Article | Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany | Optimization Library for Interactive Multi-Criteria Optimization Tasks Linköping University Electronic Press Conference Proceedings
Göm menyn

Optimization Library for Interactive Multi-Criteria Optimization Tasks
Andreas Pfeiffer: Institute of System Dynamics and Control, German Aerospace Center DLR, Oberpfaffenhofen, Germany
Full text (pdf)
Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany
Article no.:
No. of pages:
Publication type:
Abstract and Fulltext
Linköping Electronic Conference Proceedings
ISSN (print):
ISSN (online):
Linköping University Electronic Press; Linköpings universitet

Export in BibTex, RIS or text

The commercial library Optimization 2.1 for interactive multi-criteria optimization tasks has been released along with Dymola 2013. The library offers several numerical optimization algorithms for solving different kinds of optimization tasks. User defined Modelica functions or models provide the basis for an interactive optimization process where the user keeps overview of complex multi-criteria optimization tasks that can take discrete parameters; several model operating points or trajectories into account. Computational performance of optimization runs can be significantly increased by parallel numerical integrations of the Modelica model on multi-core machines.

Keywords: Modelica; Optimization; Multi-Criteria; Trajectory Optimization; Parallel Simulation

Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Andreas Pfeiffer
Optimization Library for Interactive Multi-Criteria Optimization Tasks
[AAG+10] Åkesson J.; Årzén K.-E.; Gäfvert M.; Bergdahl T. and Tummescheit H.: Modeling and Optimization with Optimica and – Languages and Tools for Solving Large-Scale Dynamic Optimization Problems. Computers and Chemical Engineering; Vol. 34; Issue 11; pp. 1737-1749; 2010. doi: 10.1016/j.compchemeng.2009.11.011.

[B01] Betts J. T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM Press; Philadelphia; Pennsylvania; USA; 2001.

[CJP08] Chapman B.; Jost G. and van der Pas R.: Using OpenMP; Portable Shared Memory Parallel Programming. The MIT Press; Cambridge; Massachusetts; London; England; 2008.

[DH02] Deuflhard P. and Hohmann A.: Numerische Mathematik I. Eine algorithmisch orientierte Einführung. 3. Auflage; de Gruyter; Berlin; Germany; 2002.

[DS12a] Dassault Systèmes AB: CATIA.

[DS12b] Dassault Systèmes AB: Dymola.

[E05] Ehrgott M.: Multicriteria Optimization. Second Edition; Springer; Berlin; Heidelberg; Germany; 2005.

[E12] EUROSYSLIB; ITEA2 06020;

[EOM+05] Elmqvist H.; Olsson H.; Mattsson S. E.; Brück D.; Schweiger C.; Joos D. and Otter M.: Optimization for Design and Parameter Estimation. Proc. of 4th International Modelica Conference; pp. 255-266; Hamburg; Germany; 2005.

[J11] Joos H.-D.: MOPS - Multi-Objective Parameter Synthesis; User’s Guide V6.2. Institute of Robotics and Mechatronics; DLR Oberpfaffenhofen; Germany; 2011.

[JBL+02] Joos H.-D.; Bals J.; Looye G.; Schnepper K. and Varga A.: A Multi-Objective Optimisation based Software Environment for Control System Design. Proc. IEEE International Conference on Control Applications; pp. 7-14; Glasgow; Scotland; Sept. 18-20; 2002.

[K10] Köppern J.: Integrierte Fahrzeugregelung durch einen hybriden Ansatz aus inversem Modell und modellprädiktiver Optimierung. GMA-Fachausschuss 1.40 "Theoretische Verfahren der Regelungstechnik"; Salzburg; Austria; 2010.

[LAS97] Lewis A; Abramson D. and Simpson R.; Parallel non-linear optimization: Towards the design of a decision support system for air quality management. Proc. of IEEE Supercomputing 97; San Jose; USA; 1997. doi: 10.1145/509593.509634.

[OT88] Otter M. and Türk S.: The DFVLR Models 1 and 2 of the Manutec r3 Robot. DFVLRMitteilung 88-13; Institut für Dynamik der Flugsysteme; DLR Oberpfaffenhofen; Germany; 1988.

[R11] Reiner M.: Modellierung und Steuerung von strukturelastischen Robotern. Ph.D. thesis; University of Technology; Munich; 2011.

[TOB01] Thümmel M.; Otter M. and Bals J.: Control of Robots with Elastic Joints based on Automatic Generation of Inverse Dynamics Models. Proc. of IROS; pp. 925-930; Maui; Hawaii; USA; 2001.

[TNT+11] Thieriot H.; Nemer M.; Torabzadeh-Tari M.; Fritzson P.; Singh R. and Kocherry J. J.: Towards Design Optimization with OpenModelica Emphasizing Parameter Optimization with Genetic Algorithms. Proc. of 8th International Modelica Conference; pp. 756-762; Dresden; Germany; 2011.

Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Andreas Pfeiffer
Optimization Library for Interactive Multi-Criteria Optimization Tasks
Note: the following are taken directly from CrossRef
  • Wenyi Wan & Yaoyu Li (2019). Intermediate pressure optimization for two-stage air-source heat pump with flash tank cycle vapor injection via extremum seeking. Applied Energy, 238: 612. DOI: 10.1016/j.apenergy.2019.01.083
  • Clemens Satzger, Jonathan Brembec & Martin Otter (2013). Framework for the Evaluation of Wheel Torque Blending Algorithms. IFAC Proceedings Volumes, 46(21): 347. DOI: 10.3182/20130904-4-JP-2042.00037
  • Lukas Exe & Georg Frey (2018). Modeling and simulation of local flexibilities and their effect to the entire power system. Computer Science - Research and Development, 33(1-2): 49. DOI: 10.1007/s00450-017-0346-7
  • Wenyi Wang, Yaoyu L & Bin Hu (2020). Real-time efficiency optimization of a cascade heat pump system via multivariable extremum seeking. Applied Thermal Engineering, 176: 115399. DOI: 10.1016/j.applthermaleng.2020.115399
  • Christoph Schwar & Alexander Keck (2019). Observer Synthesis for the Adhesion Estimation of a Railway Running Gear. IFAC-PapersOnLine, 52(15): 319. DOI: 10.1016/j.ifacol.2019.11.694
  • Michael Fleps-Dezass & Jonathan Brembeck (2013). Model based vertical dynamics estimation with Modelica and FMI. IFAC Proceedings Volumes, 46(21): 341. DOI: 10.3182/20130904-4-JP-2042.00086

  • Responsible for this page: Peter Berkesand
    Last updated: 2019-11-06