Keywords: MultiBody; Relaxation; Gaussian Elimination; OpenModelica
Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany
[2] R. Featherstone: The calculation of robot dynamics using articulated-body inertias. International Journal of Robotics Research 2; May 1983; pp. 13-30. doi: 10.1177/027836498300200102.
[3] R. Featherstone: Rigid Body Dynamics Algorithms. Springer; New York; 2008. doi: 10.1007/978-0-387-74315-8.
[4] H. Brandl; R. Johanni and M. Otter: A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix; In Kopacek; P.; Troth; I. and Desoyer; K. (Eds.); Theory of Robots; Oxford; Pergamon Press; 1988; pp. 95- 100
[5] M. Otter; H. Elmqvist; and F.E. Cellier: Relaxing: A symbolic sparse matrix method exploiting the model structure in generating efficient simulation code; Proc. Symp. Modelling; Analysis; and Simulation; CESA’96; IMACS MultiConference on Computational Engineering in Systems Applications; Lille; France; vol.1; 1995; pp. 1-12
[6] I.S. Duff; A.M. Ersiman; and J.K. Reid: Direct Methods for Sparse Matrices; Oxford University Press; 1986
[7] S.E. Mattsson and G. Söderlind: Index Reduction in Differential Algebraic Equations Using Dummy Derivatives; SIAM Journal on Scientific Computing; Vol. 14; No. 3; pp. 677-692; 1993. doi: 10.1137/0914043.
[8] R. Tarjan: Depth-first search and linear graph algorithms; 12th Annual Symposium on Switching and Automata Theory; 13-15 Oct.; 1971; pp. 114 - 121. doi: 10.1109/SWAT.1971.10.
[9] E. Carpanzano: Order Reduction of General Nonlinear DAE Systems by Automatic Tearing; Mathematical and Computer Modelling of Dynamical Systems; Vol. 6; Iss. 2; 2000