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Abstract
There is a growing interest in data-driven models of dy-
namic systems developed from “Big Data”. Data-driven
models have some limitations, e.g., without data, there is
no model. Hybrid models consisting of relatively simple
mechanistic models in tandem with data-driven models of-
fer a compromise: physics understanding and design/syn-
thesis of control structure prior to building the system, and
improved model as data becomes available.

Here, we studied a strategy to develop hybrid models
based on a laboratory helicopter case study. We presented
the system, with a model based on Lagrangian mechanics.
Torques were assumed linear: actuator torque in voltages,
and friction torque in angular velocities. Nominal model
parameters were taken from a laboratory set-up. Experi-
mental data from a laboratory process was presented; the
model gave poor model fit with nominal parameters. Op-
timal model parameters were found based on a ballistic fit
measure, and gave acceptable fit for pitch angle measure-
ments, but poor fit for yaw angle measurements. Next,
the assumption of linear controller torque was relaxed by
adding a feed forward neural network block within the
continuous time dynamic model. Upon training, this still
gave imperfect, but considerably better prediction of the
yaw angle. In a final, “model discovery” step, physically
relevant alternatives to the neural network were explored.

The key idea of the paper was to illustrate a strategy for
hybrid models. The current model still has some structural
imperfections; these should be resolved before model val-
idation becomes meaningful.
Keywords: neural differential equations, mechanistic
model, hybrid data-driven and mechanistic model, heli-
copter model, control relevant model

1 Introduction
1.1 Background
Two main types of models for describing dynamic systems
are (i) data-driven models (regression models, machine
learning, empirical models) found by tuning parameters
in some abstract mathematical structure, and (ii) mecha-
nistic models (physics based models) which utilize bal-
ance laws based on the mechanisms that drive the change
in the system coupled with semi-empiric phenomenologi-
cal models (transport laws, reaction rates, etc.). These two
model types have their own strengths and weaknesses. To-

day there is an increasing focus on the possibility of devel-
oping data-driven dynamic models from “Big data”.

Data-driven models put little emphasis on understand-
ing the system, can easily be automated in computers, but
require large amounts of data and do not extrapolate well.

Mechanistic models require good understanding of the
physics of the system, impose limitations in model gener-
alization, and are more complex to automate in computers.
On the other hand, mechanistic models require less data,
and extrapolate better.

Ideally, one would combine the best of both model
types. This would imply to use simplified mechanistic
models prior to the availability of data, train regression
models to describe uncertain phenomenological relations
and missing dynamics in the mechanistic model, and this
way gradually improve the model description.

1.2 Previous work
Feed forward neural networks constitute a modern ex-
ample of nonlinear regression models, i.e., a static map-
ping from an input signal/feature vector to an output sig-
nal which can be fitted to experimental data by modi-
fying weight/bias parameters. Traditional use of neural
networks for dynamic models are based on feed forward
neural networks with auto-regressive/delayed outputs and
moving average/delayed inputs. Alternatively, recurrent
neural networks include internal feedback paths in layers.
Both approaches are based on discrete time data/models.

Since feed forward neural networks describe a nonlin-
ear mapping, suppose that both inputs and states of a sys-
tem are known over some time horizon, together with the
derivative of the states. Then one can treat the inputs and
states as inputs to the neural network, and the derivatives
of the states as outputs from the neural network. By tun-
ing neural network parameters, this enables fitting the neu-
ral network to the vector field of the differential equation,
leading to Neural Differential Equations (Farrell and Poly-
carpou, 2006; Chen et al., 2018). If all states and state
derivatives are known, fitting a neural network to the vec-
tor field is straightforward. This may be the case in simu-
lation studies for model reduction. However, for real sys-
tems with experimental data from a limited number of sen-
sors, two problems are faced: (i) derivatives are not avail-
able and can at best be found by some smoothing/spline
fitting, and (ii) derivatives can be approximated for sensor
outputs, but not directly for states. This makes the prob-
lem more challenging.
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Based on the ideas in (Chen et al., 2018), a set of pack-
ages for computer language Julia (Bezanson et al., 2017)
are combined to fit neural differential equation models
(Rackauckas et al., 2019, 2020) to experimental data, lead-
ing to differential equations that can be solved by standard
differential equation solvers (Rackauckas and Nie, 2017).
However, the packages aim higher: they allow for a very
general mixing of mechanistic models and neural differ-
ential equation models in the same framework, with pos-
sibilities for the user to choose whether only parameters in
the neural network model are tuned, or parameters in both
the mechanistic model and the neural differential equa-
tion. The advantage of this approach is significant: it al-
lows for the desirable possibility of extending mechanistic
models with data-driven elements.

