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Abstract
A Monte Carlo simulation is useful to determine the

probability of completing a project within budget and on

time at various stages of the project. This paper

discusses a research study to determine and compare the

distribution for total project duration using ten different

probability distributions for fourteen activities of a

project. Triangular distributions were used as reference

and parameter values for each activity duration were

assumed. Parameter values of nine other distributions

were calculated from the mean and standard deviations

for the triangular distribution. The study indicated that

P90 and P95 values of the output distributions, using

different input distributions, differed by up to 4,8%. It

was also found that there is a positive correlation

between the mean skewness of the fourteen activities

and the P90 and P95 values. The skewness of the output

distribution showed a strong positive correlation with

the mean skewness of the input distributions.
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1 Introduction

1.1 Background

Monte Carlo simulation is mentioned in the Project

Management Body of Knowledge (PMBoK) guide

(PMI, 2014) as one of the quantitative risk analysis

tools. A detailed discussion of cost and schedule risk

analysis and simulation is provided by Cooper et al.

(2014). A schedule risk simulation is typically done

before project implementation and can be updated with

actual activity duration values to replace the input

distributions as the project is executed. The probability

of finishing the project by the due date can thus be

captured at various stages or phases of the project and

plotted on a timeline to determine the trend.

Two notable projects in which schedule simulation

was used extensively are the Øresund bridge project in

Denmark and Sweden (Christensen and Rydberg, 2001),

and the Gotthard base tunnel in Switzerland (Ehrbar et

al., 2016). In the former the bridge and tunnel was
completed 5 months ahead of schedule and in the latter

the 57km tunnel underneath the Alps was completed a 

year earlier than initially planned. 

It is unusual for a person to perform the same activity 

in exactly the same time when repeated, therefore, 

probability distributions are used to describe this 

uncertainty in duration. Various distributions have been 

proposed to model the uncertainty in the duration of 

project activities, e.g. the betapert, triangular, normal 

and lognormal distributions (Raydugin, 2013; Munier, 

2014). The normal distribution is symmetric, the 

lognormal distribution is right skewed and the betapert 

and triangular distributions can be left skewed, 

symmetric, or right skewed.  

If all the activity durations of a project are modelled 

with the normal distribution, one would expect the total 

project duration to be symmetric as well. This is the case 

if all activities are performed in series. If some activities 

are performed in parallel, the output distribution could 

be skewed even if all input distributions are symmetric. 

If all the activities are modelled with a right skewed 

distribution one would expect the distribution for the 

total project duration to also be right skewed. The 

skewness of the input distributions would therefore 

determine the skewness of the output distribution. 

Schedule simulation is mostly used to determine the 

90% (P90) or 95% (P95) certainty duration of the 

project and the skewness of the output distribution 

affects the value of the P90 and P95 values. The choice 

of input distribution is therefore important to obtain a 

good approximation of the P90 and P95 values. 

1.2 Objectives of Study 

The main objective of this study was to determine the 

effect of the skewness of input distributions of a project 

network on the skewness of the output distribution 

provided by a Monte Carlo simulation in Excel. A 

further objective was to investigate the differences in the 

skewness of the output distributions for ten different 

input distributions that have different skewness values 

for fourteen project activities. A project network with 14 

activities in series and parallel was selected as a case 

study for this research project. 
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2 Literature

2.1 Schedule Risk

Several high-profile projects have suffered delays and

eventual slippage. A notable example of severe slippage

is the construction of the Sydney Opera House that took

10 years longer to finish (Steyn et al., 2016). 

Another classical example is the Central Artery/Tunnel 

project in Boston, USA. The project duration was 

planned for about 10 years but eventually took 17 

years to complete (National Research Council, 2003).

Managing the schedule for a project is of great

importance, especially for mega projects and very long

projects. Slippage in a large or long transport project

will inevitably lead to cost overruns and loss of revenue

since toll fees cannot be collected (Love et al. 2014).

Vanhoucke (2015) mentioned the importance of

schedule risk analysis in projects and said a sound

baseline schedule is critical for successful execution of

the subsequent phases of the project. Nicholas and Steyn

(2017) said “project scheduling is an integral part of

project planning”.

Uncertainty in the total duration of a project is

influenced by two factors. The first is uncertainty in the

duration of individual activities and tasks to be

performed. This type of uncertainty is treated by means

of suitable probability distributions. The second

uncertainty is due to the occurrence of random events

that impact the duration of an activity. This type of

uncertainty can be incorporated in a simulation by

means of a probability of occurrence and estimates for

the consequence should the event occur. Discrete

distributions like the binomial distribution is useful for

incorporating random events in a schedule simulation

(Damnjanovic and Reinschmidt, 2020).

