SIMS 61

Hybrid Mechanistic + Neural Model of Laboratory Helicopter

Christopher Rackauckas'

Roshan Sharma, Bernt Lie?

I'Massachusetts Institute of Technology, USA, me@ChrisRackauckas.com
2University of South-Eastern Norway, Norway, {Roshan.Sharma, Bernt.Lie}Qusn.no

Abstract

There is a growing interest in data-driven models of dy-
namic systems developed from “Big Data”. Data-driven
models have some limitations, e.g., without data, there is
no model. Hybrid models consisting of relatively simple
mechanistic models in tandem with data-driven models of-
fer a compromise: physics understanding and design/syn-
thesis of control structure prior to building the system, and
improved model as data becomes available.

Here, we studied a strategy to develop hybrid models
based on a laboratory helicopter case study. We presented
the system, with a model based on Lagrangian mechanics.
Torques were assumed linear: actuator torque in voltages,
and friction torque in angular velocities. Nominal model
parameters were taken from a laboratory set-up. Experi-
mental data from a laboratory process was presented; the
model gave poor model fit with nominal parameters. Op-
timal model parameters were found based on a ballistic fit
measure, and gave acceptable fit for pitch angle measure-
ments, but poor fit for yaw angle measurements. Next,
the assumption of linear controller torque was relaxed by
adding a feed forward neural network block within the
continuous time dynamic model. Upon training, this still
gave imperfect, but considerably better prediction of the
yaw angle. In a final, “model discovery” step, physically
relevant alternatives to the neural network were explored.

The key idea of the paper was to illustrate a strategy for
hybrid models. The current model still has some structural
imperfections; these should be resolved before model val-
idation becomes meaningful.

Keywords: neural differential equations, mechanistic
model, hybrid data-driven and mechanistic model, heli-
copter model, control relevant model

1 Introduction

1.1 Background

Two main types of models for describing dynamic systems
are (i) data-driven models (regression models, machine
learning, empirical models) found by tuning parameters
in some abstract mathematical structure, and (ii) mecha-
nistic models (physics based models) which utilize bal-
ance laws based on the mechanisms that drive the change
in the system coupled with semi-empiric phenomenologi-
cal models (transport laws, reaction rates, etc.). These two
model types have their own strengths and weaknesses. To-

DOI: 10.3384/ecp20176264

Proceedings of SIMS 2020

day there is an increasing focus on the possibility of devel-
oping data-driven dynamic models from “Big data”.

Data-driven models put little emphasis on understand-
ing the system, can easily be automated in computers, but
require large amounts of data and do not extrapolate well.

Mechanistic models require good understanding of the
physics of the system, impose limitations in model gener-
alization, and are more complex to automate in computers.
On the other hand, mechanistic models require less data,
and extrapolate better.

Ideally, one would combine the best of both model
types. This would imply to use simplified mechanistic
models prior to the availability of data, train regression
models to describe uncertain phenomenological relations
and missing dynamics in the mechanistic model, and this
way gradually improve the model description.

1.2 Previous work

Feed forward neural networks constitute a modern ex-
ample of nonlinear regression models, i.e., a static map-
ping from an input signal/feature vector to an output sig-
nal which can be fitted to experimental data by modi-
fying weight/bias parameters. Traditional use of neural
networks for dynamic models are based on feed forward
neural networks with auto-regressive/delayed outputs and
moving average/delayed inputs. Alternatively, recurrent
neural networks include internal feedback paths in layers.
Both approaches are based on discrete time data/models.

Since feed forward neural networks describe a nonlin-
ear mapping, suppose that both inputs and states of a sys-
tem are known over some time horizon, together with the
derivative of the states. Then one can treat the inputs and
states as inputs to the neural network, and the derivatives
of the states as outputs from the neural network. By tun-
ing neural network parameters, this enables fitting the neu-
ral network to the vector field of the differential equation,
leading to Neural Differential Equations (Farrell and Poly-
carpou, 2006; Chen et al., 2018). If all states and state
derivatives are known, fitting a neural network to the vec-
tor field is straightforward. This may be the case in simu-
lation studies for model reduction. However, for real sys-
tems with experimental data from a limited number of sen-
sors, two problems are faced: (i) derivatives are not avail-
able and can at best be found by some smoothing/spline
fitting, and (ii) derivatives can be approximated for sensor
outputs, but not directly for states. This makes the prob-
lem more challenging.

Virtual, Finland, 22-24 September 2020

264

SIMS 61

Based on the ideas in (Chen et al., 2018), a set of pack-
ages for computer language Julia (Bezanson et al., 2017)
are combined to fit neural differential equation models
(Rackauckas et al., 2019, 2020) to experimental data, lead-
ing to differential equations that can be solved by standard
differential equation solvers (Rackauckas and Nie, 2017).
However, the packages aim higher: they allow for a very
general mixing of mechanistic models and neural differ-
ential equation models in the same framework, with pos-
sibilities for the user to choose whether only parameters in
the neural network model are tuned, or parameters in both
the mechanistic model and the neural differential equa-
tion. The advantage of this approach is significant: it al-
lows for the desirable possibility of extending mechanistic
models with data-driven elements.

