
EpiRust: Towards A Framework For Large-scale Agent-based
Epidemiological Simulations Using Rust Language

Jayanta K. Kshirsagar Akshay Dewan Harshal G. Hayatnagarkar

Engineering for Research, ThoughtWorks Technologies, Pune, India,
{jayantak,akshayde,harshalh}@thoughtworks.com

Abstract
To implement large-scale agent-based simulations, devel-
opers historically relied on C and C++ due to performance,
while struggling to deal with tedious explicit memory
management. This struggle translates into software de-
fects and lower developer productivity. More recently, de-
sire to harness multi-core systems via concurrent software
complicates design and implementation when memory is
shared among compute cores. When we faced this situa-
tion, we were looking for a system programming language
as fast as C and C++ but without caveats around memory
management. Between Go and Rust, we chose Rust lan-
guage which guarantees safety in memory management
even for concurrency, without a run-time or garbage col-
lector. In this paper, we have shared our experience with
Rust to build a framework named as EpiRust for agent-
based epidemiological simulations. Our simulation ex-
periments have shown some promising results for a pop-
ulation of a few million agents, using commodity-class
hardware. Key outcomes of this whole exercise are that
EpiRust could achieve following quality goals: 1. Robust-
ness 2. Flexibility 3. Performance.
Keywords: agent-based modeling, agent-based simula-
tions, epidemiology, large-scale simulations, Rust lan-
guage.

1 Introduction
Pandemics are seen as one of the top global threats, and
public health policy experts need tools to assess prepared-
ness and response strategies. Large-scale agent-based epi-
demiological simulations are one such useful tool in their
repertoire (Bisset et al., 2009).

To implement such an epidemiological model, develop-
ers can either choose to develop using agent-based model-
ing platforms such as Netlogo (Tisue and Wilensky, 2004)
and GAMA (Taillandier et al., 2019) or using general-
purpose libraries and frameworks such as Repast, Flame,
and MASON (Rousset et al., 2016).

Precursor to EpiRust was our experience of develop-
ing a SEIR model using the GAMA platform. We found
that the platform is useful for rapid prototyping and quick
feedback on the functionality but performs slower for our
needs. The GAMA-based simulations were consuming
more time for more number agents in a non-linear fash-

ion. For example, a simulation with 10000 agents would
take more than 60 minutes using 128 CPU cores on a large
server. We were discouraged with these results as our goal
is to simulate a large city like Pune, India with more than
three million population. These observations triggered us
to look for effective alternatives for large scale simula-
tions.

After surveying the literature, we started development
of a new framework for large scale epidemiological simu-
lations built on three intrinsic qualities namely, robustness,
flexibility, and performance, and we named it as EpiRust.

1.1 Related Work
Developing and maintaining such large-scale simulations
is a complex exercise, especially due to a trade-off be-
tween flexibility and performance (Rousset et al., 2016;
Fujimoto et al., 2017; Chen et al., 2017).

We observed that for large-scale agent-based simula-
tions including epidemiology models, only a few frame-
works are designed for this purpose (Abar et al., 2017;
Chen et al., 2017). The two important challenges to scale
up and out are: 1. Partitioning and distributing the prob-
lem across computers, 2. Coordinating the computers to
ensure the solution is valid (Yeom et al., 2014).

To develop such distributed systems, choosing a pro-
gramming language can play an important role in perfor-
mance, quality and evolution of software. Historically
in scientific computing, system programming languages
such as C and C++ have been the preferred languages for
the superior performance they offer. However, developers
using these languages also have low productivity in terms
of development time and software quality, and according
to (Phipps, 1999), both of these issues emerge from com-
plexity of explicit memory management. In our search for
a programming language to develop large-scale epidemi-
ological models, we were looking for the languages that
should be fast, stable, with a mature ecosystem of tools
and libraries.

C and C++ are designed for system programming which
means they can directly interface with underlying hard-
ware. However, Java, C#, and Python languages tar-
get respective virtualized runtimes to support hardware-
agnostic execution, resulting in lower performance. Ju-
lia language (which is designed for scientific computing),
and Go language (which is designed for distributed scal-

SIMS 61

DOI: 10.3384/ecp20176475 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

475



able applications) adequately fit the bet for large-scale epi-
demiology simulations. However, both of these languages
must rely upon some system programming language to
access hardware resources. From a performance point
of view, (Kouatchou, 2018) compares many of these lan-
guages together to get a sense of their relative strengths
and weaknesses.

