the sys-
tem from the acceptable/usual/standard condition (3). In
order to improve the reliability and safety of systems,
fault diagnosis is introduced to monitor, locate and iden-
tify the faults. Traditional model-based method includes
unknown-input observers approach (4), parity relation ap-
proach (5), stable factorization approach (6), Kalman-
filter-based residuals (7), parameter estimation method
(8), distributed fault diagnosis filtering method (9), etc.
The observer based method is widely used in fault diag-
nosis and health monitoring as shown in figure 7.

3.2 Sample identification based approach

This study addressed a new health monitoring method
based on the sample identification. First step is to build
the system models. After analyzing the reasons for the
failures, a system model with no faults was built includ-
ing the components in which failure occurred and other
subsystems concerned in the fault diagnosis. Concerning

Residual for fault diagnosis

Figure 7. Schematic of model-based fault diagnosis

the high accuracy demand of the fault diagnosis and the
complexity of the plant model, the modeling tool should
be able to cover multiple physical domains and realize
multi-level modeling with fast simulation and promised
accuracy. Modelica is a technology modeling the dy-
namic behavior of technical systems consisting of com-
ponents from, e.g., mechanical, electrical, thermal, hy-
draulic, pneumatic, fluid, control and other domains in a
convenient way. Dymola is a tool based on Modelica with
fast simulation and high accuracy which is used in this
study. The model should be simplified as much as possible
without decreasing the accuracy of fault diagnosis. And
the healthy models should be validated for ensuring the ac-
curacy of fault samples. At the same time, the correspond-
ing fault models should be developed and be able to sub-
stitute the non-fault models in the healthy system models.
Then, by inject the fault models into the healthy system
models, the fault samples can be generated. As modelica
can realize the multi-level modeling conveniently, it’s very
easy to change the healthy models by fault models. Next,
distract the character value of the fault models which in-
dicating the health degrees of the system concerned. In
this study, the character is the delay time of braking pres-
sure and the pressure of the reverse valve, the delay time
defines the healthy degrees (0O~1) and pressure determines
if the train is healthy (1) or failure (0). Finally, the fault
samples were stored in the health monitoring server for
computing the health degrees of the train based on the re-
altime detected data during the operation of the train. The
algorithm for health monitoring is to compare the realtime
data with the fault samples and determines the healthy de-
grees of the train or related subsystems.

The relationship of health degree with braking pressure
P and delay time 7 can be generated by the considerable
samples, as shown in equation 1.

H=g(T) D

The braking signals and health degrees can be detected in
real time, and analyzed to obtain the health state of the
train. There are many algorithms for the health detectors,
in which a simple one is utilized in this study: the delay
time is the difference of braking operation time 7} and sig-
nal output time 75, as shown in equation 2:
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T=71-T ()

The command is the braking boolean signal in the model

3)

T\ = if command then time

The measured braking pressure is P, and P was obtained
after low pass filter, if the braking pressure was controlled
to the desired pressure with no waves, the pressure should
be above the threshold a and the difference of the pressure
should be below threshold b, as shown in equation 4:

T, = if j then time 4)
Where j is defined in equation 5:
j=if (P> a and der(P) < b) 5)

and the relationship of braking pressure P and delay time
T with health degrees H is shown in equation 6:

H=J(PT)g(T) (6)
Where J(P,T) is described in equation 7:
J(P,T) = if (command and P > a) (7)

As the description above, the health monitoring was im-
plemented and demonstrated in the following chapter.

4 Case study

4.1 Modeling and validation of braking sys-
tem

The Chinese EMU is composed of 8 car units, divided into
2 traction units, each includes 2 driven cars and 2 trail cars,
every driven car has a traction control unit (TCU) and ev-
ery car unit has a braking control unit (BCU). BCU adopts
the electrical-pneumatic braking controlled by TCU and
BCU. The electrical braking is preferred and pneumatic
braking is applied when the braking force is insufficient.
BCU sends commands to air supply system according to
the braking level set by driver, actual velocity of the train
and pressure value detected by the braking system. A
BCU model is shown in figure 8. Technically, drivers can
apply the braking without level set on the screen, but it’s
difficult to find appropriate operation position which is im-
portant to establish the reflection of driver. So braking
is divided into service braking with 7 levels (B1 ~ B7),
emergency braking (EB) and urgent braking (UB) which
applies mechanical braking only. In practice, the signals
received by braking system are non-level continuous sig-
nals. The mechanical braking system is modeled based on
the PneumaticLib developed by Modelon AB, as shown in
figure 9, consisting of parking control unit, braking con-
trol unit, air supply and air spring control unit, pressure
switches and braking executing unit. The braking exe-
cution unit of the driven car consists of four wheel discs

