Conference article

Progress in Luminescent Solar Concentrator Research: Solar Energy for the Built Environment

Paul P. C. Verbunt
Eindhoven University of Technology, Eindhoven, The Netherlands

Michael G. Debije
Eindhoven University of Technology, Eindhoven, The Netherlands

Download articlehttp://dx.doi.org/10.3384/ecp110572751

Published in: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:8, p. 2751-2758

Show more +

Published: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

This paper presents a concise review of recent research on the luminescent solar concentrator (LSC). The topics covered will include studies of novel luminophores and attempts to limit the losses in the devices; both surface and internal. These efforts include application of organic and inorganic-based selective mirrors which allow sunlight in but reflect emitted light; luminophores alignment to manipulate the emitted light path; and patterning of the dye layer. Finally; the paper will offer some possible ‘glimpses to the future’; and offer some additional research paths that could result in a device that could make solar energy a ubiquitous part of the built environment as sound barriers; bus stop roofs; awnings or siding tiles. Considering the reported efficiencies of the LSC are comparable to those reported for organic PVs; which are also being considered for use in the built environment; the results of the research on the LSC to date warrants more widespread attention.

Keywords

Solar energy; Luminescent solar concentrator; Building integrated photovoltaics; Review

References

[1] Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings; Vol. 2010.

[2] a) W. H. Weber and J. Lambe; Luminescent greenhouse collector for solar radiation Applied Optics 15; 1976; 2299; b) A. Goetzberger and W. Greube; Solar energy conversion with fluorescent collectors; Applied Physics A: Materials Science& Processing 14; 1977; 123.

[3] E. Bende et al.; Proc. of the 23rd European PV and Solar Energy Conference 2008; 461.

[4] a) L. H. Slooff; et al.; A luminescent solar concentrator with 7.1% power conversion efficiency Physica Status Solidi (RRL) - Rapid Research Letters 2; 2008; 257.

[5] M. G. Debije et al.; Measured surface loss from luminescent solar concentrator waveguides; Applied Optics 47; 2008; 6763. doi: 10.1364/AO.47.006763.

[6] S. McDowall; et al.; Simulations of luminescent solar concentrators: Effects of polarization and fluorophore alignment; Journal of Applied Physics 108; 2010; 053508.

[7] a) M. van Gurp and Y. K. Levine; Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory; The Journal of Chemical Physics 90; 1989; 4095; doi: 10.1063/1.455767. b) C. Sanchez et al.; Polarized photoluminescence and order parameters of in situ photopolymerized liquid crystal films; Journal of Applied Physics 87; 2000; 274. doi: 10.1063/1.371913.

[8] a) G. H. Heilmeier and L. A. Zanoni; Guest-host interactions in nematic liquid crystals. A new electro-optic effect Applied Physics Letters 13; 1968; 91; doi: 10.1063/1.1652529. b) R. L. van Ewyk et al.; Anisotropic fluorophores for liquid crystal displays Displays 7; 1986; 155; doi: 10.1016/0141-9382(86)90066-1. c) H.-W. Schinidt; Dichroic dyes; and liquid crystalline side chain polymers Advanced Materials 1; 1989; 218. doi: 10.1002/adma.19890010703.

[9] P. P. C. Verbunt; D. J. Broer; C. W. M. Bastiaansen and M. G. Debije; The effect of dyes aligned by liquid crystals on luminescent solar concentrator performance; Proc. of the 24th European PV Solar Energy Conference 2009; 381.

[10] C. L. Mulder et al.; Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling; Optics Express 18; 2010; A79.

[11] P. P. C. Verbunt et al.; Controlling Light Emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals; Advanced Functional Materials 19; 2009; 2714. doi: 10.1002/adfm.200900542.

[12] C. L. Mulder et al.; Dye alignment in luminescent solar concentrators: II. Horizontal alignment for energy harvesting in linear polarizers; Optics Express 18; 2010; A91.

[13] a) M. G. Debije; et al.; Using selectively-reflecting organic mirrors to improve light output from a luminescent solar concentrator; Proc. of the WREC IX 2006; b) J. C. Goldschmidt et al.; Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies; Physica Status Solidi (a) 205; 2008; 2811; c) M. G. Debije et al.; Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors; Applied Optics 49; 2010; 745.