In this paper, we consider a mechanistic model of a lab-
oratory helicopter at University of South-Eastern Norway;
the model is used in a course on Model Predictive Control.
A mechanistic dynamic model of the system can be devel-
oped as in (Gäfvert, 2001) using Lagrangian mechanics.
Using sets of experimental data, a hybrid model consist-
ing of the mechanistic model extended with neural net-
work blocks is fitted using Julia package DiffEqFlux.jl.
This allows for developing an improved model compared
to the purely mechanistic model, and serves as a starting
point for challenges related to hybrid models.

1.3 Overview of paper
The paper is organized as follows. Section 2 presents the
laboratory helicopter, and a mechanistic model developed
from Lagrangian mechanics and nominal model parame-
ters. In Section 3, experimental data are presented, and
it is shown that poor knowledge of initial values for the
model with the chosen nominal parameters gives low pre-
diction accuracy. Next, a model fitting measure is pro-
posed (loss function), and parameters and initial values
are adjusted to minimize the loss function. The model is
still imperfect. In Section 4, the torque model used in
the mechanistic model is replaced by a neural network
block from the controller inputs (voltages) to the con-
troller torques. Finally, in Section 5, some conclusions
are drawn. Nominal model parameters and operating con-
ditions are provided in Appendix A.

2 Helicopter mechanistic model
2.1 Laboratory helicopter
The laboratory helicopter used as a case study, is shown in
Fig. 1.

A video file is available detailing the operation of the
helicopter, and some elements which makes it complicated
to achieve a perfect mechanistic model of the helicopter.1

2.2 Geometry of helicopter
Consider the helicopter in Fig. 2, with upward-pointing z
axis. Origo of the body-fixed coordinate system is in the

1https://web01.usn.no/~roshans/mpc/videos/Heli_deadband_effect.mp4

longitudinal inertial axis of the helicopter. The laboratory
helicopter is hinged to the ground; in Fig. 2, the pivot point
is located in the body-fixed origo.

If the helicopter body is elevated a distance h above the
pivot point, differential mass dm(r) at position r along the
longitudinal axis of the helicopter is given by coordinates
zr and ξr,

zr = r sinθ +hcosθ

ξr = r cosθ −hsinθ .

The angle of nose raise θ is termed the pitch angle. Seen
from a birds-eye view, the helicopter can also rotate in the
plane by the yaw angle ψ , Fig. 3.

The positions in the plane are

xr = ξr cosψ

yr = ξr sinψ.

In summary, the position of mass dm(r) is given by Carte-
sian coordinates (xr,yr,zr)

xr = (r cosθ −hsinθ)cosψ

yr = (r cosθ −hsinθ)sinψ

zr = r sinθ +hcosθ ,

where the generalized coordinates are x= (θ ,ψ).

2.3 Kinetic energy of helicopter

With linear velocities vx ,
dxr
dt , vy ,

dyr
dt , and vz =

dvz
dt , and

introducing angular velocities ωθ , dθ

dt and ωψ , dψ

dt , the
squared velocity v2

r = v2
x +v2

y +v2
z can be expressed by the

generalized velocities v =
(
ωθ ,ωψ

)
as

v2
r = r2 (

ω
2
θ + cos2

θ ·ω2
ψ

)
+h2 (

ω
2
θ + sin2

θ ·ω2
ψ

)
−2rhsinθ cosθ ·ω2

ψ .

