Conference article

Case Study: Technical Assessment of the Efficiency Optimization in Direct Connected PV-Electrolysis System at Taleghan-Iran

Abolfazl Shiroudi
Ministry of Energy-Renewable Energy organization of Iran (SUNA), Tehran, Iran

Seyed Reza Hosseini Taklimi
Linkoping University of Technology, Linkoping, Sweden

Nilofar Jafari
Ministry of Energy-Renewable Energy organization of Iran (SUNA), Tehran, Iran

Download articlehttp://dx.doi.org/10.3384/ecp110571150

Published in: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:3, p. 1150-1157

Show more +

Published: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

The use of PV array energy in supplying the electrolyzer systems is very suitable. During the daylight hours; the sunlight converts by PV array into electrical energy which will be used for electrolyzing process. Then hydrogen produced by the electrolyzer is compressed and stored in hydrogen vessel. This provides energy for the fuel cell to meet the load when the solar energy is insufficient. Solar hydrogen technology is relatively simple and the only raw material for the production of solar hydrogen is water. In this study technical results obtained from direct connection of 10 kW PV array with 5 kW electrolyzer systems for hydrogen production and storage at Taleghan site. Variations of the solar radiation intensity; hydrogen production rate; solar hydrogen efficiency and overall efficiency of solar hydrogen energy were considered as base of analyses. It is found that the minimum and maximum overall energy efficiency values of the system are 0.93 % and 5.01 %; respectively. The result shows a great potential in direct solar radiation for absorbing and converting it to other types of energy in Iran. Using solar energy required high initial investment; so converting solar energy to other types of energy with high efficiency systems is vital.

Keywords

Photovoltaic; Water Electrolysis; Hydrogen Production; System Efficiency; Taleghan

References

[1] K. Ro; S. Rahman; IEEE Transactions on Energy Conversion 13(3); 1998; pp. 276-281. doi: 10.1109/60.707608.

[2] A.M. Ramirez; P.J. Sebastian; S.A. Gamboa; M.A. Rivera; O. Cuevas; J. Campos; Int J Hydrogen Energy 25; 2000; pp. 267-271. doi: 10.1016/S0360-3199(99)00038-5.

[3] W. Isherwood; J.R. Smith; S.M. Aceves; G. Berry; W. Clark; R. Johnson; D. Das; D. Goering; R. Seifert; Solar Energy 25; 2000; pp. 1005-1020.

[4] M. Momirlan; T.N. Veziroglu; Renewable and Sustainable Energy Reviews 3; 1999; pp. 219-231. doi: 10.1016/S1364-0321(98)00017-3.

[5] M. Momirlan; T.N. Veziroglu; Renewable and Sustainable Energy Reviews 6; 2002; pp. 141-179. doi: 10.1016/S1364-0321(02)00004-7.

[6] A. Midilli; M. Ay; I. Dincer; M.A. Rosen; Renewable and Sustainable Energy Reviews 9; 2005; pp. 255-271. doi: 10.1016/j.rser.2004.05.003.

[7] G.J. Conibeer; B.S. Richards; Int J Hydrogen Energy 32; 2007; pp. 2703-2711. doi: 10.1016/j.ijhydene.2006.09.012.

[8] Ø. Ulleberg; Solar Energy 76; 2004; pp. 323-329. doi: 10.1016/j.solener.2003.09.013.

[9] J. Nowotny; C.C. Sorrell; L.R. Sheppard; T. Bak; Int J Hydrogen Energy 30; 2005; pp. 521-544. doi: 10.1016/j.ijhydene.2004.06.012.

[10] S. Galli; M. Stefanoni; Int J Hydrogen Energy 22(5); 1997; pp. 453-458. doi: 10.1016/S0360-3199(96)00105-X.

[11] D.B. Nelson; M.H. Nehrir; C. Wang; Renewable Energy 31; 2006; pp.1641-1656. doi: 10.1016/j.renene.2005.08.031.

[12] Technical Catalogue of Solar Module; MA36/45; Optical Fiber Fabrication Co; Iran.

[13] M.D. Siegel; S.A Klein; W.A. Beckman; Solar Energy 26; 1981; pp. 413-418. doi: 10.1016/0038-092X(81)90220-6.

[14] C. Soras; V. Makios; Solar Cells 25(2); 1988; pp. 127-142. doi: 10.1016/0379-6787(88)90017-8.

[15] B. Wichert; M. Dymond; W. Lawrance; T. Friese; Renewable Energy 22(1-3); 2001; pp. 311-319. doi: 10.1016/S0960-1481(00)00024-0.

[16] E. Koutroulis; K. Kalaitzakis; Renewable Energy 28(1); 2003; pp. 139-152. doi: 10.1016/S0960-1481(01)00197-5.

[17] A. Urbina; T.L. Paez; R.G. Jungst; Intersociety Energy Conversion Engineering Conference and Exhibit; 2000; pp. 995-1003.

[18] P.C. Butler; J.T. Crow; P.A. Taylor; the 19th International INTELEC; 1987; pp. 311-318.

[19] K.E. Cox; K.D. Williamson; Hydrogen: its technology and implications; Ohio: CRC Press Inc; 1977.

[20] G.W. Vinal; Storage Batteries; 4th edition; New York; N.Y.: John Wiley; 1967.

[21] Solar Electric Products Catalog; 2005.

[22] www.SMA.de.

[23] S.A. Sherif; F. Barbir; T.N. Vezirouglu; Solar Energy 78; 2005; pp. 647-660. doi: 10.1016/j.solener.2005.01.002.

[24] M.J. Khan; M.T. Iqbal; Renewable Energy 30; 2005; pp. 421-439. doi: 10.1016/j.renene.2004.05.013.

[25] Th.F. El-Shatter; M.N. Eskandar; M.T. El-Hagry; Renewable Energy 27; 2002.

[26] Instruction for erection operation and maintenance for hydrogen generation and compression plant EV05/10 system DEMAG; 1998.

[27] R. Perez; Home Power 22; 1991; pp. 26-30.

[28] E. Koutroulis; K. Kalaitzakis; Renewable Energy 28(1); 2003; pp. 139-152. doi: 10.1016/S0960-1481(01)00197-5.

[29] Nexa™ (310- 0027) Power Module User’s Manual; MAN5100078; 2003.

[30] G.E. Ahmad; E.T. El-Shenawy; Renewable Energy 31; 2006; pp. 1043-1054. doi: 10.1016/j.renene.2005.05.018.

[31] http://home.att.net/~cat6a/fuels-VII.htm.

Citations in Crossref