[14] B. S. Richards; A. Shalav and R. P. Corkish.; A low escape-cone-loss luminescent solar concentrator; Proc. of the 19th European PV Solar Energy Conference; 2004.

[15] S. A. El-Daly and S. Hirayama; Re-absorption and excitation energy transfer of N;N’-bis(2;5-di-tert-butylphenyl)-3;4:9;10-perylenebis(dicarboximide) (DBPI) laser dye; Journal of Photochemistry and Photobiology A: Chemistry 110; 1997; 59. doi: 10.1016/S1010-6030(97)00132-9.

[16] a) R. W. Olson; et al.; Luminescent solar concentrators and the reabsorption problem; Applied Optics 20; 1981; 2934; doi: 10.1364/AO.20.002934. b) R. Sóti et al.; Photon transport in luminescent solar concentrators; Journal of Luminescence 68; 1996; 105; doi: 10.1016/0022-2313(96)00004-X. c) L. R. Wilson et al.; Characterization and reduction of reabsorption losses in luminescent solar concentrators; Applied Optics 49; 2010; 1651. doi: 10.1364/AO.49.001651.

[17] B. C. Rowan; et al.; Visible and near-infrared emitting lanthanide complexes for luminescent solar concentrators; Proc. of the 24th European PV Conference 2009; 346.

[18] a) A. J. Chatten et al.; A new approach to modelling quantum dot concentrators; Solar Energy Materials and Solar Cells 75; 2003; 363; b) S. J. Gallagher; et al.; Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices; Solar Energy 81; 2007; 813; c) V. Sholin; et al.; Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting; Journal of Applied Physics 101; 2007; 123114; d) G. V. Shcherbatyuk et al.; Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators; Applied Physics Letters 96; 2010; 191901.

[19] A. M. Taleb; Self absorption treatment for the luminescent solar concentrators; Renewable Energy 26; 2002; 137. doi: 10.1016/S0960-1481(01)00103-3.

[20] R. Reisfeld; Fluorescent Dyes in Sol-Gel Glasses; Journal of Fluorescence 12; 2002; 317. doi: 10.1023/A:1021397422976.

[21] S. Tsoi; et al.; Patterned dye structures limit reabsorption in luminescent solar concentrators; Optics Express 18; 2010; A536. doi: 10.1364/OE.18.00A536.

[22] S. Tsoi; C. W. M. Bastiaansen and M. G. Debije; Enhancing light output of fluorescent waveguides with a microlens system; Proc. of the 24th European PV and Solar Energy Conference 2009; 377.

[23] a) R. Reisfeld; et al.; Photostable solar concentrators based on fluorescent glass films; Solar Energy Materials and Solar Cells 33; 1994; 417; b) G. Seybold and G. Wagenblast; New perylene and violanthrone dyestuffs for fluorescent collectors; Dyes and Pigments 11; 1989; 303; c) M. G. Debije et al.; A promising fluorescent dye for solar energy conversion based on a perylene perinone; Applied Optics 50; 2011; 163.

[24] a) I. Baumberg; et al.; Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures; Polymer Degradation and Stability 73; 2001; 403; doi: 10.1016/S0141-3910(01)00119-7. b) R. Kinderman et al.; Performance and stability study of dyes for luminescent plate concentrators; Journal of Solar Energy Engineering 129; 2007; 277. doi: 10.1115/1.2737469.

[25] M. J. Currie et al.; High-efficiency organic solar concentrators for photovoltaics; Science 321; 2008; 226. doi: 10.1126/science.1158342.

[26] a) W. R. Holland and D. G.Hall; Waveguide mode enhancement of molecular fluorescence; Optics Letters 10; 1985; 414; doi: 10.1364/OL.10.000414. b) H. R. Wilson; Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators; Solar Energy Materials 16; 1987; 223; doi: 10.1016/0165-1633(87)90022-0. c) K. Aslan; et al.; Metal-enhanced fluorescence from plastic substrates; Journal of Fluorescence 15; 2005; 99. doi: 10.1007/s10895-005-2515-5.

