Article | Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017 | Development of an open source multi-platform software tool for parameter estimation studies in FMI models Linköping University Electronic Press Conference Proceedings
Göm menyn

Title:
Development of an open source multi-platform software tool for parameter estimation studies in FMI models
Author:
Javier Bonilla: CIEMAT-PSA, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - Plataforma Solar de Almería, Spain / CIESOL, Solar Energy Research Center, Joint Institute University of Almería - CIEMAT, Almería, Spain Jose Antonio Carballo: CIEMAT-PSA, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - Plataforma Solar de Almería, Spain / CIESOL, Solar Energy Research Center, Joint Institute University of Almería - CIEMAT, Almería, Spain Lidia Roca: CIEMAT-PSA, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - Plataforma Solar de Almería, Spain / CIESOL, Solar Energy Research Center, Joint Institute University of Almería - CIEMAT, Almería, Spain Manuel Berenguel: Department of Informatics, University of Almería, Almería, Spain / CIESOL, Solar Energy Research Center, Joint Institute University of Almería - CIEMAT, Almería, Spain
DOI:
10.3384/ecp17132683
Download:
Full text (pdf)
Year:
2017
Conference:
Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017
Issue:
132
Article no.:
075
Pages:
683-692
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2017-07-04
ISBN:
978-91-7685-575-1
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press, Linköpings universitet


Export in BibTex, RIS or text

This paper presents the current development of an open source multi-platform software tool intended for estimating or optimizing parameters of FMI compliant models. Parameter estimation and optimization is a powerful tool in many engineering and science fields. Nevertheless, the effort and time that must be devoted to coupling and integrating complex modeling languages and tools together with analysis and optimization methods and algorithms sometimes is high. As a consequence of that, commonly the most convenient and easy-to-use optimization mechanisms are applied. Therefore, the focus on the development of this tool is in facilitating such coupling while being customizable. The main toolkit and libraries used in the development of the tool are presented, all of them are open source. Two application examples are also presented, one of them is a parameter optimization study considering a steady state model, while the other is a parameter estimation study of a dynamic model against experimental data. Finally, current tool limitations are presented, ongoing work and ideas for future features are also commented.

Keywords: parameter estimation, parameter optimization, Model calibration, Functional Mock-up Interface (FMI), open source software tool

Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017

Author:
Javier Bonilla, Jose Antonio Carballo, Lidia Roca, Manuel Berenguel
Title:
Development of an open source multi-platform software tool for parameter estimation studies in FMI models
DOI:
http://dx.doi.org/10.3384/ecp17132683
References:

Brian M. Adams, Mohamed S. Ebeida, Michael S. Eldred, Gianluca Geraci, John D. Jakeman, Kathryn A. Maupin, Jason A. Monschke, Laura P. Swiler, J. Adam Stephens, Dena M. Vigil, and Timothy M.Wildey. Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.5 User’s Manual, 2016.

Karsten Ahnert and Mario Mulansky. Odeint - Solving ordinary differential equations in C++. In AIP Conference Proceedings, volume 1389, pages 1586–1589, 2011. ISBN 9780735409569. doi: https://doi.org/10.1063/1.3637934.

Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove Bergdahl, and Hubertus Tummescheit. Modeling and Optimization with Optimica and JModelica.org—Languages and Tools for Solving Large-Scale Dynamic Optimization Problems. Computers and Chemical Engineering, 34(11):1737–1749, 2010.

Berkeley Lab. BuildingsPy - Modelica Buildings Library, 2016. URL http://simulationresearch.lbl.gov/modelica/buildingspy/.

Dassault Systemes. Dymola 2017 FD01, 2016. URL http://www.dymola.com.

John Eddy and Kemper Lewis. Effective Generation of Pareto Sets Using Genetic Programming. In ASME 2001 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, number 1, pages 1–9, Pittsburgh, PA, 2001.