PT HighBrakeForce

>

Parkingjcontrol module
1w

winion

Figure 9. Braking system of the trail car TCO1

per wheel set, and for the trail car, the braking execution
unit is six hub discs. The main working unit is BCU. The
braking system of the car TCO1 is shown in figure 9. The
BCU is as shown in figure 10, in which there are 3 spe-
cial valves: EP valve used for adjusting and stabilizing the
pressure quickly, empty and load valve used for control-
ling and adjusting the pressure according to the loads, re-
lay valve used for switching between service braking and
urgent braking. The models are described as follows: The
details of EP valve model in figure 10 is shown in figure
11, consisting of 2 direction control valves (DCV_2_2).
The pressure between the two valves is adapted by the
switching operation of the direction control valve. The
empty and load valve was depicted in figure 12, whose
main function is to receive the air spring pressure signals
of 2 bogies and output the braking control pressure that
is linear to the load pressure value based on the leverage
effect, so that the braking cylinder control pressure varies
with the load in the braking mode. The mechanism of the
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relay valve is shown in figure 13, whose main function is
to increase the flow rate and ensure the output pressure
C varies with pressure C,. When the train is running at
high speed, reverse valve is closed, relay valve output low
braking pressure; when the train is running at low speed,
reverse valve is open and relay valve outputs high braking
pressure. The reverse valve in normal operation is shown
in figure 14. The model is validated by experiment data,
as shown in figure 15. The input of BCU is the control sig-
nal from driver and actual speed of the train. Given that the
driver operated in levels and the input signal of the BCU
is continuous, the calculating results were revised and val-
idated its consistency with test data. The formula of the
validation is shown in equation 8, where ¢ is the sample
period, X,, is revised value, X4, is test data and Xsimurarion
is calculating results. The validation results is shown in
figure 16 indicating that the model is accurate enough for
fault diagnosis and health monitoring.

1+1c |Xmeav s:mulatzon(u)|
du<0.05Vt 8
T / |Xmeas >| +0. 01X ( )

4.2 Fault injection and failure sample genera-
tion
The fault caused by the reverse valve of the relay valve is
performed as time delay of the switch between high and
low pressure. Specifically, the reason is that the coeffi-
cient of friction is too large for the moving valve. The fault
models of reverse valve are injected into the healthy model
through changing the coefficient of friction for the fault
diagnosis modeling. The fault models of reverse valve is
shown in figure 17. The same control signal is applied to
the models with fault injection, and with different coeffi-
cient of friction, different braking pressure is obtained, the
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time of the reverse valve to complete the switching opera-
tion is delayed, or even can’t switch normally. Specifically
manifested in three forms as follows: smooth switching
between high and low pressure, slow switching between
high and low pressure, failed switching between high and
low pressure. When there are switching delays or failures
that reverse valve can not be switched properly, the brak-
ing distance of the failed train is longer than that of the
fault-free train, as shown in figure 18.

4.3 Application of sample identification based
health monitoring

The faults in the train have bad impacts on the perfor-
mance, life cycle and stability of braking system. The
unstable performance and component broken manifest im-
mediately, and performance degradation is difficult to no-
tice which may cause severe consequences once the failure
occurred. It’s critical to monitor the system states online in
real time ensuring the normal operation in healthy condi-
tion. The fault distribution is assumed as normal distribu-
tion. The healthy degree is 1 when the coefficient of fric-
tion is 0 in which the probability is biggest. And the health
degree and probability decrease with coefficient of friction
increases, as shown in figure 19. However, considerable
samples are essential in the process of the monitoring on-
line system development, which are generated by injecting
different coefficient of friction into models with the same
pneumatic switch signals, as shown in figure 19, 20. The
figure 21 depicts different braking cylinder pressure and
abstract the delay time of signals 7 and braking pressure
P to analyze and decide the health degree. The simulation
results of the test case by applying the proposed sample
identification based approach is shown in figure 22. More
sophiscated control algorithms for fault diagnosis can be
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failed to switch

developed based on the considerable samples generated
by the models, and applied in the health monitoring sys-
tem development.

5 Conclusion and future work

In this paper, a sample identification method for the fault
diagnosis and health monitoring is introduced. The mod-
els of braking system in a chinese high speed train with
high accuracy and the corresponding fault models have
been implemented. The faults were injected into the
healthy models to generate a large amount of fault sam-
ples. The new health monitoring method has been demon-
strated by a predefined failure in the braking system.
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Figure 20. Pneumatic switch signals
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