[27] a) K. Heidler; Efficiency and concentration ratio measurements of fluorescent solar concentrators using a xenon measurement system; Applied Optics 20; 1981; 773; doi: 10.1364/AO.20.000773. b) J. Roncali and F. Garnier; New luminescent back reflectors for the improvement of the spectral response and efficiency of luminescent solar concentrators; Solar Cells 13; 1984; 133. doi: 10.1016/0379-6787(84)90004-8.

[28] M. G. Debije et al.; The effect of a scattering layer on the edge output of a luminescent solar concentrator; Solar Energy Materials and Solar Cells 93; 2009; 1345. doi: 10.1016/j.solmat.2009.02.013.

[29] M. G. Debije; Solar energy collectors with tunable transmission; Advanced Functional Materials 20; 2010; 1498. doi: 10.1002/adfm.200902403.

[30] a) C. G. Granqvist; Oxide electrochromics: Why; how; and whither Solar Energy Materials and Solar Cells: Selected Papers from the Seventh International Meeting on Electrochromism (IME-7); 92; 2008; pp. 203; b) C. Bechinger and B. A. Gregg; Development of a new self-powered electrochromic device for light modulation without external power supply; Solar Energy Materials and Solar Cells 54; 1998; 405. doi: 10.1016/S0927-0248(98)00092-0.

[31] M.-C. Dubois; Solar Shading and Building Energy Use; Ph.D. Thesis; Lund Institute of Technology; Lund; Sweden; 1997; pp. 1-100.

[32] a) J. Yoon et al.; Ultrathin silicon solar microcells for semitransparent; mechanically flexible and microconcentrator module designs; Nature Materials 7; 2008; 907; doi: 10.1038/nmat2287. b) P. Fath; H. Nussbaumer and R. Burkhardt; Industrial manufacturing of semitransparent crystalline silicon POWER solar cells; Solar Energy Materials and Solar Cells 74; 2002; 127. doi: 10.1016/S0927-0248(02)00056-9.

[33] A. W. Hains; et al.; Molecular semiconductors in organic photovoltaic cells; Chemical Reviews 110; 2010; 6689. doi: 10.1021/cr9002984.

[34] S. Chattopadhyay et al.; Anti-reflecting and photonic nanostructures; Materials Science and Engineering: R: Reports 69; 2010; 1. doi: 10.1016/j.mser.2010.04.001.

[35] U. Schulz; Review of modern techniques to generate antireflective properties on thermoplastic polymers; Applied Optics 45; 2006; 1608. doi: 10.1364/AO.45.001608.

[36] a) G. W. Chantry et al.; Far infrared and millimetre-wave absorption spectra of some low-loss polymers; Chemical Physics Letters 10; 1971; 473; doi: 10.1016/0009-2614(71)80337-8. b) H. Ma; et al.; Polymer-based optical waveguides: materials; processing; and devices; Advanced Materials 14; 2002; 1339. doi: 10.1002/1521-4095(20021002)14:19<1339::AID-ADMA1339>3.0.CO;2-O.

[37] M. J. Kastelijn; et al.; Influence of waveguide material on light emission in luminescent solar concentrators; Optical Materials 31; 2009; 1720. doi: 10.1016/j.optmat.2009.05.003.

[38] A. F. Mansour; Photostability and optical parameters of copolymer styrene/MMA as a matrix for the dyes used in fluorescent solar collectors; Polymer Testing 23; 2004; 247. doi: 10.1016/j.polymertesting.2003.09.010.

[39] a) M. Sidrach de Cardona et al.; Edge effect on luminescent solar concentrators; Solar Cells 15; 1985; 225. doi: 10.1016/0379-6787(85)90079-1.

[40] T. K. Sau et al.; Properties and applications of colloidal nonspherical noble metal nanoparticles; Advanced Materials 22; 2010; 1805. doi: 10.1002/adma.200902557.

[41] V. E. Ferry; et al.; Design considerations for plasmonic photovoltaics Advanced Materials 22; 2010; 4794. doi: 10.1002/adma.201000488.

Citations in Crossref