In this paper, we consider a mechanistic model of a lab-
oratory helicopter at University of South-Eastern Norway;
the model is used in a course on Model Predictive Control.
A mechanistic dynamic model of the system can be devel-
oped as in (Géfvert, 2001) using Lagrangian mechanics.
Using sets of experimental data, a hybrid model consist-
ing of the mechanistic model extended with neural net-
work blocks is fitted using Julia package DiffEqFlux.jl.
This allows for developing an improved model compared
to the purely mechanistic model, and serves as a starting
point for challenges related to hybrid models.

1.3 Overview of paper

The paper is organized as follows. Section 2 presents the
laboratory helicopter, and a mechanistic model developed
from Lagrangian mechanics and nominal model parame-
ters. In Section 3, experimental data are presented, and
it is shown that poor knowledge of initial values for the
model with the chosen nominal parameters gives low pre-
diction accuracy. Next, a model fitting measure is pro-
posed (loss function), and parameters and initial values
are adjusted to minimize the loss function. The model is
still imperfect. In Section 4, the torque model used in
the mechanistic model is replaced by a neural network
block from the controller inputs (voltages) to the con-
troller torques. Finally, in Section 5, some conclusions
are drawn. Nominal model parameters and operating con-
ditions are provided in Appendix A.

2 Helicopter mechanistic model

2.1 Laboratory helicopter

The laboratory helicopter used as a case study, is shown in
Fig. 1.

A video file is available detailing the operation of the
helicopter, and some elements which makes it complicated
to achieve a perfect mechanistic model of the helicopter.!

2.2 Geometry of helicopter

Consider the helicopter in Fig. 2, with upward-pointing z
axis. Origo of the body-fixed coordinate system is in the

"https://web01.usn.no/~roshans/mpc/videos/Heli_deadband_effect.mp4

DOI: 10.3384/ecp20176264

Proceedings of SIMS 2020

longitudinal inertial axis of the helicopter. The laboratory
helicopter is hinged to the ground; in Fig. 2, the pivot point
is located in the body-fixed origo.

If the helicopter body is elevated a distance /& above the
pivot point, differential mass dm () at position r along the
longitudinal axis of the helicopter is given by coordinates
zr and ér,

z, =rsin@ +hcos O
& =rcosO—hsin®.
The angle of nose raise 0 is termed the pitch angle. Seen
from a birds-eye view, the helicopter can also rotate in the
plane by the yaw angle v, Fig. 3.
The positions in the plane are

x, =&, cosy
yr =& siny.

In summary, the position of mass dm (r) is given by Carte-
sian coordinates (x,,y,,z,)

xr = (rcos@ — hsin0) cos y

yr = (rcos@ —hsin0)siny

Zr =rsin@ 4 hcos 0,
where the generalized coordinates are x = (0, y).
2.3 Kinetic energy of helicopter

A dy, dv,

N . ady A -
With linear velocities vy = 737, vy = 3, and v, = ?{ , and
introducing angular velocities Wy = 737 and @y = &, the

squared velocity v2 = v)% + v§ + v% can be expressed by the
generalized velocities v = (a)g, a)l,,) as

v; =r* (05 +cos® 0 - wy,) +h* (0f +sin® 6 - ;)

r p—
—2rhsinOcos 0 - a)f,.

Combining the rotation of the helicopter body around the
pivot point with body center moment of inertia J,. and
mass center distance 7., and rotation around the shaft with
moment of inertia Js gives a total kinetic energy expressed
as

K (x,v) = %VTM (x)v

where the mass matrix M (x) can be shown to be diagonal
with

M1 (X) = Jbe +mr§ +mh?
M2, (X) = Jbe cos’ 0 +m (recos — hsinG)2 + J.
2.4 Potential energy of helicopter

Setting the potential energy to zero in the pivot point, the
potential energy of the helicopter becomes

P:/gzrdm(r)
U
P:g/ (rsin®+hcosO)dm(r),

Virtual, Finland, 22-24 September 2020

265

SIMS 61

Pitch angle
/ (Output 1)
6

T Thrust

Strong cross Coupling

0
Arduino + NI-DAQ + power ‘
box : USB plug n Play |

Pitch Motor/Propeller
(Control Input 1)

Yaw angle sensor

i

Yaw Motor/Prop§ler ——"‘
(Control Input 2)

Weak cross
Coupling
Yaw axis '
Yaw angle
(output 2)

Figure 1. Laboratory helicopter, (Sharma, 2020).

Figure 2. Helicopter in side profile, pitch angle 6.

Figure 3. Helicopter in birds-eye view, yaw angle y.

