Electronic News Journal on Reasoning about Actions and Change 08
Vol. 1: 68-71, 31.10.1997
http: fwww.ida.liu.se/ext/etai/rac/notes /1997 /13/

Compilability of Domain Descriptions in the
Language A

Paolo Liberatore
University of Rome “La Sapienza”

Abstract. In this note we analyze the possibility of reducing the complexity
of entailment in A by a compilation of the domain description. Since a
single domain description D must in general be queried many times with
respect to many different queries V, it makes sense to reduce it in a form that
allows the solving problem of entailment in polynomial time. Using results
from the field of language compilation, we prove that such a compilation is
impossible, if we impose the result of compilation to be a polynomial data
structure.

The language A is one of the most popular languages for representing the
effect of actions. Since the seminal paper by Gelfond and Lifshitz [3], many
other researchers have been worked on extending the language to incor-
porate the indirect effect of actions, the possibility of concurrent actions,
etc. Very recently, two papers appeared on the computational complexity
of reasoning about actions, [2] and [5]. The latter regards the complexity
of deciding whether a domain description in A is consistent, and what it
implies. These problems have been found to be NP and coNP complete,
respectively (for the basic definition of the classes NP and coNP we refer to
the work of Johnson [4]). Thus, these problem are intractable, that is, no
polynomial algorithm exists for solving them. In order to solve intractable
problems, a compilation of part of the data may be useful. A general theory
of compilation of intractable problems has been defined in [1]. In this paper
we apply the results given there to the problems of A.

The problem of language compilation has been deeply analyzed in Al
in the last few years. The general pattern is the following. There is an
intractable problem. The input of this problem is composed by two parts.
The typical situation is that of a knowledge base K B. We extract infor-
mation from this knowledge base by checking which facts are true, that
is, whether KB | @, for a fact (). Even for the propositional case, this
problem is coNP complete, thus intractable. In many cases, a single knowl-
edge base KB must be queried many times w.r.t. many different @’s. In
such cases 1t makes sense to compile K B into a new data structure H that
allows the solution of the problem KB |= @ in polynomial time. What is
required is that the data structure H has size polynomial in the size of the
initial knowledge base K B. If this compilation is possible, we say that the
problem is compilable. A graphical representation of compilation is given in
Figure 1.

69

K B——— compilation

polynomial
0 algorithm

> answer

Figure 1: Compilation of a Knowledge Base.

In our case, the knowledge base is a domain description, and the query
1s a value proposition. However, this basic pattern is present: a domain de-
scription may be queried many times w.r.t. to many different value propo-
sitions. If it possible to compile the domain into a data structure H that
allows the solving of the problem of entailment in polynomial time for any
possible value proposition, the problem 1s said compilable.

We need some technical definitions and results.

Definition 1 A problem belongs to P/poly if there exisls a polynomial p
and a family of algorithms {Ay, As, ...}, one for each posilive inleger, such
that,

1. The A; algorithm solves the instances of the problem of size 1.
2. The algorithm A; has running time bounded by p(7).

The class P/poly is related to the classes of the polynomial hierarchy
by the following theorem.

Theorem 1 If NP C P/poly then II5=XL=PH.

This theorem says that if the class NP is included in the class P/poly,
then the polynomial hierarchy collapses to its second level. This is consid-
ered unlikely by complexity researchers.

Using this result we are able to prove the non-compilability of the lan-
guage A. We use a specific reduction from 3unsat to the problem of entail-
ment. If we are able to find a reduction from the problem of unsatisfiability
of a set of clauses II to the a problem in such a way the fixed part of the
problem depends only on the number of variables of II, then the problem
cannot be compiled.

Lemma 1 Let Il be a set of clauses, each composed by three literals. 11 s

unsatisfiable if and only if D =V, where

D = {initially =F} U {A; causes F' if =Ly, L2, ~L3 |
for each clause v; = L1V LoV L3 € I x }
V. = F after Ay;...; A,

bl

where lx s the set of all the clauses of three literals over the alphabet
X, and {A;} is a sel of aclions, one-to-one with the clauses of Mx. The
sequence of actions in the value proposition is composed exactly by the A;
with are wn correspondence with the clauses ~; in II.