Software written using C and C++ typically offers bet-
ter performance however suffers from memory safety and
robustness issues due to explicit memory management and
concurrency. After evaluating these options, we finally
had two choices, Go and Rust language. Between these
two, we chose Rust language that guarantees safe mem-
ory management without a garbage collector, and the re-
sultant code is safe for concurrency as well (Klabnik and
Nichols, 2018; Balasubramanian et al., 2017). Based on
similar reasons, a recent work (Antelmi et al., 2019) also
has chosen the Rust to implement agent-based simulation
models.

1.2 The Rust Programming Language

Rust is a multi-paradigm programming language, which
offers features such as zero-cost abstractions, memory
safety without garbage collection and run-time overheads,
and fearless concurrency.

Rust has a unique approach based on “Ownership and
Borrow” principles to free the developer from the burden
of manual memory management, an Achilles’ Heel for
many developers from the perspective of memory safety
and robustness in C and C++ (Balasubramanian et al.,
2017). Rust maintains only one reference to the allocated
memory eliminating the need of garbage collection and re-
sulting in faster execution performance. All the variables
being non-mutable by default, Rust compiler forces a de-
veloper to write smaller and cleaner code. For flexibility
and testability, Rust prefers composition over inheritance
via traits.

In this paper, we have shared our rationale and learning
of implementing a large-scale epidemiological simulation
scaling up to a population of a few million agents and
capable of running on commodity-class computer hard-
ware in reasonable time. In section 2 discusses the current
EpiRust model including population, geography, disease
dynamics and interventions. In the following section 3, we
have discussed the features of the Rust language, their rel-
evance in the EpiRust implementation, and later the results
of simulating baseline and lockdown scenarios for the city
of Pune. Finally, we have concluded the paper with our
observations and plans for the EpiRust framework.

2 EpiRust Model
The EpiRust model follows a minimalist approach for
modeling an epidemic in a virtual society along three main
aspects namely population, geography, and disease.

2.1 Population
An agent represents a person in a population. Agents
are heterogeneous along two attributes namely work sta-
tus (via working and non-working) and transport prefer-
ence for office commute (via public transport and pri-
vate transport). A fraction of the working population can
be configured as the essential workers whose services are
available even when the other agents have restrictions on
their movements. Each agent follows a daily routine, pre-
scribed by its demographics and other attributes, as shown
in table 1. An agent could catch and spread infection while
interacting with other agents based on how contact proba-
bilities change due to their routine.

2.2 Geography
Factors such as geography, demographics, and transporta-
tion influence the spread and the speed of epidemics. The
EpiRust model mimics geography of a minimalist city and
represents it as a grid with various planned functional ar-
eas for homes, workplaces and transportation.

• Home Area Every agent is randomly assigned a
home location during initialization. Collectively,
these home locations represent a residential colony.
Working agents commute to-and-fro their work-
places, whereas non-working agent movements are
restricted to this area.

• Public Transport Area is used by working agents
for home and work commute. Currently, the model
assumes that agents using private transport reach di-
rectly to homes and workplaces.

• Work Area During work hours, a working agent oc-
cupies a dedicated work location in this area with re-
stricted movements.

Figure 1. Grid-based Geography Depiction

SIMS 61

DOI: 10.3384/ecp20176475 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

476



Start Hour End Hour Start Place End Place Activity
0 8 Home Home No movement (Sleep, etc.)
8 9 Home Home Activity within home
9 10 Home Transport Go to public transport

10 11 Transport Transport Move within transport
11 12 Transport Work Go to work
12 19 Work Work Move within work
19 20 Work Transport Go to public transport
20 21 Transport Home Go to home
21 23 Home Home Activity within home

Table 1. 24-hour Routine of Working Agents

2.3 Disease Dynamics
The current disease dynamics is based on the Mordecai
SEIR model (Childs et al., 2020), and is specialized for
COVID-19 similar to (Snehal Shekatkar et al., 2020). The
model is shown in figure 2, and the disease progression
over time is rendered in figure 3.

1. Susceptible All agents are initialized in the suscep-
tible compartment.

2. Exposed A susceptible agent could get exposed to
an infection if it comes in contact with an infectious
agent. An exposed agent does not infect other sus-
ceptible agents immediately. It stays in this state for
an incubation period specific to a disease. After this
period, the agent state would switch to the infected
compartment. While initializing the simulation, a
fraction of the population can be configured as be-
ing in the exposed compartment.

3. Infected In this state, an agent could infect other sus-
ceptible agents with some probability. This probabil-
ity is specific to a disease, and can be configured by a
user. An infected agent could either be symptomatic
or asymptomatic. Symptomatic agents could later be
mild or severely infected. On the other hand, the
asymptomatic agents would not exhibit any symp-
toms but still could infect others.

