Article | Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017 | Object-oriented modelling of a flexible beam including geometric nonlinearities Linköping University Electronic Press Conference Proceedings
Göm menyn

Title:
Object-oriented modelling of a flexible beam including geometric nonlinearities
Author:
Davide Invernizzi: Politecnico Di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Via La Masa 34, 20156 Milano, Italy Bruno Scaglioni: Politecnico Di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria DEIB, Via Ponzio 34/5, 20133 Milano, Italy Gianni Ferretti: Politecnico Di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria DEIB, Via Ponzio 34/5, 20133 Milano, Italy Paolo Albertelli: Politecnico Di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano, Italy
DOI:
10.3384/ecp17132735
Download:
Full text (pdf)
Year:
2017
Conference:
Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017
Issue:
132
Article no.:
080
Pages:
735-744
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2017-07-04
ISBN:
978-91-7685-575-1
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press, Linköpings universitet


Export in BibTex, RIS or text

In this paper, an efficient approach for the modelling and simulation of slender beams subject to heavy inertial loads is presented. The limitations imposed by a linear formulation of elasticity are overcome by a second order expansion of the displacement field, based on a geometrical exact beam model. In light of this, the nonlinearities of the elastic terms are shifted as inertial contributions, which yields an expression of the equations of motion in closed form. Thanks to the formulation in closed form, the proposed model is implemented in Modelica, with particular care to the suitability of the model with respect to the Modelica Multibody library. After describing the model formulation and implementation, the paper presents some simulation results, in order to validate the model with respect to benchmarks, widely adopted in literature.

Keywords: Nonlinear beams, flexible multibody, geometric stiffening, Modelica flexible

Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017

Author:
Davide Invernizzi, Bruno Scaglioni, Gianni Ferretti, Paolo Albertelli
Title:
Object-oriented modelling of a flexible beam including geometric nonlinearities
DOI:
http://dx.doi.org/10.3384/ecp17132735
References:

H.E. Absy and A.A. Shabana. Geometric Stiffness and Stability of Rigid Body Modes. Journal of Sound and Vibration, 207 (4):465–496, 1997.

Arun K Banerjee. Flexible Multibody Dynamics: Efficient Formulations and Applications. John Wiley & Sons, 2016.

L. Bascetta, G. Ferretti, and B. Scaglioni. Closed-form Newton–Euler dynamic model of flexible manipulators. Robotica (in press), 2015.

Olivier A. Bauchau, Peter Betsch, Alberto Cardona, Johannes Gerstmayr, Ben Jonker, Pierangelo Masarati, and Valentin Sonneville. Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody System Dynamics, 37(1):29–48, 2016. ISSN 1573-272X.

M. Berzeri and A.A. Shabana. Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation. Multibody System Dynamics, 7(4):357–387, 2002.

S.E. Boer, R.G.K.M. Aarts, J.P. Meijaard, D.M. Brouwer, and J.B. Jonker. A two-node superelement description for modelling of flexible complex-shared beam-like components. In Multibody Dynamics 2011, ECCOMAS Thematic Conference, 2011.

Hartmut Bremer. Elastic Multibody Dynamics. Springer, 2008. ISBN 9781402086809.

Claytex Services Ltd. FlexibleBody Library. Coventry, UK.

R. R. Craig and M. C. C. Bampton. Coupling of substructures for dynamic analyses. AIAA Journal, 6(7):1313–1319, 1968.

Dymore Solutions. Dymore user’s manual, 2016.

Dynasim AB. Dymola. Lund, Sweden.

G. Ferretti, A. Leva, and B. Scaglioni. Object-oriented modelling of general flexible multibody systems. Mathematical and Computer Modelling of Dynamical Systems, 20(1):1–22, 2014.

M. Géradin and Alberto Cardona. Flexible Multibody Dynamics:

A Finite Element Approach. Wiley, Chichester, Great Britain, January 2001.

A. Heckmann. On the choice of boundary conditions for mode shapes in flexible multibody systems. Multibody System Dynamics, 23(2):141–163, 2010.

A. Heckmann, M. Otter, S. Dietz, and J. D. López. The DLR FlexibleBodies library to model large motions of beams and of flexible bodies exported from finite element programs. In 5th Modelica Conference, Vienna, Austria, September 4-5 2006.

Dewey Hodges. Nonlinear Composite Beam Theory. AIAA, 2006. ISBN 1563476975.

G. Jeleni´c and M. A. Crisfield. Interpolation of rotational variables in nonlinear dynamics of 3d beams. International Journal for Numerical Methods in Engineering, 43(7):1193–1222, 1998.

U. Lugrís, M. A. Naya, J. A. Peréz, and J. Cuadrado. Implementation and efficiency of two geometric stiffening approaches. Multibody System Dynamics, 20:147–161, 2008.

Mathworks. Matlab, 2014.

MSC Software Corporation. ADAMS/Flex user’s manual, 2017.

M. Otter, H. Elmqvist, and S.E. Mattsson. The new Modelica multibody library. In 3rd Modelica Conference, Linköping, Sweden, November 3–4, 2003.

P Frank Pai. Highly flexible structures: modeling, computation, and experimentation. AIAA (American Institute of Aeronautics & Ast, 2007.

W. Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Journal für die Reine und Angewandte Mathematik, 135:1–61, 1909.

F. Schiavo, L. Viganò, and G. Ferretti. Object-oriented modelling of flexible beams. Multibody System Dynamics, 15(3): 263–286, 2006.

R. Schwertassek and O. Wallrapp. Dynamik flexibler Mehrkörpersysteme. Vieweg, Wiesbaden, 1999.

R. Schwertassek, O. Wallrapp, and A. A. Shabana. Flexible multibody simulation and choice of shape functions. Nonlinear Dynamics, 20:361–380, 1999a.

Richard Schwertassek, OskarWallrapp, and Ahmed A Shabana. Flexible multibody simulation and choice of shape functions. Nonlinear Dynamics, 20(4):361–380, 1999b.

A. A. Shabana. Dynamics of Multibody Systems. Cambridge University Press, New York, 1998.

I. Sharf. Geometric stiffening in multibody dynamics formulations. Journal of Guidance, Control and Dynamics, 18(4): 882–890, 1995.

P. Shi, J. McPhee, and G.R. Heppler. A deformation field for Euler–Bernoulli beams with applications to flexible multibody dynamics. Multibody System Dynamics, 5:79–104, 2001. ISSN 1384–5640.

Spacar. user’s manual, 2016.

The Modelica Association. Modelica – A Unified Object–Oriented Language for Physical Systems Modeling. Language Specification Version 3.1, 2009.

R. E. Valembois, P. Fisette, and J. C. Samin. Comparison of various techniques for modelling flexible beams in multibody dynamics. Nonlinear Dynamics, 12:367–397, 1997. ISSN 0924–090X.

Oskar Wallrapp and Simon Wiedemann. Comparison of results in flexible multibody dynamics using various approaches. Nonlinear Dynamics, 34(1-2):189, October 2003.

S. C. Wu and E.J. Haug. Geometric non–linear substructuring for dynamics of flexible mechanical systems. International Journal for Numerical Methods in Engineering, 26:2211–2276, 1988.

Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017

Author:
Davide Invernizzi, Bruno Scaglioni, Gianni Ferretti, Paolo Albertelli
Title:
Object-oriented modelling of a flexible beam including geometric nonlinearities
DOI:
https://doi.org10.3384/ecp17132735
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2019-11-06