DOI: 10.3384/ecp20176264

Proceedings of SIMS 2020

which can be expressed as
P(x) =mg(resin@ +hcosB).
2.5 Helicopter torques

We need the generalized force F = (Te,Tw), which is
given by some phenomenological relation

F=F(x,v,u).

Here, u = (ug,uv,) contains the voltages ug and uy ap-
plied to the rotors. In mechanistic models, a proposal for
F could be

F=Ku—Dv

with a full motor gain matrix K (Sharma, 2020)
Koo

—Kp >
K= Yo,
< Kyo —Kyy

and a diagonal damping friction matrix D

_(Dy 0O
D_<O Dw>'

In practice, this linear description may be too simple:
the system may exhibit dead-band thus invalidating the
term Ku. Presence of nonlinear friction such as stiction
or quadratic terms in v invalidate the term Dv. Torsional
effects would imply missing potential energy in x. The
system may even exhibit backlash, and thus make it nec-
essary to introduce extra states z with generalized force
F (x,v,z,u) (Lichtsinder and Gutman, 2016, 2019).

Particular problems related to how the labora-
tory helicopter is constructed, are discussed in link
https://web0l.usn.no/~roshans/mpc/videos
/Heli_deadband_effect.mp4: power from u is
transmitted to the helicopter via wires in the shaft, with
twisting of these wires. This design may give rise to some
dead-band, but it may perhaps also give rise to some
resisting torsion spring torque.

266

Virtual, Finland, 22-24 September 2020

SIMS 61

2.6 DAE formulation of model
We now introduce the Lagrangian L defined as
L(x,v) £ K (x,v) — P(x).

Defining the generalized momentum p = dL/dv, a DAE
formulation of the Euler-Lagrange equation can be posed
as

dx v
dr
dp JdL
L T =
dr 9dx +
p=M(x)v.
Here, the momentum p contains angular momenta, p =

i L _ (dL dL
(Po,py), while term o = (W’W)

2.7 ODE formulation of model

If we eliminate the momentum, we can rewrite the model
as implicit ODEs,

dx _
d
dv dp dL
M(x)—=—=—v+—+F
= o Tax "
The ODE form of the model can then be expressed as
do .
Mlle = —605, ((ch +m (rg — hz)) cos 6sin 6

—rch (cos2 6 — sin’ 6))
—mg(recos® —hsin6) + Ty
My 32 _ 5 J 2 _12)) cos Osin 6
27 P Wy Wy ((bc—l—m(rc))cos sin
+mrh (cos2 6 —sin® 6)) + Ty

with the trivial additional equations

w _,
a °
dy

aiw]ﬂ.

In (Sharma, 2020), a simplified model is used with 2 = 0,
neglecting the shaft moment of inertia J;, etc.

3 Preliminary model fitting

3.1 Experimental data

Voltages for pitch motor ug and yaw motor uy used in
one particular experiment® with Ny = 13100 datapoints
sampled at Ar = 0.01 are displayed in Fig. 4; notice the
different ordinate axes on each side of the plot.

Observed pitch angle 0 and yaw angle y from the par-
ticular experiment are shown in Fig. 5. Again, notice the
use of different ordinate axes on each side of the plot.

Pitch angle 6 and yaw angle y from experiments with
nominal model parameters are displayed in Fig. 6.

Experimental helicopter inputs: motor voltages

-— us A -
1.45 1 — 1150
1.40 j

1.30 |
- 075
. _L

0 20 40 60 80 100 120
time t [s]

ulVv]

Figure 4. Pitch motor voltage ug and yaw motor uy experi-

ments.

Experimental helicopter outputs: measured angles

125

=20 100

angles[°]

-40

0 20 40 60 80 100 120
time t [s]

Figure 5. Pitch angle 6 and yaw angle y from experiments.

Angles: experimental inputs, nominal parameters

6000 — @
—w

5000

4000

3000

angles [°]

2000

1000

0 20 40 60 80 100 120
time t [s]

Figure 6. Model pitch angle 6 and yaw angle y based on nom-

inal model parameters, using experimental inputs.

Zhttps://web01.usn.no/~roshans/mpc/videos/Heli_deadband_effect.mp4

DOI: 10.3384/ecp20176264 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

267

SIMS 61

Table 1. Fitted parameters for laboratory helicopter.

Parameter Nominal value pg Fitted value p*

Te 1.5cm 2.2cm

h Ocm 0.1cm

m 0.5kg 0.72kg

Jbe 0.015kgm? 0.01kgm?

Js 0.005kgm? 0.0017kgm?
Ko o 0.055Nm/V 0.105Nm/V
Koy 0.005Nm/V 0.0017Nm/V
Ky.6 0.15Nm/V 0.03Nm/V
Ky.y 0.20Nm/V 0.043Nm/V

Dy 0.01Nm/(rad/s) 0.014Nm/ (rad/s)
Dy 0.08Nm/(rad/s) 0.11Nm/ (rad/s)

Pitch angle: model (blue, solid) vs. data (red, dotted)

0 20 40 60 80 100 120
time t [s]

Figure 7. Pitch angle 8: comparing model angle with optimized
parameters (blue, solid) and measured experimental angle.

