Article | Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017 | Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox Cycle Linköping University Electronic Press Conference Proceedings
Göm menyn

Title:
Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox Cycle
Author:
Alberto de la Calle: CSIRO Energy, 10 Murray Dwyer Ct., Mayfield West, NSW 2304, Australia Alicia Bayon: CSIRO Energy, 10 Murray Dwyer Ct., Mayfield West, NSW 2304, Australia
DOI:
10.3384/ecp17132857
Download:
Full text (pdf)
Year:
2017
Conference:
Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017
Issue:
132
Article no.:
094
Pages:
857-866
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2017-07-04
ISBN:
978-91-7685-575-1
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press, Linköpings universitet


Export in BibTex, RIS or text

For the first time, a dynamic model of a 1 MWth thermochemical hydrogen production plant is developed and implemented for CeO2 redox cycle. The work explores the annual performance of a plant by studying the effect of the variables of the process by means of Direct Normal Irradiation (DNI), temperature, pressure and degree of oxidation affects the annual production of hydrogen. The model reproduces the behaviour of a thermochemical receiver-reactor exposed to solar radiation accounting of the thermal inertia of CeO2 which is significantly high to accomplish the oxidation without extracting the heat of reaction. The operation is optimized to obtain the maximum amount of hydrogen in a year by only modifying the mass flow rates at the inlet of the reactors. This characteristic demonstrates the flexibility and adaptability of the model that could be further improved to obtain a constant production of hydrogen.

Keywords: Solar fuels, Central receiver, High temperature, Dynamic modelling

Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017

Author:
Alberto de la Calle, Alicia Bayon
Title:
Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox Cycle
DOI:
http://dx.doi.org/10.3384/ecp17132857
References:

Stéphane Abanades, Patrice Charvin, Gilles Flamant, and Pierre Neveu. Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy, 31:2469–2486, 2006. doi: https://doi.org/10.1016/j.energy.2005.11.002.

Simon Ackermann and Aldo Steinfeld. Diffusion of oxygen in Ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles. The Journal of Physical Chemistry Cournal of, 118, 2014.

AUSTELA. The NREL System Advisor Model for Australian CSP Stakeholders (SAM), 2016. URL http://www.austela.org.au/projects.

Roman Bader, Luke J. Venstrom, Jane H. Davidson, and Wojciech Lipi ´nski. Thermodynamic analysis of isothermal redox cycling of ceria for solar fuel production. Energy and Fuels, 27(9):5533–5544, 2013. doi: https://doi.org/10.1021/ef400132d.

Manuel Blanco-Muriel, Diego C. Alarcón-Padilla, Teodoro López-Moratalla, and Martín Lara-Coira. Computing the solar vector. Solar Energy, 70(5):431–441, 2001. doi: https://doi.org/10.1016/S0038-092X(00)00156-0.

B. Bulfin, F. Call,M. Lange, O. Lübben, C. Sattler, R. Pitz-Paal, and I. V. Shvets. Thermodynamics of CeO2 thermochemical fuel production. Energy and Fuels, 29(2):1001–1009, 2015. doi: https://doi.org/10.1021/ef5019912.

William C Chueh, Christoph Falter, Mandy Abbott, Danien Scipio, Philipp Furler, Sossina M Haile, and Aldo Steinfeld. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Sci ence (New York, N.Y.), 330(6012):1797–801, dec 2010. doi: https://doi.org/10.1126/science.1197834.

Dassault Systemes. Dymola 2017 - Dynamic Modeling Laboratory, 2016. URL www.3ds.com.

Alberto de la Calle, Jim Hinkley, Paul Scott, and John Pye. SolarTherm : A NewModelica Library and Simulation Platform for Concentrating Solar Thermal Power Systems. Proc. 9th EUROSIM Congress on Modelling and Simulation, pages 1–2, 2016a. doi: https://doi.org/10.1109/EUROSIM.2016.162.

Alberto de la Calle, Lidia Roca, Javier Bonilla, and Patricia Palenzuela. Dynamic modeling and simulation of a double-effect absorption heat pump. International Journal of Refrigeration, 72:171–191, 2016b. doi: https://doi.org/10.1016/j.ijrefrig.2016.07.018.

Lawrence D’Souza. Thermochemical hydrogen production from water using reducible oxide materials: a critical review. Materials for Renewable and Sustainable Energy, 2(1):7, feb 2013. doi: https://doi.org/10.1007/s40243-013-0007-0.

John A. Duffie and William A. Beckman. Solar Engineering of Thermal Processes. Wiley, New York, USA, 4th edition, 2013. ISBN 9780470873663. doi: https://doi.org/10.1002/9781118671603.

Ivan Ermanoski. Maximizing Efficiency in Two-step Solarthermochemical Fuel Production. Energy Procedia, 69:1731–1740, 2015. doi: https://doi.org/10.1016/j.egypro.2015.03.141.

