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Abstract
The thermo-mechanical processing history together
with the steel composition defines the final
microstructure, which in turn produces the
macroscopic mechanical properties of the final
product. In many industrial processes it is therefore of
paramount importance to find the optimal thermal path
that produces the desired microstructure. In the current
study an optimization method has been developed to
calculate the optimal thermal path for producing
desired amounts of microstructural constituents (ferrite,
bainite, martensite) of a medium carbon, low-alloy
steel, and a low carbon microalloyed steel. The
optimization is performed for two separate industrial
processes: induction hardening of a pipeline steel and a
water cooling of hot rolled steel strip. The optimization
workflow consists of first setting the desired amounts
of microstructural constituents, and subsequent
optimization of the thermal path, which produces these
desired amounts. For the water cooling of a steel strip
we additionally employed previously developed tool to
calculate the cooling water fluxes that are needed to
realize the optimized cooling path in water cooling line
after hot rolling. To demonstrate the applicability of
the method, we present results that were obtained for
different case studies related to the industrial processes.
Keywords:     constrained optimization, nonlinear
optimization, steel, processing

1 Introduction
1.1 Background
The thermo-mechanical processing history together
with the steel composition defines the final
microstructure, which in turn produces the
macroscopic mechanical properties of the final
product. In many industrial processes, it is therefore of
paramount importance to find the optimal thermal path
that produces the desired microstructure.

In the case of pipe induction hardening, the gradient
of material properties (microstructure, hardness and
hardening depth) through the pipe body can be
optimized by designing the thermal cycle i.e. rates of
heating and cooling along with the peak temperature
and soaking time. In the induction hardening

processing, the thermal cycle is very easy and precise
to apply and control. As regards, an optimization is
required to reach the desired material properties
through the final microstructure characteristics in an
efficient way.

Higher heating rate is beneficial in many ways.
However to some extent it can cause inhomogeneity
and abnormal grain structure (Javaheri et al., 2019a) in
the steel. The heating rate can also change the critical
phase transformation temperature, which cause
difficulties for selecting the austenitization
temperature. The minimum possible peak temperature
can result in the finest prior austenite grain structure,
which leads to formation of very fine final
microstructure and consequently will improve the
strength and toughness at the same time.  Increasing
the cooling rate in the industrial scale may affect the
production cost. However producing hard and strong
microstructure such as martensite or lower bainite
would not be possible if the cooling rate is smaller than
a certain level. All in all, an optimization should be
performed to find the best and most efficient
combination of above mentioned parameters.

In industrial practice of hot rolling of steel, steel
manufacturers are forced to employ the most advanced
processing routes in their production lines. The control
of reheating, rolling and accelerated cooling forms the
basis of producing new types of high-performance
steels. The capability to accurately predict and control
plate or strip temperature behavior and microstructure
evolution during thermomechanical processing is of
fundamental importance in commercial production. In
the water cooling line, it is possible, within certain
limits, control the resulting microstructure for a given
steel composition. Since the line layout and other
processing parameters limit the available cooling paths,
the optimization script needs to take these effects in to
account conveniently.

Optimization of thermal processing is a common
task arising in metal processing (Jung et al., 2018;
Tavakoli, 2018). In current study we employ the
optimization tools in Matlab programming language.

1.2 Aims
In the current study an optimization tool has been
developed to calculate the optimal thermal path for
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producing desired amounts of microstructural
constituents (e.g. ferrite, bainite, martensite). Since in
the current implementation, the minimization algorithm
applies an initial guess, we call this implementation as
“semi-automatic”, although for the water cooling of
steel strip the choice of the initial guess was performed
by automatically testing different cooling paths, as
explained later.

