Keywords: Dynamic optimization; Nonlinear Model Predictive Control; Extended Kalman Filter
Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden
[1] JModelica.org, http://jmodelica.org/, viewed 2013-12-05.
[2] Python Software Foundation. Python Programming Language - Official Website, http://www.python.org/, 2012, viewed 2013-12-05
[3] A. Johnsson, Nonlinear Model Predictive Control for Combined Cycle Power Plants, Master’s Thesis, Lund University, Department of Automatic Control, 2013.
[4] C. Andersson, S. Gedda, J. Akesson, S. Diehl, Derivative-free Parameter Optimization of Functional Mock-up Units, 9th International Modelica Conference, Munich, Germany, 2012.
[5] Lie, B., Haugen Finn, Scripting Modelica Using Python, Telemark University College, Porsgrunn, Norway, 2012
[6] A. Lind, E. Sällberg, S. Velut, S. Gallardo Yances, J. Åkesson, K. Link: Start-up Optimization of a Combined Cycle Power Plant, Proceedings of the 9th International MODELICA Conference, September 3-5, 2012, Munich, Germany
[9] J. Åkesson, Optimica—An Extension of Modelica Supporting Dynamic Optimization, 6th International Modelica Conference 2008, Modelica Association, March 2008.
[10] GnuPlot, http://www.gnuplot.info/, viewed 2013-12-05.
[11] MatPlotLib, http://matplotlib.org/, viewed 2013-12-05.
[12] SciPy, http://www.scipy.org, viewed 2013-12-05.
[13] Numpy, http://www.numpy.org/, viewed 2013-12-05.
[14] The JModelica.org User Guide, http://www.jmodelica.org/apidocs/usersguide/JModelicaUsersGuide-1.11.0.pdf, viewed 2013-12-05.
[15] E. Haselting, J. Rawlings, A Critical Evaluation of Extended Kalman Filtering and Moving Horizon Estimation, http://jbrwww.che.wisc.edu/techreports/twmcc-2002-03.pdf, 2003, viewed: 2013-05-07.
[16] The FMI-standard, https://www.fmistandard.org/, viewed 2014-01-21.