3.2 Preliminary model fitting

We now tune model parameters p to minimize the [oss
function ¢

1 M

Y [(6—69)°+ (wi—v)’]

=1

(D

where 6y, is the model pitch angle and y is the model yaw
angle, while 9,? and \//,i1 are logged data of the same angles,
and ny, = dimy; = 2. It follows that £ (p) is the average
standard deviation o in each measured angle. The model
angles vary with the model parameters p; 6y = 6; (p) and
Vi = Wi (p). In Eq. 1, 6 and y; are found from ballistic
simulation/single shooting of the model from the initial
conditions, and not from multiple shooting as in prediction
error methods.

In the model fitting, the 4 initial states and 11
model parameters are tuned to minimize ¢(p) us-
ing method bboptim with default settings in package
BlackBoxOptim. j1 for Julia. Table 1 shows the fitted
values of model parameters.

Pitch angle 6 from the model and from experimental
data with optimized model parameters are given in Fig. 7.

DOI: 10.3384/ecp20176264

Proceedings of SIMS 2020

Yaw angle: model (blue, solid) vs. data (red, dotted)

—
ey

200

150

100

wi*]

50

0 20 40 60 80 100 120
time t [s]

Figure 8. Yaw angle y: comparing model angle with optimized
parameters (blue, solid) and measured experimental angle.

Yaw angle ¥ from model and from experimental data
with optimized model parameters are displayed in Fig. 8.

Because a mechanistic model with given parameter set
is used, and because poor model fit is achieved for the yaw
angle, it is not relevant to consider model validation: the
model structure is too limited to allow for good fit. The
optimal loss function is ¢ (p*) & 92, with the error mainly
in the yaw angle.

4 Hybrid model

4.1 Neural torque extensions

In Section 2.5, we considered a helicopter torque given as
F = Ku — Dv. We now modify this torque expression to

F = Ku—Dv+FNN (u; p) (2)
where we keep the optimal parameter values in Table 1,
but re-fit the model by tuning parameters p in FNN (+) con-
sisting of weights and biases in a two layer Feed forward
Neural Net with 2 inputs, 16 nodes in the hidden layer and
atanh™! (-) activation function, and 2 outputs in the linear
output layer. The tuning of the neural net is carried out
in two phases: in the first phase, gradient search is done
using an ADAM method of Julia package DiffEqFlux.jl,
using the global loss function in Eq. 1 of Section 3.2. In
a second, polishing step, we use a quasi-Newton method
BFGS method to fine tune the parameters of the neural
net.

After fitting the neural network, the pitch angles are as
in Fig. 9 — which should be compared to Fig. 7.

The model fitting of the yaw angle is as in Fig. 10 —
which should be compared to Fig. 8.

The resulting loss function after fitting the 16 node FNN
is £ (p*) ~ 9.2 after phase 2 with the quasi-Newton BFGS
method (¢ (p*) ~ 55.4 after the ADAMS gradient search
of phase 1). Using a 32 node FNN leads to ¢ (p*) ~ 9.3
after phase 2 (¢ (p*) ~ 35 after phase 1); thus going to 32
nodes does not improve the fit.

We may also modify the torque expression to include a
neural network which both depends on input voltage u# and

Virtual, Finland, 22-24 September 2020

268

SIMS 61

Pitch angle: model+FNN(u) (blue) vs. data (red)

time t [s]

Figure 9. Pitch angle with torque modeled as in Eq. 2 with
additive term FNN (u; p).

Yaw angle: model+FNN(u) (blue) vs. data (red)

time t [s]

Figure 10. Yaw angle with torque modeled as in Eq. 2 with
additive term FNN (u; p)..

states X, V:

F = Ku— Dv+FNN (u,x,v; p). 3)
Now we have a neural network with 6 inputs (u, X, v)
and two outputs x, with a hidden layer with 16 nodes.
The resulting loss function is ¢(p*) ~ 11.1 after phase
2 ({(p*) = 14.1 after phase 1). With the limited avail-
able data, this extension doesn’t improve the model fit:
the pitch angle prediction is somewhat poorer, while the
yaw angle prediction is slightly better.

4.2 Equation discovery

When finding the model augmented with a neural network
addition to the torque F, we know the experimental input
u and compute the resulting solution x. We can then post
process the solution and compute FNN (u; p). This gives
us the time series of u and FNN (u; p), which we will use
for “equation discovery”. The idea is simply to propose
a regression model between u and FNN (u; p), and then
fit this regression model. In such a regression model, we
will postulate a large number of basis function which may
have a physical origin. As an example, we could postulate
a regression model of form

FNN (u; p) = c1 + coup + c3uy +C4u29 +C5u%l,+c6u9uy,---

“4)

Pitch angle: model + FNN(u)-eq (blue) vs. data (red)

0 20 40 60 80
time t [s]

Figure 11.
FNN (&; p).