4. Removed The recovered and the deceased agents
would belong to this state. A SEIR model assumes
that the recovered agents would not catch an infec-
tion again in their lifetime. The death rate is an input
parameter to decide an agent’s recovery.

2.4 Interventions
Interventions play a key role in devising policies to reduce
and eventually to stop the spread of an epidemic. An in-
tervention can be specific to demographic groups within a
population or their actions. EpiRust has support for three
interventions namely isolation via hospitalization, lock-
down of the city, and mass vaccination.

• Hospitalization intervention helps to isolate and
quarantine agents with severe infection. Hospitaliza-
tion is limited by the number of hospital beds, but
this limit can be specified via configuration parame-
ters.

• Lockdown would restrict citizen movements.
Agents would be confined in their homes and only
essential workers would be allowed to travel.

• Mass Vaccination strategy vaccinates user-defined
percentage of randomly chosen susceptible agents.
Once vaccinated, these agents would never catch dis-
ease in their lifetime. This intervention can be trig-
gered by a configurable threshold.

2.5 Simulation Loop
At the heart of the simulation, there are two simple loops:
The outer one controls the discrete time steps (or clock),
and the inner loop updates the state of each agent at each
time step.

for hour in 1..n do
if can_intervene then

Apply lockdown;
end
for each agent do

Move agent on the grid;
Update infection state;

end
if number_of_infected == 0 then

Stop simulation;
end

end
Algorithm 1: Simplified Simulation Loop

Here, updating an agent after another in a sequential
execution leads to path dependent outcomes. To solve this
issue, EpiRust uses a double buffering technique (Cosenza
et al., 2018; de Aledo Marugán et al., 2018). The tech-
nique employs a read-only buffer for referring to the cur-
rent state of agents, and a write-only buffer for updating
their next state.

SIMS 61

DOI: 10.3384/ecp20176475 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

477



Figure 2. The Mordecai SEIR Model (Childs et al., 2020)

Figure 3. Disease Dynamics (Snehal Shekatkar et al., 2020)

3 EpiRust Implementation
As we discussed earlier, EpiRust has been designed with
three goals: Robustness, flexibility, and performance.
Rust contributes to robustness of memory management
and concurrent access via its features of borrow checking
and lifetime management (Klabnik and Nichols, 2018). In
the rest of this section, we have discussed the implemen-
tation towards flexibility and performance goals.

3.1 System Requirements
3.1.1 Model Correctness

To verify the model, a basic grid visualization is devel-
oped to observe the agents during each time step of the
simulation. Along with the grid visualization, we followed
test-driven development (TDD for short) to detect defects
and similar regression caused by code changes. TDD is
part of Agile Software Development practices, where a
developer writes unit test cases before writing the func-
tional code, and runs these test cases after implementing
a change (Beck, 2003). This approach helps in verify-
ing functional correctness, especially in case of the fre-
quent code changes. Cargo (Klabnik and Nichols, 2018),
Rust’s build and package manager gives an ability to run
unit tests and performance benchmark tests. Unit tests rely
upon Mocks which mimics structure and behavior of code
beyond the scope of the current unit. We found that creat-

ing mocks for Rust structures is not convenient for devel-
opers.

3.1.2 Flexibility
A model is flexible if a user can simulate different varia-
tions of the simulation model, either by specifying config-
uration parameters or disease-specific model extensions.

EpiRust uses the Rust constructs such as modules for
modularity, structures for entity modeling, traits to de-
fine behavioral contracts for later composition with enti-
ties (something similar to inheritance in other languages).
These constructs have contributed to separate disease dy-
namics from other components. This separation enables
the necessary flexibility to attach any SEIR-based disease
dynamics to the simulation without significant changes in
the rest of the source code. A user can alter disease dy-
namics by altering configuration parameters for not only
COVID19 but also other SEIR diseases such as smallpox.
For example, to model smallpox disease dynamics, a user
can choose to not specify asymptomatic and mild symp-
tomatic transmission rates in the configuration parameters.

The user can simulate multiple scenarios without
changing source code via configurable input parameters.
A subset of these parameters are discussed below.

General Parameters
• grid_size size of the square grid to represent the city.

SIMS 61

DOI: 10.3384/ecp20176475 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

478



Figure 4. System Architecture

• number_of_agents the population in the city.

• working_percentage the percentage of working
population to total population.

• public_transport_percentage the percentage of the
population taking public transport to work.

• hospital_beds_percentage the number of hospital
beds per 100 people.

• starting_infections the seed infected population.

Disease Dynamics Parameters

• percentage_asymptomatic_population specifies
the percentage of population will not show any
symptoms when infected.

