Article | Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017 | The DLR Environment Library for Multi-Disciplinary Aerospace Applications Linköping University Electronic Press Conference Proceedings
Göm menyn

Title:
The DLR Environment Library for Multi-Disciplinary Aerospace Applications
Author:
Lâle Evrim Briese: Institute of System Dynamics and Control, DLR German Aerospace Center, Oberpfaffenhofen, Germany Andreas Klöckner: Institute of System Dynamics and Control, DLR German Aerospace Center, Oberpfaffenhofen, Germany Matthias Reiner: Institute of System Dynamics and Control, DLR German Aerospace Center, Oberpfaffenhofen, Germany
DOI:
10.3384/ecp17132929
Download:
Full text (pdf)
Year:
2017
Conference:
Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017
Issue:
132
Article no.:
102
Pages:
929-938
No. of pages:
10
Publication type:
Abstract and Fulltext
Published:
2017-07-04
ISBN:
978-91-7685-575-1
Series:
Linköping Electronic Conference Proceedings
ISSN (print):
1650-3686
ISSN (online):
1650-3740
Publisher:
Linköping University Electronic Press, Linköpings universitet


Export in BibTex, RIS or text

Environment models are vital elements for any type of vehicle dynamics simulations, such as aircraft or satellites. Recently, applications have been developed, where these previously unrelated regimes of operation need to be integrated, for example in end-to-end simulations of launch vehicles. This paper therefore introduces the new DLR Environment Library, which implements common models of planets, geospheres, currents, kinematics, and physical effects for such applications. It provides a set of environment models with minimal dependencies, complete compatibility to the Modelica Standard Library, and convenient drag & drop usage. The DLR Environment Library is expected to immensely aid developing end-to-end simulation models integrating components from DLR’s SpaceSystems and FlightDynamics Libraries. In particular, it will importantly decrease modeling errors due to its consistent environment models.

Keywords: Environment modeling, gravitational models, planet models, atmosphere models, kinematic state models, space mission simulation, multi-disciplinary modeling

Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017

Author:
Lâle Evrim Briese, Andreas Klöckner, Matthias Reiner
Title:
The DLR Environment Library for Multi-Disciplinary Aerospace Applications
DOI:
http://dx.doi.org/10.3384/ecp17132929
References:

P. Acquatella. Launch Vehicle Multibody Dynamics Modeling Framework for Preliminary Design Studies. 6th International Conference on Astrodynamics Tools and Techniques (ICAAT), 2016.

Astronomical Almanac. The Astronomical Almanac for the Year 2011. United Kingdom Hydrographic Office, 2010. ISBN: 978-07-0774-103-1.

J. Bangert,W. Puatua, G. Kaplan, J. Bartlett,W. Harris, A. Fredericks, and A. Monet. User’s Guide to NOVAS Version C3.1. Technical report, U.S. Naval Observatory, 2011.

R. Bate, D. Müller, and J. White. Fundamentals of Astrodynamics. Dover Publications, Inc., 1971. ISBN: 0-486-60061-0.

T. Bellmann. Interactive Simulations and advanced Visualization with Modelica. In Proceedings of the 7th International Modelica Conference, pages 541–550, 2009. doi: https://doi.org/10.3384/ecp09430056.

A. Klöckner, M. Leitner, D. Schlabe, and G. Looye. Integrated Modelling of an Unmanned High-Altitude Solar-Powered Aircraft for Control Law Design Analysis. In Advances in Aerospace Guidance Navigation and Control - Selected Papers of the Second CEAS Specialist Conference on Guidance, Navigation and Control, pages 535–548. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-38252-9.

A. Klöckner, G. Looye, R. Müller, R. Kuchar, F. Re, and M. Leitner. Object-Oriented Aircraft Modeling with the DLR FlightDynamics library. In 9th AIRTEC 2014 International Congress, 2014a.

A. Klöckner, F. L. J. van der Linden, and D. Zimmer. Noise Generation for Continuous System Simulation. In Proceedings of the 10th International Modelica Conference, pages 837–846, 2014b. ISBN: 978-91-7519-380-9.

A. Klöckner, A. Knoblach, and A. Heckmann. How to Shape Noise Spectra for Continuous System Simulation. In Proceedings of the 11th International Modelica Conference, pages 411–418, 2015. ISBN: 978-91-7685-955-1.