Pitch angle with regression approximation of

In this case, we have a linear regression model that can
easily be fitted to the data set (#, FNN (u; p)). Some of the
data set can be used for training the model, and some of
it can be used for validation. This way, it is possible to
“discover” which of the basis functions/equations that are
relevant to describe the fitted neural network part of the

torque.
To automate this process, package
DataDrivenDiffEqg.jl is used. A set of basis

functions are proposed in line with the regression equa-
tion in Eq. 4 using the Basis () constructor of package
DataDrivenDiffEq.jl. Next, the optimizer SINDy
(Sparse Identification of Nonlinear Dynamics) of this
package is used to “discover” the relevant equations that
explain the neural network. If we denote by FNN () the
output data from the neural network, by ® (ug,uy) denote
the regressor data (i.e., the RHS terms in Eq. 4), and by
p = (c1,¢z,...) denote the vector of unknown parameters,
we can pose a multi-objective problem combined by
weight A as

p" = argmin ([FNN () ~ @ (ug.y) p[, + 2121,).
(5)

Here, the use of 1-norm in the regularization term, ||p||,,
tends to favor sparse solutions, and the weight A is varied
to give a number of alternative models. The model choice
is then based on the Akaike Information Criterion. Finally,
this set of discovered equations can replace the neural net-
work in the expression for F.

We find that

FNN (u;p); ~ —4.37- 10 *cos (uy) +4.02- 10 *sin (uy)
FNN (1; p), ~ —1.35-10 % cos (uy) +7.74- 10 i,

By replacing the neural network with the approximate,
“discovered” equations, the model fit is as in Figs. 11 and
12.

When comparing Figs. 9 and 10 to Figs. 11 and 12,
observe that the pitch approximation is almost identical,
while the yaw approximation is good — but a little bit off
that from FNN (u; p).

DOI: 10.3384/ecp20176264 Proceedings of SIMS 2020 269

Virtual, Finland, 22-24 September 2020

SIMS 61

Yaw angle: model + FNN(u)-eq (blue) vs. data (red)

0 20 40 60 80 100 120
time t [s]

Figure 12.
FNN (u; p).

Yaw angle with regression approximation of

5 Conclusions and Future work

The key problem of fitting mechanistic models to experi-
mental data has been considered, based on a simple model
of a laboratory helicopter and experimental data from a
lab rig. As in all engineering practice, the model struc-
ture of the original mechanistic model limits how well it
is possible to fit the model to real data. Still, a mechanistic
model gives important information about the system and
may often be used for control design with some success,
even when a perfect model fit is not possible. The rea-
son why control design works for imperfect models is that
feedback to some degree corrects for the effect of model
error.

It is of interest to improve on a mechanistic model as
more data becomes available. Thus, we do not want to re-
place the mechanistic model by a completely data driven
model, but instead augment the mechanistic model with
data driven elements as more information becomes avail-
able. An obvious way to do this is to add regression type
blocks in the mechanistic model, both in phenomenolog-
ical laws and possibly also in adding more states to the
system with regression type vector fields. One possible
data driven model structure is a neural network. The chal-
lenge with including regression blocks in dynamic models
is how to integrate these in an efficient way so that dif-
ferential equation solvers can handle them, so that it is
possible to take advantage of GPUs, and how to make ac-
cessible model gradients for training the network within
the dynamic model.

In this paper, we have used packages within the Dif-
ferentialEquations.jl package and the Flux.jl package eco-
systems of Julia to achieve this. The original, fitted mech-
anistic model is good for pitch angle predictions, but poor
for yaw angle predictions. By adding a torque FNN (u; p)
computed via a trained neural network, the yaw angle pre-
diction improves considerably. Specifically, the loss func-
tion used for model fit is reduced from ¢ (p*) = 92 with
the original model to ¢ (p*) = 9.2 when the neural network
torque term with 16 internal nodes has been added. In our
case of model and available data, it appears that there is
no gain in increasing the number of internal nodes, or to

DOI: 10.3384/ecp20176264

Proceedings of SIMS 2020

Table 2. Summary of loss function values. For Mechanistic
model of F, a black box optimizer is used. For hybrid models
of F, a gradient based phase 1 is used (¢(p*),) followed by a
quasi-Newton phase (¢ (p*),). The index on the neural networks
indicate the number of nodes, 16 or 32.

] Case \ L(p"), ‘ L(p*), ‘
Mechanistic 92
Hybrid, FNN (i1 p) 16 554 | 92
Hybrid, FNN (i1, p) 5 35 93
Hybrid, FNN (u,x,v;p),s | 14.1 11.1

include mapping FNN (u, x, v; p) from the states; this does
not reduce the loss function value. The loss function val-
ues are summarized in Table 2.