The optimization is performed for two separate
industrial processes: induction hardening of a medium
carbon, low-alloy pipe steel (Javaheri et al., 2019b)
and a water cooling of a hot rolled low carbon steel
strip (Pohjonen et al., 2018a). The optimization
workflow consists of first setting the desired amounts
of microstructural constituents, and subsequent
optimization of the thermal path, which produces these
desired amounts applying the phase transformation
model described in (Pohjonen et al., 2018a; Pohjonen
et al., 2018b; Javaheri et al., 2019b). For the water
cooling of a steel strip, we additionally employed
previously developed tool (Paananen, 2015; Pohjonen
et al., 2016) to calculate the cooling water fluxes that
are needed to realize the optimized cooling path in
water cooling line after hot rolling.

To optimize the induction hardening process for
achieving desired gradient of microstructure and
mechanical properties, initially, the heating cycle
(austenitization) has been optimized regarding the rate
of heating and peak temperature assuming a dwell time
of 2.5 s aiming for the finest prior austenite structure.
Then, three different scenarios for the cooling path
have been considered to achieve three thoroughly
different microstructures of i) fully martensitic
structure (100%), ii) fully bainitic microstructure, equal
amount of upper and lower bainite (50% each) and iii)
mixture of martensite and bainite (30% martensite,
40% upper bainite, and 30% lower bainite).

To test the optimization tool in the context of water
cooling of hot rolled steel strip, we set the desired
fractions of bainite and martensite, and perform
optimization to achieve these fractions within the water
cooling line. In the case of water cooling, the line

layout and rolling process set some limits for the
possible cooling rates. Maximum overall cooling rate
at the strip centerline ranges typically from 150 °C/s  to
30 °C/s while minimum cooling rate due to radiation
and convection ranges from 10 °C/s to 2 °C/s for the
thin and thick plates, respectively.

2 Calculations
In the current study, an optimized piecewise linear
cooling path was sought. The optimization of the path
was realized with the Matlab Optimization Toolbox
(Mathworks, 2020) using the fmincon function. The
interior point minimization algorithm with nonlinear
constraints (Byrd et al., 2000) was chosen for the
optimization. Since the heating and cooling rates are
limited in practice, the constraints for these rates are
defined for the optimization. Also, the maximum
temperature changes and time intervals of the path can
be limited to desired values. By setting the exact time
intervals for the path, the optimization tool can be
adjusted to given water cooling line layout, when the
speed of the strip is known.

The workflow for the cooling path optimization is
depicted in Fig. 1. The applied optimization method
requires an initial guess for the optimized parameters,
which is used as a starting point for the optimization.
Here we use the starting temperature 𝑇𝑇 , the
temperature changes Δ𝑇𝑇  and time intervals Δ𝑡𝑡  for
each segment 𝑖𝑖 of the piecewise linear temperature
path as the optimization parameters, so that the
parameters describe the thermal path. The thermal path
optimizer applies the fmincon function, which runs a
script that calculates the phase fractions that result
from the thermal path. After the calculation, the
optimizer script receives the final phase fractions, and
calculates the difference to the desired phase fractions,

𝜒𝜒 , − 𝜒𝜒 . Based on the optimization algorithm
(Byrd et al., 2000; Mathworks, 2020) the thermal path
is changed and the optimization proceeds to minimize
the difference to the desired phase fractions.
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Upper and lower bounds were set within the 

fmincon function call. From the application point of 
view, it is important to define the minimum and 
maximum cooling and heating rates, since even 
without additional cooling, the object cools by itself 
due to radiation and convection. Also, depending on 
the size and geometry and the applied forced cooling, 
there is maximum cooling rate that can be achieved. 
Too high or low heating rates can adversely affect the 
resulting microstructure. For this reason, the non-linear 
constraints for heating and cooling rates 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 were 
set using crcon function (Mathworks, 2020) related to 
the fmincon minimization algorithm, to control the 
maximum cooling rate for each segment in the 
piecewise linear cooling path: ≤ ≤ . 