• percentage_severe_infected_population Fraction
of the infected population with severe symptoms
would need hospitalization.

• transmission_start_day Day after catching an in-
fection when an infected person may spread the dis-
ease.

• transmission_rate is the probability of a suscepti-
ble agent catching an infection when contacted by an
infected agent.

• asymptomatic_last_day is the last day for an
asymptomatic agent to recover completely from an
infection.

• last_day is the last day of the disease when an agent
either recovers completely or dies of a severe infec-
tion.

Intervention Parameters

• Lockdown.at_number_of_infections triggers the
lockdown intervention when the total number of in-
fected agents matches to the parameter value.

• Lockdown.essential_workers is the fraction of the
working population which would perform their work
routine even during lockdown.

• Vaccination.at_hour is the time step to trigger vac-
cination.

• Vaccination.percent is a fraction of the population
to be randomly vaccinated.

The EpiRust disease dynamics model works as a finite
state machine (FSM) with the states as the SEIR compart-
ments. For state transitions, FSM first matches the current
state and then moves to the next state. To ease this im-
plementation, Rust offers a construct Pattern for matching
numbers, strings, enums, and regular expressions, etc.

3.1.3 Scalability

While representing millions of agents with their move-
ments and disease states along with the geographical de-
tails CPU and memory consumption are two important
factors to optimize. Choosing appropriate data structures
and algorithms can help to optimally manage these re-
sources. For example, when the model used a dense ma-
trix for representing the grid-based geography for agent
locations, it consumed a large amount of memory through-
out the simulation for even smaller agent populations.
An efficient alternative is spatial hashing technique which

SIMS 61

DOI: 10.3384/ecp20176475 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

479



stores only the locations where agents are placed. Switch-
ing from the dense matrix to the spatial hashing reduced
memory usage to a fraction of its original.

3.1.4 Performance

While spatial hashing helped to reduce memory usage, it
kept CPU time consumption at the same level of dense
matrix. For the hashmap data structure, the average-case
time complexity for retrieval and insertion is O(1). Af-
ter evaluating multiple implementations of hashmap data
structure in the Rust ecosystem, EpiRust uses FNVHash
(Crichton, 2020) for better performance. In addition, we
observed that the random number generator supplied by
the Rust standard library is adequate to avoid collisions
during agent placement.

3.2 Architecture
EpiRust has multiple smaller components as depicted in
figure 4. Engine is the simulation engine written in Rust
and discussed in this paper. The engine is invoked via
command line inputs including configuration files in the
JSON format. Server is a web server and the central com-
ponent which interfaces with other components such as
the engine and the user interface. It invokes the engine
using its command line interface. It sends simulation re-
quests to the engine and reads the engine output. The
output is later stored in a database so as to consume it
later. The server uses Apache Kafka for communication
with the engine. Kafka is a distributed streaming platform
used here for mediation between the server and the engine.
MongoDB stores simulation-generated data for later con-
sumption for visualization and debugging. React SPA is
the web user interface to specify model parameters and vi-
sualize the simulation results. It has been developed as a
single page application using React JS.

4 Scenarios and Results
When EpiRust development had started, COVID-19 had
begun to unfold in Wuhan, China. In order to get a bet-
ter understanding of COVID-19 spread in real life, we de-
cided to run it for the city of Pune, India. The city is
spread over an area approximately 331 square km in the
Western India, and has a population of more than three
million people.

To represent Pune city, we provided the following con-
figuration parameters as rendered in table 2.

To get a better understanding of the impact of various
non-pharmaceutical interventions on spread of a disease,
we simulated two different scenarios namely Baseline and
Intervention. As a model is probabilistic, we ran each of
these scenarios 5 times to ensure statistical stability.

4.1 Baseline Scenario
The baseline scenario depicts business as usual even in a
pandemic scenario. All agents will follow their routing re-
gardless of the disease spread and all of the interventions

Parameter Value
number_of_agents 3137224
grid_size 5660
working_percentage 70%
public_transport_percentage 80%
Lockdown_at_number_of_infections 100
essential_workers_population 10%
hospital_beds_percentage 0.003%
starting_infections 32645

Table 2. Input Parameters

like lockdown, increasing hospital bed capacity, vaccina-
tion etc. would not be in place.

4.2 Intervention Scenario
Lockdown can be a good intervention strategy but has its
own costs. To balance cost versus benefits requires trying
various what-if scenarios. EpiRust lockdown intervention
can be triggered for a configurable threshold of number
of infections. During lockdown intervention, the essen-
tial workers would still be working and performing their
daily routine as discussed in 2.1, and could potentially ac-
quire and spread infections. A fraction of the population
could choose to defy the lockdown intervention. This non-
compliant population could be modeled by adding their
percentage to the essential workers. Mass vaccination as
an intervention has been turned off for these simulations.