W. J. Larson and J. R. Wertz. Space Mission Analysis and Design, volume 3. Microcosm Press and Kluwer Academic Publishers, 1999. ISBN: 1-881883-10-8.

F. G. Lemoine, S. C. Kenyon, J. K. Factor, and R. G. Trimmer et al. The Development of the Joint NASA GSFC and National Imagery and Mapping Agency NIMA Geopotential Model EGM96. Technical report, National Aeronautics and Space Administration (NASA), 1998.

G. Looye. The New DLR Flight Dynamics Library. In Proceedings of the 6th International Modelica Conference, volume 1, pages 193–202, 2008.

S. Maus, S. Macmillan, S. McLean, B. Hamilton, A. Thomson, M. Nair, and C. Rollins. The US/UK World Magnetic Model for 2010-2015. Technical report, National Oceanic and Atmospheric Administration (NOAA), 2010.

MIL-STD-1797A. Flying Qualities of Piloted Aircraft. U.S. Department of Defense, 1990. Military Standard.

O. Montenbruck and E. Gill. Satellite Orbits - Models, Methods and Applications. Springer Verlag, Heidelberg, 2000. ISBN: 978-3-642-63547-2.

NASA. U.S. Standard Atmosphere, 1976. Technical report, National Aeronautics and Space Administration, 1976.

NASA. Definition of Two-line Element Set Coordinate System, 2011. National Aeronautics and Space Administration, http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/SSOP_Help/tle_def.html.

NASA. Earth Atmosphere Model, 2015. National Aeronautics and Space Administration, https://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html.

NIMA. World Geodetic System 1984 - Its Definition and Relationships with Local Geodetic Systems. Technical report, National Imagery and Mapping Agency, 2000.

M. Otter, H. Elmqvist, and S. Mattsson. The New Modelica MultiBody Library. In Proceedings of the 3rd International Modelica Conference, pages 311–330, 2003.

J. M. Picone, A. E. Hedin, and A. C. Aikin D. P. Drob. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 107, 2001. doi: https://doi.org/10.1029/2002JA009430.

T. Pulecchi, F. Casella, and M. Lovera. A Modelica Library for Space Flight Dynamics. In Proceedings of the 5th International Modelica Conference, pages 107–116, 2006.

M. J. Reiner and J. Bals. Nonlinear inverse models for the control of satellites with flexible structures. In Proceedings of the 10th International Modelica Conference, pages 577–587, 2014. doi: https://doi.org/10.3384/ECP14096577.

G. Schänzer. Einführung in die Flugphysik. Institut für Flugführung, TU Braunschweig, 1969. Lecture notes.

E. M. Standish. JPL Planetary and Lunar Ephemerides, DE405 / LE405. Technical report, Jet Propulsion Laboratory, 1998.

The MathWorks. Dryden Wind Turbulence Model, 2016. http://de.mathworks.com/help/aeroblks/drydenwindturbulencemodelcontinuous.html.

F. L. J. van der Linden, C. Schlegel, M. Christmann, G. Regula, C. I. Hill, P. Giangrande, J.-C. Maré, and I. Egaña. Implementation of a Modelica Library for Simulation of Electromechanical Actuators for Aircraft and Helicopters. In Proceedings of the 10th International Modelica Conference, pages 757–766, 2014. doi: https://doi.org/10.3384/ECP14096757.

T. C. van Flandern and K. F. Pulkkinen. Low-Precision Formulae for Planetary Positions. The Astrophysical Journal Supplement Series, 41:391–411, 1979.

Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017

Author:
Lâle Evrim Briese, Andreas Klöckner, Matthias Reiner
Title:
The DLR Environment Library for Multi-Disciplinary Aerospace Applications
DOI:
https://doi.org10.3384/ecp17132929
Note: the following are taken directly from CrossRef
Citations:
  • Heike Benninghoff, Florian Rems, Eicke Risse, Bernhard Brunner, Martin Stelzer, Rainer Krenn, Matthias Reiner, Christian Stang & Marcin Gnat (2018). End-to-end simulation and verification of GNC and robotic systems considering both space segment and ground segment. CEAS Space Journal, 10(4): 535. DOI: 10.1007/s12567-017-0192-2


  • Responsible for this page: Peter Berkesand
    Last updated: 2019-11-06