The phase transformation module has been described
in detail generally in (Pohjonen et al., 2018b), in
context of induction hardening of medium carbon steel
(Javaheri et al., 2019b) and in the context of water
cooling of hot rolled low carbon steel in (Pohjonen et
al., 2018a), where (Javaheri et al., 2019b) and
(Pohjonen et al., 2018a) also include the
transformation model parameters fitted for the steels
that were used in these examples.

Since the minimization script finds a local
minimum near to the initial guess, it is required to

choose suitable initial guess, so that the algorithm can 
find a good minimum. For the test cases related to 
optimization of the cooling path of water cooled steel 
strips, we applied a script to automatically test nine 
different initial guesses for the cooling paths and then 
select the one that produced the best solution. The 
cooling paths described by the initial guesses are 
shown in Fig. 2. 

 
Figure 2. Thermal paths used as initial guesses for 

the optimization of the temperature path for water 
cooling of hot rolled steel strip. 

 

Figure 1. Optimization flowchart 
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After the thermal path to produce desired 
microstructure in the strip cooling line is optimized, 
another optimization script is used for calculating the 
required water fluxes. The water flux calculation is 
done by an approximate model presented elsewhere 
(Paananen, 2015; Pohjonen et al., 2016). This model 
calculates the average temperature at the mid-depth of 
the steel strip. Approximate model was fitted using a 
more detailed but computationally heavier model 
(Pyykkönen et al., 2012) so that the effect of strip 
temperature and water flux was studied with wide 
variety of parameters in detailed model. These results 
were used to form tables for mean cooling rate, k, 
under one cooling unit as a function of temperature and 
water flux. Later, the mean cooling rate for arbitrary 
temperature or water flux is calculated by using these 
tables and linear interpolation. 
 
𝑇𝑇 = 𝑇𝑇 + ∆  𝑘𝑘(𝑇𝑇, 𝜃𝜃)                         (1) 

 
where T is temperature, ∆𝑧𝑧 is thickness, l is the length 
between two modelling points, v is velocity, k is 
average cooling rate and 𝜃𝜃 is the water flux. Subscript i 
denotes a modelling point. 

For the induction hardening cases, the optimization 
time interval was longer, hence it was more suitable to 
find the initial cooling path by testing few different 
paths that already produce some amount of the desired 
phase fractions, so that the optimization script then is 
capable of finding how the changes of the path affect 
the resulting phase fractions. While the optimization 
for the steel strip was fully automated, the semi-
automatic optimization was chosen for the induction 
hardening cases. 

3 Results and discussion 
3.1 Water cooling of hot rolled steel strip 
In the case of steel strip cooling, the chemical 
composition and rolling procedure limit the possible 
phase fractions that can be obtained during water 
cooling. However, in some cases, even small changes 
to the final phase fractions may lead to desired change 
in the final properties of steel. Two different cases are 
presented where the fractions of bainite and martensite 
are 20 % bainite - 80% martensite for case i) and 40 % 
bainite - 60 % martensite for case ii). In these cases, 
five (time, temperature) points were chosen, at which 
the temperature is optimized. In reality, there could be 
even more fitting points, but this would make it more 
difficult to know what the constraints for different 
zones would be.  

First, optimal cooling path to produce desired 
amounts of bainite and martensite is found through 
optimization presented in this work, then the water 
fluxes that produce this cooling path in the cooling line 

are calculated with an approximate model (Paananen, 
2015). Finally, the cooling path that can be achieved in 
the cooling line (continuous line in Figures 4 and 6) 
was used as an input to phase transformation model, to 
check that even though there are some small 
differences in the thermal path of Figs 3 and 4, the 
desired phase fractions are still obtained. 
 

3.1.1 Water cooling of steel strip case i), 20 % 
bainite, 80 % martensite 

The optimized thermal path and phase fractions for 
water cooled steel strip test case i) are shown in Fig. 3. 
The path started from fully austenitic structure. The 
path was optimized to produce 20 % bainite and 80 % 
martensite. The optimized normalized water fluxes are 
shown in Fig. 4. 