4.3 Results
We used Rust compiler version 1.44.1 for all these bench-
marks, and each scenario of this stochastic model has been
run for at least five times to ensure statistical stability. So,
the epicurves charts 5, 6(a) and 6(b) render mean and vari-
ance over time.

Compared to a similar model implemented using the
GAMA platform, a single-threaded EpiRust simulation
now completes within 30 seconds (a speedup of more than
100x). For Pune city simulations with more than 3 million
population, EpiRust takes close to 150 minutes on single
core of commodity class hardware for baseline scenario
and 50 minutes for lockdown scenario.

For every agent in the simulation, the number of inter-
actions with neighboring agents and its associated time
complexity are order of O(n3). We observed that the
Rust’s HashMap based implementation has a smaller
memory footprint, just over twenty megabytes for a mil-
lion agents, and hence computer memory is less of a con-
cern here. The performance across processors varies due
to clock frequency as well as internal architecture of the
processor.

While comparing multiple simulation scenarios for
Pune city, we found that lockdown is an effective strat-
egy to reduce the total infections in the society. Based on
our observations (figures 6(a), 6(b)) lockdown slows down
the rate at which infections grow and imposing lockdown

SIMS 61

DOI: 10.3384/ecp20176475 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

480



Figure 5. Pune Baseline Scenario

(a) Lockdown (b) Lockdown (without visualizing Susceptible Population)

Figure 6. Lockdown Scenarios for Pune Simulations

reduces stress upon health care facilities like hospitals.

4.4 Reproducing the results
EpiRust source code is released in open source. To
reproduce results of this paper, the EpiRust frame-
work and the model used in this paper can be found
here: https://github.com/thoughtworks/
epirust/tree/sims2020. In cloned Git repository,
the configuration files used for baseline and lockdown sce-
narios can be found at epirust/engine/config/
high_baseline.json and epirust/engine/
config/high_lockdown.json respectively.

5 Conclusion and Future Work
Based on our current exploration, we found Rust useful
in writing large-scale epidemiological models, even with-
out employing some advanced features such as parallelism
and concurrency. Rust’s preference for composition over
inheritance helps in building flexible models. We found
that Rust has a steeper learning curve than other program-
ming languages, especially to interpret the compiler er-
rors around borrow-checking. However, we trust that once

compiled the generated executable is robust and guaran-
teed to be memory safe. As a bonus, we found the owner-
ship principle guarantees efficient and memory safe code
even for concurrency. The Rust package manager Cargo
handles library dependencies and their installation trans-
parently. Rust’s borrow checker expects the programmer
to specify the lifetime of the function parameters to check
the reference validity. This can make writing extensible
code to be tricky. We observed that writing unit tests for
complex nested structures is difficult due to limited sup-
port for mocking.

Using the Rust and its ecosystem, we believe our suc-
cess is moderate in achieving our goals of performance,
flexibility, and robustness qualities. At the same time,
this lays the foundation of our future work on this frame-
work. For example, to improve performance, we would
like to harness multiple cores across computers. We also
intend to explore features for flexibility around dynamic
and user-defined disease models. We acknowledge the im-
pact of demographics on simulation results, and will work
towards supporting synthetic population. To ease setup
and deployment, we are working on a Docker image and

SIMS 61

DOI: 10.3384/ecp20176475 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

481

https://github.com/thoughtworks/epirust/tree/sims2020
https://github.com/thoughtworks/epirust/tree/sims2020


will be shared soon.

6 Acknowledgements
The authors would like to thank Dr. Gautam Menon for
his guidance, especially for the Mordecai SEIR Disease
Model. The authors would like to acknowledge and thank
all, who contributed to the EpiRust development including
the ThoughtWorks EpiRust team.

References
Sameera Abar, Georgios K Theodoropoulos, Pierre Lemarinier,

and Gregory MP O’Hare. Agent based modelling and simu-
lation tools: A review of the state-of-art software. Computer
Science Review, 24:13–33, 2017.

Alessia Antelmi, Gennaro Cordasco, Matteo D’Auria, Daniele
De Vinco, Alberto Negro, and Carmine Spagnuolo. On Eval-
uating Rust as a Programming Language for the Future of
Massive Agent-Based Simulations. In Asian Simulation Con-
ference, pages 15–28. Springer, 2019.

Abhiram Balasubramanian, Marek S. Baranowski, Anton Burt-
sev, Aurojit Panda, Zvonimir Rakamaric, and Leonid
Ryzhyk. System programming in rust: Beyond safety. Oper-
ating Systems Review, 51:94–99, 2017.