Combining the rotation of the helicopter body around the
pivot point with body center moment of inertia Jbc and
mass center distance rc, and rotation around the shaft with
moment of inertia Js gives a total kinetic energy expressed
as

K (x,v) =
1
2
vTM(x)v

where the mass matrix M(x) can be shown to be diagonal
with

M11 (x) = Jbc +mr2
c +mh2

M22 (x) = Jbc cos2
θ +m(rc cosθ −hsinθ)2 + Js.

2.4 Potential energy of helicopter
Setting the potential energy to zero in the pivot point, the
potential energy of the helicopter becomes

P =
∫

m
gzrdm(r)

⇓

P = g
∫

m
(r sinθ +hcosθ)dm(r) ,
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Figure 1. Laboratory helicopter, (Sharma, 2020).

Figure 2. Helicopter in side profile, pitch angle θ .

Figure 3. Helicopter in birds-eye view, yaw angle ψ .

which can be expressed as

P(x) = mg(rc sinθ +hcosθ) .

2.5 Helicopter torques
We need the generalized force F =

(
Tθ ,Tψ

)
, which is

given by some phenomenological relation

F= F(x,v,u) .

Here, u =
(
uθ ,uψ

)
contains the voltages uθ and uψ ap-

plied to the rotors. In mechanistic models, a proposal for
F could be

F= Ku−Dv

with a full motor gain matrix K (Sharma, 2020)

K =

(
Kθ ,θ −Kθ ,ψ

Kψ,θ −Kψ,ψ

)
,

and a diagonal damping friction matrix D

D =

(
Dθ 0
0 Dψ

)
.

In practice, this linear description may be too simple:
the system may exhibit dead-band thus invalidating the
term Ku. Presence of nonlinear friction such as stiction
or quadratic terms in v invalidate the term Dv. Torsional
effects would imply missing potential energy in x. The
system may even exhibit backlash, and thus make it nec-
essary to introduce extra states z with generalized force
F(x,v,z,u) (Lichtsinder and Gutman, 2016, 2019).

Particular problems related to how the labora-
tory helicopter is constructed, are discussed in link
https://web01.usn.no/~roshans/mpc/videos
/Heli_deadband_effect.mp4: power from u is
transmitted to the helicopter via wires in the shaft, with
twisting of these wires. This design may give rise to some
dead-band, but it may perhaps also give rise to some
resisting torsion spring torque.
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2.6 DAE formulation of model
We now introduce the Lagrangian L defined as

L(x,v), K (x,v)−P(x) .

Defining the generalized momentum p , ∂L/∂v, a DAE
formulation of the Euler-Lagrange equation can be posed
as

dx
dt

= v

dp
dt

=
∂L

∂x
+F

p=M(x)v.

Here, the momentum p contains angular momenta, p =(
pθ ,pψ

)
, while term ∂L

∂x =
(

∂L
∂θ

, ∂L
∂ψ

)
.

2.7 ODE formulation of model
If we eliminate the momentum, we can rewrite the model
as implicit ODEs,

dx
dt

= v

M(x)
dv
dt

=−∂p

∂x
v+

∂L

∂x
+F.

The ODE form of the model can then be expressed as

M11
dωθ

dt
=−ω

2
ψ

((
Jbc +m

(
r2

c −h2))cosθ sinθ

−rch
(
cos2

θ − sin2
θ
))

−mg(rc cosθ −hsinθ)+Tθ

M22
dωψ

dt
= 2ωψ ωθ

((
Jbc +m

(
r2

c −h2))cosθ sinθ

+mrch
(
cos2

θ − sin2
θ
))

+Tψ

with the trivial additional equations

dθ

dt
= ωθ

dψ

dt
= ωψ .

In (Sharma, 2020), a simplified model is used with h≡ 0,
neglecting the shaft moment of inertia Js, etc.

3 Preliminary model fitting
3.1 Experimental data
Voltages for pitch motor uθ and yaw motor uψ used in
one particular experiment2 with Nd = 13100 datapoints
sampled at ∆t = 0.01 are displayed in Fig. 4; notice the
different ordinate axes on each side of the plot.