With multiple candidate models, it is common to use
model validation on independent data to choose model.
The key reason for doing this is to avoid model overfit-
ting/fitting noise. With the data we have available and the
tested neural network mappings, the model fit is still rela-
tively poor, so there is little sense in doing model valida-
tion at the current stage.

For practical implementation, a neural network is not
the most convenient model, as it is rather complex with
many parameters. Instead, we would like to replace the
neural network by a regression approximation using more
physically relevant basis functions. This is what the Equa-
tion discovery part of the Julia eco-system allows for. As
seen, such equation discovery can lead to dramatically re-
duced model complexity compared to a neural network.

Overall, the tools offered in Julia give a first glimpse
into what future modeling practice will look like: one
starts by developing an efficient, and relatively simple
mechanistic model for design/control synthesis/... As
more data become available, the model can be improved
by adding unstructured data driven terms (e.g., neural net-
works) which subsequently are given a physical interpre-
tation by equation discovery.

Future work with the helicopter model will include ex-
periments with more data, neural networks with added
states, equation discovery with more extensive sets of ba-
sis functions, and testing how the improved model influ-
ences the controller performance.

A Nominal parameters and operating

conditions

Nominal parameters for the mechanistic model are given
in Table 3.

Nominal operating conditions for simulations are cho-
sen as in Table 4.

References

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B.
Sha. Julia: A Fresh Approach to Numerical Computing.
SIAM Review, 49(1):65-98, 2017. doi:10.1137/141000671.

Virtual, Finland, 22-24 September 2020

270

https://doi.org/10.1137/141000671

SIMS 61

Table 3. Parameters for laboratory helicopter.

Parameter Value Description
Te 1.5cm Distance between pivot point and center of mass.
h Ocm Elevation of helicopter from pivot point.
m 0.5kg Mass of helicopter
Joe 0.015kgm? Moment of Inertia of body about center of mass.
Js 0.005kgm? Moment of Inertia of shaft.
g 9.81m/s? Acceleration of gravity.
Ko 6 0.055Nm/V Torque constant on pitch coordinate from pitch motor.
Ko,y 0.005Nm/V Torque constant on pitch coordinate from yaw motor.
Kyg 0.15Nm/V Torque constant on yaw coordinate from pitch motor.
Ky y 0.20Nm/V Torque constant on yaw coordinate from yaw motor.
Dy 0.01Nm/(rad/s) Friction torque damping coefficient in pitch coordinate.
Dy 0.08Nm/(rad/s) Friction torque damping coefficient in yaw coordinate.

Table 4. Initial operating conditions for laboratory helicopter. Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin
Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, and

Quantity Value De':s.cripFion Ali Ramadhan. Universal differential equations for scien-
6 (0) Zrad Initial pitch angle. tific machine learning. arXiv CoRR, abs/2001.04385, 2020.
v (0) Orad Initial yaw angle. https://arxiv.org/abs/2001.04385.

g (0) —0.1rad/s Initial pitch angular velocity. .
oy (0) 0.1rad/s Initial yaw angular velocity. Roshan Sharma. Twoldegrees of freedom (2-dof) he!lcopter.
: Laboratory problem in course iia 4117 model predictive con-
ug (t) ov Pitch motor voltage. N)
trol, University of South-Eastern Norway, 2020.
uy (1) ov Yaw motor voltage.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt,
and David Duvenaud. Neural ordinary differen-
tial equations. arXiv CoRR, abs/1806.07366, 2018.
http://arxiv.org/abs/1806.07366.

Jay A. Farrell and Marios M. Polycarpou. Adaptive Approxima-
tion Based Control. Unifying Neural, Fuzzy and Traditional
Adaptive Approximation Approaches. Wiley-Interscience,
Hoboken, New Jersey, 2006.

G.M. Gifvert. Modelling of the eth helicopter laboratory pro-
cess. Technical Report TFRT-7596, Department of Automatic
Control, Lund Institute of Technology (LTH), 2001.

Arkady Lichtsinder and Per-Olof Gutman. Closed-form
sinusoidal-input describing functionfor the exact back-
lash model. [IFAC-PapersOnLine, 49(18):422-427, 2016.
doi:https://doi.org/10.1016/j.ifacol.2016.10.202.

Arkady Lichtsinder and Per-Olof Gutman. On the dual
properties of friction andbacklash in servo control
systems. IFAC-PapersOnLine, 52(16):340-345, 2019.
doi:https://doi.org/10.1016/j.ifacol.2019.11.803.

Christopher Rackauckas and Qing Nie. DifferentialEquations.jl
— A Performant and Feature-Rich Ecosystem for Solving
Differential Equations in Julia. Journal of Open Research
Software, 5(15), 2017. doi:10.5334/jors.151.