2.2 Probability Distributions

Various probability distributions are available to model

activity duration in projects as well as operational and

maintenance tasks in an enterprise. Only distributions

that have two parameters were selected for this study,

except the triangular distribution which has three

parameters. Some information on four popular

probability distributions are given below.

The triangular distribution is a versatile continuous

distribution that is appropriate for cost and schedule

simulations (Scherer et al., 2003). The parameters 

are easy to estimate but one drawback is the fact that 

the maximum duration of an activity is capped. Even if 

very skewed values are selected for the 

triangular distribution, the inverse of the cumulative 

distribution function cannot produce a higher 

value than the maximum or upper bound value.

The lognormal distribution is quite popular for cost

and schedule risk simulation and was used extensively

by Bowden et al. (2001). It is a right-skewed distribution

that is often used to model the duration of activities that

are performed by novice artisans or technicians that 

perform complex tasks.  

The normal distribution is probably the most popular 

continuous distribution used in risk simulation. It is 

symmetric and the parameters are quite easy to estimate, 

especially if similar activities have been performed in 

the project organization in the past.  

The Fréchet distribution, also known as the inverse 

Weibull distribution, is an interesting distribution that is 

regarded as an extreme value distribution that is often 

applied to modeling extreme events. It is a “fat-tailed” 

distribution that can be useful to describe the uncertainty 

in the duration of new activities that have not been done 

before in a project organization. 

Data on most of the probability distributions used in 

this study, i.e. formulae for the mean value, standard 

deviation, skewness, excess kurtosis, and the inverse 

variant, are provided by Evans et al. (2000). 

2.3 Activity Duration 

Many project network modelers use symmetric 

distributions to express uncertainty in activity duration, 

e.g. the normal distribution or logistic distribution. 

However, the distribution of activity durations in 

projects are often not symmetric but rather skewed to the 

right (positive skewness). According to Martens (2017), 

most activity distributions in projects are right skewed. 

This view is shared by Shankar (2011). 

With many different distributions available to 

describe the uncertainty of activity duration, the 

question could be posed whether certain distributions 

are more suited for certain project situations. Various 

factors could influence this decision, e.g. ease of use, 

availability of inverse variants within add-in software, 

ease of estimating the parameters of the distribution, 

symmetry or not, positive inverse variants, and 

availability of an explicit formula to calculate the 

inverse variant if not available in add-in software. 

Ferson et al. (1998) said “the results of probabilistic 

risk analyses are known to be sensitive to the choice of 

distributions used as inputs, an effect which is 

undoubtedly even stronger for the tail probabilities”. 

The authors argue that, in the absence of information 

regarding the uncertainty of an input value, the uniform 

distribution with minimum and maximum bounds is the 

best approach. 

Hajdu and Bokoro (2014) compared the results of 

simulations using the uniform, triangular and beta 

distributions as input. They found that the difference in 

the project duration for the three distributions was less 

than the effect on the duration due to a 10% variation in 

the values of the three-point estimates for the triangular 

distribution.  

Sherer et al. (2003) approximated the normal 

distribution with a symmetric triangular distribution and 

approximated the lognormal distribution with a non-

symmetric triangular distribution. The authors found 
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that the symmetric triangular distribution provides a 

good approximation for the normal distribution in the 

range of the mean ± 2,44σ. 

Wood (2002) compared the output cumulative 

distributions of a 12-activity project with two paths 

using the triangular, uniform, normal and lognormal 

distributions as input. He found that P90 values using 

different input distributions varied by as much as 10%. 

Visser (2016) performed simulations for two project 

networks and compared the results for the triangular, 

normal, lognormal and betapert distributions. The P80 

and P90 values of the output distribution with 20000 

trials were compared. The study found no significant 

difference in the output for these four input 

distributions. 

3 Methodology 

A theoretical project network with 14 activities in series 

and parallel was chosen to study the effect of skewness 

of input distributions on the skewness of the total project 

duration. Project managers seem to agree that project 

activity durations mostly have right skewed 

distributions (Damnjanovic and Reinschmidt, 2020). 

The parameters of the triangular distributions for all 

activities were therefore chosen to provide positive 

skewness, i.e. right skewed distributions. 

The mean and standard deviation values for the input 

distributions were used to determine the parameters of 

nine other distributions. Only distributions with two 

parameters were considered for this study. The betapert 

distribution that is popular in schedule simulation was 

excluded. 

A model that considers the logic of the project 

network was developed in Excel. The schedule 

simulation was performed with 100000 trials using the 

SimVoi add-in for Excel (Treeplan, 2020). One output 

of the simulation was a chart of the cumulative 

distribution for the total project duration. The duration 

values at increments of 5% probability were also 

provided by the add-in. The project network that was 

used for this study is shown in Figure 1.  

