Conference article

Evaluation of an Integrated Photovoltaic Thermal Solar (IPVTS) Water Heating System for Various Configurations at Constant Collection Temperature

Rajeev Kumar Mishra
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India

G. N. Tiwari
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India

Download articlehttp://dx.doi.org/10.3384/ecp110573749

Published in: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:11, p. 3749-3756

Show more +

Published: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

Photovoltaic thermal (PVT) technology refers to the integration of a PV and a conventional solar thermal collector in a single piece of equipment. In this paper; an integrated photovoltaic thermal solar (IPVTS) water heating system for various configurations has been evaluated for constant collection temperature. Analysis is based on basic energy balance for hybrid flat plate collector in terms of design parameters for a solar water heater installed at Solar Energy Park; IIT Delhi; India and climatic parameters provided by India Meteorological Department Pune; India. It is observed that the daily thermal energy gain of IPVTS system decreases with increasing the constant collection temperature. It is also observed that for collectors partially covered by PV modules; daily thermal energy increases with decrease of collector area covered by PV module. The exergy analysis of IPVTS system has also been carried out.

Keywords

Hybrid PV thermal; Thermal energy; Exergy

References

[1] Prakash; J.; Transient analysis of a photovoltaic-thermal solar collector for co- generation of electricity and hot air/water. Energy Conversion and Management. 35; 1994 pp. 967-972. doi: 10.1016/0196-8904(94)90027-2.

[2] Tripanagnostopoulos; Y.; Hybrid photovoltaic/thermal solar system; Solar Energy 72(3); 2002; pp. 217-234. doi: 10.1016/S0038-092X(01)00096-2.

[3] Zondag; H.A.; de Vries; D.W. de; van Helden; W.G.J. ;van Zolengen; R.J.C.; Steenhoven; A.A.; The thermal and electrical yield of a PV-thermal collector. Solar Energy 72 (2); 2002; pp. 113-128. doi: 10.1016/S0038-092X(01)00094-9.

[4] Jones; A.D.; Underwood; C.P.; A thermal model for photovoltaic systems. Solar Energy 70 (4); 2001; pp. 349-359. doi: 10.1016/S0038-092X(00)00149-3.

[5] Chow; T.T.; Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Solar Energy 75; 2003; pp.143-152. doi: 10.1016/j.solener.2003.07.001.

[6] Infield; D.; Mei; L.; Eicker; U.; Thermal performance estimation of ventilated PV facades; Solar Energy; 76(1-3); 2004; pp. 93-98. doi: 10.1016/j.solener.2003.08.010.

[7] Duffie; J.A.; Beckman; W.A.; 1991. Solar Engineering of Thermal Processes. John Wiley and Sons; New York.

[8] Tiwari; G.N.; Solar Energy: Fundamentals; Design; Modeling and Applications. Narosa Publishing House; New Delhi; 2004.

[9] Dubey; S. and Tiwari; G.N.; Analysis of different configurations of flat plate collectors connected in series; International Journal of Energy Research; 32; 2008; pp. 1362-1372. doi: 10.1002/er.1422.

[10] Evans; D.L.; Simplified method for predicting PV array output. Solar Energy 27; 1981; pp. 555-560. doi: 10.1016/0038-092X(81)90051-7.

[11] Schott; T.; Operational temperatures of PV modules. In: Proceedings of 6th PV Solar Energy Conference; 1985; pp. 392-396.

Citations in Crossref