Christopher Rackauckas, Mike Innes, Yingbo Ma, Jesse Betten-
court, Lyndon White, and Vaibhav Dixit. Diffeqflux.jl - A
julia library for neural differential equations. arXiv CoRR,
abs/1902.02376, 2019. http://arxiv.org/abs/1902.02376.

DOI: 10.3384/ecp20176264 Proceedings of SIMS 2020 271
Virtual, Finland, 22-24 September 2020

https://doi.org/https://doi.org/10.1016/j.ifacol.2016.10.202
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.11.803
https://doi.org/10.5334/jors.151

	Introduction
	Domestic Hot Water
	Aims and objectives

	Methodology
	Hot Water Demand Profile
	Hot Water Tank
	Heating Demand
	Heating Control
	Constant Temperature Set-point
	On-Off Controller
	Time-of-Use Heating
	Linear Optimization

	Inputs

	Results
	Robustness of the results
	Behaviour of DHW heating controls
	Flexibility of DHW
	Load profiles

	Conclusions
	Introduction
	System overview
	Floor heating
	Heated water tank: modification
	Transport of water in pipes
	Heat transfer from water to floor
	Structure of heated floor
	Heat transfer from water to aluminum
	Heat transfer to plates

	Heat transfer related to room

	Dynamic model
	Heated tank
	Floor heating/heat exchanger
	Board models
	Room model
	Model parameters

	Simulation results
	Conclusions
	Bibliography
	Introduction
	System overview
	Floor heating
	Buoyancy conductivity approximations
	Original stratification expression
	Log-sum-exp approximation
	Boundary layer approximation
	Comparison of approximations

	Transport delay in heating loop

	Simulation with buoyancy approximations
	Heated tank
	Heated tank + floor heating loop

	Model analysis
	Step response
	Parameter sensitivity
	Poles and zeros
	Bode plots

	Conclusions
	Bibliography
	Introduction
	Method
	Governing equation
	Numerical procedure
	Problem setup

	Results and Discussions
	Energy budget
	Performance of green façades in different climates and seasons
	Impact of convective heat transfer coefficient

	Conclusions
	Smart buildings
	Heat and power model
	Input data
	Climatic data
	Households characteristics
	Small-scale production system
	Simulation time resolution and horizon
	Electricity contracts

	Modelling framework
	Power consumption
	Thermal demand
	Optimisations

	Output data

	Down-scaling simulation
	Scaling and multiplying

	Results and discussions
	Power demand
	Power profile distribution
	Dataset comparison

	Thermal demand
	PV generation

	Conclusions
	Introduction
	Method
	Case study: Esbjerg District Heating
	Model
	Heat pump model
	Heat Pump System
	Control

	Heat Pump Concept Optimisation
	The Concept Optimisation Problem
	Micro-Genetic Algorithm
	Cost Function
	Cost: Coefficient of Performance
	Cost: Heating Capacity
	Cost: Investment and Depreciation Expense

	Results and Discussion
	Optimisation
	Convergence
	Optimised Heat Pump Concept

	Sensitivity Study
	Variations in Costs for Electricity
	Adjusting the Benchmark for Investment Cost
	Changes in Effects of Economy of Scale

	Conclusion
	Introduction
	Model Development
	Model Derivation
	Dimensionless Model
	Numerical Approach and Stability

	Results and Discussion
	Effect of Initial and Process Parameters
	Reduction of Energy Consumption
	Comparison with Reported Literature Values

	Conclusions
	Acknowledgments
	Introduction
	Background
	Previous work
	Overview of the paper

	Solution of the Counter-Current Heat Exchanger Model
	Linear regression
	Nonlinear regression
	Results and Discussion
	Conclusions
	Bibliography
	Introduction
	Hydro Power
	Modelica
	Goal and Scope

	Mathematical Description
	Mass Balance
	Momentum Balance
	Connecting Mass and Momentum Balance

	Implementing in Modelica
	Reservoir
	Parameters
	Basic Principles

	Connect Multiple Reservoirs
	Hydro Power Plant Model
	Simulations with Aurdalsfjord

	Discussion
	Implementation of Model
	Simulation Results

	Conclusion
	Introduction
	Background
	Previous studies
	Outline of the paper

	Surge tanks and their operation
	Simulated Responses
	Case study: Trollheim HPP
	Total Load Rejection (TLR)
	Effect of diameter of orifice and throat for TLR
	Total Load Acceptance (TLA)
	Partial Load Rejection (PLR)
	Partial Load Acceptance (PLA)

	Case study: Torpa HPP

	Results, and Discussions
	Conclusions
	Bibliography
	Introduction
	Background
	Previous studies
	Outline of the paper

	Model Developement
	Surge tanks
	Simple surge tank
	Sharp orifice type surge tank
	Throttle valve surge tank
	Air-cushion surge tank

	Draft tube
	Conical diffuser
	Moody spreading pipes

	Simulated Responses and Results
	Responses for surge tanks
	Responses for draft tubes