 

Figure 1. Project network used for simulation study 

 

In this network there are six ‘paths’ that need to be 

executed in parallel to finish the total project. Values for 

the three parameters of the triangular distribution, i.e. a 

(lower bound), m (most likely) and b (upper bound), 

were chosen such that any of the six paths could be the 

critical path for the project. The mean value for each 

path of the network is shown in Table 1. 

Table 1. Mean values of six paths in project network 

Path 
Lower 

bound 

Most 

likely 

Upper 

bound 
Mean 

1-4-9-13 27 35 62 41,33 

1-5-9-13 25 32 57 38,00 

2-6-10-14 26 33 58 39,00 

2-6-11-14 28 35 59 40,67 

3-7-12 28 35 54 39,00 

3-8-12 29 35 53 39,00 

 

The three parameter values for the triangular 

distribution, mean value (), standard deviation () and 

the skewness (Skew) are shown in Table 2. The units for 

these parameters would typically be days or weeks if it 

is a long project, but it could represent any other time 

measurement. 

Table 2. Input values for 14 activities 

Act. a m b   Skew 

1 4 6 12 7,333 1,699 0,422 

2 5 7 14 8,666 1,929 0,454 

3 9 11 16 12,000 1,472 0,376 

4 7 9 16 10,666 1,929 0,454 

5 5 6 11 7,333 1,312 0,505 

6 7 8 14 9,666 1,546 0,522 

7 9 12 18 13,000 1,871 0,305 

8 10 12 17 13,000 1,472 0,376 

9 9 12 18 13,000 1,871 0,305 

10 6 8 14 9,333 1,700 0,422 

11 8 10 15 11,000 1,472 0,376 

12 10 12 20 14,000 2,160 0,476 

13 7 8 16 10,333 2,014 0,540 

14 8 10 16 11,333 1,700 0,422 

Mean Values 10,762 1,725 0,426 

 

The mean and standard deviation values for each of 

the activities were used to calculate the parameters of 

the other probability distributions. Formulae for the 

mean and standard deviation of these nine distributions 

were mostly obtained from Evans et al. (2000) and the 

NIST e-Handbook of Statistical Methods (2012). 
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4 Results 

4.1 Descriptive Statistics 

Using the SimVoi add-in for Excel, the simulation 

provided the following values in Table 3 for the project 

duration distribution. The add-in provides inverse 

functions for most of the distributions and formulas 

were used for those not available. The truncated inverse 

function for the normal distribution was used to prevent 

negative duration values. 

Table 3. Descriptive statistics for output distribution 

Distribution   Skew P90 P95 

Fisk 43,719 3,03 +0,90 47,61 49,17 

Frechet 43,771 3,49 +1,30 48,22 50,17 

Gamma 43,723 2,76 +0,45 47,35 48,58 

Gumbel 43,774 3,11 +0,74 47,87 49,43 

Logistic 43,671 2,68 +0,49 47,15 48,38 

Lognormal 43,742 2,84 +0,51 47,46 48,80 

Normal 43,694 2,62 +0,33 47,13 48,22 

Pareto 43,737 3,88 +1,77 48,59 50,89 

Triangular 43,760 2,77 +0,32 47,41 48,56 

Weibull 43,625 2,44 +0,20 46,80 47,80 

 

The probability distributions in Table 3 are arranged 

alphabetically. The add-in provides the values for the 

mean value of the distribution (), the standard 

deviation (), skewness (Skew), P90, and P95. Other 

percentiles in increments of 5% are also provided. All 

the distributions produced a positive skewness for the 

output distribution. Even though all activities had a 

negative skewness for the Weibull distribution, the 

output distribution had a positive skewness. 

4.2 Skewness of Total Project Duration 

The skewness of the total project duration is illustrated 

graphically in Figure 2.  

 

Figure 2. P90 and P95 values for ten input distributions 

4.3 P90 and P95 Values 

In some situations, a project manager might want to 

estimate the total duration with a 90% or 95% certainty 

(often when the project is nearing completion). The P90 

and P95 values for the project duration using different 

input distributions are shown in Figure 3. 

 

Figure 3. P90 and P95 values for 10 input distributions 

The P95 values differed from 47,80 for the Weibull 

to 50,89 for the Pareto distribution. The value for the 

Weibull is 1,57% less than the value obtained for the 

triangular distribution while the value for the Pareto is 

4,80% higher than that of the triangular. The Pareto is 

somewhat unpractical to describe the uncertainty in 

duration but the Fréchet distribution is well-known as a 

‘fat-tailed’ distribution and is used in many engineering 

and scientific applications. The P95 value for the 

Fréchet distribution is 3,3% higher than the value of the 

triangular distribution. The P90 values for symmetric 

and slightly skewed distributions, i.e. the lognormal, 

gamma, logistic and normal distributions, did not differ 

significantly. 

4.4 Effect of Skewness on P90 and P95 

The effect of skewness of the input distributions of the 

activities was investigated. The mean skewness of all 

the activities was determined for all the distributions 

investigated and the relationship with the P90 and P95 

values is shown in Figure 4. 