Observed pitch angle θ and yaw angle ψ from the par-
ticular experiment are shown in Fig. 5. Again, notice the
use of different ordinate axes on each side of the plot.

Pitch angle θ and yaw angle ψ from experiments with
nominal model parameters are displayed in Fig. 6.

2https://web01.usn.no/~roshans/mpc/videos/Heli_deadband_effect.mp4

Figure 4. Pitch motor voltage uθ and yaw motor uψ experi-
ments.

Figure 5. Pitch angle θ and yaw angle ψ from experiments.

Figure 6. Model pitch angle θ and yaw angle ψ based on nom-
inal model parameters, using experimental inputs.
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Table 1. Fitted parameters for laboratory helicopter.

Parameter Nominal value p0 Fitted value p∗

rc 1.5cm 2.2cm
h 0cm 0.1cm
m 0.5kg 0.72kg
Jbc 0.015kgm2 0.01kgm2

Js 0.005kgm2 0.0017kgm2

Kθ ,θ 0.055Nm/V 0.105Nm/V
Kθ ,ψ 0.005Nm/V 0.0017Nm/V
Kψ,θ 0.15Nm/V 0.03Nm/V
Kψ,ψ 0.20Nm/V 0.043Nm/V
Dθ 0.01Nm/(rad/s) 0.014Nm/(rad/s)
Dψ 0.08Nm/(rad/s) 0.11Nm/(rad/s)

Figure 7. Pitch angle θ : comparing model angle with optimized
parameters (blue, solid) and measured experimental angle.

3.2 Preliminary model fitting
We now tune model parameters p to minimize the loss
function `

`(p) =

√√√√ 1
ny ·Nd

Nd

∑
k=1

[(
θk−θ d

k

)2
+
(
ψk−ψd

k

)2
]

=

∥∥y− yd
∥∥

2√
ny ·Nd

= σε (1)

where θk is the model pitch angle and ψk is the model yaw
angle, while θ d

k and ψd
k are logged data of the same angles,

and ny = dimyk = 2. It follows that `(p) is the average
standard deviation σε in each measured angle. The model
angles vary with the model parameters p; θk = θk (p) and
ψk = ψk (p). In Eq. 1, θk and ψk are found from ballistic
simulation/single shooting of the model from the initial
conditions, and not from multiple shooting as in prediction
error methods.

In the model fitting, the 4 initial states and 11
model parameters are tuned to minimize `(p) us-
ing method bboptim with default settings in package
BlackBoxOptim.jl for Julia. Table 1 shows the fitted
values of model parameters.

Pitch angle θ from the model and from experimental
data with optimized model parameters are given in Fig. 7.

Figure 8. Yaw angle ψ: comparing model angle with optimized
parameters (blue, solid) and measured experimental angle.

Yaw angle ψ from model and from experimental data
with optimized model parameters are displayed in Fig. 8.

Because a mechanistic model with given parameter set
is used, and because poor model fit is achieved for the yaw
angle, it is not relevant to consider model validation: the
model structure is too limited to allow for good fit. The
optimal loss function is `(p∗)≈ 92, with the error mainly
in the yaw angle.

4 Hybrid model
4.1 Neural torque extensions
In Section 2.5, we considered a helicopter torque given as
F= Ku−Dv. We now modify this torque expression to

F= Ku−Dv+FNN(u; p) (2)

where we keep the optimal parameter values in Table 1,
but re-fit the model by tuning parameters p in FNN(·) con-
sisting of weights and biases in a two layer Feed forward
Neural Net with 2 inputs, 16 nodes in the hidden layer and
a tanh−1 (·) activation function, and 2 outputs in the linear
output layer. The tuning of the neural net is carried out
in two phases: in the first phase, gradient search is done
using an ADAM method of Julia package DiffEqFlux.jl,
using the global loss function in Eq. 1 of Section 3.2. In
a second, polishing step, we use a quasi-Newton method
BFGS method to fine tune the parameters of the neural
net.

After fitting the neural network, the pitch angles are as
in Fig. 9 — which should be compared to Fig. 7.