	Conclusions and Future Work
	Bibliography
	Introduction
	Lime Production
	Lime Shaft Kilns
	The Lime Kilns at SSAB Raahe

	Lime Kiln Modelica Model
	Total Model
	Combustion Model
	Pre-heating Model
	Cooling Model

	Model Calibration
	Simulation Results and Discussion
	Limitations in the Modelling

	Conclusion
	Introduction
	Application of PBE to granulation process in spherodizers
	Internal coordinate
	External coordinate

	Application of PBE to granulation process in rotary drums
	Simulation Results and Discussion
	Simulation Setup
	Simulation results for granulation in spherodizers
	Simulation results for granulation in rotary drums

	Conclusions
	Acknowledgment
	Introduction
	Population Balance Equation (PBE)
	Numerical schemes for layering term discretization
	Numerical schemes for agglomeration term discretization
	Hounslow's scheme
	Cell average scheme
	Fixed pivot scheme
	Kumar et al.'s new finite volume scheme

	Simulation Results and Discussion
	Simulation Setup
	Comparison of numerical solutions for layering process
	Comparison of numerical solutions for agglomeration process

	Conclusions
	Acknowledgment
	Introduction
	Background
	Previous work
	Overview of the paper

	Overview of Industrial Granulation
	Fertilizer granulation
	Granulation loop
	Production challenges
	Problem limitation

	Model implementation details
	Overview of model
	MATLAB
	Julia
	C-code/DLL
	Comparison

	Model linearization in Julia
	Conclusions
	Bibliography
	Introduction
	Governing Equations
	Low Reynolds Model
	High Reynolds model
	Boundary Conditions
	Transfer coefficient

	Computational Methodology
	Model Comparison

	Results
	Validation
	Conclusion
	Introduction
	Background
	Previous Work on Topside Sensing

	System Description
	Mathematical Models
	Estimation and Control Methods
	UKF
	Adaptive Observer
	The Choke Controller

	Results and Discussion
	Conclusions
	Appendix
	Adaptive Observer
	UKF

	Introduction
	Methods
	Simulation Environment Set-up
	Auto-Tune IADC

	Results
	Case 1: IADC performance in homogeneous formation
	Case 2: IADC performance against changing formations
	Case 3: IADC with ART

	Conclusion
	Acknowledgment
	Introduction
	Background
	Previous work
	Overview of paper

	Helicopter mechanistic model
	Laboratory helicopter
	Geometry of helicopter
	Kinetic energy of helicopter
	Potential energy of helicopter
	Helicopter torques
	DAE formulation of model
	ODE formulation of model

	Preliminary model fitting
	Experimental data
	Preliminary model fitting

	Hybrid model
	Neural torque extensions
	Equation discovery

	Conclusions and Future work
	Nominal parameters and operating conditions
	Bibliography
	Introduction
	Linear periodic differential systems
	Stability of periodic systems
	Control design
	Conclusion
	Introduction
	Methods
	Results and Discussion
	Conclusion and Future Work
	Testing ERP and MES with Digital Twins
	1 Introduction
	2 Pilot Production Environments
	2.1 Educational Cyber-Physical Factory
	2.2 FMS Cell

	3 Digital Twins
	3.1 Python web application
	3.2 Educational Cyber-Physical Factory
	3.3 FMS Cell

	4 Results and Discussion
	5 Conclusion
	Introduction
	Mathematical model
	Transport equations
	Interfacial forces
	Boiling model

	Computational Domain and Solution Procedure
	Results and discussions
	Conclusions
	Introduction
	Numerical Method for data generation
	Data Extraction

	Deep Neural Network Architecture
	Results and Discussion
	Validation dataset
	Test dataset
	Interpolation datasets
	Extrapolation dataset

	Conclusion and Future Work
	Introduction
	Modelling methodologies
	Nonlinear scaling
	Steady-state modelling
	Dynamic modelling

	Recursive modelling
	Recursive nonlinear scaling
	Interactions

	Multimodel LE simulation
	Composite local models
	Intelligent systems
	Evolutionary computing

	Applications
	Steady-state LE models
	Dynamic LE models
	Decomposition in LE models
	Distributed parameter LE models

	Discussion
	Conclusions and future research
	Introduction
	Related Work
	The Rust Programming Language

	EpiRust Model
	Population
	Geography
	Disease Dynamics
	Interventions
	Simulation Loop

	EpiRust Implementation
	System Requirements
	Model Correctness
	Flexibility
	Scalability
	Performance

	Architecture

	Scenarios and Results
	Baseline Scenario
	Intervention Scenario
	Results
	Reproducing the results

	Conclusion and Future Work
	Acknowledgements
	Introduction
	Function Indexing
	Range of index in arities
	Heptavintimal index encoding

	Methodology
	Usage
	Logic minimization algorithm

	Circuit schematics
	Simulation results
	Discussion
	Conclusion