Ivan Ermanoski, Nathan P. Siegel, and Ellen B. Stechel. A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production. Journal of Solar Energy Engineering, 135 (3):031002, 2013. doi: https://doi.org/10.1115/1.4023356.

Edward A. Fletcher. Solarthermal Processing: A Review. Journal of Solar Energy Engineering, 123(May 2001):63, 2001. doi: https://doi.org/10.1115/1.1349552.

Philipp Furler, Jonathan R. Scheffe, and Aldo Steinfeld. Syngas production by simultaneous splitting of H2O and CO2via ceria redox reactions in a high-temperature solar reactor. Energy & Environmental Science, 5(3):6098, 2012. doi: https://doi.org/10.1039/c1ee02620h.

Xiang Gao, Alejandro Vidal, Alicia Bayon, Roman Bader, Jim Hinkley, Wojciech Lipiski, and Antonio Tricoli. Efficient ceria nanostructures for enhanced solar fuel production: Via high-temperature thermochemical redox cycles. Journal of Materials Chemistry A, 4(24):9614–9624, 2016. doi: https://doi.org/10.1039/c6ta02187e.

IRENA and IEA-ETSAP. Technology Brief 4: Thermal Storage. Technical Report January, 2013.

Jiyong Kim, Terry a. Johnson, James E. Miller, Ellen B. Stechel, and Christos T. Maravelias. Fuel production from CO2 using solar-thermal energy: system level analysis. Energy & Environmental Science, 5(9):8417, 2012. doi: https://doi.org/10.1039/c2ee21798h.

Nathan S Lewis and Daniel G Nocera. Powering the planet: Chemical challenges in solar energy utilization. PNAS, 104 (42):15729–15735, 2007.

Bonnie J. McBride, Michael J. Zehe, and Sanford Gordon. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species. Technical Report NASA/TP-2002-211556, National Aeronautics and Space Administration (NASA), Cleveland OH, USA, 2002.

Modelica Association. Modelica Specification 3.3, 2016. URL www.modelica.org/documents.

Christopher L.Muhich, Brian D. Ehrhart, Ibraheam Al-Shankiti, Barbara J.Ward, Charles B. Musgrave, and AlanW. Weimer. A review and perspective of efficient hydrogen generation via solar thermal water splitting. Wiley Interdisciplinary Reviews: Energy and Environment, pages n/a–n/a, 2015. doi: https://doi.org/10.1002/wene.174.

NREL. The Solar Power Tower Integrated Layout and Optimization Tool (SolarPILOT), 2016. URL http://www.nrel.gov/csp/solarpilot.html.

J. O’Gallagher and R. Winston. Development of compound parabolic concentrators for solar energy. International Journal of Ambient Energy, 4(4):171–186, oct 1983. doi: https://doi.org/10.1080/01430750.1983.9675885.

Hans Olsson, Martin Otter, Sven Erik Mattsson, and Hilding Elmqvist. Balanced Models in Modelica 3.0 for Increased Model Quality. In Proc. 6th International Modelica Conference, pages 21–33, Bielefeld, Germany, 2008.

Linda R. Petzold. A description of DASSL: a Diferential/Algebraic System Solver. Scientific Computing, pages 65–68, 1983.

Robert Pitz-Paal, Nicolas Bayer Botero, and Aldo Steinfeld. Heliostat field layout optimization for high-temperature solar thermochemical processing. Solar Energy, 85(2):334–343, 2011. doi: https://doi.org/10.1016/j.solener.2010.11.018.

R. Ramachandran and R. K. Menon. An overview of industrial uses of hydrogen. International Journal of Hydrogen Energy, 23(7):593–598, 1998. doi: https://doi.org/10.1016/S0360-3199(97)00112-2.

Martin Roeb, Martina Neises, Nathalie Monnerie, Friedemann Call, Heike Simon, Christian Sattler, Martin Schmücker, and Robert Pitz-Paal. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review. Materials, 5(12):2015–2054, oct 2012. doi: https://doi.org/10.3390/ma5112015.

Jonathan R. Scheffe and Aldo Steinfeld. Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production. Energy & Fuels, 26(3):1928–1936, mar 2012. doi: https://doi.org/10.1021/ef201875v.

Z. S. Spakovszky. Unified Engineering: Thermodynamics and Propulsion, 2008. URL web.mit.edu/16.unified.

S. Wilcox and W. Marion. Users manual for TMY3 data sets. Technical Report NREL/TP-581-43156, The National Renewable Energy Laboratory (NREL), Golden CO, USA, 2008.

Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017

Author:
Alberto de la Calle, Alicia Bayon
Title:
Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox Cycle
DOI:
https://doi.org10.3384/ecp17132857
Note: the following are taken directly from CrossRef
Citations:
No citations available at the moment


Responsible for this page: Peter Berkesand
Last updated: 2019-11-06