 
Figure 3. The optimized thermal path for strip cooling 
process test case i) (20 % bainite, 80 % martensite) and 

the fraction of phases formed as function of time. 
 

 
Figure 4. The optimized normalized water fluxes.  
 
Target temperatures refer to temperatures that would 

be optimal to obtain the desired phase fractions the 
black line shows the thermal path estimated as result 
from these water fluxes. 
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3.1.2 Water cooling of steel strip case ii), 40 % 
bainite, 60 % martensite 

The optimized thermal path and phase fractions for 
water cooled steel strip test case ii) are shown in Fig. 5. 
The path started from fully austenitic structure and it 
was optimized to produce 40%  bainite and 60 % 
martensite. The optimized normalized water fluxes are 
shown in Fig. 6. 

 
Figure 5. The optimized thermal path for strip cooling 
process test case ii) (40 % bainite, 60 % martensite) 
and the fraction of phases formed as function of time. 
 

 
Figure 6. The optimized normalized water fluxes. 
Target temperatures refer to temperatures that would 
be optimal to obtain the desired phase fractions the 
black line shows the thermal path estimated as result 
from the optimized water fluxes. 

3.2 Induction hardening 
Typically, in the induction hardening process, in order 
to avoid a significant grain growth, the time when the 
material stays in highest temperature (the peak 
temperature) is few seconds. This time is called dwell 
time. In this study, a dwell time of 2.5 s was considered 
for all the calculations. Moreover, to achieve the finest 

possible grain structure, it is desirable to maintain the 
peak temperature as low as possible, while still 
achieving full austenitization.  

For the optimization of the austenitization, we 
defined the objective function 𝑓𝑓 , which is 
minimized. The function 𝑓𝑓 = 𝜒𝜒 − 𝜒𝜒 , + 𝑇𝑇 /𝑎𝑎, 
where 𝜒𝜒 , = 1.0 is the desired austenite fraction 
(full austenitization). 𝑇𝑇  is the peak temperature and 𝑎𝑎 
is a penalty parameter which affects how much the 
peak temperature contributes to the objective function. 
The parameter 𝑎𝑎 was optimized so that the final value 
was the minimum that produced more than 99.5 % 
austenite during the heating and holding in the peak 
temperature. The physical austenitization parameters 
were the peak temperature and the heating rate, which 
was constrained between 50 °C/s and 100° C/s.  

The minimum peak temperature satisfying this 
condition was found to be 795 °C with the minimum 
heating rate 50 °C/s. The found peak temperature, 
heating rate, and the chosen 2.5 s dwell time were used 
in the austenitization schedules for all of the induction 
hardening cases examined in this study.  
 

3.2.1 Induction hardening case i), fully martensitic 
structure 

The optimized thermal path for the induction hardening 
test case ii) is shown in Fig. 7. The path was optimized 
for full austenization at minimum temperature, 2.5 s 
dwell time, with 50-100 °C/s heating rate. Upon 
cooling the path was optimized to produce fully 
martensitic structure. For further experimental and 
applied studies, as well as serving as a suitable initial 
guess for other desired phase amounts close to this 
result, the actual values and cooling rates are presented 
in Table 1. 

 
Figure 7. The optimized thermal path for induction 
hardening process test case i) (fully martensitic 
structure) and the fraction of phases calculated to form 
as function of time.  
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Table 1. The values of the time-temperature path of 
induction hardening test case i) shown in Fig. 7, as well 
as the corresponding heating (HR,+) and cooling rates 
(CR,-). 
 