Kent Beck. Test-driven development: by example. Addison-
Wesley Professional, 2003.

Keith R Bisset, Xizhou Feng, Madhav Marathe, and Shrirang
Yardi. Modeling interaction between individuals, social net-
works and public policy to support public health epidemiol-
ogy. In Proceedings of the 2009 Winter Simulation Confer-
ence (WSC), pages 2020–2031. IEEE, 2009.

Jiangzhuo Chen, Bryan Lewis, Achla Marathe, Madhav
Marathe, Samarth Swarup, and Anil KS Vullikanti. Individ-
ual and collective behavior in public health epidemiology. In
Handbook of statistics, volume 36, pages 329–365. Elsevier,
2017.

M. L. Childs, M. Kain, D. Kirk, M. Harris, L. Couper, N. Nova,
I. Delwel, J. Ritchie, and E. Mordecai. The impact of long-
term non-pharmaceutical interventions on covid-19 epidemic
dynamics and control. medRxiv, 2020.

Biagio Cosenza, Nikita Popov, Ben H. H. Juurlink, Paul Rich-
mond, Mozhgan Kabiri Chimeh, Carmine Spagnuolo, Gen-
naro Cordasco, and Vittorio Scarano. Openabl: A domain-
specific language for parallel and distributed agent-based
simulations. In Euro-Par, 2018.

Alex Crichton. fnv hash. https://crates.io/crates/
fnv/1.0.7, 2020. URL https://crates.io/
crates/fnv/1.0.7.

Pablo González de Aledo Marugán, Andrey Vladimirov, Marco
Manca, Jerry Baugh, Ryo Asai, Marcus Kaiser, and Roman
Bauer. An optimization approach for agent-based computa-
tional models of biological development. Adv. Eng. Softw.,
121:262–275, 2018.

Richard M Fujimoto, Christopher Carothers, Alois Ferscha,
David Jefferson, Margaret Loper, Madhav Marathe, and Si-
mon JE Taylor. Computational challenges in modeling &
simulation of complex systems. In 2017 Winter Simulation
Conference (WSC), pages 431–445. IEEE, 2017.

Steve Klabnik and Carol Nichols. The Rust Programming Lan-
guage. Mozilla Research, 2018.

J Kouatchou. Basic comparison of python, julia, matlab, idl and
java (2018 edition). Modeling Guru–National Aeronautics
and Space Administration, USA, 2018.

Geoffrey Phipps. Comparing observed bug and productivity
rates for Java and C++. Software: Practice and Experience,
29(4):345–358, April 1999. ISSN 0038-0644, 1097-024X.

Alban Rousset, Bénédicte Herrmann, Christophe Lang, and
Laurent Philippe. A survey on parallel and distributed multi-
agent systems for high performance computing simulations.
Computer Science Review, 22:27–46, November 2016. ISSN
15740137.

Snehal Shekatkar, Bhalchandra Pujari, Mihir Arjunwadkar, Dhi-
raj Kumar Hazra, Pinaki Chaudhuri, Sitabhra Sinha, Gautam
I Menon, Anupama Sharma, and Vishwesha Guttal. Indsci-
sim a state-level epidemiological model for india, 2020. On-
going Study at https://indscicov.in/indscisim.

Patrick Taillandier, Arnaud Grignard, Nicolas Marilleau,
Damien Philippon, Quang-Nghi Huynh, Benoit Gaudou, and
Alexis Drogoul. Participatory modeling and simulation with
the gama platform. Journal of Artificial Societies and Social
Simulation, 22(2):3, 2019. ISSN 1460-7425. URL l.

Seth Tisue and Uri Wilensky. Netlogo: A simple environ-
ment for modeling complexity. In International conference
on complex systems, volume 21, pages 16–21. Boston, MA,
2004.

Jae-Seung Yeom, Abhinav Bhatele, Keith R. Bisset, Eric J.
Bohm, Abhishek Gupta, Laxmikant V. Kalé, Madhav V.
Marathe, Dimitrios S. Nikolopoulos, Martin Schulz, and
Lukasz Wesolowski. Overcoming the scalability challenges
of epidemic simulations on blue waters. 2014 IEEE 28th In-
ternational Parallel and Distributed Processing Symposium,
pages 755–764, 2014.

