Keywords: Nonlinear Optimal Control; Symbolic Automatic Differentiation; Nonlinear Programming; Multiple Shooting; Collocation
Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden
[1] Åkesson, J.: Optimica—An Extension of Modelica Supporting Dynamic Optimization. 6th International Modelica Conference, March 3 - 4, 2008, Bielefeld, Germany, pp. 57-66.
[2] Åkesson, J., Årzén, K.-E., Gåfvert, M., Bergdahl, T., Tummescheit, H.: Modeling and optimization with Optimica and JModelica.org-Languages and tools for solving large-scale dynamic optimization problems. Computers and Chemical Engineering, 34(2010)11, pp. 1737-1749.
[3] Andersson, J., et. al.: Dynamic optimization with CasADi. In Proceedings of the 51st IEEE Conference on Decision and Control, Maui (USA), 2012.
[4] J. Andersson, J., Casella, F., Diehl, M.: Integration of CasADi and JModelica.org. 8th International Modelica Conference, Dresden, 2011. DOI: 10.3384/ecp1106321
[5] Andersson, J., Åkesson, J., Diehl, M.: CasADi: A Symbolic Package for Automatic Differentiation and Optimal Control. Lecture Notes in Computational Science and Engineering, Vol. 87, Springer, 2012, pp. 297-307.
[6] Bachmann, B., Ochel, L., Ruge, V., Gebremedhin, M., Fritzson, P., Nezhadali, V., Eriksson, L., Sivertsson, M.: Parallel Multiple-Shooting and Collocation Optimization with OpenModelica. Proceedings of the 9th International Modelica Conference, Munich, pp. 659-668, 2012.
[7] Bartl, M., Li, P., Biegler, L. T.: Improvement of state profile accuracy in nonlinear dynamic optimization with the quasi-sequential approach. AIChE Journal, 57(2011)8, pp. 2185-2197.
[8] Biegler, L. T. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM, 2010.
[9] Bock, H. G., Plitt, K. J. A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems, Prepr. 9th IFAC World Congress, Budapest, 1984, pp. 242-247.
[10] Cuthrell, J. E., Biegler, L. T.: Simultaneous optimization and solution methods for batch reactor control profiles. Comput. Chem. Eng. 13(1989), pp. 49-62.
[11] Ferreau, H. J.: Model predictive control algorithms for applications with millisecond timescales. PhD Thesis, KU Leuven, 2011.
[12] Franke, R.: Formulation of dynamic optimization problems using Modelica and their efficient solution. 2nd International Modelica Conference, March 18 - 19, DLR, Oberpfaffenhofen, Germany, pp. 315 - 323.
[13] Hong, W., Wang, S., Li, P., Wozny, G., Biegler, L. T.: A quasi-sequential approach to large-scale dynamic optimization problems. AIChE Journal, 52(2006)1, pp. 255-268.
[14] Kirches, C., Wirsching, L., Bock, H. G., Schlöder, J. P.: Efficient Direct Multiple Shooting for Nonlinear Model Predictive Control on Long Horizons. J. Process Control, 22(2012), pp. 540-550.
[15] Magnusson, F.: Collocation Methods in JModelica. org. Master Thesis, Lund University, February 2012.
[16] Russel, R. D., Shampine, L. F.: A Collocation Method for Boundary Value Problems, Numerical Mathematic, 19(1971), pp. 1-28, Springer.
[17] Tamimi, J.: Development of the Efficient Algorithms for Model Predictive Control of Fast Systems. PhD Thesis, Technische Universität Ilmenau, VDI Verlag, 2011.
[18] Tamimi, J., Li, P.: A Combined approach to nonlinear model predictive control of fast systems. J. Process Control, 20(2010)9, pp. 1092-1102.
[19] Wächter, A., Biegler, L.T.: On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming, Mathematical Programming, Ser. A, 106(2006)1, pp. 25-57.