Time	(s) 
	

Temperature	[°C] HR+/CR-	[°C/s] 

0,0 21,0 50,0 
15,5 795,2 0,0 
18,0 795,2 -92,2 
21,2 497,6 -47,3 
25,5 295,9 -3,8 
65,3 145,8 -1,9 
105,1 70,8 -0,5 
200,0 21,0 - 

 
 

3.2.2 Induction hardening case ii), equal amount of 
upper and lower bainite (50% each) 

The optimized thermal path for the induction hardening 
test case ii) is shown in Fig. 8. The path was optimized 
for full austenization at minimum temperature, 2.5 s 
dwell time, with 50-100 °C/s heating rate. Upon 
cooling the path was optimized to produce 50% upper 
bainite (which forms above 550 °C), 50 % lower 
bainite (which forms below 550 °C). For further 
experimental and applied studies, as well as serving as 
a suitable initial guess for other desired phase amounts 
close to this result, the actual values and cooling rates 
are presented in Table 2. Despite the minimization 
procedure, abount 10 % of the austenite transformed to 
martensite during cooling. A longer total time would 
be required to produce the desired fully bainitic 
microstructure. 

 

 
Figure 8. The optimized thermal path for induction 
hardening process test case ii) (50 % upper and 50 % 
lower bainite) and the fraction of phases calculated to 
form as function of time.  

 

Table 2. The values of the time-temperature path of 
induction hardening test case ii) shown in Fig. 8, as 
well as the corresponding heating (HR,+) and cooling 
rates (CR,-). 
 
Time	[s] 

	
Temperature	[°C] HR+/CR-	[°C/s] 

0,0 21,0 50,0 
15,5 795,2 0,0 
18,0 795,2 -62,5 
20,3 650,3 -2,3 
60,9 555,9 -0,2 
99,4 548,0 -3,0 
149,2 399,0 -7,4 
200,0	 21,0	 -	

 
 

3.2.3 Induction hardening case iii), 30% martensite, 
40% upper bainite, and 30% lower bainite 

The optimized thermal path for the induction hardening 
test case iii) is shown in Fig. 9. The path was optimized 
for full austenization at minimum temperature, 2.5 s 
dwell time, with 50-100 °C/s heating rate. Upon 
cooling the path was optimized to produce 40% upper 
bainite (which forms above 550 °C), 30 % lower 
bainite (which forms below 550 °C) and 30 % 
martensite. For further experimental and applied 
studies, as well as serving as a suitable initial guess for 
other desired phase amounts close to this result, the 
actual values and cooling rates are presented in Table 
3. 
 

 
Figure 9. The optimized thermal path for induction 
hardening process test case iii) (30 % martensite, 40 % 
upper bainite, 30 % lower bainite) and the fraction of 
phases formed as function of time.  
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Table 3. The values of the time-temperature path of 
induction hardening test case iii) shown in Fig. 9, as 
well as the corresponding heating (HR,+) and cooling 
rates (CR,-). 
 
Time	[s] 

	
Temperature	[°C] HR+/CR-	[°C/s] 

0,0 21,0 50,0 
15,5 795,2 0,0 
18,0 795,2 -84,4 
20,1 614,5 -1,4 
69,8 547,2 -5,5 
96,5 401,1 -12,1 
113,1 201,4 -2,1 
200,0 21,0 - 

 

4 Conclusions
Using the Matlab programming language (Mathworks,
2020), based on the algorithm described in (Byrd et
al., 2000) an optimization script was created for finding
the cooling path that produces the desired
microstructural constituents (ferrite, upper and lower
bainite, martensite) as well as finding suitable heating
path for desired austenitization. The script was
succesfully applied for several test cases related to
water cooling of hot rolled steel strip and induction
hardening. For the water cooling case, the script was
fully automated by running a series of initial guesses
for the thermal path and choosing the best result, while
for the induction hardening cases, a user defined initial
guess was used. For water cooling we additionally
optimized the required cooling water fluxes needed to
realize the optimized cooling path based on the earlier
work (Paananen, 2015; Pohjonen et al., 2016).
Although the results of the presented test cases are not
directly applied in the industrial practice as such, they
are reasonably close to the actual production to
demonstrate the practical applicability of the method.
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