70

Proof. Note that D is build over Il x, which depends only on the number
of variables in X. The only dependence on the specific set of clauses 1s in
the value proposition V.

Let now prove the claim. Assume that II is satisfiable. Let I be a model
of Il. Consider the state g = I. Since the only value proposition in D is
initially =F, this is a possible initial state, that is, (6o, ¥p) is a model of D.
Note that there is no effect proposition that change the value of the fluents
L;. Since II is satisfied, for each clause v; = L1V LoV L3 at least a literal is
true. As a result, the action A; does not change the state when executed,
since at least one precondition of the action A; causes F' if =L, Ly, L3
is false. This holds for each action A; such that v; € II, since all the clauses
in I are satisfied by I. As a result, at the end of the sequence Ay;...; Ay,
the value of F' is not modified, since all the clauses corresponding to the A;
in this sequence are in II.

Let us assume that the set of clauses II is unsatisfiable. Let (oq, ¥p) be
a model of D. Since II is unsatisfiable, for each interpretation over {L;} at
least a clause must be false in that interpretation. Let v, = L1V L2V L3 be
the clause that is falsified by I = 0. Since all the literals it contains are false
in I, it follows that all the preconditions of A; causes F'if =Ly, — Ly, - L3 are
true, starting from the initial state og. As a result, the fluent F' is true at
the end of the sequence. This proof does not depends on the specific initial
state chosen. As a result, the fluent F' is true after the sequence for each
possible initial state, thus V is implied by D. o

Lemma 2 [t is possible to giwe a polynomeal reduction from 3unsat to en-
tailment in A in such a way the domain description depends only on the
size of the formula to be checked if unsatisfiable.

Proof. The reduction of the previous lemma “almost” satisfies the con-
dition of this lemma. However, the domain description depends on the
number of atoms in the considered alphabet, and not on the size of the
formula. This problem can be easily overcame by assuming that II is built
over an alphabet with a number of elements equal to the size of the formula
IT. This is always possible, since there are no constraints imposing that II
must use all the variables of the alphabet. O

Given this lemma, we are able to prove the theorem of non-compilability.
Theorem 2 It s impossible to compile the domain description D into a

polynomial data structure in such a way entailment s made polynomial,
unless the polynomial hierarchy collapses.

Proof. We proved that there exists two functions f and g such that,
given a set of clauses of three literals II, it holds

T unsatisfiable iff f(||II]]) = ¢(1I)

where ||TI|| denotes the size of the formula II.

Let us assume that the problem of entailment is compilable. We prove
that coNP C P/poly. First we prove that 3unsat is in P/poly. Consider the
following family of algorithms:

A; = decide whether f(4) = g(II)

71

We proved that this algorithm solves the problem of unsatisfiability of a set
of clauses II of size i. Moreover, since ¢ is polynomial and by hypothesis the
problem is compilable, this set of algorithms is bounded by a polynomial.
As a result, 3unsat € P/poly.

Since 3unsat is coNP complete, any other problem in coNP can be re-
duced to it via a polynomial reduction. As a result, any problem in coNP
is also in P/poly. This implies that TT5=X=PH, which is considered very
unlikely in complexity theory. O

References

[1] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. Feasibility and
unfeasibility of off-line processing. In Proc. of ISTCS-96, pages 100-109.
IEEE Computer Society Press; 1996.

[2] T. Drakengren and M. Bjareland. Reasoning about actions in polyno-

mial time. In Proc. of IJCAI-97, pages 1447-1452, 1997.

[3] M. Gelfond and V. Lifschitz. Representing action and change by logic
programs. J. of Logic Programming, 17:301-322, 1993.

[4] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume A chapter 2.
Elsevier, 1990.

[5] P. Liberatore. The complexity of the language .A. Linképing Electronic
Articles in Computer and Information Science, Vol 2 (1997): nr 6. Avail-
able at http://www.ep.liu.se/ea/cis/1997/006/.