SIMS 61

DOI: 10.3384/ecp20176475 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

482

https://crates.io/crates/fnv/1.0.7
https://crates.io/crates/fnv/1.0.7
https://crates.io/crates/fnv/1.0.7
https://crates.io/crates/fnv/1.0.7
https://indscicov.in/indscisim
l

	Introduction
	Domestic Hot Water
	Aims and objectives

	Methodology
	Hot Water Demand Profile
	Hot Water Tank
	Heating Demand
	Heating Control
	Constant Temperature Set-point
	On-Off Controller
	Time-of-Use Heating
	Linear Optimization

	Inputs

	Results
	Robustness of the results
	Behaviour of DHW heating controls
	Flexibility of DHW
	Load profiles

	Conclusions
	Introduction
	System overview
	Floor heating
	Heated water tank: modification
	Transport of water in pipes
	Heat transfer from water to floor
	Structure of heated floor
	Heat transfer from water to aluminum
	Heat transfer to plates

	Heat transfer related to room

	Dynamic model
	Heated tank
	Floor heating/heat exchanger
	Board models
	Room model
	Model parameters

	Simulation results
	Conclusions
	Bibliography
	Introduction
	System overview
	Floor heating
	Buoyancy conductivity approximations
	Original stratification expression
	Log-sum-exp approximation
	Boundary layer approximation
	Comparison of approximations

	Transport delay in heating loop

	Simulation with buoyancy approximations
	Heated tank
	Heated tank + floor heating loop

	Model analysis
	Step response
	Parameter sensitivity
	Poles and zeros
	Bode plots

	Conclusions
	Bibliography
	Introduction
	Method
	Governing equation
	Numerical procedure
	Problem setup

	Results and Discussions
	Energy budget
	Performance of green façades in different climates and seasons
	Impact of convective heat transfer coefficient

	Conclusions
	Smart buildings
	Heat and power model
	Input data
	Climatic data
	Households characteristics
	Small-scale production system
	Simulation time resolution and horizon
	Electricity contracts

	Modelling framework
	Power consumption
	Thermal demand
	Optimisations

	Output data

	Down-scaling simulation
	Scaling and multiplying

	Results and discussions
	Power demand
	Power profile distribution
	Dataset comparison

	Thermal demand
	PV generation

	Conclusions
	Introduction
	Method
	Case study: Esbjerg District Heating
	Model
	Heat pump model
	Heat Pump System
	Control


	Heat Pump Concept Optimisation
	The Concept Optimisation Problem
	Micro-Genetic Algorithm
	Cost Function
	Cost: Coefficient of Performance
	Cost: Heating Capacity
	Cost: Investment and Depreciation Expense


	Results and Discussion
	Optimisation
	Convergence
	Optimised Heat Pump Concept

	Sensitivity Study
	Variations in Costs for Electricity
	Adjusting the Benchmark for Investment Cost
	Changes in Effects of Economy of Scale


	Conclusion
	Introduction
	Model Development
	Model Derivation
	Dimensionless Model
	Numerical Approach and Stability

	Results and Discussion
	Effect of Initial and Process Parameters
	Reduction of Energy Consumption
	Comparison with Reported Literature Values

	Conclusions
	Acknowledgments
	Introduction
	Background
	Previous work
	Overview of the paper

	Solution of the Counter-Current Heat Exchanger Model
	Linear regression
	Nonlinear regression
	Results and Discussion
	Conclusions
	Bibliography
	Introduction
	Hydro Power
	Modelica
	Goal and Scope

	Mathematical Description
	Mass Balance
	Momentum Balance
	Connecting Mass and Momentum Balance

	Implementing in Modelica
	Reservoir
	Parameters
	Basic Principles

	Connect Multiple Reservoirs
	Hydro Power Plant Model
	Simulations with Aurdalsfjord

	Discussion
	Implementation of Model
	Simulation Results

	Conclusion
	Introduction
	Background
	Previous studies
	Outline of the paper

	Surge tanks and their operation
	Simulated Responses
	Case study: Trollheim HPP
	Total Load Rejection (TLR)
	Effect of diameter of orifice and throat for TLR
	Total Load Acceptance (TLA)
	Partial Load Rejection (PLR)
	Partial Load Acceptance (PLA)

	Case study: Torpa HPP

	Results, and Discussions
	Conclusions
	Bibliography
	Introduction
	Background
	Previous studies
	Outline of the paper

	Model Developement
	Surge tanks
	Simple surge tank
	Sharp orifice type surge tank
	Throttle valve surge tank
	Air-cushion surge tank

	Draft tube
	Conical diffuser
	Moody spreading pipes


	Simulated Responses and Results
	Responses for surge tanks
	Responses for draft tubes

	Conclusions and Future Work
	Bibliography
	Introduction
	Lime Production
	Lime Shaft Kilns
	The Lime Kilns at SSAB Raahe

	Lime Kiln Modelica Model
	Total Model
	Combustion Model
	Pre-heating Model
	Cooling Model

