Conference article

Thermodynamic Analysis and Potential Efficiency Improvements of a Biochemical Process for Lignocellulosic Biofuel Production

M. Imroz Sohel
Scion, Te Papa Tipu Innovation Park, New Zealand

Michael W. Jack
Scion, Te Papa Tipu Innovation Park, New Zealand

Download articlehttp://dx.doi.org/10.3384/ecp11057500

Published in: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:67, p. 500-507

Show more +

Published: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

This paper presents a thermodynamic analysis of a biochemical process for the production of bioethanol from a lignocellulosic feedstock. The major inefficiencies in the process are identified as: i) the combustion of lignin for process heat and power production and ii) the simultaneous saccharification and fermentation process. As lignin is not converted to ethanol and lignin has a high value of chemical exergy; the overall efficiency of the biochemical process largely depends on how the lignin is utilized. We therefore consider integrating a source of low temperature heat; such as waste heat or low-enthalpy geothermal heat; into a biochemical lignocellulosic biorefinery to provide process heat. This enables the lignin-enriched residue to be used either as a feedstock for chemicals and materials or for on-site electricity generation. Our analysis shows that integrating low temperature heat source into a biorefinery in this way represents an improvement in overall resource utilization efficiency.

Keywords

Bioenergy; biorefinery; geothermal energy; process heat; integrated approach

References

[1] IEA; From 1st to 2nd Generation Generation Biofuel Technologies. 2008.

[2] Metzger; J.O. and A. Huttermann; Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas. Naturwissenschaften; 2008. 96: p. 279-288. doi: 10.1007/s00114-008-0479-4.

[3] Schmer; M.R.; et al.; Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA; 2008. 105: p. 464-469. doi: 10.1073/pnas.0704767105.

[4] Tilman; D.; et al.; Beneficial Biofuels-The Food; Energy; and Environment Trilemma. Science; 2009. 325: p. 270. doi: 10.1126/science.1177970.

[5] Ragauskas; A.J.; et al.; The path forward for biofuels and biomaterials. Science; 2006. 311: p. 484-489. doi: 10.1126/science.1114736.

[6] Demirbas; A.; Biorefineries: Current activities and future developments. Energy Conversion and Management; 2009. 50(11): p. 2782-2801. doi: 10.1016/j.enconman.2009.06.035.

[7] Dodds; D.R. and R.A. Gross; Chemicals from Biomass. Science; 2007. 318: p. 1250-1251. doi: 10.1126/science.1146356.

[8] Elnashaie; S.S.E.H.; et al.; Integrated system approach to sustainability bio-fuels and bio-refineries. Bulletin of Science; Technology and Society; 2008. 28(6): p. 510-520. doi: 10.1177/0270467608317218.

[9] Zhang; Y.H.P.; Reviving the carbohydrate economy via multi-product lignocellulose biorefinaries. J Ind Microbiol Biotechnol: BioEnergy- Special Issue; 2008. 35(5): p. 367-75. doi: 10.1007/s10295-007-0293-6.

[10]Huber; G.W.; S. Iborra; and A. Corma; Synthesis of Transportiation Fuels from Biomass: Chemistry; Catalysis; and Engineering. Chem. Rev.; 2006. 106: p. 4044-4098. doi: 10.1021/cr068360d.

[11]Wooley; R.; et al.; Lignocellulosic Biomass toEthanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios. 1999; National Reneable Energy Laboratory. doi: 10.2172/12150.

[12]Larsen; J.; et al.; The IBUS Process – Lignocellulosic Bioethanol Close to a Commercial Reality. Chem. Eng. Technol; 2008. 31(5): p. 765–772. doi: 10.1002/ceat.200800048.

[13]Cardona Alzate; C.A. and O.J. Sánchez Toro; Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy; 2006. 31(13): p. 2447-2459. doi: 10.1016/j.energy.2005.10.020.

[14]Piccolo; C. and F. Bezzo; A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass and Bioenergy; 2009. 33(3): p. 478-491. doi: 10.1016/j.biombioe.2008.08.008.

[15]Szargut; J.; D.R. Morris; and F.R. Steward; Exergy analysis of thermal; chemical; and metallurgical processes. 1988: Hemisphere publishing corporation.

[16]Dincer; I. and M.A. Rosen; Thermodynamic aspects of renewables and sustainable development. Renewable and Sustainable Energy Reviews; 2005. 9(2): p. 169-189. doi: 10.1016/j.rser.2004.02.002.

[17]de Koeijer; G. and R. Rivero; Entropy production and exergy loss in experimental distillation columns. Chemical Engineering Science; 2003. 58(8): p. 1587-1597. doi: 10.1016/S0009-2509(02)00627-9.

[18]Jarungthammachote; S. and A. Dutta; Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy; 2007. 32(9): p. 1660-1669. doi: 10.1016/j.energy.2007.01.010.

[19]Lu; Y.; et al.; Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chemical Engineering Journal; 2007. 131(1-3): p. 233-244. doi: 10.1016/j.cej.2006.11.016.

[20]Ojeda; K. and V. Kafarov; Exergy analysis of enzymatic hydrolysis reactors for transformation of lignocellulosic biomass to bioethanol. Chemical Engineering Journal; 2009. 154 (1–3); 390–395. doi: 10.1016/j.cej.2009.05.032.

[21]Røsjorde; A. and S. Kjelstrup; The second law optimal state of a diabatic binary tray distillation column. Chemical Engineering Science; 2005. 60(5): p. 1199-1210. doi: 10.1016/j.ces.2004.09.059.

[22]Prins; M.J.; K.J. Ptasinski; and F.J.J.G. Janssen; Exergetic optimisation of a production process of Fischer-Tropsch fuels from biomass. Fuel Processing Technology; 2005. 86(4): p. 375-389. doi: 10.1016/j.fuproc.2004.05.008.

[23]Talens; L.; G. Villalba; and X. Gabarrell; Exergy analysis applied to biodiesel production. Resources; Conservation and Recycling; 2007. 51(2): p. 397-407. doi: 10.1016/j.resconrec.2006.10.008.

[24]Tan; H.T.; K.T. Lee; and A.R. Mohamed; Second-generation bio-ethanol (SGB) from Malaysian palm empty fruit bunch: Energy and exergy analyses. Bioresource Technology; 2010. 101 p. 5719–5727. doi: 10.1016/j.biortech.2010.02.023.

[25]Sohel; M.I. and M.W. Jack; Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: guiding technology selection and research focus. Bioresource Technology. DOI:10.1016/j.biortech.2010.10.032. doi: 10.1016/j.biortech.2010.10.032.

[26]Sohel; M.I. and M. Jack; Efficiency improvements by geothermal heat integration in a lignocellulosic biorefinery. Bioresource Technology 2010. 101 p. 9342-9347. doi: 10.1016/j.biortech.2010.07.011.

[27]Dincer; I. and M.A. Rosen; Exergy: energy; environment and sustainable development. 2007: Elsevier.

[28]DiPippo; R.; Second Law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics; 2004. 33(5): p. 565-586. doi: 10.1016/j.geothermics.2003.10.003.

Citations in Crossref