Keywords: differential algebraic equations; index reduction; projection method
Proceedings of the 5th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools; April 19; University of Nottingham; Nottingham; UK
[1] K. Arczewski and W. Blajer; A unified approach to the modeling of holonomic and nonholonomic mechanical systems; Math. Modeling of Systems 2 (1996); 157–174.
[2] U. M. Ascher; L. R. Petzold; Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations; SIAM; 1998.
[3] J. Bakus; L. Bernardin; K. Kowalska; M. Léger; A.Wittkopf; High-Level Physical Modeling Description and Symbolic Computing; IFAC Proceedings of the 17th World Congress;n 2008; 1054–1055.
[4] J.-L. Basdevant; Variational principles in physics; Springer; New York; 2007.
[5] L. D. Berkovitz; Variational methods in problems of control and programming; J. Math. Analysis and Applications 3 (1961); 145–169.
[6] W. Blajer; A projection method approach to constrained dynamic analysis; J. Appl. Mech. 59 (1992); 643–649.
[7] W. Blajer; Projective formulation of Maggi’s method for nonholonomic system analysis; J. Guidance Control Dyn. 15 (1992); 522–525.
[8] W. Blajer; Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems; Multibody System Dynamics; 7 (2002); 265–284.
[9] P. Blanchard and E. Brüning; Variational Methods in Mathematical Physics: A Unified Approach; Springer- Verlag; Berlin; Heidelberg; New York 1992.
[10] K. E. Brenan; S. L. Campbell; L. R. Petzold; Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations; SIAM; 1996.
[11] A. N. Kolmagorov; S. V. Fomin; Elements of the Theory of Functions and Functional Analysis; Courier Dover Publications; 1999.
[12] S. G. Krantz; H. R. Parks; The Implicit Function Theorem: History; Theory; and Applications; Birkhäuser; 2002.
[13] R. K. Nesbet; Variational Principles and Methods in Theoretical Physics and Chemistry; Cambridge University Press; Cambridge; 2003.
[14] A. Ohata; H. Ito; S. Gopalswamy; K. Furuta; Plant Modeling Environment Based on Conservation Laws and Projection Method for Automotive Control Systems; SICE Journal of Control; Measurement and System Integration 1 (2008); 227–234.
[15] C. M. Roithmayr; Relating Constrained Motion to Force Through Newton’s Second Law; Ph.D. thesis; Georgia Institute of Technology; 2007.
[16] D. Scott; Can a projection method of obtaining equations of motion compete with Lagrange’s equations? Am. J. Phys 56 (1988); 451–456.