Hilding Elmqvist, Hans Olsson, Sven Erik Mattsson, Dag Brück, Christian Schweiger, Dieter Joos, and Martin Otter. Optimization for Design and Parameter Estimation. In Proc. 4th International Modelica Conference, 2005. ESI ITI GmbH. SimulationX 3.8, 2016. URL http://www.simulationx.com/.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E. Shumaker, and Carol S. Woodward. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM Transactions on Mathematical Software, 31(3):363–396, 2005. ISSN 0098-3500. doi: https://doi.org/10.1145/1089014.1089020.

KDE Community. Breeze icons, 2016. URL https://github.com/KDE/breeze-icons.

MapleSoft. MapleSim 2016, 2016. URL https://www.maplesoft.com/products/maplesim/.

Modelica Association. Functional Mock-up Interface for Model Exchange and Co-Simulation, Version 2.0, 2014a. URL https://www.fmi-standard.org/downloads.

Modelica Association. Modelica Specification, version 3.3 Revision 1, 2014b. URL http://www.modelica.org/documents.

OSMC. OpenModelica 1.9.7, 2016. URL http://www.openmodelica.org/.

Andreas Pfeiffer. Optimization Library for Interactive Multi-Criteria Optimization Tasks. In Proc. 9th International Modelica Conference, pages 669–680, Munich, Germany, nov 2012.

Sandia Corporation. Dakota Packages, 2016. URL https://dakota.sandia.gov/content/packages.

Scilab Enterprises. Scilab: Open Source software for numerical computation, 2015. URL http://www.scilab.org/.

SciPy developers. SciPy.org - Python-based ecosystem of opensource software for mathematics, science, and engineering, 2017. URL http://scipy.org/.

Sergey A. Tachenov. QuaZIP - Qt/C++ wrapper for ZIP/UNZIP package, 2016. URL http://quazip.sourceforge.net/.

The MathWorks Inc. MATLAB R2016b, 2016. URL http://www.mathworks.es/products/matlab/.

The Qt Company. Qt - Cross-platform software development for embedded & desktop, 2016. URL https://www.qt.io.

Hubert Thieriot, Maroun Nemer, Mohsen Torabzadeh-Tari, Peter Fritzson, Rajiv Singh, and John John Kocherry. Towards Design Optimization with OpenModelica Emphasizing Parameter Optimization with Genetic Algorithms. In Proc. 8th International Modelica Conference, pages 756–762, 2011.

Luigi Vanfretti, Maxime Baudette, Achour Amazouz, Tetiana Bogodorova, Tin Rabuzin, Jan Lavenius, and Francisco José Goméz-López. RaPId: A modular and extensible toolbox for parameter estimation of Modelica and FMI compliant models. SoftwareX, 5:144–149, 2016. ISSN 23527110. doi: https://doi.org/10.1016/j.softx.2016.07.004.

Michael Wetter. GenOpt - A Generic Optimization Program. Seventh International IBPSA Conference, (1):601–608, 2001.

Edmund Widl, Wolfgang Muller, Atiyah Elsheikh, Matthias Hortenhuber, and Peter Palensky. The FMI++ library: A high-level utility package for FMI for model exchange. 2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, MSCPES 2013, 2013. doi: https://doi.org/10.1109/MSCPES.2013.6623316.

Wolfram. SystemModeler 4.3, 2016. URL http://www.wolfram.com/system-modeler/.

Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017

Author:
Javier Bonilla, Jose Antonio Carballo, Lidia Roca, Manuel Berenguel
Title:
Development of an open source multi-platform software tool for parameter estimation studies in FMI models
DOI:
https://doi.org10.3384/ecp17132683
Note: the following are taken directly from CrossRef
Citations:
  • D.H. Blum, K. Arendt, L. Rivalin, M.A. Piette, M. Wette & C.T. Veje (2019). Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems. Applied Energy, 236: 410. DOI: 10.1016/j.apenergy.2018.11.093


  • Responsible for this page: Peter Berkesand
    Last updated: 2019-11-06