The model fitting of the yaw angle is as in Fig. 10 —
which should be compared to Fig. 8.

The resulting loss function after fitting the 16 node FNN
is `(p∗)≈ 9.2 after phase 2 with the quasi-Newton BFGS
method (`(p∗) ≈ 55.4 after the ADAMS gradient search
of phase 1). Using a 32 node FNN leads to `(p∗) ≈ 9.3
after phase 2 (`(p∗)≈ 35 after phase 1); thus going to 32
nodes does not improve the fit.

We may also modify the torque expression to include a
neural network which both depends on input voltage u and
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Figure 9. Pitch angle with torque modeled as in Eq. 2 with
additive term FNN(u; p).

Figure 10. Yaw angle with torque modeled as in Eq. 2 with
additive term FNN(u; p)..

states x, v:

F= Ku−Dv+FNN(u,x,v; p) . (3)

Now we have a neural network with 6 inputs (u, x, v)
and two outputs x, with a hidden layer with 16 nodes.
The resulting loss function is `(p∗) ≈ 11.1 after phase
2 (`(p∗) ≈ 14.1 after phase 1). With the limited avail-
able data, this extension doesn’t improve the model fit:
the pitch angle prediction is somewhat poorer, while the
yaw angle prediction is slightly better.

4.2 Equation discovery
When finding the model augmented with a neural network
addition to the torque F, we know the experimental input
u and compute the resulting solution x. We can then post
process the solution and compute FNN(u; p). This gives
us the time series of u and FNN(u; p), which we will use
for “equation discovery”. The idea is simply to propose
a regression model between u and FNN(u; p), and then
fit this regression model. In such a regression model, we
will postulate a large number of basis function which may
have a physical origin. As an example, we could postulate
a regression model of form

FNN(u; p) = c1 + c2uθ + c3uψ + c4u2
θ + c5u2

ψ + c6uθ uψ · · ·
(4)

Figure 11. Pitch angle with regression approximation of
FNN(u; p).

In this case, we have a linear regression model that can
easily be fitted to the data set (u,FNN(u; p)). Some of the
data set can be used for training the model, and some of
it can be used for validation. This way, it is possible to
“discover” which of the basis functions/equations that are
relevant to describe the fitted neural network part of the
torque.

To automate this process, package
DataDrivenDiffEq.jl is used. A set of basis
functions are proposed in line with the regression equa-
tion in Eq. 4 using the Basis() constructor of package
DataDrivenDiffEq.jl. Next, the optimizer SINDy
(Sparse Identification of Nonlinear Dynamics) of this
package is used to “discover” the relevant equations that
explain the neural network. If we denote by FNN(·) the
output data from the neural network, by Φ

(
uθ ,uψ

)
denote

the regressor data (i.e., the RHS terms in Eq. 4), and by
p = (c1,c2, . . .) denote the vector of unknown parameters,
we can pose a multi-objective problem combined by
weight λ as

p∗ = argmin
p

(∥∥FNN(·)−Φ
(
uθ ,uψ

)
p
∥∥

2 +λ ‖p‖1
)
.

(5)
Here, the use of 1-norm in the regularization term, ‖p‖1,
tends to favor sparse solutions, and the weight λ is varied
to give a number of alternative models. The model choice
is then based on the Akaike Information Criterion. Finally,
this set of discovered equations can replace the neural net-
work in the expression for F.

We find that

FNN(u; p)1 ≈−4.37 ·10−4 cos
(
uψ

)
+4.02 ·10−4 sin

(
uψ

)
FNN(u; p)2 ≈−1.35 ·10−2 cos

(
uψ

)
+7.74 ·10−3u2

ψ .

By replacing the neural network with the approximate,
“discovered” equations, the model fit is as in Figs. 11 and
12.

When comparing Figs. 9 and 10 to Figs. 11 and 12,
observe that the pitch approximation is almost identical,
while the yaw approximation is good — but a little bit off
that from FNN(u; p).
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Figure 12. Yaw angle with regression approximation of
FNN(u; p).