It is evident from Figure 4 that there is a strong 

positive correlation between the skewness of the input 

distributions and the project duration as indicated by the 

P90 and P95 values. A correlation value of 0,94 was 

obtained for the relationship between the mean 

skewness of the input distributions and P90. A 

correlation value of 0,99 was obtained for the 

relationship between the mean skewness of the input 
distributions and P95. A least squares curve fit could 

provide an empirical formula for this relationship. This 
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will enable one to predict what the P90 and P95 values 

for the project duration will be for some other 

distribution if the mean skewness for that distribution 

can be calculated. 

 

Figure 4. P90 and P95 values of project duration vs. the 

mean skewness of input distributions 

4.5 Effect of Input Distribution Skewness 

The relationship between the skewness of the output 

distribution for the project duration and the mean 

skewness of the 14 activities was also determined and 

the result is shown in Figure 5. 

 

Figure 5. Relationship between mean skewness of input 

distributions and output distribution skewness 

From Figure 5, it is seen that a strong positive 

correlation exists between the output distribution 

skewness and the mean skewness of the input 

distribution for the 14 activities in the network. A 

correlation value of 0,975 was found for this 

relationship. Within the range of -0,5 - +3,5 skewness 

this relationship is close to linear. A straight-line, least 

squares fit had a regression coefficient of 0,95. 

5 Conclusion 

The output of a Monte Carlo simulation of a network of 

activities provides a distribution of the total project 

duration. The skewness of the output distribution is 

positively correlated with the mean skewness of the 

input distributions. Even if the mean skewness of the 

input distributions is zero, e.g. for the normal and 

logistic distribution, the output distribution could be 

skew. In this study, the skewness of the output 

distribution is caused by the multiple paths of the project 

network.  

The sum of the mean values of each path is very 

similar. The data in Table 3 indicates that any of the six 

paths are possible for one trial of the simulation. This 

means the critical path varies between the six paths and 

this causes the skewness of the output distribution, even 

if the input distributions are all symmetric. It is 

interesting to note that even for the Weibull distribution, 

with all activities having a negative skewness, the output 

distribution has a positive skewness. 

The P90 and P95 values of the output distribution are 

positively correlated with the mean skewness of the 

input distributions. The correlation values were 0,94 and 

0,99 respectively for P90 and P95. 

The skewness of the output distribution is strongly 

correlated with the mean skewness of the activity 

distributions. The correlation value for this relationship 

was 0,975 in the range of -0,5 - +3,5. A straight line fit 

of the data had a regression coefficient of 95%. 

The results of this study indicate that the choice of 

input distribution for cost or schedule simulation should 

be carefully considered by the risk panel. Total project 

duration could be underestimated if symmetric or near-

symmetric input distributions are selected. 

6 Recommendations 

In practical applications of Monte Carlo simulation, e.g. 

in projects, operations or business simulation, a risk 

panel would decide on which distribution should be 

used to model the uncertainty in the duration of the 

activities. Different distributions could be selected for 

the activities. The next step is to allocate values for the 

parameters of the distribution that was chosen. The 

parameters of the triangular or normal distributions are 

fairly easy to estimate since the scale or location 

parameters point directly to actual duration. Shankar 

(2011) commented “the beta distribution can be 

estimated relatively easily from data on just the 

optimistic, pessimistic and most likely values”. The 

same applies to the triangular distribution although the 

mean and variance values differ from the betapert 

distribution. A stepwise procedure to elicit or estimate 

values for the triangular distribution is provided by 

Greenberg (2017). 

If actual data for the duration of similar activities in 

previous projects performed by a company is available, 

the approach should be to perform a maximum 

likelihood fit for the data for several distributions and to 

use the one with the best fit. For novel projects, this data 
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is seldom available and expert opinion is the only 

option. 

In projects where there is a high degree of certainty 

in activity duration, e.g. in outage projects for units of a 

power station, the normal and triangular distributions 

are recommended for schedule simulations. However, if 

there is much uncertainty in the duration of some 

activities in a project, it might be better to use the 

Fréchet, Fisk (log-logistic) or Gumbel distribution. 

However, it is not easy to estimate the parameters of 

these distributions. These distributions have two 

parameters, typically a shape and scale parameter. The 

scale parameter relates to the duration of an activity, but 

the shape parameter is difficult to estimate. 

It is therefore recommended that the risk panel start 

by estimating the parameters of the triangular 

distribution for all activities, incorporating skewness in 

the choice of the lower and upper bound values. The 

mean and standard deviation values of the triangular 

distributions can then be used to calculate the 

parameters of the Fréchet, Fisk or Gumbel distribution. 

These distributions should then be used to run the 

schedule simulations for a project. 
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