	Model Calibration
	Simulation Results and Discussion
	Limitations in the Modelling

	Conclusion
	Introduction
	Application of PBE to granulation process in spherodizers
	Internal coordinate
	External coordinate

	Application of PBE to granulation process in rotary drums
	Simulation Results and Discussion
	Simulation Setup
	Simulation results for granulation in spherodizers
	Simulation results for granulation in rotary drums

	Conclusions
	Acknowledgment
	Introduction
	Population Balance Equation (PBE)
	Numerical schemes for layering term discretization
	Numerical schemes for agglomeration term discretization
	Hounslow's scheme
	Cell average scheme
	Fixed pivot scheme
	Kumar et al.'s new finite volume scheme

	Simulation Results and Discussion
	Simulation Setup
	Comparison of numerical solutions for layering process
	Comparison of numerical solutions for agglomeration process

	Conclusions
	Acknowledgment
	Introduction
	Background
	Previous work
	Overview of the paper

	Overview of Industrial Granulation
	Fertilizer granulation
	Granulation loop
	Production challenges
	Problem limitation

	Model implementation details
	Overview of model
	MATLAB
	Julia
	C-code/DLL
	Comparison

	Model linearization in Julia
	Conclusions
	Bibliography
	Introduction
	Governing Equations
	Low Reynolds Model
	High Reynolds model
	Boundary Conditions
	Transfer coefficient

	Computational Methodology
	Model Comparison

	Results
	Validation
	Conclusion
	Introduction
	Background
	Previous Work on Topside Sensing

	System Description
	Mathematical Models
	Estimation and Control Methods
	UKF
	Adaptive Observer
	The Choke Controller


	Results and Discussion
	Conclusions
	Appendix
	Adaptive Observer
	UKF

	Introduction
	Methods
	Simulation Environment Set-up
	Auto-Tune IADC

	Results
	Case 1: IADC performance in homogeneous formation
	Case 2: IADC performance against changing formations
	Case 3: IADC with ART

	Conclusion
	Acknowledgment
	Introduction
	Background
	Previous work
	Overview of paper

	Helicopter mechanistic model
	Laboratory helicopter
	Geometry of helicopter
	Kinetic energy of helicopter
	Potential energy of helicopter
	Helicopter torques
	DAE formulation of model
	ODE formulation of model

	Preliminary model fitting
	Experimental data
	Preliminary model fitting

	Hybrid model
	Neural torque extensions
	Equation discovery

	Conclusions and Future work
	Nominal parameters and operating conditions
	Bibliography
	Introduction
	Linear periodic differential systems
	Stability of periodic systems
	Control design
	Conclusion
	Introduction
	Methods
	Results and Discussion
	Conclusion and Future Work
	Testing ERP and MES with Digital Twins
	1 Introduction
	2 Pilot Production Environments
	2.1 Educational Cyber-Physical Factory
	2.2 FMS Cell

	3 Digital Twins
	3.1 Python web application
	3.2 Educational Cyber-Physical Factory
	3.3 FMS Cell

	4 Results and Discussion
	5 Conclusion
	Introduction
	Mathematical model
	Transport equations
	Interfacial forces
	Boiling model

	Computational Domain and Solution Procedure
	Results and discussions
	Conclusions
	Introduction
	Numerical Method for data generation
	Data Extraction

	Deep Neural Network Architecture 
	Results and Discussion
	Validation dataset
	Test dataset
	Interpolation datasets
	Extrapolation dataset


	Conclusion and Future Work
	Introduction
	Modelling methodologies
	Nonlinear scaling
	Steady-state modelling
	Dynamic modelling

	Recursive modelling
	Recursive nonlinear scaling
	Interactions

	Multimodel LE simulation
	Composite local models
	Intelligent systems
	Evolutionary computing

	Applications
	Steady-state LE models
	Dynamic LE models
	Decomposition in LE models
	Distributed parameter LE models

	Discussion
	Conclusions and future research
	Introduction
	Related Work
	The Rust Programming Language

	EpiRust Model
	Population
	Geography
	Disease Dynamics
	Interventions
	Simulation Loop

	EpiRust Implementation
	System Requirements
	Model Correctness
	Flexibility
	Scalability
	Performance

	Architecture

	Scenarios and Results
	Baseline Scenario
	Intervention Scenario
	Results
	Reproducing the results

	Conclusion and Future Work
	Acknowledgements
	Introduction
	Function Indexing
	Range of index in arities
	Heptavintimal index encoding

	Methodology
	Usage
	Logic minimization algorithm

	Circuit schematics
	Simulation results
	Discussion
	Conclusion