5 Conclusions and Future work
The key problem of fitting mechanistic models to experi-
mental data has been considered, based on a simple model
of a laboratory helicopter and experimental data from a
lab rig. As in all engineering practice, the model struc-
ture of the original mechanistic model limits how well it
is possible to fit the model to real data. Still, a mechanistic
model gives important information about the system and
may often be used for control design with some success,
even when a perfect model fit is not possible. The rea-
son why control design works for imperfect models is that
feedback to some degree corrects for the effect of model
error.

It is of interest to improve on a mechanistic model as
more data becomes available. Thus, we do not want to re-
place the mechanistic model by a completely data driven
model, but instead augment the mechanistic model with
data driven elements as more information becomes avail-
able. An obvious way to do this is to add regression type
blocks in the mechanistic model, both in phenomenolog-
ical laws and possibly also in adding more states to the
system with regression type vector fields. One possible
data driven model structure is a neural network. The chal-
lenge with including regression blocks in dynamic models
is how to integrate these in an efficient way so that dif-
ferential equation solvers can handle them, so that it is
possible to take advantage of GPUs, and how to make ac-
cessible model gradients for training the network within
the dynamic model.

In this paper, we have used packages within the Dif-
ferentialEquations.jl package and the Flux.jl package eco-
systems of Julia to achieve this. The original, fitted mech-
anistic model is good for pitch angle predictions, but poor
for yaw angle predictions. By adding a torque FNN(u; p)
computed via a trained neural network, the yaw angle pre-
diction improves considerably. Specifically, the loss func-
tion used for model fit is reduced from `(p∗) = 92 with
the original model to `(p∗) = 9.2 when the neural network
torque term with 16 internal nodes has been added. In our
case of model and available data, it appears that there is
no gain in increasing the number of internal nodes, or to

Table 2. Summary of loss function values. For Mechanistic
model of F, a black box optimizer is used. For hybrid models
of F, a gradient based phase 1 is used (`(p∗)1) followed by a
quasi-Newton phase (`(p∗)2). The index on the neural networks
indicate the number of nodes, 16 or 32.

Case `(p∗)1 `(p∗)2
Mechanistic 92
Hybrid, FNN(u; p)16 55.4 9.2
Hybrid, FNN(u; p)32 35 9.3
Hybrid, FNN(u,x,v; p)16 14.1 11.1

include mapping FNN(u,x,v; p) from the states; this does
not reduce the loss function value. The loss function val-
ues are summarized in Table 2.

With multiple candidate models, it is common to use
model validation on independent data to choose model.
The key reason for doing this is to avoid model overfit-
ting/fitting noise. With the data we have available and the
tested neural network mappings, the model fit is still rela-
tively poor, so there is little sense in doing model valida-
tion at the current stage.

For practical implementation, a neural network is not
the most convenient model, as it is rather complex with
many parameters. Instead, we would like to replace the
neural network by a regression approximation using more
physically relevant basis functions. This is what the Equa-
tion discovery part of the Julia eco-system allows for. As
seen, such equation discovery can lead to dramatically re-
duced model complexity compared to a neural network.

Overall, the tools offered in Julia give a first glimpse
into what future modeling practice will look like: one
starts by developing an efficient, and relatively simple
mechanistic model for design/control synthesis/... As
more data become available, the model can be improved
by adding unstructured data driven terms (e.g., neural net-
works) which subsequently are given a physical interpre-
tation by equation discovery.

Future work with the helicopter model will include ex-
periments with more data, neural networks with added
states, equation discovery with more extensive sets of ba-
sis functions, and testing how the improved model influ-
ences the controller performance.

A Nominal parameters and operating
conditions

Nominal parameters for the mechanistic model are given
in Table 3.

Nominal operating conditions for simulations are cho-
sen as in Table 4.

References
Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B.

Sha. Julia: A Fresh Approach to Numerical Computing.
SIAM Review, 49(1):65–98, 2017. doi:10.1137/141000671.

SIMS 61

DOI: 10.3384/ecp20176264 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

270

https://doi.org/10.1137/141000671


Table 3. Parameters for laboratory helicopter.

Parameter Value Description
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